LABORATORY VALIDATION OF THE SAND FLY FEVER VIRUS ANTIGEN ASSAY

WILL K. REEVES, MITCHELL SCOTT SZYMCZAK, KRISTEN L. BURKHALTER AND MYRNA M. MILLER

USAF School of Aerospace Medicine
Public Health and Preventive Medicine Dept/PHR
2510 Fifth St.
Wright-Patterson AFB, OH 45433-7913

AFRL-SA-WP-JA-2015-0043

DISTRIBUTION STATEMENT A. Approved for public release.

Sandfly fever group viruses in the genus Phlebovirus (family Bunyaviridae) are widely distributed across the globe and are a cause of disease in military troops and indigenous peoples. We assessed the laboratory sensitivity and specificity of the Sand Fly Fever Virus Antigen Assay, a rapid dipstick assay designed to detect sandfly fever Naples virus (SFNV) and Toscana virus (TOSV) against a panel of phleboviruses. The assay detected SFNV and TOSV, as well as other phleboviruses including Aguacate, Anahanga, Arumowot, Chagres, and Punta Toro viruses. It did not detect sandfly fever Sicilian, Heartland, Rio Grande, or Rift Valley fever viruses. It did not produce false positive results in the presence of uninfected sand flies (Lutzomyia longipalpis) or Cache Valley virus, a distantly related bunyavirus. Results from this laboratory evaluation suggest that this assay may be used as a rapid field-deployable assay to detect sand flies infected with TOSV and SFNV, as well as an assortment of other phleboviruses.
OPERATIONAL NOTE

LABORATORY VALIDATION OF THE SAND FLY FEVER VIRUS ANTIGEN ASSAY

WILL K. REEVES, 1 MITCHELL SCOTT SZYMCZAK, 2 KRISTEN L. BURKHALTER 3
AND MYRNA M. MILLER 2

ABSTRACT. Sandfly fever group viruses in the genus Phlebovirus (family Bunyaviridae) are widely distributed across the globe and are a cause of disease in military troops and indigenous peoples. We assessed the laboratory sensitivity and specificity of the Sand Fly Fever Virus Antigen Assay, a rapid dipstick assay designed to detect sandfly fever Naples virus (SFNV) and Toscana virus (TOSV) against a panel of phleboviruses. The assay detected SFNV and TOSV, as well as other phleboviruses including Aguacate, Anahanga, Arumowot, Chagres, and Punta Toro viruses. It did not detect sandfly fever Sicilian, Heartland, Rio Grande, or Rift Valley fever viruses. It did not produce false positive results in the presence of uninfected sand flies (Lutzomyia longipalpis) or Cache Valley virus, a distantly related bunyavirus. Results from this laboratory evaluation suggest that this assay may be used as a rapid field-deployable assay to detect sand flies infected with TOSV and SFNV, as well as an assortment of other phleboviruses.

KEY WORDS Phlebovirus, Toscana virus, sandfly fever, assay, dipstick

The sandfly fever (SF) virus group (Bunyaviridae: Phlebovirus) is composed of arboviruses primarily transmitted by phlebotomine sand flies in the genera Lutzomyia and Phlebotomus (Diptera: Psychodidae), although some, like Rift Valley fever virus (RVFV) and Arumowot virus, are transmitted by mosquitoes (Tesh 1988). The most clinically significant members of the SF virus group are RVFV, Toscana virus (TOSV), sandfly fever Sicilian virus (SFSV), sandfly fever Naples virus (SFNV), and Punta Toro virus (Tesh 1988, Alkan et al. 2013). These viruses pose a threat to US military personnel and indigenous populations in tropical and temperate regions (Brett-Major and Claborn 2009). In particular, TOSV (a serotype of SFNV) is one of the primary causes of SF disease among US troops in the Mediterranean (Brett-Major and Claborn 2009) and is a common cause of meningitis in Mediterranean and southern European countries during the vector season (Braito et al. 1997). Sandfly fever Sicilian virus also causes sporadic epidemics of Pappataci fevers in humans (Brett-Major and Claborn 1997). Rift Valley fever virus and Arumowot virus are transmitted by mosquitoes, and RVFV can cause serious hemorrhagic disease or high fever in humans (Tomori and Fabiyi 1976, Tesh 1988); RVFV is of particular military concern because it could be used as a biological weapon (Dudley and Woodford 2002). SF viruses are found in the New World, including Punta Toro, Rio Grande, Augacate, Anhanga, and Chagres viruses, and several of these are also known to cause serious disease such as high fever and joint pain (Tesh 1988). Chagres virus has caused human disease in residents of Panama (Srihongse and Johnson 1974) and has also been isolated from US military personnel stationed there (Peralta et al. 1965).

Rapid field assessments of sand flies for phleboviruses have been previously unavailable. The available tests are virus isolation or reverse transcriptase polymerase chain reaction (RT-PCR), which require appropriately equipped and staffed laboratories and several days to weeks to receive test results. The Sand Fly Fever Virus Antigen (SFFVA) Assay (Product number SFVA-K020; VecTOR Test Systems Inc., Thousand Oaks, CA) is a dipstick assay that is easy to perform and interpret and has the potential to be field deployable. Ideally this assay could be used worldwide if it detects multiple strains of SSFV. Samples are processed in a proprietary grinding solution provided with the kit that facilitates wicking of viral antigens up the assay stick. The dipstick is added to an aliquot of the homogenized sample supernatant and allowed to incubate for 15 min. The appearance of a red band at both the test and control zones indicates a positive result, whereas the appearance of a red band at only the control zone indicates a negative result (Fig. 1). All SFFV positives react in the same location on the dipstick indicating a positive but not allowing for virus differentiation. The appearance of no bands at all indicates test failure.

1 U.S Air Force School of Aerospace Medicine, Epidemiology Consult Service, 2510 5th Street, Wright-Patterson AFB, OH 45433.
2 Wyoming State Veterinary Laboratory, University of Wyoming, 1174 Snowy Range Road, Laramie, WY 82070.
3 Centers for Disease Control and Prevention, DVBD, 3156 Rampart Road, Fort Collins, CO 80521.
and a retest of the sample is required. The SFFVA assay was designed, because of a Department of Defense–funded priority, to detect TOSV and SFNV in field-collected sand flies by serologically detecting the partially conserved viral N protein. We evaluated its ability to detect other phleboviruses in the SF group. The SFFVA is analogous to several commercially available assays from VecTOR Test Systems Inc. for malaria, West Nile virus, Rift Valley fever virus, dengue, chikungunya, and several other arboviruses. These assays were described by Ryan et al. (2003).

We conducted a laboratory evaluation of the SFFVA dipstick assay on an assortment of antigenically distinct SF viruses. These included the Old World viruses: TOSV, SFNV, and SFSV. We selected several New World SF viruses including Rio Grande virus, which is the only known phlebovirus transmitted by sand flies in the continental USA (Endris et al. 1983), and Aguacate, Anahanga, Chagres, and Punta Toro viruses from Central and South America, which were chosen based on previously described human infections and published antigenic differences between viral strains (Peralta et al. 1965, Sather 1970, Srihongse and Johnson 1974, Tesh et al. 1975).

We also tested the SFFVA against arthropod-borne phleboviruses that are not members of the SF virus group (Heartland viruses) or are members of the SF virus group but not known to be transmitted by sand flies (RVFV and Arumowot virus). Heartland virus (HRTV) is a North American phlebovirus known to cause febrile illness in people (McMullan et al. 2012) and was recently shown to be transmitted by ticks (Savage et al. 2013). We tested Cache Valley virus (Bunyaviridae: Orthobunyavirus) as a negative virus control because it is a distantly related genus of Bunyaviridae. Finally, uninfected pools of sand flies, Lutzomyia longipalpis Franca (Diptera: Psychodidae), were used to confirm that the test strips would not produce false positive results in the presence of homogenized insects.

Two lots of SFFVA were purchased from VecTOR Test Systems. Viruses were purchased from the American Type Culture Collection (Manassas, VA) or were provided by the Centers for Disease Control and Prevention or US Department of Agriculture. Viruses were propagated and titered using VERO cells. Dead L. longipalpis were acquired from colonies maintained at the Walter Reed Army Institute of Research (Silver Springs, MD). A voucher specimen was deposited at the Museum of Biological Diversity, Columbus, OH.

Negative controls consisted of either 250 µl of uninfected VectorTest grinding solution, pools of 25 uninfected homogenized L. longipalpis in 200 µl of grinding solution, or Cache Valley virus stock diluted in grinding solution to a final volume of 250 µl (Table 1). All other virus samples were produced by serially diluting each virus in VectorTest grinding solution in a final volume of 250 µl. Samples containing TOSV, RVFV, Arumowot, and all New World SF group viruses also contained 25 homogenized L. longipalpis. Sandfly fever Sicilian virus, SFNV, and HRTV samples did not contain sand flies, as they were unavailable at the time of testing. Positive and negative results were interpreted according to the presence of 1 or 2 bands as described above (Fig. 1). To control for possible bias, the dipsticks were examined and scored positive or negative by
a student who had no knowledge of the contents of each tube and who was uninvolved with any other aspect of the study.

Results of the SFFVA are listed for each virus tested (Table 1). None of the negative controls produced positive results. No positive results were detected for HRTV, RVFV, Rio Grande virus, or SFSV. Failure to detect RVFV was expected, because this virus is not closely related to Toscana virus (Charrel et al. 2009). Rio Grande virus was characterized as a phlebovirus by serology, but its phylogenetic relationship to other Phlebovirus is unknown (Calisher et al. 1977). Heartland virus is a tick-borne phlebovirus and thus a distant relative. The SFFVA dipstick assay did not detect SFSV, which is antigenically different from SFNV (Sabin 1955).

All of the other phleboviruses produced positive SFFVA dipstick assay results (Table 1). The assay detected a minimum titer of $10^{2.4}$ tissue culture infectious dose (TCID)$_{50}$/ml of TOSV or a minimum titer of $10^{1.5}$ plaque-forming units (PFU)/ml of SFNV. Aguacate, Anahanga, Arumowot, Chagres, and Punta Toro viruses produced positive bands; their respective sensitivity limits are listed in Table 1. Bands were faint but distinctly present and detected by an untrained unbiased person. However, the viral loads in individual sand flies might be less than the sensitivity of the assay, and multiple infected flies could be needed for a positive result. This is a limitation of visually scored dipstick assays. The presence of homogenized sand flies in the virus positive samples did not produce false negative results.

Viral loads in wild caught Lutzomyia and Phlebotomus are poorly known; however, a study of laboratory-infected Phlebotomus and Lutzomyia indicated that the titers of SFNV and TOSV can range from 10^{-5}–10^{+4} and 10^{0}–10^{+7} PFU per insect, respectively, 5–7 days postinfection (Tesh and Modi 1984). The SFFVA dipstick assay detected the target viruses (TOSV and SFNV) in a laboratory environment; however, field testing is needed to determine if this assay will be useful for threat assessments of these phlebotomine-borne viruses. The incidental ability of the SFFVA dipstick assay to detect Arumowot and the New World SF phleboviruses listed above may prove useful in detecting infected sand flies where those viruses are known to circulate. In addition, the viral antigens presented in cell culture could be different than those in infected sand flies. The SFFVA might detect more or less virus in wild infected flies. The proprietary grinding solution provided with the kit will inactivate most arboviruses, preventing them from being isolated in cell culture. However, dipstick assays are used as field screening kits for decision making, and isolation or RT-PCR might not be an option.

This research was supported by the Intramural Defense Health Program and the 711th Human Performance Wing. We thank Major S. Davidson for providing dead *L. longipalpis*, Richard Thomas for his absolutely critical assistance with logistics, and the Armed Forces Pest Management Board for validating the need for field-deployable insect pathogen detection assays. We also thank Brandy Russell (Arbovirus Disease Branch, Division of Vector Borne Diseases, Centers for Disease Control and Prevention) for propagating SFSV, SFNV, and HRTV. The use of trade names in this document does not constitute an official endorsement or approval of the use of such commercial hardware or software. Do not cite this document for advertisement. The views expressed in this article are those of the authors and do not reflect the official policy or position of the Air Force, the Army, the Department of Defense, Department of Health and Human Services, or the U.S. Government. Distribution A: Approved for public release; distribution is unlimited. Case Number: 382 JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION VOL. 31, NO. 4

Table 1. Results of the laboratory evaluation of the Sand Fly Fever Virus Antigen dipstick assay.\(^1\)

<table>
<thead>
<tr>
<th>Virus Strain</th>
<th>Detected by the SFFVA Assay(^3)</th>
<th>Titer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toscana virus</td>
<td>Unknown</td>
<td>$10^{2.4}$ TCID$_{50}$/ml</td>
</tr>
<tr>
<td>Sandfly fever Naples virus</td>
<td>Sabin</td>
<td>$10^{5.1}$ PFU/ml</td>
</tr>
<tr>
<td>Aguacate virus</td>
<td>VP 175 A</td>
<td>10^{9} TCID$_{50}$/ml</td>
</tr>
<tr>
<td>Anahanga virus</td>
<td>Be An 46852</td>
<td>10^{3} TCID$_{50}$/ml</td>
</tr>
<tr>
<td>Arumowot virus</td>
<td>AR 1284-64</td>
<td>$10^{1.0}$ TCID$_{50}$/ml</td>
</tr>
<tr>
<td>Chagres virus</td>
<td>JW 10</td>
<td>$10^{0.7}$ TCID$_{50}$/ml</td>
</tr>
<tr>
<td>Punta Toro virus</td>
<td>Unknown</td>
<td>$10^{0.9}$ TCID$_{50}$/ml</td>
</tr>
<tr>
<td>Not detected by the SFFVA Assay(^3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sandfly fever Sicilian virus</td>
<td>Sabin</td>
<td>$10^{2.2}$ PFU/ml</td>
</tr>
<tr>
<td>Heartland virus</td>
<td>MO12-75</td>
<td>$10^{4.1}$ PFU/ml</td>
</tr>
<tr>
<td>Rift Valley fever virus</td>
<td>MPI2</td>
<td>$10^{0.3}$ TCID$_{50}$/ml</td>
</tr>
<tr>
<td>Rio Grande virus</td>
<td>Unknown</td>
<td>$10^{0.4}$ TCID$_{50}$/ml</td>
</tr>
<tr>
<td>Cache Valley virus</td>
<td>89B-7060</td>
<td>$10^{0.6}$ TCID$_{50}$/ml</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PFU, plaque-forming unit; SFFVA, SandFly Fever Virus Antigen; TCID, tissue culture infectious dose.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sensitivity results are presented as the lowest detectable titers of viruses that tested positive with the dipsticks.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Specificity of the assay is demonstrated by viruses that were undetected; highest titer tested.</td>
<td></td>
</tr>
</tbody>
</table>
REFERENCES CITED

