Doppler Sonar Observations of the Kuroshio in ASIAEX 2000

Robert Pinkel
Marine Physical Laboratory
Scripps Institution of Oceanography
La Jolla California 92093-0213
Phone: (858) 534-2056  fax: (858) 534-7132  email: rpinkel@ucsd.edu

Award#N00014-94-1-0046/Award #N00014-00-1-0207

LONG-TERM GOALS

To gain a more complete understanding of ocean dynamical processes, particularly at fine-scale, through intercomparison of high, mid- and low-latitude observations, both near the sea surface, in the main thermocline, and near the sea floor.

OBJECTIVES

To identify the phenomena involved in the cascade of energy from mesoscales to turbulent scales. To quantify the relationship between fine-scale background conditions and the occurrence of microscale breaking.

APPROACH

Progress is effected through a steady-state cycle of instrument development, field observation and data analysis. The primary instruments employed include Doppler sonar and profiling CTD's. Generically, our instruments produce information which is quasi-continuous in space and time. Measurements typically span two decades in the wavenumber domain. This broad band space-time coverage enables the investigation of multi-scale interactions.

WORK COMPLETED

We have participated in the first phase of ASIAEX (April-May 2000) in the East China Sea. Using the dual frequency Hydrographic Doppler Sonar System on the R.V. Roger Revelle, profiles of ocean currents were obtained to 700 m depth with 15 m vertical resolution and to 250 m with 3 m vertical resolution (Figure 1). In the course of the experiment, several transects of the Kuroshio were performed. The combined sonar and CTD data render a rather complete spatial picture of the hydrographic fields.

A series of very energetic shear layers were found (by graduate student Luc Rainville) to underlie the base of the Kuroshio. These slope downward offshore and have horizontal coherence scales of 30-50 km. The observed slopes slightly exceed the slope of isopycnal surfaces, suggesting that they are waves with a near-inertial intrinsic frequency. The shear associated with these waves is comparable to the geostrophic shear of the Kuroshio.
# Doppler Sonar Observations of the Kuroshio in ASIAEX 2000

**1. REPORT DATE**
30 SEP 2002

**2. REPORT TYPE**

**3. DATES COVERED**
00-00-2002 to 00-00-2002

**4. TITLE AND SUBTITLE**
Doppler Sonar Observations of the Kuroshio in ASIAEX 2000

**5a. CONTRACT NUMBER**

**5b. GRANT NUMBER**

**5c. PROGRAM ELEMENT NUMBER**

**5d. PROJECT NUMBER**

**5e. TASK NUMBER**

**5f. WORK UNIT NUMBER**

**6. AUTHOR(S)**

**7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)**
Marine Physical Laboratory, Scripps Institution of Oceanography, La Jolla, CA, 92093

**8. PERFORMING ORGANIZATION REPORT NUMBER**

**9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)**

**10. SPONSOR/MONITOR’S ACRONYM(S)**

**11. SPONSOR/MONITOR’S REPORT NUMBER(S)**

**12. DISTRIBUTION/AVAILABILITY STATEMENT**
Approved for public release; distribution unlimited

**13. SUPPLEMENTARY NOTES**

**14. ABSTRACT**
To gain a more complete understanding of ocean dynamical processes, particularly at fine-scale, through intercomparison of high, mid- and low-latitude observations, both near the sea surface, in the main thermocline, and near the sea floor.

**15. SUBJECT TERMS**

**16. SECURITY CLASSIFICATION OF:**

<table>
<thead>
<tr>
<th>a REPORT</th>
<th>b ABSTRACT</th>
<th>c THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>unclassified</td>
<td>unclassified</td>
<td>unclassified</td>
</tr>
</tbody>
</table>

**17. LIMITATION OF ABSTRACT**
Same as Report (SAR)

**18. NUMBER OF PAGES**
4

**19a. NAME OF RESPONSIBLE PERSON**

Form Approved
OMB No. 0704-0188

Report Documentation Page

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
We have been unable to detect a vertical energy flux associated with the shear. In part, this is a consequence of the short duration of the transect measurements. It is difficult to sense the time-evolution of flow from a moving platform.

Plans to revisit the area on the R/V Melville in ASIAEX II (May-June 2001) were not realized. Given our extreme interest in the processes at this site, an impromptu cruise of opportunity was conducted in May 2002 as the R/V Melville transited from the Marshall Islands to Japan. Luc Rainville organized an all-student team to ride the Melville, conducting ADCP, lowered ADCP, and CTD profiling across the Kuroshio, slightly north of the original ASIAEX site. Approximately two days of ship time were made available for the survey.

University of California funds were used to support the added ship time and the students travel expenses. Instrument preparation expenses were paid for under this program.

RESULTS

Unfortunately, since the R/V Revelle was not used, the high resolution of the Hydrographic Doppler Sonar System was not available. Never the less, the deep shear features were again seen. The observations are noisier than the original 2000 measurements and are presently under analysis.

IMPACT/APPLICATIONS

These organized motions must greatly influence dissipative processes at the Kuroshio Front. In turn, they must be strongly influenced by the meandering nature of the Kuroshio and its interaction with the continental shelf.

The highly coherent, anisotropic, step-like features induced in the density field by the straining of these layers will have a profound influence on the propagation of sound, an influence of relevance to naval operations. Given the strong acoustic signature that these layers must have, an experiment focused on their study might well make use of acoustic techniques.

TRANSITIONS

The Hydrographic Doppler Sonar System on the R.V. Revelle (funded primarily by NSF and the University of California) will be kept in continuous operation for future users of the ship. It is suggested that other ships in the US research fleet might benefit from similar systems.

RELATED PROJECTS

The shear data obtained in ASIAEX will be merged with the CTD data collected by Steve Ramp (NPGS) to produces a comprehensive picture of the region. Observations of wave phenomena at the shelf break and on the shelf will be applied to models of acoustic propagation in the region by Jim Lynch, Tim Duda, and John Colosi of Woods Hole.
Maps of vertical shear measured by the High Resolution Sonar (140kHz) near the shelf break on April 17, 2000. For this line, the R/V Revelle was going from the continental shelf to deep water. Time (UTC) are marked on the upper axis of each panel. The bottom topography is indicated by the darker region. The along-shelf current (into the page) is dominated by the Kuroshio, with the front located at the shelf break, at a cross-helf distance of about 95 km.

PUBLICATIONS
