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Introduction 
The goal of this project is to develop novel visualization techniques and tools for large and 
complex health care data to facilitate timely decision-making and trend/pattern detection. A 
prototype system will be developed to test the effectiveness of this approach on a large-scale 
health care database that is currently available at Regenstrief Institute. We will develop a public 
health use case leveraging a Notifiable Condition Detector (NCD) dataset that contains 
reportable disease conditions that are transmitted to Indiana public health authorities (over 
800,000 reports). Clinicians and public health stakeholders seek to uncover informative trends 
contained within the growing population-based datasets. To support knowledge discovery, in 
this project, we first extract meaningful terms and their associations and attributes from the raw 
data by applying data mining and text mining algorithms to construct a concept space. A 
browser-based user interface will also be developed to enable interactive online data 
exploration. A suite of visualization algorithms and techniques will be developed and 
implemented within the prototype system. Visualizations include a novel 3D spatiotemporal 
terrain visualization technique for big time-series data over the Indiana geographical area. 
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Body 
The primary goals through the aforementioned annual report period are: 1) Design and develop 
new visualization algorithms and tools; 2) Integrate and test all system functions; and 3) 
Evaluate system usability.  

1. Visualization algorithm design and development
1.1 Spatial Texture Based Approach 
Population-level healthcare data and information are often tightly coupled with geospatial 
regions. The visualization of this type data requires the integration of geo-visualization and 
multi-dimensional and time-variant information visualization. For this purpose, we propose a 
Spatial Texture based approach. In this approach, we encode multi-dimensional attributes or 
time-variant attributes for a geospatial region into a texture image, and then map the texture 
image to the surface of the geospatial region to provide an integrated visual representation. The 
key is the visual encoding of multiple attributes or a time-variant attribute in a texture image. 

Noise Texture: 
We aim to represent multiple attributes for each geospatial region using color coded texture 
patterns so that the users can visually perceive the representations of different attributes, not 
only within one region, but also its overall geospatial distributions across many regions in a 
geographic area (e.g. a state).  

We first construct noise patterns to create a random variation in color intensity, similar to the 
approach in [1]. Different color hues will be used to represent different types of attributes, for 
example the occurrences of different diseases. A turbulence function [2] will be used to 
generate the noise patterns of different frequencies (sizes of the sub-regions of the noise 
pattern). These multi-scale patterns may be applied to different scales of geographic areas (e.g. 
counties vs zip-codes). Since the noise pattern involves the mixing and blending of different 
color hues, we choose to use an RYB color model instead of RGB model, as proposed in [1], 
since RYB color model provides more intuitive representation of the weights of different colors 
after blending. Figure 1 shows two examples of the texture-mapped views of three diseases, 
Diabetes. Hepatitis B, and Chlamydia, over the Indiana state map. For example, more reddish 
areas exhibits higher rate of Diabetes and bluish areas show higher occurrence of Chlamydia. 

          (a)                                                (b) 
Fig. 1  Noise textures mapped over the Indiana State map: (a) county based; (b) zip-code based. 

Offset Contours: 
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Offset contouring is designed to represent attribute changes over time within a geographic 
region. It can also be used to represent multiple attributes by assigning each attribute to each 
contour. Similar to the Noise Pattern texture, we first construct a texture image using offset 
contour curves to form shape-preserving sub-regions. We will then use varying color shades or 
hues to fill the sequence of sub-regions to represent the change of attribute values over time, or 
to simply fill the sub-regions with different color values to represent multiple attributes. 

The offset contours are generated by offsetting the boundary curve toward the interior of the 
region, creating multiple offset boundary curves (Figure 2). There are several offset curve 
algorithms available in curve/surface modeling. But since in our application, the offset curves do 
not need to be very accurate, we opt to use a simple image erosion algorithm [3] directly on the 
2D image of the map to generate the offset contours. 

Fig. 2: Offset contours with different colors or different shades of the same color. 

 (a)                                    (b)                                  (c) (d) 
Fig. 3. Texture mapped views of offset contours over the Indiana state map: 
(a) County based time-series data 
(b) Zip-code based time-series data 
(c) County based multi-diseases data 
(d) Zip-code based multi-diseases data 

In time-series data visualization, the time line can be divided into multiple time intervals and 
represented by the offset contours. Varying shades of a color hue can be used to represent the 
attribute changes (e.g. occurrence of a disease) over time. This approach, however, has two 
limitations. First, when the boundary shape of a region is highly concave, the image erosion 
technique sometimes does not generate clean offset contours. This usually can be corrected 
using a geometric offset curve algorithm such as the one in [4]. A second limitation of this 
approach is that it requires a certain amount of spatial area to layout the contours and color 
patterns. In public health data, however, these attributes are typically defined on geographic 
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areas, which provides a perfect platform for texture based visual encoding. Figure 3 shows a 
few examples of the texture mapped views of offset contours over the Indiana state map. Figure 
3 (a-b) show the time-series views of Influenza, from 2004 to 2012. The time interval is divided 
into 8 subintervals. Figure 3 (c-d) show three diseases, Influenza, Typhoid Fever, and Hepatitis 
B. 

1.2. Spiral Theme Plot  
Spatial texture provides overviews of health care data associated with geographic regions. It is 
however often desirable for health administrators and physicians to also see the details of 
individual patients and theirs medical history (over time). When this is done with a large 
population, the collective view of patient medical histories often exhibit identifiable patterns and 
trends that may not be easily detected from the visualization of statistical data over geographical 
regions.  

A simple approach to view patient level data is to draw each patient record as a point on a radial 
plot, divided into multiple rings which can represent different terms such as diseases. We call 
this Ring Plot, as shown in Figure 4. The circumference of this radial space represents the time-
axis. Thus, time is encode as the radial angle of the dots (patients). Ring Plot shows the 
distribution of patient-level data over a time-attribute space. One significant attribute, for 
example “age”, will be represented as radius. Other attributes of the patients, such as race and 
gender, are represented as color and shape of the dots. Occurrences of the same patient 
associated with multiple terms (e.g. diagnosed with multiple diseases) are connected by curves 
across the graph. In Figure 4, for example, we see a concentration of mid-age patients with 
Hepatitis B. 

Ring Plot, however, does not provide a good overall trend and comparisons of different 
diseases over time, as typically shown in a ThemeRiver plot. The time axis is also only limited to 
one circle, which cannot represent periodical patterns very well. By integrating ThemeRiver and 
a spiral pattern into the basic Ring Plot method, we developed a new Spiral Theme Plot 
technique. In a Spiral Theme Plot, the diseases (or any other term) are represented as stacked 
themes along a spiral base curve, which is the time-axis. Patients are still plotted within the 
regions of the themes, with similar visual features (age, race, gender, etc.). Spiral Theme Plot 
allows multiple years of patients data be plotted periodically such that seasonal patterns or 
abnormal patterns for seasonal diseases can be easily detected. For patients with multiple 
hospital visits at different times for the same or different conditions, curves are drawn to connect 
these multiple occurrences by the same patient.  

Fig. 4:  A Ring Plot for Hepatitis A, B, C and D. For each patient (dot), the color represents race, 
the shape represents gender, and the radius represents age. 
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There are several technical details that need to be developed in order to implement a Spiral 
Theme Plot. First, the radius of the base spiral curve needs to be pre-estimated based on the 
maximum width of the cumulative themes of all the diseases.  Second, when plotting patients 
within each theme, the width of the theme at that particular angle needs to be computed. Since 
the boundary curves of the themes are interpolated by spline curves, this width information can 
theoretically be computed from the spline representations. But we found that it is actually 
simpler and more efficient to check the color values along the normal direction of the spiral 
curve to estimate the width of a theme at each angle. Lastly, we found that the number of 
patients with multiple occurrences is usually quite large, which leads to very dense and cluttered 
connecting curves. We implemented an edge bundling strategy to bundle these connecting 
curves for each pre-defined time interval. Other type of bundling strategies may also be 
implemented to show certain types of connection patterns better. Figure 5a shows an example 
of a Spiral Theme Plot for Lyme Disease, Blood Diseases, and Brucellosis. Figure 5b show a 
periodical (seasonal) pattern of Flu over 4 years. 

(a)                                                                        (b)   
Fig. 5: Spiral Theme Plot: (a) Lyme Disease, Blood Diseases, and Brucellosis; (b) Seasonal 
pattern of Flu. 

2. System Integration and User Interface

The system is implemented using Javascript in an HTML5 canvas. The architecture pattern is 
based on the Ruby on Rails (RoR) framework for delivering web applications with AJAX 
services and a classic Model-View-Controller architecture. The user interface is a modern web 
GUI using a combination of form submission and RESTful service calls to query and retrieve 
data in various data delivery formats. The visualization algorithms are implemented using HTML, 
CSS, SVG, and WebGL technologies with a number of open-source Javascript libraries such as 
sigma.js, d3.js, jquery.js and three.js.  

The user interface uses multiple split windows so that multiple types of visualizations can be 
applied and compared for the same dataset.  Figure 6 show a screen shot of three 
visualizations for a dataset selected from an association map. Visualization results can also be 
saved into a slider bar, with time stamps, and be brought back later (Figure 7). This provides a 
flexible workspace for health administrators or physicians to explore and compare different 
scenarios for health policy planning, decision making, resource management, etc. 
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Fig. 6:  A screen shot of a split window interface. 

Fig. 7:  System interface with saved working windows. 

3. System prototyping and evaluation

After developing the data visualization framework, we imported de-identified communicable 
disease data and incorporated four operational visualizations including a network association 
graph, a ring graph, theme river graph, and 2D/3D cholorpleth (heatmap) spatiotemporal graphs. 
To perform a usability evaluation of this framework we recruited interviewees who represented 
potential end-users and visualization consumers, including public health epidemiologists with 
expertise in notifiable disease surveillance and syndromic surveillance; Indiana University 
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faculty from the school of Public health; biomedical informaticians with public health informatics 
expertise from the Regenstrief Institute; clinical practitioners; and program managers with 
advanced training in public health management. 

For our usability evaluation we adapted the National Institute of Standards and Technology 
(2007) definition of usability for our participants as the “effectiveness, efficiency, and satisfaction 
with which intended users can achieve their tasks and the intended context of product use.” 
Using an unstructured qualitative interview process, we explored dimensions of effectiveness 
(accuracy in completing tasks), efficiency (perceived time and effort in accomplishment of tasks), 
and satisfaction (subjective response to the application). 

Prior to reviewing each of the four visualizations in successive order, the interviewees were 
oriented to the following dimensions of the application: 1) the overall screen layout and structure; 
2) the ways in which users could navigate within a screen; 3) the ways in which users could
navigate to other screens; 4) the ways in which users could navigate to the home screen; the 
ways in which users would move from field to field; and 5) a description of key commonly used 
buttons, icons, and links. 

After presenting each visualization, the interviewees were asked to comment on the perceived 
dimensions of effectiveness, efficiency, and general satisfaction. Where necessary, exemplar 
leading questions were prepared to stimulate discussion, and included: “comment on your 
perceived satisfaction with the time required to interact with this visualization”; “how satisfied 
would you be with the perceived effort to interact with this visualization?”; “how confident are 
you that you could use this visualization to support your daily work flows on a routine basis?”; 
and “how quickly do you think most users would learn to perform the functions needed for this 
visualization?” The interviewees’ responses were synthesized and are summarized below, 
stratified by each visualization. 

Association Network Graph: 
As a general theme, the interviewees felt that including in-line guidance or pop-up descriptions 
(e.g., using mouse-overs) for each visualization parameter would provide end-users with 
valuable information to guide their use the tool. For example, the purpose of the association 
"threshold" parameter used in the association graph to create edges was unclear, and 
interviewees sought further definition. Interviewees noted that the visualization loading time, 
while less than 10 seconds, could be improved to enhance overall user satisfaction. The 
meaning of the colors of the edges in the graph was unclear, and interviewees felt they should 
be more clearly defined in the application. Public health stakeholders expressed the clear value 
of being able to quickly identify associations among multiple diseases, and they were pleased 
with the ability to filter out extraneous nodes and create sub-networks for strongly associated 
diseases. The interviewees felt that edges in the graph should contain metrics characterizing 
the strength of the association between nodes (disease). 
Ring Graph: 
The interviewees described this visualization as being particularly complex and exhibiting high 
information density; some felt that the density obfuscated important information and were 
concerned that individual cases may be overlooked. The interviewees required substantial 
introduction to the graph prior to expressing recognition of the value of the visualization.  
Several commented that the extended (90-120 second) loading time was sub optimal, and 
hindered overall satisfaction, usability, and efficiency. While the dimensionalities of disease, age, 
gender, race, and time were generally perceived to be useful, the interviewees suggested that 
allowing those dimensions to be configurable would improve the utility of this visualization. One 
epidemiologist interviewee noted that their team likely would not use this visualization to identify 
disease outbreaks, but would instead use this visualization after an outbreak has been detected 
through other means in order to explore the relationships and characteristics of individuals 
within an outbreak in order to identify potential risk factors and target interventions. Another 
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suggested that the circular format could be confusing and may obfuscate data; it was suggested 
that the graph be transformed into a linear format to potentially improve interpretability. One 
interviewee noted, “This graph has the potential to make me think about things that I wouldn't 
otherwise, and that has value to me.” 

Theme River Graph: 
Interviewees generally expressed that the theme river visualization provided a consumable, 
informative high-level comparison communicable disease incidence over time. Multiple 
interviewees indicated they would prefer case counts to begin at a common baseline on the y-
axis; the variable heights and irregular sides of the theme river graph were felt to hinder 
interpretability. A consistent linear y-axis baseline of zero was felt to potentially enhance year-
to-year comparisons over the default theme River visualization. 

Spatiotemporal Graph: 
The three-dimensional version of this visualization was perceived to be more informative than 
the two-dimensional version. Commenters noted that the two-dimensional color variations within 
counties were challenging to interpret; the varying color intensity combined with varying band 
widths for each disease confused the interviewees. Some noted that continuous variation in 
color intensity may be less interpretable than dividing the range of disease incidence into a 
discrete set of ranges. Interviewees stated that presenting disease incidence as a three-
dimensional height substantially improved interpretability and understanding of the data. There 
is wide variation in disease rates among counties (a small number of counties contain significant 
portions of overall disease); this variation obfuscates details in lower prevalence regions. 
Consequently the interviewees suggested that an additional feature enabling nonlinear scaling 
to highlight details in lower prevalence counties would be useful. They further suggested that 
presenting these data as incident rates (new cases per total population in the county) versus 
absolute counts (new cases) could improve interpretability and overall satisfaction. 
Epidemiologist interviewees requested extended functionality to visualize the highest 
prevalence diseases in each county.  

General observations: 
Due to the data privacy policy provisions of the institutional review board research process, we 
used obfuscated de-identified clinical data for the usability assessment. The interviewees noted 
that further assessment of the usability of these different visualization tools would be enhanced 
by reviewing fully identified data rather than the de-identified obfuscated data currently used for 
research and development purposes. 
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Key Research Accomplishments 

• Designed and implemented several information visualization algorithms suitable for
public health data, including the texture based geospatial and geo-temporal
visualization techniques, and patient based plotting methods: Ring graph and Spiral
Theme Plot.

• Designed and implemented a web based graphical user interface for the prototype
system, including a multi-window interface

• Completed demonstrations to public health staff/providers and biomedical
informaticians for the system evaluation.
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Reportable Outcomes 

• S. Jiang, S. Fang, S. Bloomquist, J. Keiper, M. Palakal, Y, Xia, S. Grannis. Health-
Terrain: A Healthcare Data Visualization System. Submitted: 2015 IEEE Symposium
on Large Data Analytics and Visualization.

• Three demonstrations of the system were completed within this timeframe; one for
the Indiana State Department of Public Health, one for the Marion County Public
Health Department, and one for the internal departments of IUPUI School of
Informatics and Regenstrief Institute - Indiana University School of Medicine.
Feedback from the aforementioned demonstrations will be utilized to further
enhance the system.
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Conclusion 

We have made significant overall progress in this project, including: (1) Design and 
development of new visualization algorithms and tools; (2) Integration and testing of all system 
functions; and (3) Evaluation of system usability. We focus on two new visualization methods 
we developed specifically for public health data: Spatial Textures, and Spiral Theme Plot. 
Spatial Texture approach is effective because geospatial visualization intrinsically provides 
additional screen space (surface areas) that can be taken advantages of to encode additional 
data and attributes. The Spiral Theme Plot technique is a combination of several information 
visualization methods including ThemeRiver, Spiral Plot and Scatter Plot. For public health data 
with large patient databases, this particular combination satisfies several key requirements for 
visualizing time-variant patient records. With the rich set of tools available to support web based 
user interface, graphics, and data communications, we also feel that it is as efficient to develop 
a web based visualization system as in a traditional programming environment. We are currently 
carrying out integrated system testing and evaluation, and we are confident that an innovative 
and easy to use health care data visualization system will be available by the end of September 
2015. 
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Health-Terrain: A Healthcare Data Visualization System

Abstract—Healthcare data visualization is challenging due to the needs for integrating geospatial information, temporal 
information, text information, and heterogenious health attributes within a common visual context. We recently developed a web-
based healthcare data visualization system, Health-Terrain, based on a Notifiable Condition Detector (NCD) use case. In this paper, 
we will describe this Helath-Terrain system, with emphasis on the visualization techniques developed specifically for healthcare 
data. Two new visualization techniques will be described: (1) A spatial texture based visualization approach for multi-dimensional 
attributes and time-series data; (2) A spiral theme plot technique for visualizing time-variant patient data. 

Index Terms— healthcare data, spatiotemporal visualization, geospatial information visualization, data and text mining, web-based 
visualization systems

1 INTRODUCTION 
As electronic healthcare systems are being fully integrated 
nationally, the effective visualization of large and complex 
healthcare data becomes increasingly desirable for timely decision 
making and trend/pattern detection [1]. The problem, however, is 
very challenging for several reasons: 
1) Health data is a data-rich, information-poor domain. In

Electronic Health Record (EHR) systems, data are almost
always heterogeneous, unstructured, hierarchical, and 
longitudinal.

2) EHR systems are often extremely large. While it is possible to
visualize an EHR system in small scales and with a focused
scope, high impact knowledge discoveries more likely come
from global scale (population-wide) visualization and
knowledge mining.

3) Visualizing population-level health data often involves
presenting geospatial and time-series data in a common visual
context. This presents a challenge in visual encoding of the
information space.

For heterogeneous and complex data, feature extraction through data 
mining is critical, as visualizing a feature space is much more 
feasible. For healthcare data, this feature space often consists of 
healthcare terms (ontology) and their relationships. Therefore, the 
effective integration of data processing, data mining, and text mining 
is necessary in healthcare data visualization. Although healthcare 
data is very large, the visualization of aggregated features, combined 
with patient level visualization, can be very effective in revealing the 
patterns and trends of population health. It is therefore important to 
develop multiple visualization tools to be integrated within a 
common visual interface to allow users to visually explore the data 
through an easily accessible platform such as a web browser. 
One of the unique challenges in healthcare data visualization is how 
to visualize multi-attributes and time-series data with associated 
geospatial information. In our approach, we embed multiple 
attributes and the time variable within a geospatial representation to 
take advantage of the available geographic space. This can be done 
by mapping texture images onto the geospatial surfaces. The key is 
then to properly represent the multi-attributes and time-series 
information in a texture image by constructing visually effective 
texture representations. While visualizing aggregated data for 
geospatial areas provides global trends and patterns in a geospatial 
context, we are often interested in visualizing individual patient 
records and their development over time. To this end, we also 
developed a spiral theme plot technique for visualizing time-variant 
patient records and attributes. These new visualization techniques 
have been implemented in a web-based healthcare data visualization 
system called Health-Terrain, and tested on real healthcare 
databases. 

In the rest of this paper, we first discuss some related work in 
Section 2, and then describe the overall functionalities and data 
processing and mining modules in Section 3. Section 4 and Section 5 
will focus on the two new visualization techniques: spatial textures 

and spiral theme plots. Section 6 will provide some implementation 
details and some additional visualization results. We conclude the 
paper in Section 7. 

2 RELATED WORK 
The visualization of large scale healthcare data has not been 

extensively studied. There are several existing works and 
visualization systems that deal with the secondary use of electronic 
health record data in a limited scope. LifeLines [2] uses a traditional 
2D time line visualization technique to visualize specific patient 
medical and health history. It emphasizes the visualization of 
temporal ordering of events with limited aggregation effect. An 
extension of LifeLine, LifeLine2 [3], enables multiple patient 
comparisons and aggregation for analysis, but the visualization 
design limited its scalability. A similar system, call TimeLine [4], re-
organizes and re-groups multiple EHR content types in a layout of 
Y-axis to track multiple events along the same time line. A set of 
visualization tools are described for visualizing a patient’s electronic 
health record to aid physicians’ diagnosis and decision-making. The 
traditional matrix view and parallel coordinates are the main 
techniques applied. The VISITORS system [5,6] combines a clinical 
knowledge base with visualization to enable users to explore 
multiple clinical records. It relies on domain ontologies to define 
clinically meaningful higher abstractions given raw, temporal data. 
CLEF [7] is a system enabling visual navigation through a patient’s 
medical record using semantically and temporally organized 
networks to represent events throughout the patient’s medical 
history. CLEF also supports limited text processing capabilities for 
generating textual summaries. None of these existing systems is 
capable of visualizing large-scale integrated EHR datasets. A review 
paper on visualization tools for infectious diseases is given in [8].  

Population-level healthcare data visualization involves both 
geospatial information and time-variant attributes. The geospatial 
visualization of time-series data is challenging because it is difficult 
to encode the time axis in a geospatial context. Animation based 
techniques (e.g. [9]) do not provide a good space-time overview. 
Other techniques, such as color-coding of time [10], connecting 
time-lines [11], and time-curves [12], often introduces visual clutter 
and occlusion, which are infeasible for large scale datasets. A well-
known technique in geospatial time-series visualization is Space-
Time-Cube [13-17]. It is a 3D representation of a combination of 
time axis (Z-axis) and a 2D geographic map (X-Y plane). Time-lines 
or time-curves are used to depict data evolution over time. While 
time and spatial information are integrated in a 3D visual 
representation in a space-time-cube, the sense of space-time 
embedding diminishes as the data moves up in the time axis. Visual 
clutter will also be a problem with large datasets. Many other 
techniques have been developed for the visualization of time-series 
data without explicit geospatial information such as time-series plot 
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[18] and ThemeRiver [19]. Many variations of ThemeRiver styled 
techniques have been applied in different time-series visualization 
applications, in particular text visualization [20]. Spiral patterns have 
also been used in visualizing time-series data [21] to provide better 
identification of periodic structures in the data. 

Texture-based visualization techniques have been widely used for 
vector field data, in particular, flow visualization. Typically, a 
grayscale texture is smeared in the direction of the vector field by a 
convolution filter, for example, the Line Integral Convolution (LIC), 
such that the texture reflects the properties of the vector field 
[22,23,24]. Similar techniques have also been applied to tensor fields 
[25,26]. 

3 THE HEALTH-TERRAIN SYSTEM 

3.1 System Overview and Use Case 
Our goal is to develop a prototype system, Health-Terrain, to support 
visual exploration of large healthcare data sets on a browser based 
interface. The system integrates information visualization, web-
based user interaction, and text and data mining techniques. A 
concept space approach is used to unify data representation unified 
data representation through data and text mining. Figure 1 shows the 
system architecture with all three aspects of the system components: 
interface, algorithms and data models. 

Fig. 1. Health-Terrain system architecture and components. 

To test our visualization system we used a large public health 
notifiable disease reporting system. The XXXX Institute 
implemented and maintains an unparalleled HIE-based, automated 
electronic lab reporting (ELR) and case-notification system for over 
ten years in the State of XXXX. The Notifiable Condition Detector 
(NCD) System uses a standards-based messaging and vocabulary 
infrastructure that includes Health Level Seven (HL7) and Logical 
Observation Identifiers Names and Codes (LOINC) [27]. The NCD 
receives real-time HL7 version 2 clinical transactions daily, 
including diagnoses, laboratory studies, and transcriptions from 
hospitals, national labs and local ancillary service organizations. The 
system automatically detects positive cases of notifiable conditions 
and forwards alerts to local and state health departments for review 
and follow up. These alerts enable more effective and efficient public 
health population health monitoring and case management. The NCD 
dataset contains 833,710 public health notifiable cases spanning 
more than 10 years from among 439,547 unique patients. An 
additional dataset containing 325,791 unstructured clinical discharge 
summaries, laboratory reports, and patient histories were extracted. 
In order to comply with the patient privacy policies and protocols of 
the institutes where the datasets came from, the actual data visualized 
in this paper has been altered or perturbed. Nevertheless, the overall 
patterns and trends of the data are generally preserved. 

3.2 Concept Space 
The “concept space” represents a uniform layer of clinical 
observations and their associations, and enables users to explore data 
using various visualization and analysis methods. Concept terms are 
derived from data mining and text-mining processes applied to the 
use case datasets. Disease concepts were extracted from the NCD 
dataset. Text mining algorithms were then applied to additional 
linked text dataset (unstructured clinical summaries) to construct 
ontologies for different concept types, including disease, symptom, 
mental behaviour, and risky behaviour.  

The concept space uses a controlled vocabulary that can be pre-
defined based on application needs, and enhanced by data/text 
mining algorithms. These terms and their relationships are 
represented in an association map, as a space of extracted partial 
knowledge. This association map is often the starting point of a 
visual exploration process. Figure 2 shows an example of the 
association map of diseases. Association map is a graph visualization 
of the association relationships among the diseases and other terms 
in the concept space. It can serve as a platform supporting interactive 
selection of concepts to dynamically visualize data using a variety of 
tools in the visualization system. To draw an association graph, a 
spring-embedder algorithm [28] is used to layout the graph nodes. 
Nodes picked on the association map are then be visualized with 
geospatial information, possibly with time varying variables.  .  

Fig. 2. Disease association map. 

In text mining, we processed 325,791 unstructured clinical notes 
containing patient discharge summaries, laboratory reports, and 
medical histories. Advanced NLP was applied in the form of named 
entity recognition (NER) for extracting diseases and other terms, 
with the help of the Unified Medical Language System (UMLS) 
[29]. Stemming and concept clustering algorithms [30] were applied 
to normalize the lexical variants and duplications of the terms. Term 
correlations were computed using the tf-idf (term frequency – 
inverse document frequency) vector space model to identify the 
significantly co-occurring diseases. An association-mining algorithm 
was applied to the combined terms to generate an association graph 
among all the concepts terms. The resulting concept space, along 
with the processed NCD data, is represented in a data model 
designed to support our specific ontology.  

4 SPATIAL TEXTURE BASED APPROACH 
Population-level healthcare data and information are often tightly 
coupled with geospatial regions. The visualization of this type data 
requires the integration of geo-visualization and multi-dimensional 
and time-variant information visualization. For this purpose, we 
propose a Spatial Texture based approach. In this approach, we 
encode multi-dimensional attributes or time-variant attributes for a 
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geospatial region into a texture image, and then map the texture 
image to the surface of the geospatial region to provide an integrated 
visual representation. The key is the visual encoding of multiple 
attributes or a time-variant attribute in a texture image. 

4.1 Noise Texture 
We aim to represent multiple attributes for each geospatial region 
using color coded texture patterns so that the users can visually 
perceive the representations of different attributes, not only within 
one region, but also its overall geospatial distributions across many 
regions in a geographic area (e.g. a state).  

We first construct noise patterns to create a random variation in 
color intensity, similar to the approach in [31]. Different color hues 
will be used to represent different types of attributes, for example the 
occurrences of different diseases. A turbulence function [32] will be 
used to generate the noise patterns of different frequencies (sizes of 
the sub-regions of the noise pattern). These multi-scale patterns may 
be applied to different scales of geographic areas (e.g. counties vs 
zip-codes). Since the noise pattern involves the mixing and blending 
of different color hues, we choose to use an RYB color model 
instead of RGB model, as proposed in [31], since RYB color model 
provides more intuitive representation of the weights of different 
colors after blending. Figure 3 shows two examples of the texture 
mapped views of three diseases, Diabetes. Hepatitis B, and 
Chlamydia, over the Indiana state map. For example, more reddish 
areas exhibits higher rate of Diabetes and bluish areas show higher 
occurrence of Chlamydia. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                    (a)                                                (b) 
 
Fig. 3  Noise textures mapped over the Indiana State map: (a) county based; 
(b) zip-code based. 

 

4.2 Offset Contours 
Offset contouring is designed to represent attribute changes over 
time within a geographic region. It can also be used to represent 
multiple attributes by assigning each attribute to each contour. 
Similar to the Noise Pattern texture, we first construct a texture 
image using offset contour curves to form shape-preserving sub-
regions. We will then use varying color shades or hues to fill the 
sequence of sub-regions to represent the change of attribute values 
over time, or to simply fill the sub-regions with different color values 
to represent multiple attributes. 

The offset contours are generated by offsetting the boundary 
curve toward the interior of the region, creating multiple offset 
boundary curves (Figure 4). There are several offset curve 
algorithms available in curve/surface modeling. But since in our 

application, the offset curves do not need to be very accurate, we opt 
to use a simple image erosion algorithm [33] directly on the 2D 
image of the map to generate the offset contours. 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4: Offset contours with different colors or different shades of the same 
color. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                      (a)                                                    (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                             (c)                                               (d) 
 
Fig. 5. Texture mapped views of offset contours over the Indiana state map: 
(a) County based time-series data; (b) Zip-code based time-series data; (c) 
County based multi-diseases data; (d) Zip-code based multi-diseases data. 
 

In time-series data visualization, the time line can be divided into 
multiple time intervals and represented by the offset contours. 
Varying shades of a color hue can be used to represent the attribute 
changes (e.g. occurrence of a disease) over time. This approach, 
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however, has two limitations. First, when the boundary shape of a 
region is highly concave, the image erosion technique sometimes 
does not generate clean offset contours. This usually can be corrected 
using a geometric offset curve algorithm such as the one in [34]. A 
second limitation of this approach is that it requires a certain amount 
of spatial area to layout the contours and color patterns. In public 
health data, however, these attributes are typically defined on 
geographic areas, which provides a perfect platform for texture based 
visual encoding. Figure 5 shows a few examples of the texture 
mapped views of offset contours over the Indiana state map. Figure 5 
(a-b) show the time-series views of Influenza, from 2004 to 2012. 
The time interval is divided into 8 subintervals. Figure 5 (c-d) show 
three diseases, Influenza, Typhoid Fever, and Hepatitis B. 

5 SPIRAL THEME PLOT 
Spatial texture provides overviews of health care data associated 
with geographic regions. It is however often desirable for health 
administrators and physicians to also see the details of individual 
patients and theirs medical history (over time). When this is done 
with a large population, the collective view of patient medical 
histories often exhibit identifiable patterns and trends that may not be 
easily detected from the visualization of statistical data over 
geographical regions.  

A simple approach to view patient level data is to draw each 
patient record as a point on a radial plot, divided into multiple rings 
which can represent different terms such as diseases. We call this 
Ring Plot, as shown in Figure 6. The circumference of this radial 
space represents the time-axis. Thus, time is encode as the radial 
angle of the dots (patients). Ring Plot shows the distribution of 
patient-level data over a time-attribute space. One significant 
attribute, for example “age”, will be represented as radius. Other 
attributes of the patients, such as race and gender, are represented as 
color and shape of the dots. Occurrences of the same patient 
associated with multiple terms (e.g. diagnosed with multiple 
diseases) are connected by curves across the graph. In Figure 6, for 
example, we see a concentration of mid-age patients with Hepatitis 
B. 

Fig. 6:  A Ring Plot for Hepatitis A, B, C and D. For each patient (dot), the 
color represents race, the shape represents gender, and the radius represents 
age. 

Ring Plot, however, does not provide a good overall trend and 
comparisons of different diseases over time, as typically shown in a 
ThemeRiver plot. The time axis is also only limited to one circle, 
which cannot represent periodical patterns very well. By integrating 
ThemeRiver and a spiral pattern into the basic Ring Plot method, we 
developed a new Spiral Theme Plot technique. In a Spiral Theme 
Plot, the diseases (or any other term) are represented as stacked 

themes along a spiral base curve, which is the time-axis. Patients are 
still plotted within the regions of the themes, with similar visual 
features (age, race, gender, etc.). Spiral Theme Plot allows multiple 
years of patients data be plotted periodically such that seasonal 
patterns or abnormal patterns for seasonal diseases can be easily 
detected. For patients with multiple hospital visits at different times 
for the same or different conditions, curves are drawn to connect 
these multiple occurrences by the same patient.  

There are several technical details that need to be developed in 
order to implement a Spiral Theme Plot. First, the radius of the base 
spiral curve needs to be pre-estimated based on the maximum width 
of the cumulative themes of all the diseases.  Second, when plotting 
patients within each theme, the width of the theme at that particular 
angle needs to be computed. Since the boundary curves of the 
themes are interpolated by spline curves, this width information can 
theoretically be computed from the spline representations. But we 
found that it is actually simpler and more efficient to check the color 
values along the normal direction of the spiral curve to estimate the 
width of a theme at each angle. Lastly, we found that the number of 
patients with multiple occurrences is usually quite large, which leads 
to very dense and cluttered connecting curves. We implemented an 
edge bundling strategy to bundle these connecting curves for each 
pre-defined time interval. Other type of bundling strategies may also 
be implemented to show certain types of connection patterns better. 
Figure 7 shows an example of a Spiral Theme Plot for Lyme 
Disease, Blood Diseases, and Brucellosis. Figure 8 show a periodical 
(seasonal) pattern of Flu over 4 years. 

Fig. 7:  A Spiral Theme Plot for Lyme Disease, Blood Diseases, and 
Brucellosis. 

Fig. 8:  Seasonal pattern of Flu. 
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6 SYSTEM IMPLEMENTATION AND INTERFACE 
The system is implemented using Javascript in an HTML5 canvas. 
The architecture pattern is based on the Ruby on Rails (RoR) 
framework for delivering web applications with AJAX services and a 
classic Model-View-Controller architecture. The user interface is a 
modern web GUI using a combination of form submission and 
RESTful service calls to query and retrieve data in various data 
delivery formats. The visualization algorithms are implemented 
using HTML, CSS, SVG, and WebGL technologies with a number 
of open-source Javascript libraries such as sigma.js, d3.js, jquery.js 
and three.js.  

The user interface uses multiple split windows so that multiple 
types of visualizations can be applied and compared for the same 
dataset.  Figure 9 show a screen shot of three visualizations for a 
dataset selected from an association map. Visualization results can 
also be saved into a slider bar, with time stamps, and be brought back 
later (Figure 10). This provides a flexible workspace for health 
administrators or physicians to explore and compare different 
scenarios for health policy planning, decision making, resource 
management, etc.  

Fig. 9:  A screen shot of a split window interface. 

Fig. 10:  System interface with saved  working windows. 

7 CONCLUSIONS 
We present a visualization system for large healthcare data. We 
focus on two new visualization methods we developed specifically 
for public health data: Spatial Textures, and Spiral Theme Plot. 
Spatial Texture approach is effective because geospatial visualization 
intrinsically provides additional screen space (surface areas) that can 
be taken advantages of to encode additional data and attributes. The 
Spiral Theme Plot technique is a combination of several information 
visualization methods including ThemeRiver, Spiral Plot and Scatter 
Plot. For public health data with large patient databases, this 
particular combination satisfies several key requirements for 
visualizing time-variant patient records. With the rich set of tools 
available to support web based user interface, graphics, and data 
communications, we also feel that it is as efficient to develop a web 
based visualization system as in a traditional programming 
environment. 

In the future, we would like to continue refining and expanding 
this visualization system by adding new visualization tools and 
improving the existing tools. We would also like to develop a 
configurable user and data interface so that the system can be easily 
configured for other types of use cases in public health applications.  
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Health-Terrain: Visualizing Large Scale Health Data 

PI:  Shiaofen Fang            Org:  Indiana University Requested Amount: $670,646 

Study/Product Aim(s) 
• Build a framework for concept space for pilot healthcare applications.
• Extract attributes of concepts from raw health data using data mining
and knowledge extraction. 
• Develop and implement visualization algorithms for Health-Terrain
visualization, and develop a prototype system. 
• Develop application case studies using the prototype system.

Approach and Military Relevance 
Raw health data will first be transformed to an information-rich Concept 

Space, where attribute values and association relations are extracted 
from patient data, and visualized using Health-Terrains. Health-Terrain 
is a terrain surface based scalable visual representation for large 
multi-dimensional data. It is an ideal approach for military EHRS as it 
is very effective in revealing trends, patterns, and abnormalities with 
simple heads-up displays to support real time decision making. It also 
provides a way to unify heterogeneous data into an intuitive and 
comprehensive visualization to facilitate interoperability among 
multiple military HER systems. Pilot cases will be studies using the 
nation’s largest and longest tenured health information exchange 
through Regenstrief Institute.  

Projected Goals/Milestones: 
1.  3/7/2013 – 7/31/2013. Concept Space Definition: data processing,

definition of the concept set, including their attributes and functionalities
based on the pilot applications.

2.  6/1/2013 – 12/31/2013.  Algorithms Design: completing the algorithm
design phase for visualization and data mining.

3.  9/1//2013 – 12/31/2014.  System Development: finishing software
development of the prototype system.

4.  9/1/2014 – 9/31/2015.  System Testing: completing functionality tests
for all components of the system.

5.  9/1/2014 – 9/31/2015. Pilot Applications: Testing the prototype system
on pilot applications using the Regenstrief database.

Updated: April 3, 2014 

Timeline and Cost 

(a) 

(d) 

(a) System interface; (b) Association graph; (c) Spiral Them Plot; (d) 
Texturization. 

(b) 

Activities             CY          13         14    15 

Concept space def. (aim 1) 

Algorithm design (aim 1,2) 

System dev. (aim 2,3) 

System Testing (aim 2,3) 

Pilot appl. (aim 4) 

Estimated Budget ($k) $100 $480 $90 

(c) 
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