TITLE: Novel Target for Ameliorating Pain and Other Problems after SCI: Spontaneous Activity in Nociceptors

PRINCIPAL INVESTIGATOR: Edgar Walters, Ph.D.

CONTRACTING ORGANIZATION: University of Texas Health Science Center
Houston TX 77030-5400

REPORT DATE: October 2014

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
The purpose of the project is to test the hypothesis that interventions that reduce the function of a sodium ion channel, Nav1.8, that is selectively expressed in primary afferent neurons (especially nociceptors) ameliorate reflex hypersensitivity and pathological pain-related motivational/cognitive alterations caused by traumatic spinal cord injury (SCI). The first phase of the project has largely been accomplished, with a major paper published describing how effective antisense knockdown of Nav1.8 eliminates SCI-induced spontaneous activity in nociceptors, reverses mechanical and heat hypersensitivity of hindlimb withdrawal reflexes, and ameliorates ongoing, spontaneous pain. It was also found that SCI upregulated Nav1.8 protein without upregulating Nav1.8 mRNA, either in the DRG or spinal cord. Additional results showed that a selective Nav1.8 antagonist, A-803467, reverses heat hypersensitivity and may attenuate mechanical hypersensitivity. Unexpected results indicate that below-level cutaneous hypersensitivity after SCI is not translated into motivational/cognitive components of evoked pain. On the other hand, it was demonstrated for the first time in any animal model that SCI enhances anxiety behavior. Preliminary results support the exciting possibility that Nav1.8-dependent hyperactivity in primary nociceptors not only promotes hyperreflexia, spontaneous pain, and evoked pain, but also anxiety after SCI.

15. SUBJECT TERMS
Spinal cord injury, chronic pain, spontaneous pain, evoked pain, anxiety, primary nociceptors, Nav1.8, hyperreflexia
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>4</td>
</tr>
<tr>
<td>2. Keywords</td>
<td>4</td>
</tr>
<tr>
<td>3. Overall Project Summary</td>
<td>5</td>
</tr>
<tr>
<td>4. Key Research Accomplishments</td>
<td>10</td>
</tr>
<tr>
<td>5. Conclusion</td>
<td>11</td>
</tr>
<tr>
<td>7. Inventions, Patents, and Licenses</td>
<td>11</td>
</tr>
<tr>
<td>8. Reportable Outcomes</td>
<td>12</td>
</tr>
<tr>
<td>9. Other Achievements</td>
<td>12</td>
</tr>
<tr>
<td>10. References</td>
<td>12</td>
</tr>
<tr>
<td>11. Appendices</td>
<td>13</td>
</tr>
</tbody>
</table>
1. INTRODUCTION

The purpose of this project is to test a novel approach to treating chronic pain and other complications of spinal cord injury (SCI) using a preclinical rat model. Over 40,000 veterans have SCI, as well as many active members of the armed services, and a majority of these people endure intractable pain and potentially related chronic problems such as anxiety and gastrointestinal dysfunction for the rest of their lives. Most investigators have assumed that the critical mechanisms driving SCI pain are located within the central nervous system (CNS) and involve direct effects of the injury and/or associated neuroinflammation on pain pathways (Finnerup and Baastrup, 2012; Walters, 2012; Walters, 2014)). Early evidence that primary sensory neurons, and especially primary nociceptors, are involved in neuropathic SCI pain came from observations of enhanced nociceptor growth after SCI (Bedi et al., 2012). Primary nociceptors are the first neurons within pain pathways and thus their electrical activity leads to the conscious sensation of pain as well associated reflex responses. These sensory neurons are specialized for the detection of bodily injury and inflammation and are normally electrically silent, firing action potentials only when their peripheral branches are activated by stimuli that can produce pain (fortunately, an infrequent occurrence for most people). This award enables rigorous tests of our hypothesis that prominent aspects of chronic pain and hypersensitivity caused by SCI can be ameliorated effectively by interventions that selectively block spontaneous electrical activity in primary nociceptors. Four years ago we reported (Bedi et al., 2010) the unexpected discovery that primary nociceptors in rats that have received a contusive spinal injury (controlled experimental bruising of the spinal cord) months earlier continuously fire action potentials without any extrinsic stimulation (“spontaneous activity,” SA), even when the recorded nociceptor is removed from the body and isolated from all other cells. Electrical activity in any nociceptor would be expected to excite pain pathways and thereby promote pain sensations, and so it was not surprising to find that this chronic nociceptor SA was closely correlated with behavioral measures of pain; animals exhibiting pain showed a high incidence of nociceptor SA whereas apparently pain-free animals did not. More direct evidence that activity in primary nociceptors helps to maintain SCI pain came from our finding that antisense knockdown of TRPV1 channels or pharmacological blockade of TRPV1 channels -- which are expressed most abundantly in nociceptors -- reduced SA after SCI and caused a dramatic reversal of reflex hypersensitivity (Wu et al., 2013). Importantly, the nociceptors exhibiting SA after SCI possess an ion channel, Nav1.8, that in the nervous system is only expressed by primary sensory neurons, and primarily in nociceptors (Shields et al., 2012). We found that a drug that selectively blocks Nav1.8 channels blocks SA in nociceptors after SCI. These recent discoveries led directly to the hypothesis and associated experiments in this project. We are testing the prediction that interventions that reduce Nav1.8 function -- specifically antisense knockdown of Nav1.8 expression and inhibition of Nav1.8 channels using two different drugs -- will reduce chronic pain and other debilitating behavioral effects (as well as SA and hyperexcitability in nociceptors) after SCI. To model chronic dysfunction after SCI, animals are tested 6 to 12 weeks after injury. A novel and potentially important part of our experimental design has been to apply operant measures of ongoing, spontaneous pain and other emotional effects after SCI. These provide more relevant models of pain and suffering after SCI than the hyperreflexia measures that almost all previous studies of SCI pain have depended on. Our experiments thus far have confirmed some of our major predictions, but have also revealed unexpected behavioral consequences of SCI that complicate the measurement of pain and hyperreflexia, while suggesting an even more profound than anticipated role for nociceptor SA in persistent suffering produced by SCI.

2. KEYWORDS

spinal cord injury, chronic pain, spontaneous pain, evoked pain, anxiety, primary nociceptor, spontaneous activity, Nav1.8, hyperreflexia
3. OVERALL PROJECT SUMMARY

Major objectives (aims) of the project

Aim 1 (Tasks 1b, 1c): Test the hypothesis that chronic reflex hypersensitivity in a rat contusive SCI model is reduced by blocking spontaneous activity (SA) in nociceptors via reduction in Nav1.8 activity achieved by either knocking down Nav1.8 channel expression or by applying a highly specific Nav1.8 blocker, A-803467. 95% completed.

Aim 2 (Tasks 1d, 1e): Test the same hypothesis by seeing if a less specific but much less costly Nav1.8 blocker, ambroxol, can be used for both brief and prolonged attenuation of behavioral hypersensitivity after SCI (Tasks 1d, 1e). 0% completed.

Aim 3 (Task 1f): Test the prediction that chronic visceral hypersensitivity after SCI can be reduced by decreasing the activity of Nav1.8 channels. 10% completed.

Aim 4 (Tasks 2a-2e): Show that decreasing Nav1.8 activity or expression reduces evoked and spontaneous motivational and cognitive features of pain-related behavior after SCI. 40% completed.

Accomplishments under each task

Task 1a - Institutional and DOD animal use approvals. Accomplished.

Task 1b – Investigate reflex hypersensitivity effects of knocking down Nav1.8 expression. Two months ago (August, 2014,) we published a paper (Yang et al., 2014) (see Appendix) documenting our findings from work completed in Year 2 of this award. This paper reported that SCI-induced withdrawal reflexes elicited by mechanical (von Frey filament) and heat test stimuli applied to the hindpaws are reversed by intrathecal treatment with oligodeoxynucleotides (ODNs) antisense (ASO) to Nav1.8 channels. Supporting the conclusion that SCI-induced hyperreflexia is maintained by chronic electrical activity in primary afferent neurons (the only neurons to express Nav1.8 channels, and expressed primarily in nociceptors), we demonstrated that Nav1.8 ASOs selectively knocked down expression of Nav1.8 protein in dorsal root ganglia (DRGs); protein expression was not changed significantly in the closely related channels, Nav1.6, Nav1.7, and Nav1.9. We also showed that, while SCI upregulates Nav1.8 protein expression in DRGs, it does not induce Nav1.8 mRNA in either the DRGs or the spinal cord. Nav1.8 knockdown strongly reduced the ion current (a distinctive type of tetrodotoxin-sensitive inward current) carried by Nav1.8 channels. Importantly, we confirmed that Nav1.8 knockdown eliminated the increase in persistent SA found in nociceptors dissociated 1-2 months after SCI.

Task 1c – Investigate reflex hypersensitivity effects of selectively blocking Nav1.8 activity with low- or high doses of A-803467.

![Fig.1](image_url)

The second part of Aim 1 is to test whether delivery of the most selective Nav1.8 antagonist available, A-803467, reduces SCI-induced hyperreflexia. Because of low bioavailability, this drug is very expensive to use for whole-animal studies; even after a discount of nearly 70% that we negotiated with Selleckchem.
for volume purchases, it costs about $60 per i.p. injection per rat to test behavioral effects of A-803467. Consequently, we have limited this Aim to testing the acute effects of a single injection of the drug, even though prolonged or repeated application would be expected to produce effects closer to that produced by antisense knockdown. Initial studies indicated that a relatively low dose, 30 mg/kg (Jarvis et al., 2007), had weak effects at best, so we have confined our studies to the higher dose, 100 mg/kg. Our results thus far are summarized in Fig.1. The effect on hypersensitivity to radiant heat stimulation of the hindpaws is quite clear (Fig.1A). A-803467 injection 20 min before testing caused a significant reversal of the withdrawal latency that had been reduced by SCI when tested ~1 week earlier (more than 1 month after injury). This result indicates that SCI-induced hypersensitivity to heat stimulation has a moment-to-moment dependence upon electrical activity requiring Nav1.8 channels, and thus greatly encourages further investigation into the potential use of Nav1.8 antagonists for the treatment of SCI pain. However, the effects of A-803467 on mechanical sensitivity in the same animals (Fig.1B) are more difficult to interpret. Nevertheless, these data that were collected from the same animals as tested for heat sensitivity, show the predicted trends. SCI caused significant mechanical hypersensitivity ($p=0.03$), but with this sample size the reversal by A-803467 is not yet significant statistically ($p=0.07$). We will add animals that receive vehicle rather than A-803467, and will modify the procedure slightly so that the same animals can be tested with both vehicle and A-803467.

Some of the difficulties may have been produced inadvertently by the replacement in the middle of these studies of Ms. Julia Hadden by Mr. Max Odem as the tester. Any time a new tester joins a project there is the possibility that subtle differences in testing techniques will add to response variability in the study. This is more likely in the von Frey filament tests than the radiant heat tests because of greater degrees of freedom in hand delivery of the filament with consistent timing and velocity to a precise spot on the paw (hence the clearer effects in Fig.1A than Fig.1B). However, another possibility is that the presence of male tester is much more stressful to the rats than a female tester. A very important paper was published while we were conducting this study, which documented a remarkably strong stress-induced analgesia in rats and mice produced by olfactory cues from male experimenters (or even their clothing) several feet away from the rodents (Sorge et al., 2014). Although naive animals habituate to this effect with sufficient exposure to a familiar male, and Mr. Odem now spends extensive time familiarizing himself with the rats before he conducts any tests, the possibility remains that SCI animals are extra sensitive to potential threats and may not completely habituate to a male tester. We are investing additional time and animals to define the possible contributions of male-induced stress to all of our behavioral tests by conducting parallel tests with female and male testers (see Tasks 2a and 2c). An extremely interesting possibility is that a male tester's presence might enhance the expression of SCI-induced anxiety (see Task 2a).

Task 1d – Investigate behavioral hypersensitivity effects of blocking Nav1.8 activity with single low and high doses of ambroxol.

Because extra time was needed to deal with unexpected complications in the A-803467 studies, we have not yet begun to test the hypothesis that the less specific and less costly Nav1.8 blocker, ambroxol, can be used for both brief (Task 1d) and prolonged (Task 1e) attenuation of SCI-induced reflex hypersensitivity. Mr. Odem has made arrangements to learn the oral gavage procedure that will be used in these studies. These should begin soon, after the A-803467 studies are completed.

Task 1e – Investigate behavioral hypersensitivity effects of blocking Nav1.8 activity with repeated low and high doses of ambroxol.

This task will begin at the same time as Task 1d.

Task 1f – Investigate effects on visceral hypersensitivity of selectively blocking Nav1.8 activity with high doses of A-803467.

Much remains to be done in testing the prediction that chronic visceral hypersensitivity after SCI can be reduced by decreasing the activity of Nav1.8 channels. In Year 1 we performed several of these experiments with animals that had received Nav1.8 ASO's via intrathecal catheters, with mixed but somewhat encouraging results. However, we realized that response variability and potentially unnecessary suffering was likely from the cumulative stress of SCI followed by catheterization (which
interacts adversely with SCI) followed by numerous tests of forelimb and hindlimb reflexes and finally implantation of recording electrodes before noxious visceromotor testing. Therefore, we decided to limit visceromotor testing to the studies using drug application rather than intrathecal ASO application. The drug studies have been prolonged by the need to deal with complications that have emerged in the A-803467 experiments (reflex and operant). Adding to the delays have been the departure of an important member of Dr. Hongzhen Hu’s laboratory in Year 1 and then the unexpected departure of Dr. Hu himself in June of this year. Dr. Yang has been trained in all the necessary methods, and Dr. Hu left us necessary equipment for conducting these experiments. This study will resume after we have finished the characterization of A-803467’s effects on hindlimb reflexes under Task 1c.

Task 2a – Optimize conditions for the use of operant CPP and OC tests to reveal emotional/cognitive features of SCI pain. The most important parts of this project are our studies investigating the apparent roles of Nav1.8-dependent nociceptor activity in maintaining the motivational (aversive) and cognitive features of pain-related behavior after SCI. In our very recent article (Yang et al., 2014) we described the first evidence for ongoing, spontaneous pain in a contusive SCI model. We modified a conditioned place preference (CPP) procedure that had been used to assess ongoing pain in several other rat pain models. An important difference is that we conditioned place preference to a white chamber paired with retigabine injection. In the same animals, vehicle injection was paired with placement in the black chamber in the 3-chambered box (white-gray-black). Retigabine opens KCNQ K+ channels, reducing neuronal excitability and, in other models, behavioral hypersensitivity. Importantly, we found recently that retigabine suppresses SA in small DRG neurons and reverses hyperreflexia after SCI (Yang et al., 2014). Another difference is that we habituated the animals to the black and gray chambers before conditioning, but the animals did not experience the white chamber until it was paired with retigabine injection (increasing the salience of the white chamber and its probable effectiveness as a conditioned context). One day after the 3-day differential conditioning procedure, sham animals preferred the vehicle-paired black chamber, whereas SCI animals showed relative preference for the white, retigabine-paired chamber. Preference for the white chamber in SCI but not sham animals indicates that retigabine is only rewarding when an SCI-induced aversive state is present. To test whether knockdown of Nav1.8 reduces the conditioned shift in preference towards the white chamber in SCI animals, we tested animals after Nav1.8 mismatch oligodeoxynucleotide (MMO) or ASO treatment and found that, compared to the SCI+MMO animals, SCI+ASO animals significantly preferred the black chamber. The absence in SCI+ASO animals of a shift in preference away from the innately preferred, vehicle-paired black chamber indicates that Nav1.8 function is necessary to maintain ongoing pain after SCI.

Another higher-order feature of SCI-induced pain-related behavior was related to evoked pain. To reveal motivational/cognitive alterations of responsiveness to cutaneous stimulation (evoked pain), we adapted an operant conflict (OC) test using the Mechanical Conflict System sold by Coy Labs, which has been used in another contusive SCI study (Lau et al., 2012, Neurorehabil Neural Repair, 26, 889-97).

![Fig.2](image)

This test presents a conflict between two aversive stimuli: a very bright light in one chamber and an array of sharp probes in a connecting chamber that the rat must cross to reach an innately preferred dark chamber (Fig.2). If SCI increases the aversiveness of the probes, the rat can delay crossing the probes or minimize pain by rushing across. We found 6 weeks after SCI that a majority of the rats have recovered sufficient hindlimb function for full body support (Bedi et al., 2010) and can readily cross the probes, even at their highest level (5 mm). In preliminary studies using a probe height of 3 mm and video analysis we found that compared to the combined control group (4 naïve plus 3 sham rats), SCI rats (n =
8) spent more time in the bright chamber (38 ± 18 vs 8 ± 2 s) before crossing, and when crossing spent less time on the probes (2.5 ± 0.7 vs 5.0 ± 2.0 s), confirming that motor impairment is not a problem. Our best measure of enhanced pain sensitivity after SCI was whether a rat hesitates to cross after touching a probe. The delay between placing a forelimb and then a hindlimb on the 3 mm probes was significantly longer in the SCI animals (23 ± 15 s) than the controls (0.9 ± 0.3 s; \(p = 0.01 \)), but not different on less noxious 1 mm probes. Results from this operant test are consistent with earlier findings that contusive SCI causes mechanical hypersensitivity in both the forepaws and hindpaws (Bedi et al., 2010, J Neurosci, 30, 14870-82; Carlton et al., 2009, Pain, 147, 265-76) and thus supports the hypothesis that this mechanical hyperreflexia occurs in parallel with higher order sensations of enhanced aversiveness (pain) to mechanical stimuli received by the forepaws and hindpaws.

Complications emerged when Mr. Odem attempted to extend the SCI-induced evoked pain studies just mentioned, which had been conducted by Ms. Julia Hadden and which had yielded results similar to those reported by Lau et al. (2012, see reference in preceding paragraph). Mr. Odem made two minor changes to the procedure. First, he tested the animals with probes elevated 4 mm above the floor, rather than 3 mm, in order to increase the aversiveness of this test stimulus. Second, he videotaped all 4 of the acclimation trials in which the animals were placed into the 3-chamber box with the probes lowered (0 mm) before any exposure to the probes. The results of the trials with the probes were quite different from those obtained by Ms. Hadden: SCI animals did not show an increased delay before crossing the probes compared to sham and naive controls, they did not spend less time on the probes, and they did not show greater hesitation between placing a forelimb and then a hindlimb on the probes. Some of the difference appeared to be from the control animals' behaving as if the 4 mm probes were much more painful than the 3 mm probes had been in Ms. Hadden's earlier study. The most surprising finding, however, was strong evidence that the SCI animals did not find the 4 mm probes painful, as indicated by their willingness to re-cross the probes (going back to the bright chamber) after reaching the dark chamber. While we have not yet analyzed records from all of the animals tested thus far (detailed frame-by-frame analysis of the videos is very time consuming), the initial results show that 4 of 5 control rats refused to re-cross the 4 mm probes, whereas 4 of 6 SCI animals crossed the probes 2 or more times in the 5 min test period. Interestingly, the 3 SCI rats with more severe hindlimb motor problems (lower BBB scores) crossed an average of 3.7 times, while the 3 SCI rats with less severe motor problems only crossed an average of 1.3 times (the control rats crossed 1.6 times). This not only confirms that differences in behavior recorded in this test are not due to locomotor impairment after SCI, but shows that SCI rats with greater motor dysfunction show less aversion to the probes (less evoked pain). While opposite to the predictions from Ms. Hadden's results and those of Lau et al. (2012), these results are consistent with the possibility that, despite pronounced below-level hyperreflexia after the T10 contusion, conscious sensation of below-level noxious stimulation is greatly reduced after the T10 contusion. Indeed, this was suggested by the loss of vocalization responses to below-level stimulation we reported earlier (Bedi et al., 2010, J Neurosci 30:14870) and suggests that insufficient ascending fibers are spared to relay nociceptive information about the probes from the hindpaws to the brain.

These results were also surprising because the decreased aversion to the sharp probes in SCI animals occurred despite documented forepaw hypersensitivity induced by this SCI model (Carlton et al., 2009, Pain 147:265; Bedi et al., 2010). A hypothesis that may explain these unexpected findings is that, in addition to spontaneous pain (indicated by the BBB test) and a modest increase in evoked pain (indicated under the test conditions of Ms. Hadden and of Lau et al., 2012), SCI induces persistent anxiety. The SCI-induced anxiety makes the animals less sensitive to pain under threatening conditions, and more sensitive to potential threats, including the odor of male mammals. During the course of these experiments an important paper was published documenting the surprising finding that exposure of rodents to male experimenters strongly inhibits pain-related behavior (Sorge et al., 2014, Nat Methods 11:629). We do not yet know whether Mr. Odem's presence during OC tests was responsible for the lack of pain-like responses to the 4 mm probes, but we plan to repeat this experiment with a female tester.

On the other hand, Mr. Odem has obtained strong evidence that SCI enhances anxiety behavior in rats, and preliminary evidence that enhanced anxiety may be promoted by activity in Nav1.8-expressing nociceptors. We realized that, when the probes are absent, the 3-chamber Coy box used to test evoked pain is equivalent to a conventional light/dark box used to test anxiety in rodent models.
Anxious animals seek shelter and will thus spend more time than unthreatened animals in a dark area when given a choice between a dark area and a brightly lit area where they are more visible (which in nature would increase the risk from predators). Thus, we asked whether SCI animals spend more time than controls (naive and sham) in the dark chamber when placed into the Coy box with the probes completely lowered (0 mm). In each case the rats were placed in the bright chamber. Fig. 3 shows that during the first exposure to the unfamiliar Coy box, the SCI rats spent significantly more time in the dark box than did the control. However, by the fourth exposure this preference was gone. Similarly, SCI animals are much less likely to leave the dark chamber once they get there, showing significantly fewer crossings of the connecting chamber during the first exposure but not the fourth exposure to the box (Fig. 4). These results suggest that SCI induces anxiety that is expressed as greater preference for the "safer" dark area when the rats find themselves in the unfamiliar box, but that the anxiety is no longer expressed once the SCI rats learn that the context is not threatening.

It might be argued that impairment of locomotion explains the lower number of crosses and possibly the greater time spent in the dark by the SCI animals. The increase in number of crosses by the SCI animals during the fourth exposure, to a degree similar to that of the control animals, argues against this possibility, as does the ability of the SCI rats to cross the elevated probes in the later evoked pain phase of these experiments (see above). Additional evidence comes from the similar latencies exhibited by the SCI and control animals to reach the dark chamber after being placed in the white chamber. This was observed during both Exposure 1 (presumably when both groups spend the most time exploring each chamber) and Exposure 4 (when the chambers have become familiar). Taken together, these results indicate that SCI in rats (as has been described in humans) not only produces motivation/cognitive effects that are expressed as spontaneous and evoked pain, but also produces heightened anxiety that is evident in potentially threatening situations. These results are important for this project because of the likelihood that SCI-
induced pain produces anxiety and that this fully automated operant test for anxiety may serve as a useful indicator of pain-related motivational effects produced by SCI.

Given that the main objective of this award to determine whether motivational/cognitive effects of SCI are driven by hyperactivity in nociceptive primary afferent neurons, it is important to test whether inhibiting hyperactivity in nociceptors by blocking Nav1.8 channels in vivo reduces behavioral signs of anxiety. Very preliminary experiments support this possibility. The left panel of Fig.6 shows the same data that were presented in Fig.3, which documented the significant preference for the dark by SCI animals during their first exposure to the unfamiliar box. The right panel shows early data suggesting that i.p. injection of A-803467 (100 mg/kg) may eliminate the SCI-induced preference for the dark chamber during the first exposure to the box. If these exciting results are confirmed, they would suggest two equally important possibilities: 1) that chronic nociceptor hyperactivity continuously drives pain, which in turn stimulates other motivational/cognitive effects including anxiety, and/or 2) that chronic nociceptor hyperactivity can drive anxiety independent of its effects on pain (i.e., a parallel effect rather than an effect in series with pain). Both of these novel possibilities have potentially important clinical implications that would be significant for military personnel.

Task 2b – Investigate prolonged effects on spontaneous pain of Nav1.8 knockdown
This task has been completed successfully. Antisense knockdown of Nav1.8 eliminated signs of spontaneous pain 6-8 weeks after SCI, as assessed with the CPP test. The results are described in our recently published paper (Yang et al., 2014).

Task 2c – Investigate brief effects on spontaneous pain from a single application of A-803467.
This task is underway. Initial studies conducted by Mr. Odem have revealed little or no conditioning of place preference when nociceptor SA is blocked acutely by a single i.p. injection of A-803467. We are beginning to repeat these experiments using a female tester (Dr. Robyn Crook) to determine whether the lack of a drug effect represents a failure of brief inhibition of nociceptor SA to provide analgesia, or whether the lack of conditioning is a consequence of complicating stress-induced analgesia produced by the presence of a male tester (Sorge et al., 2014). It may be important that the successful conditioning of place preference with retigabine (Task 2b) (Yang et al., 2014) was achieved during testing conducted exclusively by a female (Ms. Julia Hadden).

Task 2d – Investigate brief effects on spontaneous pain from a single application of ambroxol.
This task will begin at the same time as Task 1d when we begin to test the effects of ambroxol.

Task 2e – Investigate prolonged effects on spontaneous pain from multiple applications of ambroxol.
This task will begin at the same time as Task 1d when we begin to test the effects of ambroxol.

Plans for Year 3

4. KEY RESEARCH ACCOMPLISHMENTS

1) Completed the collection of data documenting that effective knockdown of Nav1.8 protein eliminates nociceptor hyperactivity, reflex hypersensitivity, and spontaneous pain after SCI, and published these findings.

2) Demonstrated that SCI increases Nav1.8 protein in dorsal root ganglia without increasing mRNA expression; i.e., that upregulation occurs by posttranscriptional mechanisms.

3) Confirmed that SCI does not induce Nav1.8 mRNA in the spinal cord.

4) Showed that a specific Nav1.8 antagonist, A-803467, inhibits persistent SCI-induced hypersensitivity to heat.
5) Obtained unexpected results indicating that below-level cutaneous hypersensitivity after SCI is not translated into motivational/cognitive components of evoked pain.

6) Demonstrated for the first time in any animal model that SCI enhances anxiety behavior.

7) Obtained very preliminary but exciting evidence that inhibiting hyperactivity in primary nociceptors may reduce SCI-induced anxiety.

5. CONCLUSION
The research accomplishments summarized above provide strong evidence for an important, but previously unappreciated role for ongoing hyperactivity in widespread primary afferent neurons for maintaining pathological reflex and motivational/cognitive alterations chronically after contusive SCI. A major implication is that further development of drugs that antagonize Nav1.8 channels could lead to more effective and selective treatments for spontaneous and evoked pain, anxiety, and hyperreflexia after SCI. Furthermore, this model may be revealing a fundamental role for persistent hyperactivity in widespread nociceptors that might also contribute to other conditions involving chronic pain and anxiety, so the potential therapeutic implications may generalize beyond SCI. During the final year of this award we will continue to develop this evidence in our SCI model by working hard to complete the remaining tasks. Because unexpected (but illuminating) results slowed some of the studies, in our remaining time our top priority will be to complete the proposed studies in the statement of work that are most important for documenting and understanding our major discoveries relating to pain-related motivational/cognitive consequences of ongoing nociceptor hyperactivity after SCI. These discoveries may open up new therapeutic approaches for helping many people, including military personnel, suffering from SCI and related conditions.

6. PUBLICATIONS, ABSTRACTS, AND PRESENTATIONS

a. Manuscripts submitted or published

1. Lay press: none

2. Peer-Reviewed Scientific Journals:

(This invited, peer-reviewed review article presented a novel hypothesis that was partly inspired by findings made under Aims 1 and 4 of this project)

3. Invited articles: none

4. Abstracts:

b. Presentations:
Center for Sensory Biology, Johns Hopkins School of Medicine
Department of Integrative Biology and Pharmacology, University of Texas Medical School at Houston

7. INVENTIONS, PATENTS AND LICENSES: none
8. REPORTABLE OUTCOMES: none other than the papers and presentations described above

9. OTHER ACHIEVEMENTS: none directly related to this award

10. REFERENCES:

* Supported in part by this award.
11. APPENDICES

Individuals working on the project

<table>
<thead>
<tr>
<th>Name</th>
<th>Project role</th>
<th>Nearest person month worked</th>
<th>Contributions to project</th>
<th>Funding support (other than DoD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edgar T. Walters, Ph.D.</td>
<td>PD/PI</td>
<td>12</td>
<td>Design, supervision, data analysis, writing, and presentation of results.</td>
<td>National Science Foundation, "Collaborative Research: Comparisons of Functional Mechanisms of Nociceptive Sensitization in Dissimilar Molluscs". Role - PI.</td>
</tr>
<tr>
<td>Qing Yang, M.D.</td>
<td>Co-PD/PI</td>
<td>12</td>
<td>Design, electrophysiology, surgery, behavioral tests, animal care, western blot, data analysis, writing.</td>
<td>Mission Connect-TIRR Foundation, "Targeting TRPV1 Channels to Reduce Spontaneous Neuropathic Pain After SCI". Role - PI.</td>
</tr>
<tr>
<td>Julia Hadden</td>
<td>Research assistant</td>
<td>9</td>
<td>Behavioral tests, animal care, routine laboratory chores.</td>
<td></td>
</tr>
<tr>
<td>Max Odem</td>
<td>Research assistant (graduate student)</td>
<td>9</td>
<td>Design, behavioral tests, animal care, data analysis.</td>
<td>Research assistantship from Graduate School of Biomedical Sciences.</td>
</tr>
</tbody>
</table>

Opportunities provided for training and professional development:

The PI continued to offer professional mentoring and career guidance to Dr. Qing Yang (Co-PD/PI and a junior faculty member) and Ms. Julia Hadden (research assistant). He also provided extensive guidance and instruction to Mr. Max Odem, a new graduate student in the laboratory, who has assumed Ms. Hadden's experimental duties and some of Dr. Yang's behavioral testing duties. As a graduate student, Mr. Odem has also benefited from courses and career guidance from the University of Texas at Houston Graduate School of Biomedical Sciences.
Novel Target for Ameliorating Pain and Other Problems After SCI: Spontaneous Activity in Nociceptors
W81XWH-12-1-0504

PI: Edgar T. Walters Org: University Texas HSC Houston Award Amount: $743,154.00

Study Aims
• Test the hypothesis that chronic hypersensitivity of reflexes in a rat contusive SCI model is reduced by blocking spontaneous activity (SA) in primary nociceptors via reduction in Nav1.8.
• Test the hypothesis that interventions that reduce Nav1.8 channel function will also reduce operant measures of aversive states.
• Test whether these interventions will also reduce visceral hypersensitivity after SCI.
• Test whether repeated application of a Nav1.8 antagonist can produce prolonged amelioration of hypersensitivity and distress.

Approach
Nav1.8 function is decreased and consequent effects on hyperreflexia and pain are assessed. Nav1.8 is reduced by a) antisense knockdown (with biochemical and physiological confirmation), b) a specific antagonist, A-803467, and c) an antagonist, ambroxol, that is less expensive and less selective.

Timeline and Cost

<table>
<thead>
<tr>
<th>Activities</th>
<th>CY</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antisense knockdown of Nav1.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-803467 antagonism of Nav1.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambroxol antagonism of Nav1.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repeated application of ambroxol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estimated Budget ($K)</td>
<td></td>
<td>65,325</td>
<td>255,836</td>
<td>179,583</td>
<td>181,806</td>
</tr>
</tbody>
</table>

Updated: (October 14, 2014)
Persisted Pain after Spinal Cord Injury Is Maintained by Primary Afferent Activity

Qing Yang, Zizhen Wu, Julia K. Hadden, Max A. Odem, Yan Zuo, Robyn J. Crook, Jeffrey A. Frost, and Edgar T. Walters

Department of Integrative Biology and Pharmacology, University of Texas Medical School at Houston, Texas, 77030

Chronic pain caused by insults to the CNS (central neuropathic pain) is widely assumed to be maintained exclusively by central mechanisms. However, chronic hyperexcitability occurs in primary nociceptors after spinal cord injury (SCI), suggesting that SCI pain also depends upon continuing activity of peripheral sensory neurons. The present study in rats (Rattus norvegicus) found persistent upregulation after SCI of protein, but not mRNA, for a voltage-gated Na+ channel, Nav1.8, that is expressed almost exclusively in primary afferent neurons. Selectively knocking down Nav1.8 after SCI suppressed spontaneous activity in dissociated dorsal root ganglion neurons, reversed hypersensitivity of hindlimb withdrawal reflexes, and reduced ongoing pain assessed by a conditioned place preference test. These results show that activity in primary afferent neurons contributes to ongoing SCI pain.

Key words: Chronic pain; dorsal root ganglion; Nav1.8; neuropathic pain; nociceptor; spinal contusion

Introduction

After peripheral injury or inflammation, central sensitization in the spinal cord promotes allodynia, hyperalgesia, and spontaneous pain, but this central sensitization often requires continuing sensory activity (Baron et al., 2013). In contrast, pain resulting from injury or inflammation within the CNS (central neuropathic pain) is usually assumed to be maintained by central alterations (Finnerup, 2013). However, recent findings suggest that persistent hyperexcitability and spontaneous activity (SA) in primary sensory neurons might promote spinal cord injury (SCI) pain. First, SA occurs in peripheral terminals (Carlton et al., 2013) and in cell bodies of nociceptors in vivo and after dissociation from dorsal root ganglia (DRG; Bedi et al., 2010) long after SCI. Second, reduction of TRPV1 function reverses behavioral hypersensitivity after SCI (Wu et al., 2013). TRPV1 is expressed most abundantly in primary nociceptors (Cavanaugh et al., 2011), suggesting that activity in primary sensory neurons might drive reflex hypersensitivity after SCI. Furthermore, the aversive quality of pain (Baasstrup et al., 2010; Navratilova et al., 2013) might also be driven by primary afferent activity after SCI.

A strong test of the hypothesis that activity in primary afferent neurons helps to maintain SCI pain (Walters, 2012) is enabled by the selective expression of a voltage-gated Na+ channel, Nav1.8, in somatic sensory neurons. Nav1.8 is absent in central neurons (Akopian et al., 1999; Shields et al., 2012) and is important for SA in primary afferent neurons after peripheral insults (Roza et al., 2003; Jarvis et al., 2007). Here, we report that knockdown of Nav1.8 channels after SCI reduces SA in primary afferent neurons, reverses reflex hypersensitivity, and ameliorates a pain-like aversive state.

Materials and Methods

Procedures. All procedures complied with guidelines of the International Association for the Study of Pain and were approved by the institutional animal care and use committee. Male rats (200–350 g) were maintained under a 12 h reversed light/dark cycle and tested during the dark phase. Additional methodological details are available (Bedi et al., 2010; Wu et al., 2013).

SCI procedures. Contusion injury occurred at vertebral segment T10 (Bedi et al., 2010). Rats were deeply anesthetized with ketamine (80 mg/kg), xylazine (10 mg/kg), and acepromazine (0.75 mg/kg) before laminectomy at T10, followed by a spinal impact using an Infinite Horizon impactor (150 kdyne, 1 s dwell time). Sham-operated (“sham”) animals received identical procedures except for spinal impact. Animals accepted for study exhibited Basso, Beattie, and Bresnahan (BBB) hindlimb motor scores of 0–1 d after SCI (Basso et al., 1995). All showed partial locomotor recovery by the end of testing, with extensive movement of all joints in the hindlimbs (BBB score ≥ 7).

Antisense oligodeoxynucleotide (ODN) knockdown of Nav1.8. Previous studies identified an antisense oligodeoxynucleotide (ASO) sequence that is taken up in vivo by DRG neurons after intrathecal delivery and reduces expression of Nav1.8 protein (Porreca et al., 1999; Lai et al., 2002). This sequence, 5’-TCC-TGT-CTT-GGT-TCT-GGC-CT-3’, and a mismatched oligodeoxynucleotide (MMO) sequence, 5’-TCC-TTC- GTG-CTG-TCT-GGC-CT-3’, were purchased from Sigma-Aldrich. Approximately 1 month after SCI, rats were anesthetized with isoflurane and a chronic intrathecal catheter was inserted at the atlantooccipital joint terminating at the lumbar enlargement. Animals showing additional impairment after catheterization (altered body posture or forelimb function) were killed. Intrathecal injections (45 μg of ODN in 5 μl of saline, followed by a 10 μl of saline flush) were given 1–2 months after injury, twice daily for 3 d, and then once daily for 2 d.

Received Dec. 19, 2013; revised June 30, 2014; accepted July 3, 2014.

Correspondence should be addressed to Edgar T. Walters or Qing Yang, Department of Integrative Biology and Pharmacology, University of Texas Medical School at Houston, 6431 Fannin Street, MSB 4116, Houston, TX, 77030. The authors declare no competing financial interests.
Western blot analysis of Nav protein expression. At the end of ODN injection, animals were deeply anesthetized and bilateral L4 and L5 ganglia were removed and immediately homogenized in RIPA buffer (Teknova) with protease inhibitors. Lysate protein concentrations were determined by bicinchoninic acid assay (Pierce). Equal amounts of total protein (30 μg) were resolved by SDS-PAGE (4–20% Tris-HCl; Bio-Rad) after 1:3 dilution with Laemmli buffer, transferred to a PVDF membrane, blocked with 10% nonfat dry milk, and incubated overnight at 4°C with antibodies against Nav1.8 (catalog #AB9274; Millipore), Nav1.6 (catalog #ASC-009; Alomone Labs), Nav1.7 (catalog #ASC-008; Alomone Labs), or Nav1.9 (catalog #AB-9222; Millipore), and β-actin (catalog #ab6276; Abcam). Secondary HRP anti-rabbit or anti-mouse IgGs were incubated for 1 h at 22°C. Blots were developed using an enhanced chemiluminescence substrate (Pierce). Optical densities were normalized to β-actin.

RT-PCR analysis of Nav1.8 mRNA expression in DRG neurons and spinal cord. Total RNA was extracted from homogenized DRG or spinal cord with on-column DNase digestion (E.Z.N.A. Total RNA Kit I) and cDNA was synthesized by MMLV reverse transcriptase (Invitrogen) using random primer. Rat Nav1.8 primers were TCCCGGGGAAGGCTACTATTA (forward) and TAAAGTGGGCGGCTCTC (reverse; Hu et al., 2013); rat GAPDH primers were CCCCAATGATCCGGGTGTG (forward) and TAGGCAGAAGGCCTTTT (reverse; Piller et al., 2013). mRNA abundance was determined by real-time PCR (LightCycler 480; Roche) with SYBR Green Master Mix (Pierce). Optical densities were normalized to β-actin.

Results

Nav1.8 antisense treatment selectively reduces Nav1.8 expression in DRG neurons after upregulation by SCI

We investigated whether SCI had any effect on Nav1.8 expression in L4 and L5 DRG. These DRG are sufficiently far from the vertebral T10 contusion site that few C-fiber neurons should be injured directly by the T10 injury (Bedi et al., 2010), but neurons in these DRG may be exposed to inflammatory signals disseminated after SCI (Mckay and McLachlan, 2004; Alexander and Popovich, 2009), which might alter Nav1.8 expression (Yu et al., 2011). Processing for Western blot analysis began immediately after excision of L4 and L5 DRG 1 month after injury (Fig. 1A). The amount of Nav1.8 protein differed among DRG from naive, sham, and SCI animals (F2,11 = 8.83; p = 0.005), with the levels being significantly higher in ganglia from SCI than naive or sham animals (p < 0.01 and p < 0.05, respectively). No difference was found between SCI and sham groups in Nav1.8 mRNA expression in lumbar DRG, nor was any evidence found for Nav1.8 mRNA expression in lumbar spinal cord in either group (Fig. 1B). Using a Nav1.8 ASO sequence (Lai et al., 2002), we compared the expression of four different Nav proteins after Nav1.8 ASO treatment to the corresponding expression after Nav1.8 MMO treatment (Fig. 1C). No significant differences were found in expression of Nav1.6, Nav1.7, or Nav1.9 channels in SCI animal lumbar Nav1.8 ASO treatment, whereas Nav1.8 protein expression was significantly lower after Nav1.8 ASO treatment than after MMO treatment (p = 0.002).

Nav1.8 antisense treatment reduces TTX-resistant Na+ current and spontaneous activity in DRG neurons after SCI

Nav1.8 channels mediate a distinctive Na+ current that is resistant to TTX and has an unusually depolarized voltage dependence of fast inactivation (Akopian et al., 1996; Dib-Hajj et al., 1997). We assessed the degree of reduction of Nav1.8-mediated, TTX-resistant Na+ current by antisense knockdown in small DRG neurons from SCI animals. In the presence of 250 nM TTX, a whole-cell voltage-clamp pulse protocol that inactivates the drug-free day 5 test. The total number of crossings into all three chambers provided objective criteria to exclude SCI animals exhibiting excessive locomotor impairment (<21 crossings; two SCI + MMO and two SCI + ASO animals) or insufficient spinal injury (>250 crossings; one SCI + MMO and one SCI + ASO animal). For comparison, sham animals exhibited 190 ± 26 total crossings during the test.

Statistical analysis. Data are presented as means ± SEM. Comparisons were made with Student’s t tests or one- or two-way ANOVA, followed by Bonferroni’s post hoc tests. SA incidence was compared using Fisher’s exact tests.

Dissociation and culture of DRG neurons. Selected DRG neurons (L5, L4, T12, T11, T9, T8) were minced and incubated for 40 min at 34°C with trypsin (0.4 mg/ml) and collagenase D (1.6 mg/ml). DRG fragments were triturated and the neurons were plated without serum or growth factors onto dishes coated with poly-L-lysine and kept overnight in DMEM under 5% CO2, 95% humidity at 37°C.

Recording from dissociated DRG neurons. Whole-cell patch recordings of SA were made at ~23°C from small neurons 18–26 h after dissociation, as described previously (Bedi et al., 2010). Tetrodotoxin (TTX)-resistant currents were measured in solution containing the following (in mM): 130 NaCl, 4 KCl, 2 CaCl2, 1 MgCl2, 0.1 CdCl2, 10 TEA-Cl, 10 HEPES, and 5 glucose, and a pipette solution containing the following (in mM): 100 CsCl, 30 GsF, 8 NaCl, 1 CaCl2, 1 MgCl2, 0.4 Na2GTP, 4 MgATP, 10 EGTA, and 10 HEPES. Current–voltage relationships were determined with 250 nM TTX and a holding potential of ~60 mV to isolate Nav1.8 channels (Cummins et al., 1999). 200 ms command potentials were delivered from –100 to 50 mV in 10 mV increments at 5 s intervals, with each command following a 100 ms conditioning prepulse to ~120 mV.

Reflex hypersensitivity tests. Tests were conducted by investigators blinded to treatment before injury and just before and at the end of ODN treatment (Bedi et al., 2010; Wu et al., 2013). Animals were habituated to test chambers on day 1. On days 2 and 3, heat and mechanical test stimuli were given for habituation to test procedures; data were collected from tests on days 4 and 5. Hindlimb heat hypersensitivity was tested by the Hargreaves radiant heat method. Mechanical hypersensitivity was tested with calibrated von Frey filaments delivered to the glabrous surface of hindpaws.

Conditioned place preference test for ongoing pain. We modified conditioned place preference (CPP) procedures used in peripheral pain models (King et al., 2009). A commercial CPP box (Med Associates) with automated data collection had three chambers with equal levels of dim illumination: black and white end chambers and a connecting gray chamber. On day 1 (~2 months after injury), each rat was permitted to explore the gray and black (but not white) chambers. Conditioning trials occurred on days 2–4. Each morning, 0.5 ml of vehicle (saline) was injected intraperitoneally 10 min before confinement in the black chamber for 60 min. Three hours later, the same rat was injected with retigabine (10 mg/kg in 0.5 ml of saline; Yang et al., 2013) 10 min before confinement in the white chamber. On day 5, each rat was placed in the gray chamber with unrestricted access to all chambers for 15 min. Data are presented as the difference in time spent in the retigabine-paired (white) chamber minus time in the vehicle-paired (black) chamber during the drug-free day 5 test. The total number of crossings into all three chambers provided objective criteria to exclude SCI animals exhibiting excessive locomotor impairment (<21 crossings; two SCI + MMO and two SCI + ASO animals) or insufficient spinal injury (>250 crossings; one SCI + MMO and one SCI + ASO animal). For comparison, sham animals exhibited 190 ± 26 total crossings during the test.
An important prediction was that knockdown of Nav1.8 expression would reduce SCI-induced SA. SCI quadrupled the incidence of SA in small DRG neurons (Fig. 2B, left) dissociated from L4 and L5 ganglia 3 d after injury compared with neurons dissociated from naive animals (p < 0.0001; Fig. 2B, right), and this increase was abolished by Nav1.8 ASO injections at the lumbar level (p = 0.003 vs SCI). Similarly, SCI increased the incidence of SA 1–3 months after SCI, and this increase was abolished by lumbar SCI + ASO treatment (p = 0.006). SA incidence was significantly greater in lumbar DRG neurons after SCI or SCI + MMO treatment than in lumbar DRG neurons after lumbar SCI + ASO treatment (p = 0.003). No significant effects on SCI-induced increases in SA were found in DRG neurons dissociated from thoracic ganglia (Fig. 2B, right) after Nav1.8 ASO treatment at the lumbar level.

Nav1.8 antisense treatment reverses hindlimb hyperreflexia and ongoing pain after SCI

Persistent sensitization of hindlimb withdrawal responses evoked by mechanical and heat test stimuli was found 1–3 months after SCI, similar to earlier comparisons of SCI, sham, and naive groups (Bedi et al., 2010), and this sensitization was reversed by Nav1.8 ASO treatment. For mechanical sensitivity (Fig. 3A), significant effects were found for test sequence (pre-SCI, post-SCI, post-ODN; F(2,84) = 23.9; p < 0.0001), ODN treatment (F(1,57) = 4.5; p = 0.039), and their interaction (F(2,57) = 4.82; p = 0.0012). Post hoc comparison revealed higher post-ODN withdrawal threshold in ASO-treated than MMO-treated rats (p = 0.0009). Twenty-eight of 29 animals showed mechanical hypersensitivity after SCI (before ODN treatment) and 72% also showed heat hypersensitivity. In these animals, significant effects were found for test sequence (F(2,57) = 14.2; p < 0.0001), ODN treatment and found that, compared with the SCI + MMO animals, SCI + ASO animals significantly preferred the black chamber (p = 0.045; Fig. 3C, right). The absence in SCI + ASO animals of a shift in preference away from the innately preferred, vehicle-paired black chamber suggests that Nav1.8 function is necessary to maintain ongoing pain after SCI.

Discussion

Finding that persistent pain induced by SCI requires Nav1.8, which is expressed almost exclusively in primary afferent neurons (Akopian et al., 1999; Shields et al., 2012), indicates that Nav1.8-expressing sensory neurons play a major role in driving SCI pain and perhaps associated central neuropathic alterations (Finne-rup, 2013). Our results confirm that intrathecal application of a Nav1.8 ASO sequence reduces expression of Nav1.8 protein in DRG and functional activity of Nav1.8 channels (Porreca et al., 1999; Lai et al., 2002; Gold et al., 2003; Yu et al., 2011). We also demonstrate that this knockdown is highly specific; Nav1.8 ASO treatment did not significantly reduce DRG expression of related Na+ channels: Nav1.6 and Nav1.7 (see also Porreca et al., 1999) and Nav 1.9. Reversal of reflex hypersensitivity by Nav1.8 ASO treatment has also been shown in peripheral injury and inflammation models (Yoshimura et al., 2001; Villarreal et al., 2005; Joshi et al., 2006; Morgan and Gebhart, 2008; Miao et al., 2010).

Our hypothesis that SA in primary afferent neurons drives chronic pain after SCI (Bedi et al., 2010; Walters, 2012) is supported by three findings. First, Nav1.8 mRNA was expressed in DRG, but not the spinal cord, even after SCI. Second, Nav1.8 knockdown eliminated the increase in SA in DRG neurons and hyperreflexia after SCI, suggesting that electrical activity in DRG neurons maintains hyperreflexia. This probably explains the strong correlation between the incidence of SA in dissociated...
DRG neurons and the degree of reflex hypersensitivity (Bedi et al., 2010). Third, an intervention that selectively reduces activity in primary sensory neurons (Nav1.8 knockdown) blocks a CPP measure of ongoing pain that captures its aversive quality (Navratilova et al., 2013). Because retigabine’s effects may involve central as well as peripheral mechanisms (Brown and Passmore, 2009), it was important that the drug was only present during conditioning, not testing. Suppression by retigabine of ongoing pain during conditioning rather than long-lasting central actions or intrinsic reward value was indicated by the lack of retigabine-dependent CPP in sham, naive (unpublished observations), or Nav1.8 SCI + ASO animals. The finding of retigabine-dependent CPP after SCI adds to operant evidence for SCI-induced aversive states in rodents (Baastrup et al., 2010; Davoody et al., 2011; Lau et al., 2012; Vierck et al., 2013).

In many nociceptors, Nav1.8 channels are responsible for the upstroke of the action potential (Renganathan et al., 2001), which could explain suppression of SA by knockdown of Nav1.8. Up-regulation of Nav1.8 after SCI is likely to contribute to generalized nociceptor hyperexcitability and might contribute to increased SA (Choi and Waxman, 2011), although multiple electrophysiological alterations probably promote nociceptor SA after SCI (Bedi et al., 2010; Wu et al., 2013). Regardless of the complexity of SA mechanisms, the requirement for Nav1.8 sug-

Figure 2. In vivo Nav1.8 antisense treatment reduces TTX-resistant Na⁺ current and SA in small primary afferent neurons tested in vitro after SCI. A, Reduction of TTX-resistant current 18–24 h after Nav1.8 ASO injection. Depolarizing steps evoked smaller currents compared with MMO treatment (left and middle). Peak TTX-resistant current was significantly reduced — 20 h, but not — 40 h, after the last ASO injection (right). B, ASO treatment decreased the incidence of SA (example in left) 3 d and 1–2 months after SCI (right). Significant suppression from lumbar Nav1.8 ASO injection occurred in lumbar, but not thoracic (T8, T9, T11, T12), DRG neurons.

Figure 3. In vivo Nav1.8 ASO treatment reverses behavioral indications of hyperreflexia and pain 1–3 months after SCI. A, Nav1.8 ASO treatment reversed the reduction in mechanical threshold for hindlimb withdrawal. B, Nav1.8 ASO treatment reversed the reduction in latency for withdrawal to heat. C, Intraperitoneal injections of retigabine supported CPP after SCI (left), which was prevented in SCI animals by Nav1.8 ASO treatment (right). CPP score (left axis) quantifies relative preference (indicated by arrows on right) for the white (retigabine paired) and black (vehicle paired) chambers after conditioning.
gests that interventions preferentially targeting nociceptive primary afferent neurons, such as antagonists of Nav1.8 (Jarvis et al., 2007) or TRPV1 (Wu et al., 2013), may relieve some forms of central neuropathic pain.

References

Yu QY, Zhao F, Guan SM, Chen J (2011) Antisense-mediated knockdown of Nav1.8.0, but not Na(V)1.9, generates inhibitory effects on complete Freund’s adjuvant-induced inflammatory pain in rat. PLoS One 6:e19865. CrossRef Medline
Neuroinflammatory contributions to pain after SCI: Roles for central glial mechanisms and nociceptor-mediated host defense

Edgar T. Walters
Department of Integrative Biology and Pharmacology, University of Texas Medical School at Houston, TX, USA

ABSTRACT

Neuropathic pain after spinal cord injury (SCI) is common, often intractable, and can be severely debilitating. A number of mechanisms have been proposed for this pain, which are discussed briefly, along with methods for revealing SCI pain in animal models, such as the recently applied conditioned place preference test. During the last decade, studies of animal models have shown that both central neuroinflammation and behavioral hypersensitivity (indirect reflex measures of pain) persist chronically after SCI. Interventions that reduce neuroinflammation have been found to ameliorate pain-related behavior, such as treatment with agents that inhibit the activation states of microglia and/or astroglia (including IL-10, minocycline, etanercept, propentofylline, ibudilast, licofelone, SP600125, carbeneoxolone). Reversal of pain-related behavior has also been shown with disruption by an inhibitor (CR8) and/or genetic deletion of cell cycle-related proteins, deletion of a truncated receptor (trkB.T1) for brain-derived neurotrophic factor (BDNF), or reduction by antisense knockdown or an inhibitor (AMG9810) of the activity of channels (TRPV1 or Nav1.8) important for electrical activity in primary nociceptors. Nociceptor activity is known to drive central neuroinflammation in peripheral injury models, and nociceptors appear to be an integral component of host defense. Thus, emerging results suggest that spinal and systemic effects of SCI can activate nociceptor-mediated host defense responses that interact via neuroinflammatory signaling with complex central consequences of SCI to drive chronic pain. This broader view of SCI-induced neuroinflammation suggests new targets, and additional complications, for efforts to develop effective treatments for neuropathic SCI pain.

© 2014 Elsevier Inc. All rights reserved.

Contents

Introduction...48
Prevalence, types, and properties of pain after SCI..........................49
The use of animal models to study mechanisms of neuropathic SCI pain .49
Types of mechanisms implicated in neuropathic SCI pain50
Neuroinflammatory mechanisms of neuropathic SCI pain51
 Why spinal neuroinflammation should produce neuropathic SCI pain51
 SCI pain mechanisms associated with microglia52
 SCI pain mechanisms associated with astrocytes53
Is neuropathic SCI pain driven by a unified host defense system?54
Implications of neuroinflammatory mechanisms for treating neuropathic SCI pain .56
Conclusions ...57
Acknowledgments ...57
References ...57

Introduction

While our everyday experiences with acute inflammation highlight the close association between inflammation and pain, it is only within the last decade that investigators have linked neuroinflammatory consequences of SCI to the life-long, intractable pain that many SCI patients endure. Neuroinflammation refers to the inflammatory responses of the nervous system to pathogens, trauma, toxins, or neurodegeneration. The realization that widespread neuroinflammation plays a major role in driving neuropathic pain after SCI has been accompanied by
discoveries of unexpected overlap of neuroinflammatory mechanisms that drive persistent pain after both injuries to the central nervous system and to peripheral tissues. This review discusses experimental evidence and a new conceptual perspective that provide insight into how neuroinflammation contributes to SCI pain. Although progress in developing effective treatments for neuropathic SCI pain has been slow, a number of recent preclinical findings suggest novel therapeutic targets that may offer promise as additional treatment options.

Prevalence, types, and properties of pain after SCI

Estimates of its prevalence vary greatly, but it is likely that chronic pain afflicts a majority of SCI patients (Dijkers et al., 2009). This pain is typically divided into two major classes, nociceptive and neuropathic (Bryce et al., 2012). The largest prospective pain study of patients with traumatic SCI found that moderate-to-severe nociceptive and neuropathic pain was equally common (each affecting 59% of patients) one year after SCI (Finnerup et al., 2014). A third class, “other pain,” is much less common after SCI (Finnerup et al., 2014) and won’t be considered here. Nociceptive pain is caused by an activity generated by normal mechanisms in the peripheral terminals of primary nociceptors. This class of pain is a natural response to common sequelae of SCI (Finnerup and Baasstrup, 2012), including overuse of the upper body, muscle weakness, poor posture, spasticity, and other problems of the musculoskeletal system. Nociceptive visceral pain after SCI can be caused by constipation, nociceptive cutaneous pain from pressure sores, and nociceptive headache from autonomic dysreflexia. Some forms of nociceptive pain are likely to involve peripheral inflammation, including peripheral neurogenic inflammation promoted by a release into the peripheral tissues of peptides such as calcitonin gene-related peptide (CGRP) and substance P from terminals of primary nociceptors (Richardson and Vasko, 2002; Xanthos and Sandkühler, 2014).

Neuropathic pain is defined as resulting directly from damage to or disease of the nervous system (Jensen et al., 2011). Neuropathic pain caused by SCI, like other forms of neuropathic pain (Costigan et al., 2009), is generally considered a purely pathological, maladaptive consequence of damage to the nervous system (Gwak and Hulsebosch, 2011; Walters, 2012). Neuropathic pain after SCI occurs in 40–50% of patients, it is often permanent and intractable to available treatments, and it can be one of the most debilitating results of SCI (Finnerup and Baasstrup, 2012). Neuropathic pain is subdivided into at-level and below-level pain, felt “at” the spinal injury level (defined as bodily pain felt at the injury level and up to 3 segments rostral to the level) and below the injury level (Bryce et al., 2012). Both types of neuropathic pain summon descriptors such as hot-burning, sharp, shooting, electric shock-like, tingling, squeezing, painfully cold, prickling, and/or pins and needles. This pain often occurs spontaneously and can also be evoked by stimuli that either are not normally painful (allodynia), or in exaggerated form by noxious stimuli (hyperalgesia). Because of its frequent severity and resistance to treatment, neuropathic pain has received far more experimental study than has nociceptive pain after SCI. However, as will be discussed below, persisting nociceptive pain and chronic neuropathic pain after SCI may have partially overlapping neuroinflammatory mechanisms.

The use of animal models to study mechanisms of neuropathic SCI pain

As mentioned in other articles in this special issue, SCI is always followed by neuroinflammation. Clinical observations, including chronic elevation of proinflammatory cytokines in the CSF and blood of patients (Davies et al., 2007; Hayes et al., 2002; Kwon et al., 2010; Segal et al., 1997; Stein et al., 2013), are consistent with the possibility that neuroinflammation that may promote pain persists long after SCI, but direct mechanistic studies in patients have not been performed. The most compelling evidence for neuroinflammatory contributions to neuropathic pain after SCI has come from animal studies, primarily in rodents. The general strategy in these studies has been to explore the behavioral and cellular effects of an SCI produced by one of several, relatively standard procedures, usually applied to a thoracic segment but sometimes to a cervical or upper lumbar segment. These include contusion caused by an impact on the exposed dural surface of the cord, brief compression of the cord by a clip, surgical hemisection, discrete lesion (often electrolytic) of the anterolateral tract, localized excitotoxicity produced by injection of a glutamate receptor agonist, or dorsal root avulsion that damages the dorsal horn (Christensen et al., 1996; Detloff et al., 2013; Hulsebosch et al., 2009; Onifer et al., 2007; Siddall et al., 1995; Vierck et al., 2000; Wieseler et al., 2010; Zeygers et al., 1998; Young, 2002). The most common index of pain in animal studies has been an increase in cutaneous mechanical sensitivity measured as a decrease in the bending force required to elicit a behavioral response by a series of “von Frey” filaments of different stiffness, usually applied to the plantar surface of a hindpaw. Another common index of pain is an increase in heat sensitivity measured as a decrease in latency to withdraw to a radiant stimulus applied to the same site (Hargreaves test).

A limitation of commonly used tests of “pain” after SCI is that the responses monitored are spatially mediated reflexes that may reveal very little about crucial emotional and cognitive aspects of pain, which appear to be cortically mediated (e.g., Mendell, 2011; Wiech et al., 2008). This problem is especially serious when below-level reflex measures are used, such as the pervasive hindlimb “mechanical allodynia” and “thermal hyperalgesia” tests performed with von Frey hairs and radiant heat, because even moderately severe SCI may cause substantial interruption of ascending tracts (Baasstrup et al., 2010; Detloff et al., 2008). Behaviors requiring supraspinal processing such as vocalization, licking, guarding, and facial grimacing, may be more closely associated with affective SCI pain (Baasstrup et al., 2010; Bedi et al., 2010; Crown et al., 2008; Sotocinal et al., 2011; Zeygers and Vierck, 2010). Operant tests, where an animal can choose to avoid or escape apparent pain, are being used increasingly as measures of the effects of putative analgesics on the affective, aversive dimension of pain (Ewan and Martin, 2013; Navratilova et al., 2013), including pain after SCI (Lau et al., 2012; Vierck et al., 2013).

One of the most promising indices of pain-like emotional states is offered by the conditioned place preference (CPP) test, an operant measure that clearly reveals the cognitively accessible aversiveness of ongoing pain-like states in animals (Navratilova et al., 2013). The CPP test for pain was first applied to peripheral inflammatory and neuropathic pain models (King et al., 2009; Okun et al., 2011; Suffka, 1994) and showed that a hurt rat will choose to spend more time in a chamber in which it had earlier received relief from pain by injection of an effective analgesic than in a chamber associated with injection of vehicle. Advantages of this test include 1) it can be completely automated, removing the variability in hand-delivered stimulation that complicates standard reflex measures of “pain,” 2) the analgesic drug is only present during the conditioning phase after SCI, not during testing a day or more later, so it avoids potentially confounding motor and sensory effects of the drug on behavior during the test, and 3) because the test depends critically on motivationally driven learning after SCI, it reveals higher-order aversive and cognitive aspects of pain rather than lower-order sensory and motor alterations produced by SCI. Limitations of the CPP test in revealing ongoing SCI pain are that 1) the conditioning treatment must relieve pain without being intrinsically rewarding in the absence of pain (e.g., opioids cannot be used) and 2) it is necessary that injured animals be able to move readily from non-preferred chambers to a preferred chamber during the test, which is more difficult in partially paralyzed animals after SCI. However, locomotion eventually recovers sufficiently in most rodent SCI models to permit ready movement between test chambers if the test trial is long enough. Two recent studies have used the CPP test to reveal an ongoing pain-like state in rats after SCI. Rats that received an electrolytic lesion in the ventrolateral
Types of mechanisms implicated in neuropathic SCI pain

Neuroinflammatory mechanisms are just one set of mechanisms driving SCI pain, and will be reviewed in the following sections. Other general mechanisms have also been proposed, and these may operate driving SCI pain, and will be reviewed in the following sections. Other neuroinflammatory mechanisms proposed to drive pain.

<table>
<thead>
<tr>
<th>Intervention/(mechanistic target)</th>
<th>Behavior reduced</th>
<th>Selected references</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nav1.3 knockdown i.t. (dorsal horn neuron hyperexcitability)</td>
<td>Hindlimb hypersensitivity (mech and heat)</td>
<td>Hains et al. (2003)</td>
</tr>
<tr>
<td>Rac1 inhibitor i.t. (spinal synaptic plasticity)</td>
<td>Hindlimb hypersensitivity (mech and heat)</td>
<td>Tan et al. (2008)</td>
</tr>
<tr>
<td>av c2-6i knockdown i.t. (spinal synaptic transmission)</td>
<td>Excessive grooming Hindlimb hypersensitivity (mech and heat)</td>
<td>Evoked pain (operant)</td>
</tr>
<tr>
<td>IL-10 delivery i.p., or HSV s.c. (inflammation, neuroinflammation)</td>
<td>Hindlimb hypersensitivity (mech and heat)</td>
<td>Hains et al. (2001), Zhao et al. (2007a)</td>
</tr>
<tr>
<td>COX-2 (i.p.), PGE2 (i.t.) inhibitors (inflammation, neuroinflammation)</td>
<td>COX-LOX inhibitor oral (inflammation)</td>
<td>Dulin et al. (2013)</td>
</tr>
<tr>
<td>CCL21 antibody local injection (thalamic microglial activation)</td>
<td>Hindlimb hypersensitivity (mech and heat)</td>
<td>Zhao et al. (2007b)</td>
</tr>
<tr>
<td>TNFα blocker i.t. (neuroinflammation)</td>
<td>Hindlimb hypersensitivity (mech and heat)</td>
<td>Marchand et al. (2009)</td>
</tr>
<tr>
<td>Connexin 43 knockout (astrocyte coupling)</td>
<td>Hindlimb hypersensitivity (mech and heat)</td>
<td>Chen et al. (2012)</td>
</tr>
<tr>
<td>IL-6 receptor antibody i.p. (Neuroinflammation)</td>
<td>Hindlimb hypersensitivity (mech)</td>
<td>Gupta et al. (2013)</td>
</tr>
<tr>
<td>TrkB/TrkT knockout (glial BDNF signaling)</td>
<td>Hindlimb hypersensitivity (mech and heat)</td>
<td>Wu et al. (2013b)</td>
</tr>
<tr>
<td>TRPV1 knockdown i.t., inhibitor i.p. (nociceptor sensitization)</td>
<td></td>
<td>Wu et al. (2013c)</td>
</tr>
</tbody>
</table>

Notes. Only interventions in which the molecular targets and functional consequences are relatively well defined are included. See text for discussion of studies using other interesting agents, including commonly used drugs, such as minocycline, that have less defined targets and actions. Neuroinflammation is indicated as a mechanistic target if the delivery method primarily targets the nervous system. Abbreviations: i.p., intraperitoneal delivery, i.t., intrathecal; s.c., subcutaneous; HSV, herpes simplex vector; hypersens, reflex hypersensitivity; mech, mechanical.
region of injury (Noble and Wrathall, 1987; Popovich et al., 1996). The disruption of the BSCB has been associated with pain after peripheral injury or inflammation (Beggs et al., 2010; Brooks et al., 2005), perispinal inflammation (Tenorio et al., 2013), and SCI (Lin et al., 2012). Among other effects, the disruption of the BSCB will permit blood-borne myeloid and lymphoid immune cells to enter the spinal cord parenchyma and exert direct inflammatory actions on central neurons and glia (Skaper et al., 2012; Zhang et al., 2011) (Fig. 1). An interesting possibility is that the disruption of the BSCB could also allow blood-borne factors generated below a spinal lesion to enter the CNS at and above a spinal injury, permitting below-level neural and glial activity to influence pain processing even when ascending pain pathways have been effectively interrupted.

Neuroinflammatory mechanisms of neuropathic SCI pain

Why spinal neuroinflammation should produce neuropathic SCI pain

Neuroinflammation is commonly and simply defined as an inflammation of part of the nervous system. Inflammation is classically defined as a coordinated response of the innate immune system that combats infection. The relatively primitive innate immune system is the first line of defense against pathogens and toxins; it is always present and it depends upon diverse cell types that include barrier cells, phagocytes, and various parenchymal cells in different tissues, including the nervous system. Unlike the more recently evolved adaptive immune system, the innate immune system does not employ antigen-specific humoral and cell-mediated immunity mechanisms. Two innate immune functions have been emphasized traditionally: 1) the recruitment of cells and proteins to destroy pathogens and toxins, and 2) increases in the flow of lymph containing pathogens, toxins, and antigen-presenting cells to lymphoid tissues to help initiate the more delayed adaptive immune response (Murphy, 2012). However, it has become increasingly evident that multiple inflammatory states exist, ranging from full-scale inflammation to mild, basal inflammatory responses, and these can be either transient or chronic. The wide range of inflammatory states probably covers numerous functions, including not only host defense but tissue repair and homeostatic adjustments to stress (Medzhitov, 2008). It is also clear that inflammation functions to repair injured tissue, including the nervous system (Benowitz and Popovich, 2011; Xanthos and Sandkuhler, 2014). Cells of the innate immune system are thus important for neuroinflammation and associated tissue repair. Many of these cells are in the myeloid lineage, including macrophages, granulocytes, dendritic cells, and mast cells. Particular emphasis has been placed by the investigators of pain on the myeloid cells residing in the CNS parenchyma that are closely related to macrophages–microglia (Calvo and Bennett, 2012; Ginhoux et al., 2010;
Graeber and Christie, 2012; Schomberg and Olson, 2012; Taves et al., 2013). However, inflammation involves responses to pathogens and tissue damage that are mediated by the interactions of myeloid immune cells with various other cell types, including endothelial cells and neurons. Non-myeloid cells in the CNS contributing to neuroinflammation have received the most attention in pain studies are astrocytes. Indeed, interlinked, overlapping functions and assumed dysfunctions (“gliopathy”) of astroglia and microglia appear to be especially important for neuropathic pain (Hulsebosch, 2008; Ji et al., 2013; McMahon and Malcangio, 2009; Watkins et al., 2001).

Five general observations suggest that SCI-induced neuroinflammation should produce pain. First, spinal inflammatory reactions induced by peripheral injury and/or inflammation promote pain-related behavior. In particular, several lines of evidence indicate that spinal neuroinflammation (activation, migration, and proliferation of microglia and astrocytes) induced by peripheral injury and inflammation can drive pain (reviewed by DeLeo and Yezierski, 2001; Watkins et al., 2001; Ji et al., 2013). Peripheral nerve injury can support central neuroinflammation by triggering infiltration of leukocytes into the cord (Skaper et al., 2012; Sweitzer et al., 2002) probably by enabling the disruption of the BSCB (Brooks et al., 2005; Gordin et al., 2006; Huber et al., 2001). In addition, peripheral injury or inflammation induces central neural activity that promotes neuroinflammation (Xanthos and Sandkuehler, 2014). Second, SCI causes the generation and widespread release of proinflammatory cytokines (e.g., Alexander and Popovich, 2009). Transient increases in TNFα and IL-1β as well as a persistent increase in IL-6 expression have been associated with behavioral indicators of SCI pain (Detloff et al., 2008). Third, proinflammatory cytokines can regulate synaptic transmission and plasticity in the spinal cord and brain. For example, TNFα and IL-1β can either enhance or suppress synaptic transmission and LTP by direct and indirect actions on glutamatergic synapses in the brain (including regulation of AMPA and NMDA receptor trafficking), and these complex effects on synaptic function may depend upon the degree or state of glial and neural activity (Beattie et al., 2002; Chu et al., 2012; del Rey et al., 2013; Perea and Araque, 2007; Stellwagen and Malenka, 2006; Yirmiya and Goshen, 2011). In the spinal cord, TNFα and IL-1β are reported to induce LTP at C-fiber synapses along with behavioral hypersensitivity both by direct actions on these synapses (Kawasaki et al., 2008) and by indirect actions that probably involve recurrent release of additional glial mediators (Gruber-Schoffnegger et al., 2013). Fourth, in uninjured animals, the intrathecal injection of proinflammatory cytokines, including IL-1β and IL-6, is sufficient to produce reflex hypersensitivity (DeLeo et al., 1996; Reeve et al., 2000). Fifth, increasing evidence indicates that neuroinflammation after SCI, like neuropathic SCI pain, persists indefinitely (Beck et al., 2010; Byrnes et al., 2011; Dulin et al., 2013a; Fleming et al., 2006; Nesic et al., 2005).

Given the general arguments just listed for why SCI-induced neuroinflammation should produce pain, a puzzle is why a substantial fraction of SCI patients with injuries indistinguishable from other SCI patients fail to report neuropathic pain (Dijkers et al., 2009). These dramatic differences within the SCI patient population in the severity of neuropathic pain emphasize the complexity of the systems involved. One intriguing factor could be the differential operation of endogenous pain suppression mechanisms, which may be recruited more effectively in some SCI patients than others.

Specific neuroinflammatory mechanisms that have been linked to neuropathic SCI pain are reviewed below, separated into mechanisms that have been associated thus far primarily with microglia and astrocytes. Bear in mind that this is a convenient simplification: some of these mechanisms occur in both types of glia, and many probably represent reactions that are promoted in one cell type by signals from the other glial cell type (and from non-glial cells). Fig. 1 depicts some of the complex extracellular signaling among microglia, astrocytes, and neurons that may be important for neuropathic SCI pain.

SCI pain mechanisms associated with microglia

The earliest direct evidence in animal models that inflammatory responses contribute to SCI pain came from the ability of interventions that reduce signaling by cells in the innate immune system, such as microglia and macrophages, to reduce reflex hypersensitivity after SCI. IL-10 is a potent anti-inflammatory cytokine that reduces the activation of many immune cells, including macrophages, microglia, and astrocytes, and is also produced by glia (Graeber and Christie, 2012; Thompson et al., 2013). Systemic injection of IL-10 shortly after excitotoxic spinal injury delayed the onset of and decreased the amount of excessive grooming caused by this type of injury, associated with a reduction both in neural damage and in signs of neuroinflammation (including reduced spinal expression of IL-1β, COX-2, and iNOS) (Plunkett et al., 2001) (Table 1). Moreover, knockout of IL-10 accelerated the onset of pain-related behavior and expansion of the lesion (Abraham et al., 2004). Recently, IL-10 delivered by a herpes simplex virus (HSV) vector after spinal contusion injury decreased spinal TNFα expression and astrocyte activation assessed by glial fibrillary acidic protein (GFAP) immunohistochemistry. Hindlimb mechanical and heat hypersensitivity were reduced by the IL-10 delivery and, importantly, so was an operant measure of evoked pain (Lau et al., 2012) (Table 1). These pain suppressive effects are consistent with the direct actions of IL-10 on activated microglia, although many other cell types may have contributed to IL-10’s effects in these studies.

Widespread activation of microglia (spinal and supraspinal) occurs after SCI, as indicated by a shift in morphology from a ramified to amoeboid shape and upregulation of the microglial markers CD11b/c/CCK3 (OX-42), major histocompatibility complex II (MHC II), or ionized calcium-binding adaptor molecule-1 (Iba-1) (e.g., Detloff et al., 2008; Dijkstra et al., 2000; Koshinaga and Whittlemore, 1995; Nesic et al., 2005; Popovich et al., 1997; Schwab et al., 2005; Watanabe et al., 1999). The concept of glial activation or reactivity probably involves multiple states and functions in microglia and other myeloid cells (Hawthorne and Popovich, 2011), but these complications have largely been ignored thus far in studies of microglial contributions to SCI pain. Proliferation and migration of microglia also occur (Byrnes and Faden, 2007; Zai and Wrathall, 2005). Because of the prominent roles of macrophages in peripheral inflammation, and of the many proinflammatory signals secreted by both macrophages and microglia on other examples of pain-related behavior (Ellis and Bennett, 2013; Kettenmann et al., 2011; Ramesh et al., 2013), microglia were prime candidates to drive SCI pain. This possibility was strongly supported by the demonstration that spinal injection of microglia that had been activated by ATP was sufficient to produce mechanical hypersensitivity in uninjured animals (Coulh et al., 2005).

Contributions of microglia to neuropathic pain after SCI have largely been studied using the tetracycline antibiotic, minocycline, to inhibit microglial activation. Although minocycline remains an effective and popular inhibitor of microglia, it has many other reported effects (Garrido-Mesa et al., 2013), which limit the conclusions that can be drawn about how it may reduce SCI pain. These include other actions that could also inhibit pain-related mechanisms, such as inhibition of matrix metalloproteinases (Matsumoto et al., 2009), scavenging of free radicals (Ulgen et al., 2011), inhibition of poly(ADP-ribose) polymerase-1 (PARP-1) (Alano et al., 2006), and inhibition of voltage-gated Na+ channels (Kim et al., 2011). Because the critical molecular targets of minocycline have not yet been identified in SCI pain studies, minocycline is not included in Table 1. The first use of minocycline and the first explicit test of microglial involvement in SCI pain were reported less than a decade ago by Hains and Waxman (Hains and Waxman, 2006). One month after thoracic contusive SCI, intrathecal infusion of minocycline reduced the signs of microglial activation (decreasing P-p38 MAPK in OX-42-positive cells and reducing the number of OX-42-positive cells with an activated morphology), reduced spontaneous and evoked activity in lumbar dorsal horn neurons,
completely reversed heat hypersensitivity of hindlimb reflexes, and largely reversed mechanical hypersensitivity of the same reflexes. These investigators then provided evidence that microglia contribute to SCI-induced reflex hypersensitivity by an ERK1/2-dependent release of PGE2 and probable binding to neuronal EP2 receptors in the lumbar dorsal horn (Zhao et al., 2007b). In vivo application of an inhibitor of p38-MAPK, SB203580, reduced supraspinally mediated behaviors (vocalization, biting, escape) to at-level mechanical stimulation after contusive SCI (Crown et al., 2008). One difference in this study was that evidence for increased P-p38-MAPK was found not only in microglia, but also in astrocytes and neurons. A recent study found enhancement by SCI of P-p38 MAPK and PGE2 production that could be ameliorated by acupuncture (Choi et al., 2012). Zhao et al. (2007a) showed a strong suppression of SCI-induced hindlimb hypersensitivity by the intrathecal injection of an EP2 receptor antagonist (Table 1), while an earlier study had shown that systemic application of a COX-2 inhibitor reduced mechanical and heat hypersensitivity in hindlimbs and forelimbs associated with decreased PGE2 levels in the cord after contusive SCI (Hains et al., 2001) (Table 1). However, the potential clinical significance of the COX-2/PGE2 findings can be questioned because nonsteroidal anti-inflammatory drugs that primarily inhibit COX activity are not very effective in relieving neuropathic pain after SCI in humans (Cardenas and Jensen, 2006). On the other hand, neuroinflammation is associated with elevated arachidonic acid (AA) metabolism, and AA is metabolized not only to prostaglandins by COX but also to leukotrienes by 5-lipoxygenase (LOX). Interestingly, leukotrienes, like prostaglandins, contribute to the behavioral hypersensitivity in other pain models (Noguchi and Okubo, 2011). A recent study (Dulin et al., 2013a) showed that both the proinflammatory leukotriene B4 and PGE2 were elevated at a spinal contusion site 9 months after injury, and that treatment of rats for 1 month starting 8 months after SCI with a dual COX/5-LOX inhibitor, licofelone, reversed mechanical hypersensitivity of the hindpaws (Table 1). If licofelone is also found to reverse the SCI-induced behavioral hypersensitivity as well as the SCI pain mechanisms associated with astrocytes.

Although derived from neuroepithelial rather than the myeloid or lymphoid progenitors of immune cells, astrocytes are essential participants in neuroinflammation, which depends upon interactions among astrocytes, microglia (and sometimes other host defense cells), and neurons (Alexander and Popovich, 2009). Indeed, many investigators consider astrocytes to be part of the innate immune system (Ransohoff and Brown, 2012). Numerous studies have indicated that astrocytes make major contributions to pain-related behavior following peripheral nerve injury and inflammation, and this extensive body of work is covered comprehensively by several recent reviews (Ellis and Bennett, 2013; Ji et al., 2013; Mika et al., 2013). Importantly, spinal injection of astrocytes that had been activated by TNFα was shown to be sufficient to produce mechanical hypersensitivity in uninjured animals (Gao et al., 2010). Far fewer studies have been made of astroglial contributions to neuropathic pain caused by SCI, but the findings thus far show interesting similarities to what has been described in peripheral neuropathic pain models. Like microglia, astrocytes proliferate after SCI, especially in the region of the lesion, forming a glial scar (Byrnes and Faden, 2007; Karimi-Abdolrezae and Billakanti, 2012; Zai and Wrathall, 2005). This proliferation and the activation of astrogliosis (reactive gliosis) by SCI (e.g., Baldwin et al., 1998; Carlton et al., 2009; Gwak and Hulsebosch, 2009; O’Brien et al., 1994; Popovich et al., 1997) may be even more pronounced than the various forms of activation reported for microglia after SCI, as has also been noted in models of peripheral injury and inflammation (Ji et al., 2013). Reactive gliosis is typically assessed by the upregulation of GFAP, which is a rapid and relatively specific indicator of astrogial activation. Using both immunostaining and Western blot to measure GFAP expression, an early study showed that thoracic spinal contusion caused astrogliosis not only at the lesion site but also throughout the spinal cord, and striking increases in GFAP remained for as long as the investigators assessed the cord (up to 9 months after SCI) (Nesic et al., 2005). Importantly, this same study showed that the changes in GFAP expression were correlated with mechanical hypersensitivity of hindpaws and forepaws, and showed that other proteins preferentially expressed in astrocytes or likely to be involved in pain-related functions of reactive astrocytes were also upregulated a month or later after SCI. These included the astrocytic Ca2+–binding protein S-100 and the water channel protein aquaporin 4 (implicated in inflammatory edema in the CNS, which probably involves the extensive contacts made by astrocytes onto spinal blood vessels, Fukuda and Badaut, 2012). Whereas some studies (Carlton et al., 2009; Gwak et al., 2012; Nesic et al., 2005) have reported persistent changes in GFAP expression in segments distant from a thoracic injury site associated with changes in behavioral hypersensitivity, other studies have reported a lack of immunohistochemical or morphological evidence for astrogial activation in some of the spinal segments after similar traumatic SCI (Andrews et al., 2012; Detloff et al., 2008). Thus, while changes in astrocyte function might be involved in SCI-induced pain, prominent changes in astrocyte morphology and GFAP expression in lumbar segments do not appear to be necessary for at least one behavioral indicator of allodynia after SCI — hindlimb hypersensitivity (Detloff et al., 2008).
Recent evidence suggests that activated astrocytes may promote allodynia by increasing production of IL-6 (Guptarak et al., 2013).

Efforts to define contributions of astrocytic mechanisms to SCI pain have been limited by a lack of specific inhibitors of astrocyte activity. Preclinical studies of SCI pain have described the suppression of reflex hypersensitivity by drugs that target astrocytes but also microglia and other cell types, notably propentofylline (Gwak and Hulsebosch, 2009; Gwak et al., 2008, 2009) and also ibudilast (Hama et al., 2012). In peripheral nerve injury models, pain has been associated with relatively high activity of c-Jun N-terminal kinase (JNK) in astrocytes compared to neurons or microglia (Zhuang et al., 2006). Recently it was reported that contusive SCI at T10 caused the activation of JNK in lumbar segments lasting at least a month, and that mechanical and heat hypersensitivity of hindlimb reflexes was reduced by the intrathecal injection of the JNK inhibitor, SP600125 (Lee et al., 2013). Interestingly, the same study found similar suppressive effects produced by acupuncture. Perhaps the most compelling evidence for essential roles of astrocytes in neuropathic SCI pain has come from the investigations of a notable feature of astrocytes that is absent or sparse in microglia: coupling by gap junctions containing connexin 43 (Cx43). Transgenic mice with deletion of Cx43 showed reduced GFAP expression 1–2 months after contusive SCI and little or no mechanical or heat hypersensitivity of paw withdrawal (Chen et al., 2012) (Table 1). Interestingly, this study showed that the suppression of the persistent hypersensitivity was much more dramatic after Cx43 knockout than after early minocycline treatment (similar to that used in rats by Marchand et al., 2009 and Tan et al., 2009), suggesting a potentially larger role for reactive astrocytes than microglia in the development of neuropathic SCI pain, at least in mice. Consistent with a major role for intracellular coupling among astrocytes in the initial development of SCI pain, early but not late treatment of rats with the gap junction decoupler, carbenoxolone, reduced later mechanical and heat hypersensitivity, as well as GFAP staining after spinal hemisection (Roh et al., 2010).

Reactive gliosis after SCI persists for as long as it has been examined in animal models (Gwak et al., 2012; Wu et al., 2012). Inhibition of proliferation in general and possibly of other cellular effects in nonproliferating neurons) by a cyclin-dependent cyclase (CDK) inhibitor, CR8, was found to produce parallel reductions in lesion volume, in SCI-induced upregulation of cell cycle-related proteins in astrocytes and microglia, in the elevated expression of GFAP and Iba-1, and in various signs of central inflammation months after SCI (Wu et al., 2012). Interestingly, these effects and concomitant neuropathic SCI pain appear to depend upon a neurotrophin, BDNF, that is associated with many forms of neural plasticity, including pain-related plasticity in peripheral injury models (Merighi et al., 2008), and which prominently involves ATP-induced release of BDNF from microglia (Coulil et al., 2005; Trang et al., 2011). Neuronal effects of microglial BDNF release mediated by trkB receptors have been emphasized in peripheral neuropathic pain models. However, BDNF effects are also mediated through an alternatively spliced truncated form of the BDNF receptor, trkB.T1, which is expressed in astrocytes, oligodendrocytes, and Schwann cells as well as in neurons (Fenner, 2012) and has been shown to be important for neuropathic SCI pain. An extensive study (Wu et al., 2013b) found an upregulation of trkB.T1 for at least 2 months at a thoracic conduction site (see also Liebl et al., 2001) and at least 3 days in the distant lumbar enlargement in wild-type mice. Mice with genetic deletion of trkB.T1 showed a significant reduction of mechanical hypersensitivity in hindlimb tests (Table 1), which was associated with enhanced recovery of motor function, a smaller lesion volume, less GFAP and Iba-1 expression, a persistent downregulation of genes and proteins in cell cycle pathways, and decreased expression of cell cycle-related protein expression in reactive astrocytes assayed with an in vitro model system. Deletion of trkB.T1 occluded the suppressive effects of the CDK inhibitor on mechanical hypersensitivity and motor recovery after SCI (Wu et al., 2013b). These intriguing findings point to important roles for BDNF, trkB.T1, and cell cycle-related proteins in neuropathic SCI pain, but much remains to be learned about where and how these molecules contribute to neuroinflammation, glial proliferation, and pain after SCI.

In sum, observations from SCI pain models, supported by a larger body of similar evidence from peripheral neuropathic pain models (e.g., Colburn et al., 1999; Sweitzer et al., 1999; Zhuang et al., 2005) indicate that interactions among astrocytes, microglia, and neurons are critical for the development and maintenance of neuropathic SCI pain (Gwak et al., 2012; Ji et al., 2013). Important interactions may also involve satellite glial cells in sensory ganglia, which are closely related to astrocytes and are known to contribute to behavioral hypersensitivity in peripheral models of neuropathic pain (Huang et al., 2013; Ji et al., 2013; Ohara et al., 2009; Xie et al., 2009), but contributions of satellite glial cells to painful consequences of SCI have yet to be reported.

Is neuropathic SCI pain driven by a unified host defense system?

An implicit assumption guiding most work on neuropathic SCI pain is that the pain arises in a disorganized fashion from any of numerous, often independent effects of the injury on different components of pain pathways (see section above on classes of mechanisms). An interesting possibility is that SCI also inadvertently activates integrated response systems that employ pain and neuroinflammation as part of host defense against pathogens, parasites, and other threats. It has long been appreciated that many interactions occur between the innate immune system and the peripheral nervous system, with peripheral neurogenic inflammation being especially prominent (Richardson and Vasko, 2002; Xanthos and Sandkuhler, 2014). Compelling arguments have been made for viewing the immune and somatosensory nervous systems as composing a unified system that functions in host defense, broadly conceived as integrating perceptual and behavioral responses (pain behavior) with classical responses of the innate and adaptive immune systems (Chiu et al., 2012). By this view, primary nociceptors (which strongly activate pain pathways) are the first responders for host defense, initiating not only rapid perceptual and behavioral responses but also early inflammatory responses (neurogenic inflammation) to tissue injury and infection. This broad sentinel role accounts for the expression in C-fiber nociceptors of numerous pattern recognition receptors (PRRs) for damage-associated molecular patterns (DAMPs or alarmins: intracellular molecules such as high-mobility-group box 1 [HMGB1] and heat shock proteins released by ruptured or necrotic cells) and pathogen-associated molecular patterns (PAMPs, e.g., components of bacterial and yeast cell wall components and viral RNA), as well as receptors for intense mechanical stimulation and for signs of ongoing inflammation (Fig. 1). In C-fiber nociceptors under normal, inflamed, and/or injured conditions these often include TRP channels (especially TRPV1 and TRPA1), cytokine and prostaglandin receptors (e.g., IL-1β, TNFα-R, IL-6–R, EP4), chemokine receptors (e.g., CCR2 for MCP-1/CCL2), PRRs (e.g., toll-like receptors [TLRs] 3, 4, 7, and 9, and nod-like receptors [NLRs] and receptor for advanced glycation endproducts [RAGE]), receptors for other intracellular constituents released during injury (P2X3 and P2Y ATP receptors, AMPA and NMDA glutamate receptors), and receptors for growth factors (e.g., trkA for nerve growth factor [NGF] and trkB for BDNF) (Chiu et al., 2012; Miller et al., 2009; Shibasaki et al., 2010). In addition, primary nociceptors can be sensitized and activated by other effector molecules in the innate immune system important in inflammation, including the complement fragments C5a and C3a, suggesting the presence of complement receptors on these neurons (Jang et al., 2010). Most, if not all, of these diverse receptors are expressed on peripheral and central terminals, where they modulate the gain of nociceptor inputs and outputs, respectively, and also on nociceptor somata in the DRG, where they may detect blood-borne danger signals unimpeded by a significant vascular permeability barrier (Abram et al., 2006; Jimenez-Andrade et al., 2008). Primary nociceptors communicate directly with cells in the innate immune system (including peripheral macrophages, neutrophils, and T cells, and central microglia.
and astrocytes) by releasing glutamate, ATP, neuropeptides such as calcitonin gene-related peptide (CGRP) and substance P (SP), chemokines such as CCL2, CCL21, and CX3CL1 (fractalkine), cytokines such as IL1β, IL-6, and TNFα, and growth factors such as BDNF, neuregulin 1 (NRG1), and basic fibroblast growth factor (bFGF) (Calvo and Bennett, 2012; Chiu et al., 2012; Ji et al., 2013; McMahon and Malcangio, 2009; Miller et al., 2009; Pezet and McMahon, 2006) (Table 1). An integral role of primary nociceptors in innate immunity recently received unexpected affirmation by the discovery that bacteria can directly activate these neurons without mediation by known immune cells (Chiu et al., 2013).

This broader biological view raises the interesting possibility that SCI generates a complex set of signals that are detected by primary nociceptors, which if then sufficiently activated, drive pain as part of a unified host defense response. A complementary view is that persistent central and peripheral signals generated by SCI mimic the pattern that would be generated by a very severe peripheral injury, and this induces a long-lasting hyperfunctional state in numerous primary nociceptors that would normally serve to compensate for the loss of peripheral sensory function and to protect body regions made more vulnerable by locally disabling injury (Walters, 2012). In particular, nociceptors may be sensitive to central as well as peripheral inflammatory signals (integrating these with other signals of severe bodily injury, such as retrograde signals from intensely activated postsynaptic neurons, Walters, 2012), and nociceptor activity may in turn stimulate central as well as peripheral inflammatory responses (see below). An implication of these views is that positive feedback loops between enhanced electrical activity in primary nociceptors and combined activation of peripheral and central inflammatory cells may help to sustain neuroinflammation and chronic neuropathic pain (Miller et al., 2009; Walters, 2012; Xie et al., 2009).

Support for these views first came from evidence that contusive SCI enhances the growth of uninjured nociceptors distant from a spinal lesion site (Bedi et al., 2012; Hou et al., 2009; Krenz and Weaver, 1998; Ondarza et al., 2003; Ramer et al., 2012). SCI was then found to enhance peripheral function in C-fiber nociceptors, with sensitivity to mechanical and heat stimuli being increased in a forepaw skin–nerve lesion site (Bedi et al., 2012; Hou et al., 2009; Miller et al., 2009; Pezet and McMahon, 2006) (Fig. 1). An integral role of primary nociceptors in innate immunity recently received unexpected affirmation by the discovery that bacteria can directly activate these neurons without mediation by known immune cells (Chiu et al., 2013).

This broader biological view raises the interesting possibility that SCI generates a complex set of signals that are detected by primary nociceptors, which if then sufficiently activated, drive pain as part of a unified host defense response. A complementary view is that persistent central and peripheral signals generated by SCI mimic the pattern that would be generated by a very severe peripheral injury, and this induces a long-lasting hyperfunctional state in numerous primary nociceptors that would normally serve to compensate for the loss of peripheral sensory function and to protect body regions made more vulnerable by locally disabling injury (Walters, 2012). In particular, nociceptors may be sensitive to central as well as peripheral inflammatory signals (integrating these with other signals of severe bodily injury, such as retrograde signals from intensely activated postsynaptic neurons, Walters, 2012), and nociceptor activity may in turn stimulate central as well as peripheral inflammatory responses (see below). An implication of these views is that positive feedback loops between enhanced electrical activity in primary nociceptors and combined activation of peripheral and central inflammatory cells may help to sustain neuroinflammation and chronic neuropathic pain (Miller et al., 2009; Walters, 2012; Xie et al., 2009).

Support for these views first came from evidence that contusive SCI enhances the growth of uninjured nociceptors distant from a spinal lesion site (Bedi et al., 2012; Hou et al., 2009; Krenz and Weaver, 1998; Ondarza et al., 2003; Ramer et al., 2012). SCI was then found to enhance peripheral function in C-fiber nociceptors, with sensitivity to mechanical and heat stimuli being increased in a forepaw skin–nerve preparation 5 weeks after T10 contusion (Carlton et al., 2009). Significantly, this study found that spontaneous electrical activity (SA) was generated at a low rate in the peripheral terminals of nociceptors after SCI. Nociceptor SA induced by SCI was also found to be generated in the soma in the DRG in vivo and in vitro (Bedi et al., 2010). Intrinsic SA and hyperexcitability were present in ~50% of small neurons dissociated from DRGs below and at (but not above) the T10 injury level, and the high incidence remained unchanged for at least 5 months after SCI. Importantly, the intrinsic SA was correlated with mechanical and heat hypersensitivity of hindlimb and forelimb withdrawal responses, as well as with increased incidence of a supraspinally mediated response, vocalization, evoked at but not below the injury level (Bedi et al., 2010) – a pattern like that reported by many SCI patients (Finnerup et al., 2014).

Most of the dissociated DRG neurons showing SA after SCI were responsive to the specific activator of TRPV1, capsaicin (Bedi et al., 2010), and TRPV1 expression was increased in lumbar DRGs 4–6 weeks after thoracic contusion (Wu et al., 2013c) (see also DomBourian et al., 2006; Ramer et al., 2012; Zhou et al., 2002). Very low concentrations of capsaicin (10 nM) produced non-desensitizing, non-accommodating repetitive firing in dissociated nociceptors indistinguishable from SCI-induced SA, and this effect and other cellular responses to capsaicin were enhanced by prior SCI (Wu et al., 2013c). Most important, SCI-induced mechanical and heat hypersensitivity of hindlimb withdrawal responses was reversed by antisense knockdown of TRPV1 or by systemic injection of a specific TRPV1 antagonist, AMG9810 (Wu et al., 2013c) (Table 1) (see also Rajpal et al., 2007). While TRPV1 channels have been observed in other cells, they are expressed most abundantly in nociceptors (Caterina et al., 2000; Lauria et al., 2006), supporting the possibility that interruption of nociceptor SA contributed to these suppressive effects. A major role for nociceptor activity after SCI was also indicated by reversal of SCI-induced reflex hypersensitivity by knockdown of a voltage-gated Na+ channel, Nav1.8 (Yang et al., 2012) that is primarily expressed in primary somatosensory neurons, including ~90% of C-fiber nociceptors (Liu and Wood, 2011; Shields et al., 2012). TRPV1 has important functions in host defense, being activated and/or sensitized by many features of inflammation, including acidity, numerous lipids generated during cellular injury or ischemia, and a growing number of other injury–related molecules reported (amines, ATP, NO, reactive oxygen species [ROS], CCL2) (Jung et al., 2008; Miyamoto et al., 2009; Morales-Lazo et al., 2013; Nishio et al., 2013). Thus, after SCI, TRPV1 receptors may detect multiple signs of neuroinflammation both peripherally and in the spinal cord — specifically, in the central processes of nociceptors and/or in TRPV1-expressing spinal neurons (Kim et al., 2012). Interestingly, evidence in mouse models of peripherally induced pain indicates that neuronal TRPV1 function contributes to the activation of both microglia and astroglia (Chen et al., 2009).

The somata of primary nociceptors may be an important locus for detecting inflammatory signals and integrating them with other signals of serious bodily injury (Walters, 2012). Pain-promoting sensitization of DRG neurons is known to occur after experimental inflammation around a ganglion (Wang et al., 2007; Xie et al., 2006), which causes an upregulation of TRPV1 in nociceptors and the generation of numerous cytokines in the DRG (Dong et al., 2012; Strong et al., 2012). After SCI, nociceptor somata are exposed to macrophages and T cells that infiltrate into DRGs close to and distant from a spinal lesion (McKay and McLachlan, 2004). The relatively ineffective vascular permeability barrier of DRGs (Abram et al., 2006; Jimenez-Andrade et al., 2008) and normal exposure of DRG neurons to cerebrospinal fluid (CSF) means that nociceptor somata will be highly exposed to the elevated levels of cytokines that have been observed in the blood (Davies et al., 2007; Stein et al., 2013) and CSF (Kwon et al., 2010) of SCI patients. One of these cytokines, macrophage migration inhibitory factor, MIF, is secreted by the leukocytes and the anterior pituitary gland, and is constitutively expressed in many other cells, including microglia and DRG neurons (Alexander et al., 2012; Bucala, 1996; Wang et al., 2010). MIF is particularly interesting because the circulating concentration of MIF is normally ~1000 fold higher than other pro-inflammatory cytokines (Aloisi et al., 2005; Bucala, 1996; Calandra and Roger, 2003), and this concentration was doubled in SCI patients compared to uninjured controls (Stein et al., 2013). Importantly, the concentration of MIF in SCI patients, ~1 ng/ml, was the same as shown to increase the excitability of a subset of putative nociceptors isolated from mouse DRGs (Alexander et al., 2012). This latter study also showed that MIF-null mice fail to develop pain after nerve injury or hindpaw inflammation, suggesting that MIF function is essential for both neuropathic and inflammatory types of pain, extending previous findings in rats (Wang et al., 2010, 2011). Furthermore, MIF application increased the expression of TNF-α, IL-1β, IL-6, CCL2, and iNOS in mouse and rat microglia, and MIF increased neurite outgrowth in isolated mouse DRG neurons (Alexander et al., 2012). All of these effects have also been observed after SCI (see above). The actions of MIF on microglia suggest that it could contribute to neuroinflammation and pain after SCI by central actions on microglia as well as by peripheral activation of nociceptors, raising the intriguing possibility that MIF has a key role in integrating painful neuroinflammatory responses of a unified host defense system to SCI. SCI also releases stress hormones (Fig. 1), such as glucocorticoids into the circulation, and these can result in immunosuppression, potentially opposing neuroinflammatory responses to SCI (Lucin et al., 2009). Interestingly, glucocorticoids induce MIF (Flaster et al., 2007), suggesting that the coordinated upregulation of MIF may function to preserve or enhance pain sensitivity during stressful conditions, such as SCI, when glucocorticoids suppress many other aspects of immune function.
Inflammatory responses to peripheral injury that occur both in DRGs and in the spinal cord depend upon electrical activity in primary afferent neurons (Hathway et al., 2009; Thacker et al., 2009; Van Steenwinckel et al., 2011; Wen et al., 2007; Xanthos and Sandkuhler, 2014; Xie et al., 2009). An important implication of this observation should be emphasized. If primary nociceptors function as part of the host defense system, then the central neuroinflammatory responses evoked by nociceptor activity may also represent a host defense function, at least under some conditions. Thus, from a broader biological perspective, central neuroinflammation may not always be maladaptive; limited nociceptor-evoked spinal neuroinflammation might, for example, be a mechanism that helps maintain adaptive pain targeted to a severely injured body part (Walters, 2012). Central neuroinflammation driven by nociceptor activity after SCI may be especially important in regions distant from a spinal injury site, where there would be much less damaged tissue generating DAMPs and other injury signals to drive local inflammation. Although it has been suggested that C-fiber nociceptors may be less important than other primary afferents for driving central neuroinflammation after peripheral nerve injury (Suter et al., 2009), this inference was based on sciatic nerve block methods that would not have reduced persistent SA generated in nociceptor somata in the DRG proximal to the block. Taken together, the studies reviewed in this section support the hypothesis that primary sensory neurons, including C-fiber nociceptors, are an integral part of a unified host defense system that can drive both peripheral (Chiu et al., 2012) and central inflammatory responses, and they support the possibility that this system may be activated after SCI to help drive neuropathic SCI pain (Fig. 1). Of course, the host defense system evolved to produce adaptive pain after peripheral injury and inflammation, so it should also be important for driving the second general class of pain endured by SCI patients — nociceptive pain triggered by overuse and by other secondary consequences of SCI for peripheral tissues.

Implications of neuroinflammatory mechanisms for treating neuropathic SCI pain

No front-line treatments currently used for neuropathic SCI pain specifically target neuroinflammatory mechanisms, although some probably do so indirectly. Standard treatments for SCI pain are based on those commonly (and with only limited success) used for peripheral neuropathic pain, notably the anticonvulsants gabapentin and pregabalin, and antidepressants such as amitriptyline, although many other drugs are used, including other serotonin–norepinephrine reuptake inhibitors, opioids, and intrathecal delivery of clonidine and ziconotide (Finnerup and Baastrup, 2012). Only pregabalin has been approved by the FDA for the treatment of neuropathic SCI pain, while other drugs used for this purpose were approved for other uses. Pregabalin (one target of which is the α2-61 voltage-gated Ca2+ channel subunit; see above and Table 1) has shown partial efficacy in two large-scale, randomized, placebo-controlled clinical trials (Cardenas et al., 2013; Siddall et al., 2006). Smaller randomized controlled trials have also indicated partial efficacy for gabapentin (Teasell et al., 2010), which shares mechanisms of action with pregabalin. A randomized controlled trial has shown significant but partial efficacy of amitriptyline in depressed but not non-depressed SCI patients (Rintala et al., 2007). Other commonly used drugs either have exhibited very little or no efficacy in clinical trials (e.g., lamotrigine), present major problems for long-term use (e.g., i.v. ketamine, i.v. lidocaine), or have not yet been tested rigorously in clinical trials for SCI pain (oral opioids, oral ketamine) (Teasell et al., 2010). Importantly, no drugs have demonstrated high efficacy against neuropathic SCI pain, and all have significant adverse side effects (Finnerup and Baastrup, 2012; Teasell et al., 2010).

Given the findings from animal models reviewed above, therapeutic approaches explicitly targeting neuroinflammatory mechanisms would be logical alternatives or complements to existing treatments for neuropathic SCI pain. Early evidence suggests that finding such treatments may be possible but challenging, as indicated by disappointing results in clinical trials for some of the agents that seemed quite promising in preclinical models of neuropathic pain. Treatment of patients with IL-10 (see also Table 1) illustrates general problems that can prevent the therapeutic use of an agent that effectively reduces neuroinflammation in both animal models and humans. On the basis of its powerful anti-inflammatory effects in a variety of animal models (including models of rheumatoid arthritis, diabetes, and inflammatory bowel disease), administration of IL-10 by direct injection, viral delivery, or adoptive transfer of IL-10-secreting cells appeared to offer exciting potential for treating many clinical conditions, including neuropathic pain (Milligan et al., 2012). However, IL-10 delivery by repeated injections in various clinical trials has failed to improve disease symptoms and has revealed serious adverse effects, including a marked reduction in red blood cell counts (Bijjiga and Martino, 2013). Furthermore, trials with gene therapy strategies that could produce more sustained elevations of IL-10 levels have not been attempted because of concern about potential dangers of prolonged immune suppression, including chronic infections and increased likelihood of certain cancers, as well as changes in cytokine balance that can increase allergic responses and asthma (Bijjiga and Martino, 2013). Moreover, a significant potential problem after SCI is that general suppression of inflammation may impair regeneration and repair in the spinal cord (Benowitz and Popovich, 2011). Nevertheless, the strategy of harnessing endogenous anti-inflammatory signals to combat neuropathic SCI pain is appealing. Anti-inflammatory, pro-resolution lipid signals such as resolvins, protectins/neuroprotectins, and lipoxins that have shown efficacy in preclinical models of peripheral neuropathic pain (Ji et al., 2011; Serhan et al., 2008) should offer promising candidates to investigate in the context of neuropathic SCI pain.

Other agents that reduce neuroinflammation and pain in rodent SCI models have either failed to alleviate neuropathic pain in clinical trials or have not yet been tested for effects on neuropathic pain. The nonspecific glial inhibitor, propentofylline, failed to decrease pain in postherpetic neuralgia patients (Lau et al., 2012). An unsettling note for preclinical studies of neuroinflammation is that this clinical failure may have reflected unexpected differences between human and rodent microglial properties, with human microglia being less responsive to a potent inflammomagen, lipopolysaccharide (LPS), and to propentofylline than are rat microglia (Landry et al., 2012). Another nonspecific glial inhibitor, ibudilast, has demonstrated safety but only weak evidence of neuroprotection in a multiple sclerosis trial (Barkhof et al., 2010), and no results on efficacy against pain have been reported. In a small preliminary trial, the nonspecific microglial inhibitor, minocycline, failed to reduce pain caused by capsaicin application in patients with unilateral sciatica, but a trend was noted to improve ongoing pain prior to the capsaicin test (Sumracki et al., 2012). Larger clinical trials are underway to investigate minocycline’s efficacy in treating pain associated with peripheral nerve damage (ClinicalTrials.gov: NCT01869907) and intercostal neuralgia (ClinicalTrials.gov: NCT01214482). Weak clinical results were also reported for a blocker of the chemokine, CCL2; an antagonist, AZD2423, of the CRCR2 receptor showed no efficacy on primary pain variables after post-traumatic neuralgia, although somewhat encouraging trends were noted in subscores for paroxysmal pain and paresthesia/dyesthesias (Kalliomaki et al., 2013). Other plausible approaches to reduce neuroinflammation–associated pain have not yet been tested in clinical trials on neuropathic pain. Licoferone, which inhibits both COX and LOX enzymes in the arachidonic acid cascade, has shown effectiveness in clinical trials on arthritis, albeit with mixed results on pain (Raynauld et al., 2009; Wildi et al., 2010). Arthritic pain and central neuroinflammatory pain may differ in critical underlying mechanisms, so the possibility remains that neuropathic SCI pain will be sensitive to licoferone. A second potentially beneficial effect of licoferone was observed in a rodent SCI model: it reduced p-glycoprotein-mediated
drug resistance (Dulin et al., 2013b), suggesting that dual inhibitors of COX and LOX, such as licofelone, might simultaneously reduce neuroinflammation, ameliorate neuropathic pain, and improve bioavailability of other therapeutic drugs in SCI patients. Another potentially interesting target for therapeutic drug development is MIF, the inhibition of which may have potent effects on neuropathic pain (Alexander and Popovich, 2009), although a role in neuropathic SCI pain has yet to be demonstrated.

A novel but untested approach to treating neuropathic SCI pain may be to target ongoing activity in primary nociceptors. This strategy is suggested by indications that primary nociceptors are an integral part of a host defense system that can contribute to central as well as peripheral inflammation (and consequent pain), and by preclinical evidence that persistent activity in nociceptors drives behavioral hypersensitivity after SCI (Wu et al., 2013c; Yang et al., 2012) (Table 1). These preclinical studies found that interventions that reduced TRPV1 or Nav1.8 function sufficiently to eliminate spontaneous activity in nociceptors, but not to block reflex responses evoked by mechanical or heat stimuli, were effective in reversing behavioral hypersensitivity. This suggests that central sensitization and neuropathic SCI pain might be attenuated selectively by using more prolonged treatment with lower doses of TRPV1 antagonists (which, unlike Nav1.8 antagonists, have been tested successfully in humans) than tried thus far in clinical trials (Chizh et al., 2007; Krarup et al., 2011, 2013; Rowbotham et al., 2011; Schaffer et al., 2013). A new generation of potent and selective TRPV1 antagonists is becoming available (e.g., Reilly et al., 2012) that lack the hyperthermic side effects of previous antagonists (Gavva et al., 2008). If interventions that block ongoing activity of nociceptors and reduce reflex hypersensitivity are also found to block operant indications of chronic, ongoing pain in rodent models, this would provide a strong impetus for testing whether similar drugs reduce ongoing pain in SCI patients.

Conclusions

While multiple mechanisms contribute to neuropathic pain after SCI, numerous experimental observations indicate that persistent neuroinflammation is critical for the development and maintenance of this pain. Most of these observations are recent; only within the last decade has it become clear that neuroinflammation after SCI is chronic (perhaps permanent) and that interventions that target persistent neuroinflammation ameliorate behavioral hypersensitivity in animal models of neuropathic SCI pain. A limitation in nearly all of the animal studies is a reliance on spinally-mediated reflex hypersensitivity and behavioral measures of pain, usually the enhancement of hindlimb withdrawal responses, which bear an uncertain relationship to the cortically-mediated states having emotional and cognitive components that are central to the human pain experience. Nevertheless, neuroinflammation and behavioral hypersensitivity after SCI have been linked to altered activity in several components of classical pain pathways that would be expected to promote pain, including primary afferent neurons, dorsal horn neurons, and thalamic neurons. Studies have shown correlations between SCI-induced reflex hypersensitivity and several measures of activation and proliferation by microglia (plus infiltrating macrophages) and astrocytes, along with parallel reversals of behavioral and glial alterations by interventions designed to reduce neuroinflammation. The interventions that have appeared successful in reducing SCI pain include treatments with agents that inhibit the activation of microglia and/or astroglia (IL-10, minocycline, etanercept, propofol, ibudilast, licofelone, SP600125, carboxenolone), pharmacological (CR8) and/or genetic disruption of cell cycle-related proteins or a truncated receptor (trkB.T1) for BDNF, and reduction in the activity of channels (TRPV1 and Nav1.8) important for electrical activity in primary nociceptors by anti-sense knockdown or pharmacological inhibition (AMG9810). Evidence that chronic activity in primary nociceptors contributes to neuropathic SCI pain, evidence that nociceptor activity drives central neuroinflammation in peripheral injury models, and increasing support for the idea that nociceptors function within a unified host defense system all suggest that spinal and systemic effects of SCI can activate nociceptor-mediated host defense responses that interact with complex central consequences of SCI to drive chronic pain. This broader view of SCI-induced neuroinflammation may aid in the identification of new targets for treating SCI pain.

Acknowledgments

ETW acknowledges the support from the Department of Defense USAMRAA, Craig Neilsen Foundation, Mission Connect/TIRR, and National Science Foundation during the preparation of this article.

References

