Adventures in Reliability: Heavily Censored Data

Todd G. Remund

AIR FORCE TEST CENTER
EDWARDS AFB, CA

May 12-14, 2015

Approved for public release; distribution is unlimited.
412TW-PA-15213

AIR FORCE TEST CENTER
EDWARDS AIR FORCE BASE, CALIFORNIA
AIR FORCE MATERIEL COMMAND
UNITED STATES AIR FORCE
Adventures in Reliability: Heavily Censored Data

14. ABSTRACT

At times reliability data are recorded as exact failure times on systems. This is a trivial case that is handled usually by simple textbook analysis approaches. Many times, especially in the T&E community, all that is known regarding failures is that a certain number of events have been observed during a flight. These type of data are called ‘interval data’ and do not equate with exact failure times. Trivial analysis approaches can severely bias MTBF estimates and ‘paint a pretty picture’. In this presentation statistical techniques for handling this data are discussed.

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unclassified</td>
<td>Unclassified</td>
<td>Unclassified</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT

None

18. NUMBER OF PAGES

10

19. NAME OF RESPONSIBLE PERSON

412 TENG/EN (Tech Pubs)

19b. TELEPHONE NUMBER

661-277-8615

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18
Adventures in Reliability: Heavily Censored Data

May 12-14, 2014

Todd G. Remund
812 TSS
661-277-6384

Approved for public release; distribution is unlimited.
412TW-PA No.:15213
Flight Test Failure Data

- Best case is to observe right, left or interval censored data
 - Fails during a flight...that’s all we know.

- Right:
 \[T = 0 \]

- Left:
 \[T = 0 \]

- Interval:
 \[T = 0 \]

- Interval data happens when multiple flights occur before a failure is observed.

- We will ignore intervals this time...maybe next time.
Rehash of Rocket Motor Data
Catastrophic Missle Failures During Launch

- 20,000 missiles in inventory.
- 1,940 field firings of the missile.
- From June 1997 to March 1998 there were 3 catastrophic failures of the motor.
- Estimated service life = 20 years.
- Saw catastrophic failures at:
 - $T = 8.5, 14.2,$ and 16.5 years.

Possible Failure Causes
How do we analyze this?...

- Believed Failure Mechanism (acc. to NSWC-IH):
 - Thermal cycling—caused propellant-to-case bondline AND/OR propellant-to-propellant bondline to fail.
 - Causes the surface area to increase and explosive ignition of propellant.

Motor Crosssection
...With one of many models.
Choose your Adventure

- Probability Models:
 - Exponential
 - Lognormal
 - Weibull
 - Logistic
 - Log Logistic
 - Rayleigh
 - Frechet
 - Normal
 - SEV
 - LEV
 - ...

- All have descriptions of why they are useful.
- Censoring ⇒ Model Fitting Difficulty
 - Use likelihood methods...
- Which one should we use?
- Does it matter?
Fitted Life Models \{Best is MIN(AIC)\}

\[AIC_c = 36.488 \]

Censor Type
- Left
- Right

Distribution Model
- Log Normal
- Weibull
- Log-Logistic
- Gamma

\[AIC_c = 35.514 \]

\[AIC_c = 35.488 \]

\[AIC_c = 36.203 \]
Which model would you choose?
Based on Reliability Estimation and CI’s

Pr(Survival > 20 Years)

Likelihood Ratios
W:LLG = 1.04
W:G = 1.41
W:LN = 1.63
Summary

- Stake holders on both sides of the fence may choose different models based on interests.
 - Uncertainty in decisions, or indecision.
 - Implies model selection uncertainty.
 - Somebody has to choose…unbiasedly.
 - What tool or method will they use?
- Who can justify their choice?
- MORE QUANTITATIVE RIGOR
 - More to come on this in the future…