Smart Data Selection (SDS) Brief

October 2014

Tom Young
SET Executing Agent
412 TENG/ENI
(661) 277-1071
Email: tommy.young.1@us.af.mil

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.
1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE
Smart Data Selection (Brief)

5a. CONTRACT NUMBER: W900KK-13-C-0028
5b. GRANT NUMBER: N/A
5c. PROGRAM ELEMENT NUMBER
5d. PROJECT NUMBER
5e. TASK NUMBER
5f. WORK UNIT NUMBER

6. AUTHOR(S)
Shannon Wigent & Dr. Andrea Mazzario

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Laulima Systems LLC
1163 Lani Nuu St, Kalaheo, HI 96741-0000

8. PERFORMING ORGANIZATION REPORT NUMBER
412 TW-PA-14507

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Test Resource Management Center
Test and Evaluation/ Science and Technology
4800 Mark Center Drive, Suite 07J22, Alexandria, VA 22350

10. SPONSOR/MONITOR’S ACRONYM(S) N/A
11. SPONSOR/MONITOR’S REPORT NUMBER(S) SET 2015-0032

12. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release A: distribution is unlimited.

13. SUPPLEMENTARY NOTES
CA: Air Force Flight Test Center Edwards AFB CA CC: 012100

14. ABSTRACT
“The dominant inherent nature to TM in DoD testing is sampled time-history data from an ultimately analog world, (which) is not going to change drastically regardless of how data is transmitted to ground. A factor that could change that fact most is the degree to which answers instead of data are obtained on board the test vehicle”

iNET Concept of Operations, v. 2007.1

SDS seeks to change this inherent nature of telemetry in DoD testing by:
Developing an on-board capability to monitor and analyze test data in order to reduce the amount of data sent to the ground
Employing bandwidth efficient algorithms to reduce bandwidth requirements
Developing the capability to notify operators when data demonstrate abnormal behavior

15. SUBJECT TERMS
Spectrum, Aeronautical telemetry, algorithm, bandwidth, Integrated Networked Enhanced Telemetry (iNET), Smart Data Selection (SDS), Pulse Code modulation (PCM)

16. SECURITY CLASSIFICATION OF:
Unclassified
a. REPORT b. ABSTRACT c. THIS PAGE
Unclassified Unclassified Unclassified

17. LIMITATION OF ABSTRACT
None

18. NUMBER OF PAGES 22

19a. NAME OF RESPONSIBLE PERSON 412 TENG/EN (Tech Pub)

19b. TELEPHONE NUMBER (include area code) 661-277-8615
Session 5 Processing 1
Session Chair: Steven Meyer

Smart Data Selection (SDS)
Shannon Wigent & Dr. Andrea Mazzario

International Telemetering Conference
21 October 2014

Approved for public release; distribution is unlimited
412 TW-PA-412 TW-PA-14507
Acknowledgements

This project is funded by the Test Resource Management Center (TRMC) Test and Evaluation/Science & Technology (T&E/S&T) Program through the U.S. Army Program Executive Office of Simulation, Training and Instrumentation (PEO STRI) under Contract No. W900KK-13-C-0028.

The Executing Agent and Program Manager work out of the AFTC.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Test Resource Management Center (TRMC) and Evaluation/Science & Technology (T&E/S&T) Program and/or the U.S. Army PEO STRI.
Outline

• Project Description
• SDS ConOps
• System Description
• Bandwidth Efficient Algorithm
• PCM Compression Enhancement
• Benefits to T&E
“The dominant inherent nature to TM in DoD testing is sampled time-history data from an ultimately analog world, (which) is not going to change drastically regardless of how data is transmitted to ground. A factor that could change that fact most is the degree to which answers instead of data are obtained on board the test vehicle.”

iNET Concept of Operations, v. 2007.1

• SDS seeks to change this inherent nature of telemetry in DoD testing by:
 – Developing an on-board capability to monitor and analyze test data in order to reduce the amount of data sent to the ground
 – Employing bandwidth efficient algorithms to reduce bandwidth requirements
 – Developing the capability to notify operators when data demonstrate abnormal behavior

Results in Significant Savings in Spectrum and Increased Operator Awareness
SDS ConOps

The SDS system:

• Analyzes pre-recorded data to identify behavioral trends
• Applies user-defined behavioral criteria
• Subscribes to all on-board parameters
• Determines what live data is of interest for real-time observation and analysis
• Applies bandwidth efficient algorithms to select measurements
• Generates specific messages to be sent to ground
• Provides alerts for data that demonstrate abnormal behavior
• Supports user feedback in response to alerts
System Description

Test Article

- DAUs
- SDS_TA

Ground

- Data Sinks
- SDS_Ground
- SDS_UI

Alerts Display
- SDS Console

Off-Line
- SDS Analysis
Bandwidth Efficient Algorithms

• SDS applies extrapolation algorithms to “Normal” data
 – Allows for TA transmission of extrapolation parameters rather than individual measurement values
 – Ground calculates and publishes with required frequency
• TA monitors error between extrapolation values and actual measurements
• If error threshold exceeded, new parameters are calculated and applied
Bandwidth Savings

• Representative test results:
 – ~45,000 measurements at 98.04 Hz

• Very small error threshold:
 – Error <= 0.01%
 – SDS requires less than 7% of original bandwidth

• Small error threshold:
 – Error <= 0.02%
 – SDS requires less than 3% of original bandwidth
Bandwidth Efficient Algorithms

• Exponential Smoothing
 – Single Exponential Smoothing
 • sv[i] = a*m[i] + (1-a)*sv[i-1]
 • Extrapolation: ev[i+n] = sv[i]
 – Double Exponential Smoothing
 • sv[i] = a*m[i] + (1-a)*(sv[i-1] + t[i-1])
 • t[i] = b * (sv[i] - sv[i-1]) + (1 - b)*t[i-1]
 • Extrapolation: ev[i+n] = sv[i] + n*t[i]
Thermocouple Example

~45000 measurements @ 98.04 Hz
Bandwidth Savings

- 44091 Measurements
- Measurement Size = 2 bytes
- Error threshold of 0.01%
- 1001 EBE Resets
 - Transmission Cost ≈ 3 Measurements
- Extrapolated Data = 1001 x 2 x 3 = 6006 bytes
- Raw Measurements = 44091 x 2 = 88192 bytes
- SDS uses less than 7% of bandwidth required to send raw data
Enlarged View
Introduction of PCM Compression

- Utilize existing SDS framework to apply compression to PCM
- Provide PCM compression within TmNS messages
- Apply lossless data compression algorithms in conjunction with error correction for significant bandwidth savings
Benefits of Compression

- Potential to yield a 70% increase in bandwidth utilization
 - Provides availability to great volume of test data
 - Provides ability to support increased number of test articles concurrently

- Utilization of telemetry data characteristics improves upon compression rates resulting application of standard lossless compression
Introduction of PCM Compression

On-Board Test Article

PCM Telemetry Stream with Minor Frames

PCM Telemetry Stream – SDS-PCM Frames inserted into Minor Frames for Transmission

SDS

Extract Minor Frames

Package as compressed SDS-PCM Frames

Ground-Based

PCM Telemetry Stream with Minor Frames

PCM Telemetry Stream – Minor Frames

SDS

Extract SDS-PCM Frames

Recreate Minor Frames
PCM Enhancement

• SDS current implementation is based on TmNS message format
 – Test Article and Ground modules to be updated to process PCM minor frames embedded in TmNS messages

• New capability added to process PCM in traditional PCM environment
PCM Demo
Benefits to T&E

• Bandwidth Savings/Increased Spectrum Efficiency
 – For measurements that demonstrate a normal behavior, transmit to the ground only a representation rather than the entire data set

• Simplified Pre-Test Configuration of Test Article Commutator
 – Analysis of pre-recorded test data allows for determination of expected behaviors
 – Allows for automatic configuration of transmission rates

• Enhanced Operator Awareness of Test Conditions
 – Automatic operator notification when data values outside of normal range
 – Allows operators to focus on situations requiring immediate attention
QUESTIONS?