AWARD NUMBER: W81XWH-14-1-0223

TITLE: Genetic and Epigenetic Determinants of Lung Cancer
Subtype: Adenocarcinoma to Small Cell Conversion

PRINCIPAL INVESTIGATOR: Charles M. Rudin, MD PhD

CONTRACTING ORGANIZATION: Sloan Kettering Institute for Cancer Research
New York, NY 10065

REPORT DATE: August 2015

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and
should not be construed as an official Department of the Army position, policy or decision
unless so designated by other documentation.
We hypothesize that detailed analysis of paired samples derived from EGFR-mutant adenocarcinoma and small cell lung cancer (SCLC) from the same patient will provide substantial insight into the determinants of subtype specificity. Preliminary data on one such case demonstrates a methylation profile in the recurrent SCLC that is indistinguishable from that of de novo SCLC, suggesting that a primary determinant of this histologic shift may be epigenetic. Our primary objectives are to use comprehensive genomic and epigenomic profiling of these closely related tumor pairs (1) to define key factors determining histologic subtype, and (2) to define biological pathways contributing to this mechanism of acquired resistance. With these objectives in mind, the specific aims of this grant are to comprehensively define the genomic sequence alterations (Aim 1) and epigenomic DNA methylation changes (Aim 2) in paired samples from individual patients with EGFR-mutant adenocarcinoma and recurrent EGFR tyrosine kinase inhibitor-resistant SCLC.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>4</td>
</tr>
<tr>
<td>2. Keywords</td>
<td>4</td>
</tr>
<tr>
<td>3. Accomplishments</td>
<td>4</td>
</tr>
<tr>
<td>4. Impact</td>
<td>6</td>
</tr>
<tr>
<td>5. Changes/Problems</td>
<td>7</td>
</tr>
<tr>
<td>6. Products</td>
<td>7</td>
</tr>
<tr>
<td>7. Participants & Other Collaborating Organizations</td>
<td>7</td>
</tr>
<tr>
<td>8. Special Reporting Requirements</td>
<td>13</td>
</tr>
<tr>
<td>9. Appendices</td>
<td>14</td>
</tr>
</tbody>
</table>
1. Introduction

Analysis of genes and pathways that distinguish different histologies of lung cancer is made difficult in part because of the extensive genetic and epigenetic changes that occur in lung carcinogenesis, the large majority of which are passenger, rather than driver, alterations. One way to get around this limitation is by examining genetically linked pairs of tumors from the same individual that have undergone histologic shift from one histologic lineage to another: because these tumors are clonally related, detailed interrogation of even a very small number of such paired tumors may provide substantial insight into key alterations driving histologic lineage determination. One such set of tumors that is ideal for such analysis is the subset of EGFR-mutant adenocarcinomas that recur as tyrosine kinase inhibitor resistant tumors with small cell lung cancer (SCLC) histology, but which retain the EGFR mutational status of the “parental” adenocarcinoma. These clonally related tumors of distinct histology may be particularly informative (a) because their clonal relationship allows for filtering out of irrelevant passenger alterations in the genome and epigenome, and (b) because EGFR-mutant adenocarcinomas have a lower prevalence of background genomic alterations than most lung cancers associated with heavy tobacco use. In this grant, our primary objectives are to use comprehensive genomic and epigenomic profiling of these closely related tumor pairs (1) to define key factors determining histologic subtype, and (2) to define biological pathways contributing to this mechanism of acquired resistance.

2. Keywords

Lung adenocarcinoma
Small cell lung cancer
Epidermal growth factor receptor (EGFR)
Histologic shift
Genomic
Epigenomic

3. Accomplishments

Major goals of the project

Within the context of EGFR-mutant lung adenocarcinoma undergoing histologic shift to SCLC, to objectives of this proposal were to use tumor pairs to define key factors determining histologic subtype, and to define biological pathways contributing to this mechanism of acquired resistance. There were three major categories within our Statement of Work:
(A) analysis of existing identified cases (months 1 – 18)
(B) identification and analysis of new cases (months 1 – 18); and
(C) data integration, interpretation, and publication (months 18 – 24).

As described below, we are making progress in all three categories, and in fact have already published a first report.

Accomplishments relative to these goals

(A) Analysis of existing identified cases (months 1 – 18)
We have obtained full IRB approval for this study at both the primary sites, Memorial Sloan Kettering Cancer Center (MSKCC) and Dana Farber Cancer Institute (DFCI).

We were fortunate in the first year of this grant to be asked to contribute our expertise in methylation profiling and integrated genomic and epigenetic analysis to a set of EGFR-
mutant adenocarcinoma cases that recurred with SCLC histology at Massachusetts General Hospital (MGH). These were precisely the cases we were interested in studying in the context of this grant. While the MGH investigators had performed limited genomic sequencing, methylation profiling had not been performed. Among the conclusions from this study was that RB expression at the protein level is invariably lost in histologic transformation to SCLC (10 of 10 cases), while EGFR-mutant lung cancers that become resistant to EGFR TKI therapy without histologic transformation generally retain RB expression (8 of 9 cases; p < 0.0001 by Fisher’s exact test). We performed genomic DNA methylation analysis of three SCLC transformed cancer samples from a single EGFR mutant case, comparing the resulting methylation profiles to published data from 21 lung adenocarcinomas in The Lung Cancer Genome Atlas (TCGA) and 33 de novo SCLC from our own recently published dataset (Poirier et al., Oncogene, in press). We performed both principal component analysis and unsupervised hierarchical clustering. These data demonstrated that these transformed SCLC retained an epigenetic signature similar to adenocarcinoma: although appearing histologically indistinguishable from de novo SCLC, these tumors clearly retain marks related to their original histology. We published this work earlier this year in Nature Communications, crediting this grant (Neiderst et al., Nat Commun, 2015; see full reference below).

DNA methylation analysis of SCLC transformed cancers. A. Principal component analysis of primary lung adenocarcinoma from TCGA (N=21) and primary SCLC samples (N=33) and three samples from a patient representing both TKI-sensitive adenocarcinoma and –resistant SCLC tumors. B. Unsupervised clustering of individual CpG sites based on differential methylation between primary adenocarcinoma and SCLC samples, including the same three samples, all of which cluster with adenocarcinoma.

While this study pointed to a key factor in SCLC transformation, i.e. loss of RB expression, the mechanism(s) responsible for loss of expression remain undefined.
Very few cases were available for full exome sequencing, and only one had tumors with sufficient material for comprehensive methylome analysis. We have identified three cases from DFCI and four cases from MSKCC for which we have pre-treatment EGFR-mutant lung adenocarcinoma and post-treatment SCLC, and an additional case at MSKCC for which we have pre-treatment EGFR-mutant lung adenocarcinoma and post-treatment mixed adenocarcinoma and SCLC, from which we believe we can micro-dissect out the SCLC component. We have an additional two cases provided from our collaborator at Yale. Thus we now have the anticipated number of 10 cases for analysis (based on our Statement of Work, we anticipated having 10 cases by 18 months). We intentionally delayed processing and library construction from these until we had assembled this number of cases, in order to batch the analyses. We are now positioned to proceed with DNA extraction for exome sequencing, and bisulfite conversion for methylome analysis on this cohort of cases.

(B) Identification and analysis of new cases (months 1–18)

We have continued identification of new cases, through the participating centers on this grant. We have also recently identified another two cases, which are currently in process, which appear to meet our defined criteria. These new cases will be fed into the same analysis pipeline as tumor pairs described above, in year 2 of this award.

(C) Data integration, interpretation, and publication (months 18–24)

We had not anticipated having the opportunity for data integration, interpretation, and publication in year 1 of this grant. However, the availability of the MGH tumor set provided this opportunity, as described above, resulting in an initial year 1 publication. Our full data set should be analyzed at both the genome and methylome level in year 2, and we anticipate a second major publication based on these data next year.

Training and professional development

Nothing to report.

Dissemination of results

As noted above, we have published an initial manuscript describing genetic and epigenetic alterations in EGFR-mutant lung adenocarcinoma with transformation to SCLC in year 1 of this grant.

Plans in the next reporting period

In year 2 of this grant award, we will focus in the first 6 months on detailed genomic and epigenetic profiling of the tumor pairs that we have assembled, through the Center for Molecular Oncology at MKSCC. The second six months will be focused on data analysis, integration, interpretation, and publication, as originally planned in our Statement of Work.

4. Impact

Impact on the principal discipline

Our findings reported in the recent Nature Communications publication provide substantial new insight into the mechanisms by which transformation from lung adenocarcinoma to SCLC occurs. In particular, this work suggests that loss of functional RB, a critical factor almost universally lost in de novo SCLC, is also a critical factor in this histologic shift. We also
demonstrated that the transformed SCLC retains an epigenetic signature of its origin as an adenocarcinoma.

Impact on other disciplines
Other tumor types undergo a similar histologic shift. Notably, with better therapy for metastatic prostate adenocarcinoma, our colleagues in GU Oncology have observed an increasing number of cases of transformation of adenocarcinoma to small cell carcinoma of the prostate. Small cell carcinoma of the prostate, like SCLC, is a highly aggressive and lethal malignancy. We are in discussions with colleagues in our GU Oncology group regarding conduct of a pilot study to compare changes seen in the context of work funded in this grant in lung cancer, with changes seen in the parallel adenocarcinoma to small cell transformation that occurs in hormone-resistant prostate cancer. If similar mechanisms are operant, this would further broaden the impact of this work.

Impact on technology transfer
Nothing to report.

Impact on society beyond science and technology
Nothing to report.

5. Changes/Problems
Nothing to report.

6. Products

7. Participants & Other Collaborating Organizations
Individuals working on the project
MSKCC

Charles Rudin MD PhD
Project role: Principal Investigator
Researcher identifier (eRA username): crudin
Person month worked: 1.2
Contribution: Dr. Rudin has supervised the overall conduct of the study.
Funding support: (NEW)
GC223757 (PI: Poirier) 8/1/2014 - 7/31/2017 0.24 calendar
LUNGevity Foundation, Inc. $ 260,869

Molecular mechanisms of acquired drug resistance is small cell lung cancer
In this award application, we propose two parallel approaches to analyzing acquired resistance in SCLC: studying resistance in patient samples, and studying resistance in patient tumors grown in mice.
(NEW)
I8-A8-012 (PI: Chan) 1/1/2015 - 12/31/2016 0.36 calendar
Starr Cancer Consortium $ 166,000
Identification of tumor cell and microenvironmental determinants of response to immune checkpoint blockade in lung cancer
Our goals are to utilize cutting-edge technology to describe the state of the tumor and local immune environment and correlate this information with response to specific immunotherapies.

(NEW)
2014-04 (PI: Gumus) 8/1/2014 - 7/31/2016 0.24 calendar
LUNGevity Foundation, Inc. $ 34,702
Identifying Germline Risk Mutations for Early-onset and Familial NSCLC
The Offit lab will work closely with Dr. Rudin, Lipkin and Gumus to recruit additional cases and controls to the NYC-MENSCH study

(NEW)
GC223967 (PI: Rudin) 9/24/2014 - 9/23/2017 0.60 calendar
Van Andel Institute $ 148,148
Van Andel Research Institute - Stand Up to Cancer Epigenetics Dream Team
The Epigenetics Dream Team is a scientific consortium consisting of Van Andel Research Institute, The University of Southern California, The University of Copenhagen, Fox Chase Cancer Center, Johns Hopkins University, and Memorial Sloan Kettering.

(NEW)
5U10CA180950-02 (PI: Ramalingam) 6/19/2014 - 2/28/2019 0.12 calendar
NCI $ 1,627
ECOG-ACRIN Thoracic Malignancies Integrated Translational Science Center
Dr. Rudin will work with Dr. Ramalingam to oversee all aspects of the proposed work, including preclinical laboratory studies, patient enrollment, treatment, performance of correlative analyses, data analysis and publication.

John Poirier PhD
- **Project role:** Co-investigator
- **Researcher identifier (eRA username):** jpoirie2
- **Person month worked:** 1.8
- **Contribution:** Dr. Poirier led the methylation profiling in the publication above, and is directly involved in all aspects of sample processing, data acquisition, and analysis.
- **Funding support:**

(NEW)
GC222561 (PI: Poirier) 3/1/2014 - 2/29/2016 1.80 calendar
Free to Breathe $ 100,000
Mechanisms of resistance to targeted Bcl-2 family inhibitors in small cell lung cancer.
The goal and specific aims of this project are to study mechanisms of resistance to Bcl-2 family protein inhibition in small cell lung cancer with a focus on Bax protein expression.
Molecular mechanisms of acquired drug resistance is small cell lung cancer

In this award application, we propose two parallel approaches to analyzing acquired resistance in SCLC: studying resistance in patient samples, and studying resistance in patient tumors grown in mice.

Maria Arcila MD
Project role: Co-investigator
Researcher identifier (eRA username): -
Person month worked: 0.36
Contribution: Dr. Arcila is a molecular pathologist engaged in identifying cases and initial characterization of EGFR mutational status.
Funding support: No changes.

Natasha Rekhtman MD PhD
Project role: Co-investigator
Researcher identifier (eRA username): -
Person month worked: 0.36
Contribution: Dr. Rekhtman is a thoracic pathologist responsible for histologic confirmation of all tumor biopsies, and for assisting with microdissection.
Funding support: No changes.

Michael Berger PhD
Project role: Co-investigator
Researcher identifier (eRA username): bergerm1
Person month worked: 0.36
Contribution: Dr. Berger is an expert in next generation sequencing and genomic data interpretation and is overseeing sequence data acquisition and bioinformatic analysis.
Funding support:

GC220801 (Pl: Berger)
Melanoma Research Alliance Foundation
1.80 calendar
$225,000
Delineating the heterogeneity of response to BRAF inhibition in melanoma

I6-A616 (Pl: Levine)
Starr Cancer Consortium
0.60 calendar
$124,889
Therapeutic Targeting of IDH1 and IDH2 Mutations in Acute Myeloid Leukemia (AML) and Chondrosarcoma

We propose an integrative approach, using our complementary expertise in genomics, signaling, cancer biology, developmental therapeutics and clinical oncology, to define the mechanisms by which IDH1 and IDH2 mutations transform tumor cells and to inform the development of targeted drugs for IDH-mutant malignancies.

5 K08 CA175150-02 (Pl: Vakiani)
NCI
2.00 calendar
$165,500
Biological characterization of matched primary colorectal carcinomas & metastases

This proposal seeks to determine the extent of genetic and epigenetic intratumoral heterogeneity in primary colorectal carcinomas and matched metastases and to identify genetic alterations that drive disease progression in colorectal cancer patients.

5 R01 CA182587-02 (Pl: Solit)
1.80 calendar
$260,869
LUNGevity Foundation, Inc.
Defining the temporal sequence of PI3K pathway mutations in bladder cancer
The goals of this project are to define in patients with muscle invasive and metastatic bladder cancer the prevalence of PI3 kinase alterations, the pattern of co-mutational events, their prognostic significance and their temporal sequence in bladder cancer initiation and progression.

The EGFR phosphatase PTPRS as a modulator of cetuximab resistance in HNSCC
Our long term goal is to develop predictive molecular biomarkers to triage head and neck squamous cell carcinoma (HNSCC) patients to optimal treatment, whether cytotoxic, molecular targeted, or surgical therapy.

ERCC2 somatic mutations as biomarkers of platinum chemotherapy sensitivity in urothelial carcinoma and other platinum-treated tumors
We propose to test the hypothesis that newly recognized ERCC2 somatic mutations identified by Broad Institute and MSKCC investigators are critical determinants of platinum sensitivity in urothelial carcinomas (UC) and other malignancies.

Genome sequencing of outlier responders to systemic cancer therapies
Aim 1: Whole exome and mRNA-Seq will be performed on patients who achieved durable (>1year) and major (>70% tumor regression) responses to systemic anticancer therapy for which biomarkers of response or resistance have yet to be elucidated Aim 2: Biologically validate select novel mutations identified in the whole genome studies performed in Aim 1

SPORE in Thyroid Cancer (Project 1:Genomic predictors of papillary microcarcinoma disease progression)
Approximately 56,000 new patients are diagnosed with thyroid cancer in the US each year. Mortality is comparatively low but is slowly rising, and the disease continues to be a major public health challenge.

SPORE in Thyroid Cancer (Core A: Biospecimen Repository Core)
Approximately 56,000 new patients are diagnosed with thyroid cancer in the US each year. Mortality is comparatively low but is slowly rising, and the disease continues to be a major public health challenge.

Targets for Therapy for Carcinomas of the Lung (Core A: Molecular Profiling and Pathology)
To genotype approximately 100 lung adenocarcinomas diagnosed in women with a history of radiation treatment for breast cancer for all known point mutations and indels in driver oncogenes and for ALK, RET and ROS fusions.
Ronglai Shen PhD

Project role: Co-investigator
Researcher identifier (eRA username): shenrmskcc
Person month worked: 0.48
Contribution: Dr. Shen is a biostatistician providing statistical assistance with data analysis, synthesis, and interpretation.

Funding support:

5 U24 CA143840-05 (PI: Sander) 9/28/2009 - 7/31/2015 3.60 calendar
NCI $1,524,049
MSKCC Center for Translational Cancer Genomic Analysis
Correlate HR pathway genomic findings with protein expression for TCGA qualifying cases.

(NEW)
1 R21 CA195365-01 (PI: Shen) 6/10/2015 - 5/31/2017 2.40 calendar
NCI $130,500
Defining a novel subtype of luminal-TP53 mutant breast cancer with poor prognosis
This proposal will characterize a novel luminal-TP53 subtype that is genetically similar to triple-negative breast cancer, shows critical pathway activity associated with endocrine therapy resistance, and displays poor prognosis.

GC224588 (PI: Grisham) 9/1/2013 - 8/31/2016 0.60 calendar
Cycle for Survival $80,000
Determining the Molecular Drivers of Gynecologic Carcinosarcoma
Specific Aims: 1) To determine if uterine and ovarian carcinosarcoma share a common molecular profile utilizing Integrated Mutation Profiling of Actionable Cancer Targets (IMPACT) exon capture sequencing assay 2) To compare the molecular profile of ovarian carcinosarcoma to that of high grade serous ovarian cancer, utilizing The Cancer Genome Atlas

GC225161 (PI: Grisham) 5/1/2015 - 4/30/2016 0.60 calendar
Kaleidoscope of Hope Foundation
Deciphering the Biologic Predictors of Response to Targeted Therapy in Low Grade Serous Ovarian Cancer

5 P01 CA129243-08 (PI: Kris) 9/12/2012 - 8/31/2017 0.95 calendar
NCI $89,289
Targets for Therapy for Carcinomas of the Lung (Core B: Biostatistics and Bioinformatics)
To genotype approximately 100 lung adenocarcinomas diagnosed in women with a history of radiation treatment for breast cancer for all known point mutations and indels in driver oncogenes and for ALK, RET and ROS fusions.

5 P30 CA008748-49 (PI: Thompson) 1/1/2014 - 12/31/2018 0.60 calendar
NCI $531,344
Cancer Center Support Grant (Biostatistics)
The CCSG funds support MSKCC’s research infrastructure. These shared resources facilitate the research activities of the clinical, translational and laboratory programs at the Cancer Center.

GC202879 (PI: Huse) 7/1/2012 - 6/30/2016 NCE 1.20 calendar
Doris Duke Charitable Foundation Award $150,000
Doris Duke Clinical Scientist Development Award 2012

The primary objective of this proposal is to definitively assess the effectiveness of TCGA-derived biomarker signatures in the management of malignant glioma. As such, we hypothesize that these signatures, initially developed in highly refined datasets, will generalize to the clinical setting by way of assays optimized in routine clinical samples.

DFCI
Pasi Jänne MD PhD
Project role: Co-principal Investigator
Researcher identifier (eRA username): pjanne01
Person month worked: 0.36
Contribution: Dr. Jänne is responsible for sample acquisition and study supervision at Dana Farber Cancer Institute.

Funding support:

New awards since the last report on this award are marked with an asterisk.

Previous awards that have ended since the last report on this award:
- NIH/NCI R01CA137008 (Johnson, B) “Activation of ERBB3 Signaling/ Resistance to Targeted Therapies”
- AACR/SU2C (Haber) “Dream Team: Bioengineering and Clinical Applications of Circulating Tumor Cell Chip”
- NIH/NCI P50 CA090578 (Johnson, B) DF/HCC SPORE in Lung Cancer - Project 5

Active:
* (Jänne, P)
0.30 Calendar Months
Astellas Pharma Inc.
$127,605
(2.5% Effort)

Inhibitors of KRAS

Agency Contact: Kenji Yasukawa, Ph.D.
Specific Aim 1: Structure-guided medicinal chemistry; Specific Aim 2: Co-crystal x-ray structure of K-Ras G12C with SML-8-73-1 and further improved compounds; Specific Aim 3: To evaluate compounds generated in aim 1 in functional and mechanistic assays that report on K–Ras inhibition; Specific Aim 4 – Evaluate pharmacokinetics and pharmacodynamics and select optimal compounds for testing in genetically engineered G12C and G12D K-Ras murine lung tumor models

R01 CA172592 (Janne)
09/01/13 – 06/30/18
1.20 Calendar Months
NIH/NCI
$320,001
(10% Effort)

Agency Contact: Suresh Arya, Program Official
Email: forryscs@mail.nih.gov; Phone: 240-276-5906

Targeting RET in Lung Cancer

In this proposal we plan to develop more potent and selective RET inhibitors that will likely have therapeutic implications for the treatment of patients with both thyroid and NSCLC harboring genomic alterations in RET. We plan to achieve these goals through the following specific aims. Aim 1: To establish the oncogenic properties of RET; Aim 2: To develop novel inhibitors of RET that possess the potency, selectivity, and pharmacological properties that will enable their use in cellular and in vivo models; Aim 3: To develop and evaluate in vivo strategies to treat cancers harboring genomic alterations in RET.

2R01CA136851-05
12/01/08 - 05/31/18
1.80 Calendar Months
Agency Contact: Yali Fu, Program Official
$188,665
(15% Effort)

Email: fuyali@mail.nih.gov; Phone: 240.276.5924

Targeting ALK and ROS1 in Lung Cancer
The overall goal is to better understand critical molecular alterations in non-small cell lung cancer (NSCLC) which may lead to the identification of effective therapies for NSCLC patients. Specific aims are: 1) To establish the efficacy of various ALK kinase inhibitors in NSCLC models with different EML4-ALK fusion genes; 2) To synthesize highly potent and specific ALK kinase inhibitors; and 3) To determine mechanisms of resistance to ALK kinase inhibitors.

R01 CA114465-06A1 (Johnson/Janne) 07/09/12 – 04/30/17 1.20 Calendar months
NIH/NCI $120,000 (10% effort)
Agency Contact: Kelly Y. Kim, Program Official:
Email: kimke@mail.nih.gov; Phone: 301-496-8639; Fax: 301-402-7819

EGFR Mutations in Non Small Cell Lung Cancer
The aims of the study are to prospectively validate the frequency and type of acquired resistance mutations and genomic changes arising in subjects with advanced NSCLC and somatic sensitizing mutations of EGFR treated with EGFR inhibitors.

R01 CA135257-06 (Jänne, P) 08/01/2008 - 04/30/18 2.25 Calendar Months
NIH/NCI $185,086 (18.75% Effort)
Agency Contact: William C. Timmer, Program Official
Email: timerw@mail.nih.gov; Phone: 301-496-8866; Fax: 301-480-4663

Drug Resistance in Lung Cancer
The goal of the project is to study drug resistance mechanisms in vitro and using tumors from lung cancer patients with epidermal growth factor receptor (EGFR) mutations.

U01 HG0064292 (Garraway, L) 01/01/12 – 11/30/15 1.08 Calendar Months
NIH/NCI $149,057 (Proj. 1, DFCI only) (9% Effort)
Agency Contact: Bradley Ozenberger, Program Official
Email: bozenberger@mail.nih.gov; Phone: 301-496-7531; Fax: 301-480-2770

Clinical Impact of Somatic and Germline Whole Exome Sequencing in Cancer Patients
The goals of this study are to determine if whole exome sequencing can be performed from routine clinical cancer samples, to determine whether it provides additional clinically relevant (somatic and germline) genomic information, and to evaluate the impact of genomic data on cancer patients and oncologists.

P01CA154303-01A1 (Meyerson) 05/01/2012 - 04/30/2017 1.20 calendar months
NIH/NCI $163,742 (Proj. 1 only) (10% effort)
Agency Contact: Suzanne L. Forry-schaudies, Program Official
Email: forryscs@mail.nih.gov; Phone: (301) 435-9147; Fax: 301-402-5200

Protein Kinase Therapeutic Targets for Non Small Cell Lung Carcinoma
The overall goal is to genetically and pharmacologically validate protein kinases as targets in non-small cell lung cancer through the development of specific kinase inhibitors that are active in cell-based and genetically engineered mouse models. We focus on three targets that have been identified in functional and genomic cancer studies, inhibitor-resistant EGFR, TBK1 and DDR2. Our program integrates molecular and cellular pharmacology, chemistry, structural biology and mouse modeling with the overarching aim of developing a consistent and efficient pipeline.

Changes in active other support of PD/PIs
See above; we have indicated all changes in active other support.

Other organizations involved as partners
Nothing to report.

8. Special Reporting Requirements

Not applicable.
9. Appendices

Please see attached publication.
RB loss in resistant EGFR mutant lung adenocarcinomas that transform to small-cell lung cancer

Matthew J. Niederst1,2, Lecia V. Sequist1,2, John T. Poirier3, Craig H. Mermel4,5, Elizabeth L. Lockerman1,2, Angel R. Garcia1,2, Ryohei Katayama1,2, Carlotta Costa1,2, Kenneth N. Ross1,2, Teresa Moran1,2, Emily Howe1,2, Linnea E. Fulton1,2, Hillary E. Mulvey1,2, Lindsay A. Bernardo5,6, Farihya Mohamoud1,2, Norikatsu Miyoshi2,7, Paul A. VanderLaan8, Daniel B. Costa9, Pasi A. Jänne10,11, Darrell R. Borger1,2, Sridhar Ramaswamy1,2,4, Toshi Shioda2,7, Anthony J. Iafrate5,6, Gad Getz2,4,5, Charles M. Rudin3, Mari Mino-Kenudson5,6 & Jeffrey A. Engelman1,2

Tyrosine kinase inhibitors are effective treatments for non-small-cell lung cancers (NSCLCs) with epidermal growth factor receptor (EGFR) mutations. However, relapse typically occurs after an average of 1 year of continuous treatment. A fundamental histological transformation from NSCLC to small-cell lung cancer (SCLC) is observed in a subset of the resistant cancers, but the molecular changes associated with this transformation remain unknown. Analysis of tumour samples and cell lines derived from resistant EGFR mutant patients revealed that Retinoblastoma (RB) is lost in 100% of these SCLC transformed cases, but rarely in those that remain NSCLC. Further, increased neuroendocrine marker and decreased EGFR expression as well as greater sensitivity to BCL2 family inhibition are observed in resistant SCLC transformed cancers compared with resistant NSCLCs. Together, these findings suggest that this subset of resistant cancers ultimately adopt many of the molecular and phenotypic characteristics of classical SCLC.

DOI: 10.1038/ncomms7377
The tyrosine kinase inhibitors (TKIs) gefitinib, erlotinib and afatinib are effective therapies for non-small-cell lung cancers (NSCLCs) harbouring activating mutations in the epidermal growth factor receptor (EGFR). The majority of these patients achieve robust responses, with marked tumour shrinkage, abatement of symptoms and improved outcome compared to chemotherapy. Despite initial efficacy, resistance to TKIs invariably develops, with disease progression after an average of approximately 12 months. The implementation of repeat biopsy programmes at the time of clinically apparent resistance has been instrumental to the understanding of the molecular mechanisms underlying acquired resistance to EGFR TKIs. We previously reported the results of a cohort of patients undergoing repeat biopsy in which we identified secondary mutations in EGFR (T790M), amplification of the MET receptor tyrosine kinase and mutations in PIK3CA, all of which confer resistance to TKI via reactivation of key downstream signalling pathways. In addition, a subset of resistant tumours underwent phenotypic/histological changes, namely transformation to small-cell lung cancer (SCLC) and epithelial-to-mesenchymal transition. Importantly, the tumours that transformed to SCLC harboured the original activating EGFR mutation, suggesting direct evolution from the initial cancer, rather than a distinct, second primary cancer. The phenomenon of SCLC transformation in resistant EGFR mutant cancers had been previously identified in individual patient case reports and has subsequently been confirmed in another repeat biopsy patient cohort. However, the molecular details underlying this histological change and resistance to EGFR TKI therapy, as well as the relatedness of EGFR mutant SCLC to classical SCLC, remain unclear. Here, we characterize the molecular changes that occur in NSCLC to SCLC transformed TKI-resistant EGFR mutant cancers. Our results indicate that SCLC transformed resistant cancers take on many features of classical SCLC, including universal alterations to the RB tumour suppressor, gene expression profiles similar to classical SCLC, which include reduced or absent EGFR expression, and heightened sensitivity to BCL-2 family inhibition.

Results
Transformed SCLC RNA profiles mimic classical SCLC. To perform these analyses, we amassed a collection of 11 EGFR mutant cancer samples (from nine patients) that underwent transformation to SCLC at the time of acquired resistance to EGFR TKI therapy under the auspices of an institutional review board (IRB)-approved protocol (Supplementary Table 1). As reported previously, all of the resistant SCLC cancers harboured the original activating EGFR mutation. Cell lines derived from resistant patient biopsies have been valuable tools to study acquired resistance to TKIs in lung cancer and epithelial-to-mesenchymal transition. Importantly, the tumours that transformed to SCLC harboured the original activating EGFR mutation, suggesting direct evolution from the initial cancer, rather than a distinct, second primary cancer. The phenomenon of SCLC transformation in resistant EGFR mutant cancers had been previously identified in individual patient case reports and has subsequently been confirmed in another repeat biopsy patient cohort. However, the molecular details underlying this histological change and resistance to EGFR TKI therapy, as well as the relatedness of EGFR mutant SCLC to classical SCLC, remain unclear. Here, we characterize the molecular changes that occur in NSCLC to SCLC transformed TKI-resistant EGFR mutant cancers. Our results indicate that SCLC transformed resistant cancers take on many features of classical SCLC, including universal alterations to the RB tumour suppressor, gene expression profiles similar to classical SCLC, which include reduced or absent EGFR expression, and heightened sensitivity to BCL-2 family inhibition.

Resistant transformed SCLCs lose EGFR expression. We next tested the MGH131-1 and MGH131-2 cells for their sensitivity to EGFR TKIs. Cell viability assays indicated that both SCLC transformed cell lines were highly resistant to gefitinib as well as the third-generation EGFR inhibitor, WZ4002, which effectively inhibits both activating mutations and the T790M resistance mutation (Fig. 2a). In contrast, a patient-derived resistant cell line that retained NSCLC histology and had a T790M mutation (MGH121) was exquisitely sensitive to WZ4002 (Fig. 2a). Thus, the EGFR mutant SCLC cell lines retain resistance to EGFR inhibition, similar to what is observed clinically.

To understand why SCLC transformed cells are insensitive to EGFR TKIs despite continued presence of the EGFR activating mutation, we measured the levels of EGFR to determine if transformation to SCLC had resulted in altered expression. Western blotting revealed an absence of EGFR expression specifically in the EGFR mutant SCLC transformed cell lines (Fig. 2b). To determine whether EGFR expression is commonly lost in EGFR mutant lung cancers that transform to SCLC, we performed IHC analysis on seven resistant cases of EGFR mutant cancers that had transformed to SCLC along with ten cases that retained NSCLC histology. As shown in Fig. 2c,d, there was a marked decrease in EGFR expression in the SCLC resistant tumours compared with baseline, but EGFR expression was intact in resistant EGFR mutant NSCLCs. Indeed, interrogation of the expression data from the cancer cell line encyclopedia database revealed that classical SCLC cell lines have significantly reduced levels of EGFR mRNA compared with adenocarcinoma cell lines. Similarly, SCLC transformed EGFR mutant-resistant cell lines had lower levels of EGFR mRNA compared with NSCLC-resistant models. These data suggest that SCLC transformed EGFR mutant cancers lose expression of EGFR, as is typical of classical SCLC, and thus it is not surprising that they are no longer sensitive to EGFR inhibition.

SCCL transformed cell lines are sensitive to ABT-263. The BCL-2, BCL-XL inhibitor, ABT-263, is one of the few therapies to date to exhibit marked efficacy against SCLC in laboratory studies, and although recent results from clinical trials with single-agent ABT-263 demonstrated responses in only a minority of SCLC patients, combinations with this agent are being explored. SCLC transformed EGFR mutant cells were highly sensitive to single-agent ABT-263 and markedly more sensitive than EGFR-TKI-resistant NSCLC cell lines harbouring the T790M resistance mutation (Fig. 2e). ABT-263 treatment induced a robust apoptotic response in EGFR mutant
DNA sequencing reveals genetic lesions specific to resistant SCLC. In our previous report, we described a patient (Patient #7) who had been biopsied multiple times over the course of their disease. In this patient, both \(EGFR \) mutant adenocarcinoma and SCLC had been observed at different times. The patient ultimately passed away, and at autopsy, both SCLC and NSCLC were identified (Fig. 3a). The oscillating pattern of adenocarcinoma and SCLC that was observed suggested that different clones were selected depending on the selective pressure of the applied treatment (conceptual schematic shown in Supplementary Fig. 3a). The autopsy that was performed identified two SCLC transformed tumours (one each from the liver and lung) as well as a diaphragmatic tumour that retained adenocarcinoma histology (Supplementary Fig. 3b). These results underscore the potential of ABT-263 as part of combination strategy to treat \(EGFR \) mutant patients with NSCLC to SCLC transformation. In total, the gene expression and drug sensitivity of the SCLC transformed cells more closely resembles classical SCLC than \(EGFR \) mutant NSCLC. These data are further supported by the clinical observations that \(EGFR \) mutant SCLCs are highly sensitive to SCLC chemotherapy regimens.

By comparing the genomic variants from these four samples, we were able to look for somatic changes frequently detected in NSCLC and SCLC genomes. Both SCLC transformed samples harboured an activating mutation in \(PIK3CA \), which we previously observed in SCLC transformed cases as well as loss of heterozygosity and an inactivating mutation of \(TP53 \), which is universally altered in classical SCLC. Cloal analyses revealed that the two SCLC samples had a greater number of mutations in common with each other (\(n = 291 \)) than either shared with the resistant tumour that maintained NSCLC morphology (\(n = 73 \) shared mutations between the SCLC lung and NSCLC diaphragm, and \(n = 57 \) shared mutations between the SCLC liver and NSCLC diaphragm; Fig. 3c). This suggests that the two SCLC resistant lesions are more closely related and likely diverged later in the evolution of the resistant disease compared with the adenocarcinoma lesion.
In the liver SCLC tumour, comparative genomic hybridization (CGH) array analysis revealed that there was a relatively large deletion in one copy of \textit{RB1} that encompassed the entire gene and the surrounding region. This was accompanied by a focal deletion in the second copy that spanned only the middle exons of \textit{RB1} but spared the beginning and end of the gene (Fig. 4a). These deletions were not observed in the resistant cancer with a T790M mutation and NSCLC histology. These results were confirmed by quantitative PCR (qPCR) of different exons of \textit{RB1}, which also demonstrated similar focal loss of \textit{RB1} in the lung SCLC (Fig. 4b).

Figure 2 | Resistant SCLCs respond to ABT-263 and lose EGFR expression. (a) The resistant EGFR mutant SCLC cell lines MGH131-1 and MGH131-2, and a resistant EGFR mutant NSCLC cell line that harbour T790M, MGH121, were treated with indicated concentrations of Gefitinib (GEF) or the third-generation EGFR inhibitor WZ4002 (WZ) for 72 h. Cell viability was measured with the CellTiter-Glo assay. Experiments were performed in quadruplicate and error bars depict the standard error of the mean for each data point. (b) Representative blot of lysates from a panel of patient-derived resistant EGFR mutant cell lines and classical SCLC cell lines was probed with antibodies specific to total EGFR and actin (MGH119 was derived from a TKI naive patient). Lysates from this panel were also probed in Supplementary Fig. 1c. (c) IHC staining for total EGFR on a representative pair of matched pre- and post-resistant samples from a patient whose resistant EGFR mutant cancer transformed from NSCLC to SCLC (Patient #3, left and middle) and a resistant EGFR mutant cancer that remained NSCLC histology (Patient #18, right). The yellow circle indicates EGFR-positive endothelial cells in the resistant EGFR mutant SCLC. (d) Quantification (H-score) of EGFR staining from pair-matched pre \((n = 6)\) and post-resistant \((n = 7)\) samples from cancers that transformed into SCLC upon the development of resistance. Resistant EGFR mutant cancers that maintained NSCLC histology are shown for comparison \((n = 11)\). ***\(P < 0.0001\) one-way analysis of variance (ANOVA) with Bonferroni post-hoc test. (e) Patient-derived TKI-resistant cell lines from resistant SCLC (MGH131-1 and MGH131-2), and T790M-positive NSCLC (MGH121 and MGH134) were treated with indicated concentrations of ABT-263 for 72 h and cell viability was measured with the CellTiter-Glo assay. Each data point was repeated in quadruplicate and error bars represent the standard error of the mean. Bottom—IC\(_{50}\) values for ABT-263 for each cell line. (f) ABT-263 IC\(_{50}\) values compared with those from a panel of SCLC cell lines.

In the liver SCLC tumour, comparative genomic hybridization (CGH) array analysis revealed that there was a relatively large deletion in one copy of \textit{RB1} that encompassed the entire gene and the surrounding region. This was accompanied by a focal deletion in the second copy that spanned only the middle exons of \textit{RB1} but spared the beginning and end of the gene (Fig. 4a). These deletions were not observed in the resistant cancer with a T790M mutation and NSCLC histology. These results were confirmed by quantitative PCR (qPCR) of different exons of \textit{RB1}, which also demonstrated similar focal loss of \textit{RB1} in the lung SCLC (Fig. 4b).

Figure 2 | Resistant SCLCs respond to ABT-263 and lose EGFR expression. (a) The resistant EGFR mutant SCLC cell lines MGH131-1 and MGH131-2, and a resistant EGFR mutant NSCLC cell line that harbour T790M, MGH121, were treated with indicated concentrations of Gefitinib (GEF) or the third-generation EGFR inhibitor WZ4002 (WZ) for 72 h. Cell viability was measured with the CellTiter-Glo assay. Experiments were performed in quadruplicate and error bars depict the standard error of the mean for each data point. (b) Representative blot of lysates from a panel of patient-derived resistant EGFR mutant cell lines and classical SCLC cell lines was probed with antibodies specific to total EGFR and actin (MGH119 was derived from a TKI naive patient). Lysates from this panel were also probed in Supplementary Fig. 1c. (c) IHC staining for total EGFR on a representative pair of matched pre- and post-resistant samples from a patient whose resistant EGFR mutant cancer transformed from NSCLC to SCLC (Patient #3, left and middle) and a resistant EGFR mutant cancer that remained NSCLC histology (Patient #18, right). The yellow circle indicates EGFR-positive endothelial cells in the resistant EGFR mutant SCLC. (d) Quantification (H-score) of EGFR staining from pair-matched pre \((n = 6)\) and post-resistant \((n = 7)\) samples from cancers that transformed into SCLC upon the development of resistance. Resistant EGFR mutant cancers that maintained NSCLC histology are shown for comparison \((n = 11)\). ***\(P < 0.0001\) one-way analysis of variance (ANOVA) with Bonferroni post-hoc test. (e) Patient-derived TKI-resistant cell lines from resistant SCLC (MGH131-1 and MGH131-2), and T790M-positive NSCLC (MGH121 and MGH134) were treated with indicated concentrations of ABT-263 for 72 h and cell viability was measured with the CellTiter-Glo assay. Each data point was repeated in quadruplicate and error bars represent the standard error of the mean. Bottom—IC\(_{50}\) values for ABT-263 for each cell line. (f) ABT-263 IC\(_{50}\) values compared with those from a panel of SCLC cell lines.

RB is universally lost in resistant SCLC patients. The cell lines established from biopsies of resistant EGFR mutant lung cancers were assessed for RB expression. Western blotting revealed loss of RB expression specifically in resistant EGFR mutant cell lines with
SCCLC histology (Fig. 4c). Notably, the MGH125 cell line (patient #8) also lacks RB expression. This cell line was generated from a pleural effusion, which demonstrated NSCLC histology, however, a previous liver biopsy of this patient’s cancer revealed a metastatic lesion that had transformed to SCLC (Supplementary Fig. 4a). Thus, this cancer was particularly prone to SCLC transformation. Array CGH analysis revealed a focal deletion of both copies of RB1 in the MGH131-1 SCLC cell line (Fig. 4d). However, only one copy of RB1 was lost in the MGH125 cells (Supplementary Fig. 4b). Sequencing of RB1 from MGH125 cells revealed that the intact copy of RB1 harbour a nonsense mutation (R445*, Supplementary Fig. 4c), explaining the absence of RB protein expression in these cells (Fig. 4c). Thus, cell lines derived from cancers that either have transformed into SCLC or derived from tumours prone to transform into SCLC both demonstrated genetic loss of RB1.

To expand these analyses, we examined the collection of 10 EGFR mutant cancer samples (from 9 patients) that underwent transformation to SCLC at the time of acquired resistance as well as the 11 resistant controls that had maintained NSCLC histology (Supplementary Table 1). In one of the SCLC transformed cases, Patient #1, we had sufficient sample from two resistant lesions to harvest DNA and assess the RB status, similar to classical SCLC. In total, these findings suggest that chronic EGFR inhibition in EGFR mutant lung adenocarcinomas can lead to the development of cancers that adopt the genetic, histologic, expression and drug sensitivity profiles of classical SCLC.

The universal nature of the RB loss is suggestive that this may be a necessary event for the SCLC-resistant tumours to emerge. Although RB is lost in classical SCLC, it is not known if RB loss is necessary for NE differentiation or the growth and survival of cells that have differentiated along a NE lineage. It is notable that shRNA-mediated depletion of RB in gefitinib-sensitive NSCLC cell lines did not alter the sensitivity to gefitinib (Supplementary Fig. 6a). Furthermore, generating TKI-resistance in-vitro or in-
vivo in EGFR mutant cancer cell lines engineered to have loss of RB expression did not yield resistant cells/tumours with acquisition of NE marker expression or SCLC morphology (Supplementary Fig. 6b,c). These results suggest that loss of RB is likely necessary in order for acquired resistance via transformation to SCLC to develop, but it is not sufficient on its own to promote it. The latter point is further supported by our discovery of a few examples of RB-deficient adenocarcinomas. Indeed, two erlotinib-resistant cell lines (MGH125 and MGH141), a resistant patient sample (Patient #10) and two out of four pre-treatment adenocarcinoma samples from patients whose cancers transformed to SCLC (Patients #2 and #6), were also negative for RB. Although rare, the existence of these RB-deficient adenocarcinomas serves as further evidence that loss of RB alone is insufficient to promote transformation to SCLC.

Discussion

Acquired resistance is a major problem limiting the clinical efficacy of targeted therapies. Repeat biopsy studies have led to the identification of the resistance mechanism in a majority of EGFR mutant NSCLC patients that have progressed on EGFR TKIs\(^7,13\). One unexpected finding from these studies was the discovery that 5–15% of patient tumours undergo transformation to SCLC histology upon acquisition of resistance. From a historic perspective of lung cancer classification, this observation was a surprise, as differentiation into a NSCLC- or SCLC-type cancer was thought to occur early in tumorigenesis. Furthermore, the typical presentation of these diseases were quite distinct, with EGFR-mutant adenocarcinoma occurring primarily in never-smokers and displaying a more indolent natural history compared with classical SCLC, which occurs almost exclusively...
SCLC is significantly more likely than resistant adenocarcinoma histology (NSCLC Resistant, NSCLC to SCLC (SCLC Resistant, NSCLC)) to have the potential to differentiate along a NE lineage. Notably, we assessed one such case (Patient #18, Table 1), and this cancer had loss of RB and EGFR expression, similar to the cases of EGFR mutant SCLC observed in the setting of acquired resistance to EGFR TKI.

in heavy smokers and tends to metastasize early and grow rapidly. Indeed, the SCLC transition seen in EGFR-mutant patients is often accompanied by a change in the clinical behaviour of the disease, with rapid acceleration in the growth rate, initial responsiveness to chemotherapy followed by rapid clinical deterioration. However, repeat biopsy studies have consistently suggested that the SCLC transformed cancers represent an evolution from the initial adenocarcinomas rather than a second coincident cancer, because the activating driver EGFR mutations are identical to the original adenocarcinomas in all cases. To date, the mechanistic details regarding this transition are unknown. This study revealed genetic changes specifically associated with the transformation to SCLC, provided insight into why these tumours are no longer sensitive to EGFR TKIs, and determined a potential therapeutic that could be incorporated into future treatment strategies for this subset of resistant cancers.

Assessment of RB status by a combination of next-generation sequencing, array CGH, qPCR and IHC analyses revealed that RB knockdown experiments in EGFR mutant cell lines suggest that RB loss was insufficient to cause resistance or induce NE differentiation. It is notable that these knockdown studies were performed in established EGFR mutant cell lines. Such cell lines may not possess the pluripotent cells that are present in a tumour in vivo that may have the capacity to differentiate along different lineages including SCLC. We speculate that in these pluripotent cells that differentiation to NSCLC is favoured when EGFR is active, as EGFR activity has been associated with promoting alveolar differentiation (Supplementary Fig. 7, left panel). Conversely, following treatment with EGFR-TKI, the resistant pluripotent cells, which may have accumulated additional genetic alterations (such as loss of RB1 and TP53) and maintain a different epigenetic state, are able to differentiate and subsequently expand along a lineage (SCLC) that does not require EGFR signalling (Supplementary Fig. 7, right panel). It is also interesting to note that the absence of EGFR signalling induced by the TKI may remove the impetus to differentiate along the NSCLC lineage, thereby facilitating differentiation along the other lineage. Along these lines, there have been case reports of treatment naïve EGFR mutant SCLC, reinforcing the notion that the cell of origin of EGFR mutant lung cancers may have the potential to differentiate along a NE lineage. In such cases, we favour a model in which the cells that survived treatment undergo further 'evolution' to become the bona fide SCLC that ultimately presents in the clinic (as described above and shown in Supplementary Fig. 7).

The finding that all EGFR mutant SCLC transformed samples have low/absent EGFR expression compared with pre-resistant controls provides insight into the explanations for the lack of sensitivity of these cancers to TKI. We speculate that, upon transformation to SCLC, they take on many of the characteristics of classical SCLC, which normally do not express EGFR or rely on its activity for growth and survival. Thus, the treatment strategies that will provide the most benefit to this subset of cancers will likely resemble those that are most effective for classical SCLC.

Our data reveal that EGFR mutant cancers that transform to SCLC also undergo significant epigenetic changes. Hierarchical clustering analysis of RNA expression data demonstrated that cell lines derived from SCLC transformed resistant biopsies share gene expression profiles more closely related to classical SCLC cell lines than other TKI-resistant cell lines that maintained NSCLC histology. Similarly, miRNA analyses revealed that SCLC transformed cells express miRNAs that are commonly upregulated in classical SCLC. It is notable, however, that the SCLC transformed cells also express a subset of miRNAs that are typically expressed in adenocarcinoma but not SCLC. Furthermore, DNA methylation analysis of resistant SCLC tumours from patient # 7 revealed a methylation pattern more consistent with adenocarcinoma than SCLC (Supplementary Fig. 8). These results indicate that SCLC transformed cancers may retain some features consistent with their adenocarcinoma origins. Importantly, however, from a genetic, mRNA expression profile, and clinical perspective these cancers behave like classical SCLC.

In summary, this study reveals some of the key molecular changes associated with EGFR mutant lung adenocarcinomas that
transform to SCLC upon acquisition of resistance to EGFR TKI. As novel therapeutic approaches that inhibit EGFR more efficiently become widely implemented, we speculate that the relative frequency of NSCLC to SCLC transformation in the setting of resistance to erlotinib therapy as per standard clinical care over an 8-year period from 2005 to 2013. Standard histology and the SNaPshot assay were carried out to determine histological subtype and genotype of each sample. An IRB-approved protocol was followed to review the electronic medical record for relevant clinical information. Patient-derived cell lines were generated under an IRB-approved protocol, which required prospective informed consent from participating patients.

Methods

Patients

EGFR mutant NSCLC patients underwent biopsies before and after acquiring resistance to erlotinib therapy as per standard clinical care over an 8-year period from 2005 to 2013. Standard histology and the SNaPshot assay were carried out to determine histological subtype and genotype of each sample. An IRB-approved protocol was followed to review the electronic medical record for relevant clinical information. Patient-derived cell lines were generated under an IRB-approved protocol, which required prospective informed consent from participating patients.

<table>
<thead>
<tr>
<th>Patient</th>
<th>Cancer type</th>
<th>Resistance</th>
<th>Histology</th>
<th>RB status</th>
<th>Detection method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lung</td>
<td>Pre Adeno</td>
<td>Pos</td>
<td>IHC</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Lung</td>
<td>Post NE</td>
<td>Neg</td>
<td>IHC/genetic</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Lung</td>
<td>Pre Adeno</td>
<td>Pos</td>
<td>IHC</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Lung</td>
<td>Post NE</td>
<td>Neg</td>
<td>IHC</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Lung</td>
<td>Post NE</td>
<td>Neg</td>
<td>IHC</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Lung</td>
<td>Pre Adeno</td>
<td>Neg</td>
<td>IHC</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Lung</td>
<td>Post Adeno</td>
<td>Pos IHC/genetic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Lung</td>
<td>Post NE</td>
<td>Neg</td>
<td>IHC</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Lung</td>
<td>Post NE</td>
<td>Neg</td>
<td>IHC</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Lung</td>
<td>Post NE</td>
<td>Neg</td>
<td>IHC</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Lung</td>
<td>Pre Adeno</td>
<td>Pos</td>
<td>IHC</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Lung</td>
<td>Pre Adeno</td>
<td>Pos</td>
<td>IHC</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Lung</td>
<td>Post Adeno</td>
<td>Pos</td>
<td>IHC</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Lung</td>
<td>Post Adeno</td>
<td>Pos</td>
<td>IHC</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Lung</td>
<td>Post Adeno</td>
<td>Pos</td>
<td>IHC</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Lung</td>
<td>Pre Adeno</td>
<td>Pos</td>
<td>IHC</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Lung</td>
<td>Post Adeno</td>
<td>Pos</td>
<td>IHC</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Lung</td>
<td>Post Adeno</td>
<td>Pos</td>
<td>IHC</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Lung</td>
<td>Intrinsinc</td>
<td>NE Neg</td>
<td>IHC</td>
<td></td>
</tr>
</tbody>
</table>

EGFR, epidermal growth factor receptor; IHC, immunohistochemistry; NE, neuroendocrine carcinoma; Neg, negative; Pos, positive; TKI, tyrosine kinase inhibitor.

DNA extraction library construction and WES

Genomic DNA (gDNA) from normal liver, diaphragmatic tumour (NSCLC), lung tumour (SCLC) and liver tumour (SCLC) from patient #7 was extracted from OCT-embedded frozen tissue blocks using the DNAadvance kit from Agencourt. Three micrograms of gDNA from each sample were fragmented to approximately 150–200 bp by sonication and subjected to enoxime enrichment using the Sureselect Human All Exon Target Enrichment system. Barcoded deep sequencing libraries for the exome-enriched gDNA fragments were constructed using Applied Biosystems SOLiD 5500 Fragment Library Core Kit. WES was performed with an Applied Biosystems SOLiD 5500 deep sequencer to generate paired-end colour space reads (50 nucleotides forward and 35 nucleotides reverse) by a multiplexed operation. The colour-space data were aligned to the human hg19 reference genome sequence by the Applied Biosystems LifeScope software to generate BAM files. Mutation calls were made using the muTect mutation calling software.

Quantification of RB1 gDNA levels by qPCR

RB1 gene copy number was measured via a quantitative PCR assay that has been previously described. Briefly, reaction samples containing 10 ng of gDNA with SYBR green master mix (Roche) were run on a LightCycler 480 (Roche) for quantification. Primer pairs amplifying exons 3 (5′-F—5′-GAGCTACAGAAAAACATAGAAATCAGG-3′, R—5′-GCCATCTTTCCAGTTCGTATAAATAC-3′), 13 (F—5′-CATAAAAGTACCAATATAAGCAGA-3′) and 25 (F—5′-ACA GGACGCTTGTCGCAA-3′, R—5′-AGCAAGAACAGTCTGACAG-3′) were used to obtain coverage of the beginning, middle and end of the RB1 gene and primers amplifying long interspersed nuclear element-1 (LINE-1; F—5′-AAAAAGT GCTAACAATCAGG-3′, R—5′-GTGCTTTGAGAGTGGGAGG-3′) were used for each sample to serve as a loading control. A standard curve with normal female genomic DNA was generated for each primer pair in order to compare the tumour/cell line samples to a normal diploid sample.

DNA extraction and array CGH analysis

DNA for the array CGH studies was extracted from formalin-fixed, paraffin-embedded tissues with the FormaPure kit from Agencourt. Agilent Sureprint G3 Cancer Genomic CGH + SNP 4 x 180K Microarrays were used to identify genome-wide copy number alterations. Briefly, 1 μg of tumour and control DNA (normal female gDNA, Correll Institute) were heated to 95 °C for 5 min. Random priming was used to label DNA with CY3-dUTP (control) and CY5-dUTP (tumour) dyes from the Agilent SureTag DNA Labeling kit. The labelled DNA was then purified over columns (Agilent) and mixed in equal proportion along with Cot-1 Human DNA (Agilent) for the hybridization steps. To hybridize the DNA to the array, incubation occurred first at 95 °C for 3 min for denaturation, followed by a 30-min pre-hybridization step at 37 °C and then a hybridization step for 35–40 h at 37 °C. Slides were then washed in 2 × SSC and 0.1% sodium dodecyl sulfate (SDS) and reconstituted in dimethylsulphoxide for cell culture experiments. Antibodies for total EGFR from Santa Cruz Biotechnology. All antibodies were used at a dilution of 1:1,000. Uncropped scans of the western blots from the main figures can be found in Supplementary Fig. 9.

Generation of patient-derived resistant cell line models

The patient-derived cell line models MGH119, MGH121, MGH125, MGH126, MGH131-1, MGH131-2, MGH134 and MGH156 were developed on collagen-coated plates in ACL4 medium and transferred to RPMI. MGH1357 was developed initially in RPMI. The cell line MGH141 was derived using the feeder system with irradiated fibroblasts (5,000 rad) from normal patient tissue. When a tumour cell majority was obtained, it was passed off of the feeder layer and later transferred to RPMI medium for experiments. The development of a model was considered complete when it was independent of the feeder system, free of stromal cells and determined to maintain known patient tumour mutations. MGH119-R was derived in vitro from the treatment naïve model, MGH119, through in vitro exposure to gefitinib, escalating from 10 nM to a final concentration of 1 μM.
5-min haematoxylin incubation. Slides were then dehydrated, cleared, cover slip ped and scored by a pathologist.

EGFR

IHC for EGFR was performed using EGFR D3B8 antibody (Cell Signaling #4267; 1:50 dilution in SignalStain Antibody Diluent) according to the manufacturer’s protocol. EGFR expression was evaluated using H score:

\[H = \frac{M}{M + U + 100} \]

Where \(M \) represents the signal intensity of the methylated probe and \(U \) represents the signal intensity of the unmethylated probe. Probe dye bias was normalized using built-in control probes. Data points with a detection \(P \) value of <.01 were dropped. Finally, probes from X and Y chromosomes were excluded, leaving the signal intensity of the unmethylated probe. Probe dye bias was normalized for each cell line as described previously17.

Hierarchical clustering was performed on the log2 expression data for the combined data using Pearson correlation and the 500 CCLE-derived probe sets (upper half of Supplementary Fig. 1) or using Euclidean distance and the 500 PDCL-derived probe sets (lower half of Supplementary Fig. 1) in R using the heatmap.2 function with the complete agglomeration method.

Methylation beadchip assay.

Bisulphite-converted DNA was analysed using Illumina’s Infinium Human Methylation450 Beadchip Kit (WG-314-1001) according to the manufacturer’s instructions and data were acquired using an Illumina iScan scanner. Raw data files were imported using the Bioconductor suite for R. Methylation levels, \(\beta \), were represented according to the following equation:

\[\beta = \frac{M}{M + U + 100} \]

Where \(M \) represented the signal intensity of the methylated probe and \(U \) represented the signal intensity of the unmethylated probe. Probe dye bias was normalized using the 170 CCLE lung samples (upper half of Supplementary Fig. 1) or the 10 PDCL samples (lower half of Supplementary Fig. 1). Hierarchical clustering was performed on the log2 expression data for the combined data using Pearson correlation and the 500 CCLE-derived probe sets (upper half of Supplementary Fig. 1) or using Euclidean distance and the 500 PDCL-derived probe sets (lower half of Supplementary Fig. 1) in R using the heatmap.2 function with the complete agglomeration method.

miRNA expression analysis.

Total RNA was prepared using the mirVana miRNA isolation kit (Invitrogen) per the manufacturer’s protocol. Specific Taqman assays for miRNAs 338 (002252), 101-3p (002253), 95-5p (000577), 106b-5p (000442), 17-5p (002308), 31 (001100), 21-5p (000397), 22-3p (000398), 29a-3p (002112), 29b-3p (000413) as well as RNU6B (001093) were also purchased from Invitrogen. These miRNAs represent the five most upregulated and downregulated in adenocarcinoma vs SCCL cell lines, respectively.17 The relative expression of each miRNA was normalized with respect to RNU6B and then to the total RNA signal intensity of the unmethylated probe.

Generation of shGFP/shRB and gefitinib-resistant cell lines. Viral constructs expressing shRNA targeting GFP and RB (targeting sequence—5'-GGTTTTGTTG CAAATGGGATCA-3') were obtained from Dr Nick Dyno and production and infection were completed as described previously.18 Briefly, 293T cells were transfected with viral plasmids for shGFP or shRB along with VSV-G and delta-8.91 using the TransIT-LT1 transfection reagent (Mirus). After 48 h, viral supernatant was collected and filtered. Infected cells were incubated with virus diluted 1:4 in media containing polybrene (8 µg ml⁻¹). Following addition of virus, cells were spun at 1,200 revolutions per minute for 1 h. PC9 cells (2-14 mg ml⁻¹) and HCC827 cells (1 µg ml⁻¹) were selected in puromycin for 2 weeks. RB knockdown was confirmed by western blot analysis. Generation of gefitinib-resistant cells was carried out as described previously.18,19 Briefly, cells were cultured in gefitinib-containing media starting at 10 nM and increased incrementally approximately every 2 weeks until the cells were able to freely replicate in 1 µM at roughly the same rate as parental cells (about 2 months). In addition, shGFP and shRB PC9 cells were made resistant to gefitinib by exposing parental cells to a high dose (300 nM) initially and then changing media and drug twice per week until resistant clones emerged and could be subcloned (6 weeks). In all cases, resistant cells were grown in the presence of gefitinib to maintain their resistant phenotype.

Cultivating in vivo resistance in mouse xenograft models. Five million PC9 or HCC827 shGFP/shRB cells were mixed with Matrigel (BD Biosciences) in a 1:1 ratio and injected in both flanks of 48-week-old female athymic nude mice. Tumours took an average of 3 weeks to reach a size of 200 mm³ and then treatment was initiated. Gefitinib was delivered by oral gavage for 4 days on and 3 days off at a dose of 35 mg per kg. The PC9 tumours relapsed 4 months later while still on treatment. Four tumours were visible by the end of month five. No detectable 827 tumours were visible after 4 months and treatments were discontinued. Following 6 weeks of drug holiday, the majority of 827 tumours had regrown and went back on treatment. In most cases, there was a moderate response followed by an eventual relapse. Experiments were approved by the Institutional Animal Care and Use Committee at Massachusetts General Hospital.

Cell viability assays. Cell viability assays were carried out in a 96-well format with at least four replicates per condition. Cells were plated at a density of 2,000–4,000 cells per well depending on their respective size and growth rates: MGH125-2,000, MGH131-1, MGH131-2, 4,000, MGH131-4, and the rest at 3,000 cells per well. Following incubation with drug for the indicated concentration/time, CellTiter- Glo assay reagent (Promega) was added for 10 min and plates were read on a Centro LB960 microplate luminesimeter (Berthold Technologies).

References

Acknowledgements

We thank Dr Nick Dyson for the constructs targeting GFP and RB and Dr James Rocco and Dr William Michaud for supplying feeder cells and helpful advice. This work was supported by the Lung Cancer Research Foundation (Scientific Merit Award, M.J.N.), Uniting Against Lung Cancer (L.V.S. and M.J.N.), NIH/National Cancer Institute (R01/CA137088, J.A.E., 5R21/CA156000, L.V.S. and F55CA090578, D.B.C.), Lungevity Uniting Against Lung Cancer (L.V.S. and M.J.N.), NIH/National Cancer Institute supported by the Lung Cancer Research Foundation (Scientific Merit Award, M.J.N.) and Dr William Michaud for supplying feeder cells and helpful advice. This work was supported by the Lung Cancer Research Foundation (Scientific Merit Award, M.J.N.).

Author contributions

Additional information

Accession codes: Accession codes for data sets are as follows: microarray and array CGH are at GEO (GSE64322, GSE64765, super-series GSE64766) and WES is at European Genomics Association (EGAS0000100102).

Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing financial interests: J.A.E. is a consultant for Novartis, Sanofi-Aventis, Genentech and Astra Zeneca; owns equity in Gatekeeper Pharmaceuticals, which has interest in T790M inhibitors; is a Scientific Advisory Board member for Sanofi-Aventis; has research agreements with Novartis, Sanofi-Aventis and Astra Zeneca. A.J.I. is a consultant for Pfizer and Bioreference Laboratories. P.A.V. is a consultant for AstraZeneca, Boehringer Ingelheim, Chugai Pharma, Clovis, Genentech, Merrimack Pharmaceuticals, Pfizer and Sanofi; owns stock in Gatekeeper Pharmaceutical; receives other remuneration from LabCorp. C.M.R. has been a recent consultant for AbbVie, Biodexis, Boehringer Ingelheim, Glaxo Smith Kline and Merck regarding cancer drug development. The remaining authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

How to cite this article: Niederst, M. I. et al. RB loss in resistant EGFR mutant lung adenocarcinomas that transform to small-cell lung cancer. *Nat. Commun.* **6**;6377 doi: 10.1038/ncomms7377 (2015).