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ABSTRACT 
Simulation models are approximations of real-world 

physical systems.  Therefore, simulation model validation is 
necessary for the simulation-based design process to provide 
reliable products.  However, due to the cost of product testing, 
experimental data in the context of model validation is limited 
for a given design.  When the experimental data is limited, a 
true output PDF cannot be correctly obtained.  Therefore, 
reliable target output PDF needs to be used to update the 
simulation model.  In this paper, a new model validation 
approach is proposed to obtain a conservative estimation of the 
target output PDF for validation of the simulation model in 
reliability analysis.  The proposed method considers the 
uncertainty induced by insufficient experimental data in 
estimation of predicted output PDFs by using Bayesian analysis.  
Then, a target output PDF and a probability of failure are selected 
from these predicted output PDFs at a user-specified 
conservativeness level for validation.  For validation, the 
calibration parameter and model bias are optimized to minimize 
a validation measure of the simulation output PDF and the 
conservative target output PDF subject to the conservative 
probability of failure.  For the optimization, accurate sensitivity 
of the validation measure is obtained using the complex variable 
method (CVM) for sensitivity analysis.  As the target output 
PDF satisfies the user-specified conservativeness level, the 
validated simulation model provides a conservative 
representation of the experimental data.  A simply supported 
beam is used to carry out the convergence study and demonstrate 
that the proposed method establishes a conservatively reliable 
simulation model.  
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1. INTRODUCTION 

Computer simulation plays increasingly important roles in 
various engineering design projects with rapid increase of 
computational power.  Accordingly, simulation-based design 
enables engineers to design a product with less time and cost by 
reducing the number of hardware prototyping and testing of the 
designed product.  However, an accurate, safe, and reliable 
simulation model is not easy to obtain due to the approximate 
imitation of real systems including idealization and 
simplification.  As a result, model validation has become an 
important topic.  Model validation can be defined by two parts: 
(1) updating a simulation model by utilizing mathematical 
formulations with given experimental data and (2) the 
assessment of the accuracy of the simulation model by 
comparing simulation result and experimental data [1-4].  In 
this paper, we focus on updating the simulation model to build a 
reliable simulation-based design given few experimental data.  

Various model updating techniques have been developed 
over the last decade by quantifying the source of uncertainty 
involved in computer simulation such as calibration parameters 
and model bias (or model discrepancy).  Methods to consider 
the source of uncertainty can be categorized into two main 
strategies: the Bayesian approach [5-8] and maximum likelihood 
estimation (MLE) [9-11]. 

Kennedy and O’Hagan proposed a Bayesian approach to 
obtain posterior distributions of calibration parameter and model 
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bias function [5]; and their research has been applied and 
extended by many researchers.  Hidgdon followed the Bayesian 
model validation approach and extended it to solve a multivariate 
output problem [6].  Arendt et al. applied the Bayesian 
approach for both single and multiple responses and discussed 
the identifiability of calibration parameter and model bias.  
They found that multiple responses can decrease the standard 
deviations of posterior distributions of calibration parameter and 
model bias compared to the results from single response [7, 8].  
One limitation of the aforementioned Bayesian model validation 
is that the unknown calibration parameter used in the simulation 
model is treated as a constant.  Even though the posterior 
distribution of calibration parameter can be obtained, a user has 
to choose one value to update simulation model.  However, the 
calibration parameters to be adjusted in an engineering problem 
such as material properties can vary randomly due to 
manufacturing variability; thus, the calibration parameter must 
not be fixed in the simulation model.  Another shortcoming is 
that existing Bayesian model validations do not guarantee that 
the predicted output PDF leads to safe design because predicted 
output PDF is based on few test data and prior knowledge 
without considering a conservative concept.  Therefore, the 
predicted probability of failure obtained from the existing 
Bayesian model validations could be less than true probability of 
failure. 

At the same time, there have been research efforts to 
maximize the agreement between the simulation model and 
experimental data using MLE.  Loeppky et al. suggested MLE 
to find the fixed value of calibration parameter and bias function 
assumed to follow Gaussian process for deterministic problem 
[9].  Xiong et al. realized that a fixed calibration parameter is 
not consistent with physical experiments, so they applied MLE 
to estimate the statistical parameters of randomly varying 
unknown parameters [10].  This approach to calibrate statistical 
parameters has been followed by Youn et al. [11].  However, 
typically, there is only a small amount of experimental data 
available in the context of model validation due to the expensive 
cost of full-scale product testing.  Consequently, the lack of 
experimental data leads to inaccurate likelihood calculation.  
Thus, output probability density function (PDF) estimated via 
MLE may not be accurate.  Moreover, as the MLE method 
cannot provide a conservative measure, the updated simulation 
based on MLE could underestimate a probability of failure so 
that the simulation-based design would be unreliable.  In this 
situation, rather than trying to match the simulation model to the 
small amount of experimental data, it is more desirable to obtain 
a conservative simulation model for reliable design even with 
limited experimental data. 

Very little research has taken into account the conservative 
or safe design for model validation of computer simulation.  
However, a conservative or safe design has been achieved in 
many fields by using various conservative measures such as a 
safety factor, a conservative material properties [12].  As for the 
reliability problem, a conservative design can be achieved by 
estimating a larger probability of failure than the true value.  
Picheny et al. recognized the danger of underestimating the 

probability of failure due to the limited number of data, so they 
developed a conservative estimation of probability of failure 
using a bootstrap method assuming the data distribution type is 
known [13].  In the same context, several reliability-based 
design optimization (RBDO) approaches have been developed to 
obtain a conservative design in compensation for the lack of 
input data.  Youn and Wang sought the worst case from 
distribution of reliability, which is beta distribution, and defined 
it as target reliability for RBDO [14].  Noh et al. proposed the 
confidence level of input statistical model with adjusted standard 
deviation and correlation coefficient, which fully covers the 
target reliability region for RBDO [15, 16].  Cho used a 
confidence level of distribution of probability of failure as a 
probabilistic constraint for confidence-based RBDO [17]. 

In this paper, we emphasize that the validated simulation 
model should lead an optimum conservative design so as to 
acquire a safe design even with a small number of full-scale 
product testing.  To ensure that, a conservative estimations of 
target output PDF and probability of failure are achieved by 
quantifying the uncertainty caused by the limited test using 
Bayesian analysis in this paper.  Once the conservative target 
output PDF at a user-specified conservativeness level is 
obtained, model bias and calibration parameters are 
characterized through a conservative model-updating 
optimization process according to the given design.  The 
characterized model bias and calibration parameters update the 
simulation model.  Then, the updated simulation model will be 
appropriately conservative and trustworthy for RBDO, which 
prevents the risk of underestimation of probability of failure. 

The remainder of the paper is outlined as follows.  Section 
2 describes the various sources of uncertainty involved in 
computer simulation.  In Section 3, the proposed conservative 
model validation is briefly compared to the conventional model 
validation approach.  Section 4 describes how to account for the 
uncertainty of lack of experimental data and estimate 
conservative target output PDF and probability of failure using 
Bayesian analysis.  Section 5 introduces the conservative 
model-updating optimization by characterizing calibration 
parameters and model bias.  The proposed method is applied to 
a simply supported beam and the results demonstrate that the 
updated simulation model provides conservative fit to true one 
in Section 6.  
 
2. VARIOUS SOURCES OF UNCERTAINTIES  

In Ref. 5, various sources of uncertainties in the use of 
computer simulation have been identified.  The first source is 
parametric variability which is the randomness of the input 
variable.  The thickness of a steel plate that can vary randomly 
within a tolerance could be an example.  It might not be exactly 
designed and constructed due to the manufacturing error.  
Another source is parameter uncertainty, which comes from 
input variables whose exact values (or probabilistic distribution) 
are unknown.  For example, material properties may vary in the 
physical experiments due to their variability.  In this paper, 
statistical properties of unknown parameter are defined as 
calibration parameters.  In addition, structural uncertainty, 
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which is model bias or discrepancy, refers to the fundamental 
inability to reproduce the real-world because of simplification 
and idealization.  Furthermore, there is numerical uncertainty 
which is a numerical error in the implementation of the computer 
simulation as well.  However, simulation is often assumed to be 
numerical error-free.  Another source is experimental 
uncertainty (or observation error) which is an error in measuring 
the experimental responses.  This can be possibly noticed by 
repeating measurements many times.  Among those various 
uncertainties, parameter uncertainty, input variability and model 
bias are concerned in this paper.  In addition, the uncertainty 
also comes from insufficient experimental data.  Hence, the 
uncertainty induced by the lack of experimental data is taken into 
consideration in the proposed conservative model validation 
approach.  

A model-updating formulation that combines a simulation 
model and incorporates experimental data as well as various 
uncertainties is generally outlined as 

 ( ) ( ) ( ) ( );y x y x x xe m θ δ ε= + +  (1) 

where x is an input random variable vector, θ is an uncontrollable 
input random variable to be calibrated (e.g., material property 
and friction coefficient), ε(x) is experimental error which is not 
considered in this paper, δ(x) represents model bias, ym(x; θ) is 
the simulation model, and ye(x) is the experimental data.  The 
simulation model is less expensive than the actual experiments.  
Hence, it is assumed that the simulation model can be evaluated 
as many as needed.  In contrast, only a limited number of 
experimental data, ye

1, ye
2, …, ye

N, can be collected at given input 
setting x.  Due to the uncertainty induced by lack of 
experimental data, a true output PDF cannot be exactly 
determined; and a predicted output PDF is uncertain.  What 
makes it more challenging is that the input setting x  
corresponding to the experimental data may not be known.  In 
this paper, we address the case when the input setting x 
corresponding experimental data is not known.  In following 
sections, all of the possible sources of uncertainty are identified 
and characterized. 
 
3. PROPOSED CONSERVATIVE MODEL VALIDATION 
FRAMEWORK 

Conventional model validation approaches focus on 
updating a simulation model directly based on physical 
experimental data of which only a few are available.  Once the 
simulation model is validated, it is then applied for a design 
purpose.  Model updating can be viewed as the mathematical 
procedure that characterizes calibration parameter and model 
bias.  However, when only limited resources for experimental 
data are available, conventional model validation does not assure 
that updated simulation model is reliable.  Consequently, the 
actual test of a product that is designed based on the validated 
simulation model could fail. 

In this paper, a conservative model validation approach is 
proposed with an emphasis on assuring reliable model-updating 

for design optimization.  The flowchart of the proposed 
approach is given in Fig. 1.  There are two main differences 
between the developed method and the conventional approaches.  
First, the proposed model validation investigates and quantifies 
the uncertainty induced by the lack of physical experimental data 
for the purpose of conservativeness.  Next, the proposed 
method estimates the distribution of probability of failure.  At 
a user-specified conservativeness level of probability of failure, 
an output PDF is obtained for an acceptable conservativeness, 
which is called conservative target output PDF in this paper.  
After that, model-updating optimization is performed to match 
the simulation output PDF to the conservative target output PDF 
by satisfying the user-specified conservativeness level.  Then, 
the updated simulation model provides a conservative set of 
calibration parameter and bias. 

 

 
 

Figure 1. Flowchart of Proposed Model Validation Approach 
 
4. QUANTIFICATION OF UNCERTAINTY INDUCED BY 
INSUFFFICIENT EXPERIMENTAL DATA 

In this section, we consider how to model and quantify the 
uncertainty due to insufficient experimental data.  With limited 
experimental data, a predicted output PDF becomes uncertain 
and subjective.  As a result, a validated model based on the 
uncertain and subjective output PDF becomes uncertain as well.  
Accordingly, an uncertainty also exists in the probability of 
failure, which is calculated based on the validated model.  
Finally, the uncertainty due to the limited data propagates to the 
uncertainty of the probability of failure.  Therefore, the 
probability of failure calculated using the validated model cannot 
indicate the reliability of the physical system correctly.  Hence, 
in this paper, we estimate the distribution of probability of failure 
which involves the uncertainty due to the limited experimental 
data.  The following sections explain the developed method in 
detail. 
 
4.1 Distribution of probability of failure 

As mentioned earlier, we address the fact that experimental 
data ye is small.  The uncertainty caused by insufficient data 
leads to the uncertainty of a predicted output PDF and 
consequently uncertainty of a probability of failure.  To quantify 
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the uncertainty of the predicted output PDF, parameters that can 
represent various statistical information about the predicted 
output PDF need to be selected.  In this paper, the first four 
statistical moments of the predicted output PDF have been 
chosen as the parameters we are interested in.  Uncertainty of 
the predicted output PDF is characterized using the uncertainties 
of these statistical moments. 

Bayesian analysis, which enables quantifying the 
uncertainty distribution of the parameters (the first four 
statistical moments in this paper), has been used to model the 
uncertainty of a probability of failure.  A joint PDF of the 
probability of failure and the four statistical moments can be 
obtained using the Bayesian formulation as follows: 

 ( ) ( ) ( ), | | , |μ y μ y μ ye e e
F Ff p f p P=  (2) 

where µ = [µ, σ2, β1, β2] represents four statistical moment vector, 
ye is available experimental data vector and pF is the estimated 
probability of failure.  The posterior distribution of four 
statistical moments, P(µ|ye), can be calculated as the product of 
likelihood function and prior function as: 

 ( ) ( ) ( )| ;μ y y μ μe eP L P= . (3) 

The prior function P(µ) in Eq. (3) is the product of priors of 
four statistical moments assuming that they are independent of 
each other.  Information about four statistical moments of the 
computer simulation output PDF has been used to represent the 
prior function.  Likelihood function L(ye; µ) is the product of the 
predicted output PDF values at each experimental data point 
given four statistical moment vector µ.  The predicted output 
PDF given four statistical moments can be uniquely estimated 
using various methods.  In this paper, the Pearson system [18] 
has been used to evaluate the likelihood function.  The Pearson 
system is a non-parametric method that can approximate PDF 
given four statistical moments.  It categorizes the PDF into 
seven different types of continuous distribution depending on the 
four moments, which can cover various shapes of distribution.  
Accordingly, the probability of failure can be uniquely 
determined given four statistical moments.  Therefore, in Eq. 
(2), the conditional PDF of probability of failure given four 
statistical moments and experimental data becomes a Dirac 
measure as 

 ( ) ( )| , |μ y μ ye e
F F Ff p p pδ  = −  . (4) 

Consequently, the probability, which is the integration of Eq. (4), 
that pF equals pF(µ|ye) becomes one; and the probability of 
getting any other values is zero.  The marginal PDF of the 
probability of failure can be calculated using Monte Carlo 
Simulation (MCS) integration as 
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where nMCS is the number of MCS samples and µ(i) is the i-th 
realization of the four statistical moment vector.  Because the 
posterior distribution in Eq. (3) cannot be derived analytically, 
the realizations of four statistical moments are generated using 
the Markov Chain Monte Carlo sampler in accordance with the 
probability in Eq. (3). 

 
4.2 Conservative target output PDF 

To obtain a reliable design, the estimated probability of 
failure using the simulation model should be equal to or larger 
than the true probability of failure.  However, if the probability 
of failure is too much overestimated, the optimum cost of the 
simulation-based RBDO will unnecessarily increase.  
Therefore, the simulation model should be fit to be appropriately 
conservative from the designer’s viewpoint.  To tackle this 
issue, a conservativeness level is introduced in this paper, which 
can control how conservative the design will be.  Once the 
distribution of probability of failure is obtained as explained in 
the previous section, the quantile of the distribution can be 
interpreted as the conservativeness level as shown in Fig. 2.  
For example, 90% quantile value of distribution of probability of 
failure indicates 90% conservativeness level.  Thus, the 
probability of failure at 95% conservativeness level is higher 
than the one at 90% conservativeness level.  The probability of 
failure at the user-specified conservativeness level is selected as 
the conservative probability of failure, and the corresponding 
predicted output PDF will be chosen as a conservative target 
output PDF.  Even though the conservative target output PDF 
may not represent the data or the true output PDF accurately, it 
will provide an appropriately conservative fit to the experimental 
data.  Moreover, the conservative target output PDF will 
converge to the true output PDF as the amount of experimental 
data increases.  This convergence study will be demonstrated in 
Section 6. 
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Figure 2. Conservativeness Level: Quantile of Probability of 

Failure 
 

5. CONSERVATIVE MODEL-UPDATING OPTMIZATION 
5.1 Formulation of conservative model-updating optimization 

Model-updating optimization minimizes a validation 
measure which is defined as the distance between two 
distributions: the simulation output PDF and conservative target 
output PDF.  In order to assure a user-specified 
conservativeness level, the conservative probability of failure 
obtained from Section 4 must be maintained.  The 
mathematical formulation of conservative model-updating 
optimization is shown as: 

 

( )( ) ( )( )
( )( ) ( )

( )( )( )

2

lim

4

1minimize  ( ) ;
2

1 ;

subject to    ( ; ) ;

where , and

con
F F

L U NR

H p g q g dg

p g q g dg

p p g g p
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= −

= −

= Ρ > =

≤ ≤ ∈ ∈

∫

∫

d x d

x d

x d x d

d d d d x 

 (6) 

and p(g(x);d) is the simulation output PDF, q(g) is the 
conservative target output PDF obtained from Section 4, x is an 
input random variable vector, d is a optimization variable vector 
that includes statistical calibration parameters and statistical 
properties of bias function, g(x)>glim defines a failure region, NR 
is the number of input random variables and pF

con is the 
conservative probability of failure obtained from Section 4.  
The Hellinger similarity H(d), which is a validation measure, is 
used as an objective function to be minimized.  Here, it is noted 
that the model-updating optimization process in Eq. (6) does not 
try to exactly match the conservative target output PDF.  
Accordingly, the optimized statistical properties of bias and 
calibration parameters may not be true.  The more important 
thing is that the simulation model must have the same probability 
of failure as the conservative probability of failure; thus, an 
equality constraint is used in Eq. (6).  That is, we do not use an 
inequality constraint lest it will yield the validated model that 
provides too conservative design if we use it.  In the meantime, 
the simulation model will have the closest output distribution to 

the conservative target output PDF by minimizing the Hellinger 
similarity in the optimization process.  The optimum results 
characterize statistical calibration parameters and bias function 
by satisfying a user-specified conservativeness level.  As the 
equality constraint in Eq. (6) satisfies the conservative target 
probability of failure, the obtained statistical calibration 
parameter and the model bias provide conservative fit to the 
experimental data and prevents the underestimation of the 
probability of failure.   

 
5.2 Sensitivity using Complex Variable Method (CVM)  

The sensitivity of the validation measure (i.e., cost function) 
in Eq. (6) requires the sensitivity of the simulation output PDF 
p(g(x);d).  However, the simulation output PDF cannot be 
analytically evaluated and thus MCS is used.  As a result, a 
certain amount of numerical error (MCS error) occurs in 
evaluating the validation measure due to the MCS error.  This 
numerical error severely hinders the accurate evaluation of the 
sensitivity of the validation measure using the finite difference 
method (FDM).  As the FDM sensitivity of a validation 
measure with respect to j-th optimization variable dj can be 
formulated as Eq. (7), it has both truncation and round-off error 
inherently. 

 
( ) ( )

 
2

j j j j

j jFDM

H HH + ∆ − − ∆∂
≈

∂ ∆

d d d d
d d

. (7) 

Hence, an appropriate finite difference step size Δdj is very 
difficult to obtain, so the FDM will suffer the numerical error.  
In this paper, the complex variable method (CVM) [19] has been 
used to improve the accuracy of the sensitivity.  The CVM 
sensitivity of the validation measure with respect to j-th 
optimization variable dj can be defined as the imaginary part of 
a complex-valued function in Eq. (8).  

 
( )Im

 
j j

j jCVM

H iH  + ∆∂  ≈
∂ ∆

d d

d d
. (8) 

Unlike FDM, CVM has only truncation error, which can be 
alleviated by selecting sufficiently small step size.  Therefore, 
a stable and accurate sensitivity can be achieved.  One 
limitation of CVM is that performance measure analysis should 
be able to handle a complex variable.  However, this limitation 
is resolved by using a surrogate model for the performance 
measure.  The accuracy of the sensitivity using CVM is 
demonstrated in Section 6.   

 
6. NUMERICAL EXAMPLES 

In this section, the accuracy of the sensitivity of the 
validation measure using the CVM in Eq. (6) is verified.  In 
addition, the conservative model validation is demonstrated 
using the simply supported beam example and is compared to the 
model validation using MLE.  It is noted that the conservative 
model validation prevents the underestimation of the probability 
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of failure whereas MLE cannot.  As the amount of experimental 
data increases, it is shown that the updated simulation model by 
the conservative model validation converges to the experimental 
data. 
 
6.1 Sensitivity verification 

The example used to verify the sensitivity of the validation 
measure is a 3D solid cantilever beam model (one 8-noded 
element) as shown in Fig. 3 [20].  The thickness in the y-
direction at the free end (right end in Fig. 3) of the beam model 
is a random design variable, X in Fig. 3, which follows N~(1, 
0.052).  The mean μθ and standard deviation σθ of Poisson ratio 
θ are statistical calibration parameters.  Hence the optimization 
variable vector d of model-updating optimization in Eq. (6) is 
[μθ, σθ].  The Young’s modulus is 200,000 lb/in2 and the applied 
pressure load is 20 lb/in2.  The output g in Eq. (6) is the von-
Mises stress of the beam at element centroid and failure occurs 
when the von-Mises stress is larger than 50ksi.  The validation 
measure H(d) in Eq. (6) is defined as the distance between two 
PDFs of von-Mises stress.  The first PDF p(g(X);d) is the 
simulation output PDF which is obtained using finite element 
(FE) analysis with the random design variable X and Poisson 
ratio θ which follows N(μθ, σθ2).  The other one q(g) is the target 
von-Mises stress PDF obtained at 95% quantile from the 
distribution of the probability of failure given ten points of 
experimental data.  The data is generated by adding the 
hypothetical bias function exp(1.1X) to the FE analysis with the 
true distribution of the Poisson ratio N~(2.3, 0.082).  

The sensitivity of the validation measure with respect to the 
statistical calibration parameter μθ is computed for different 
perturbation sizes as shown in Table 1.  Sensitivities of the 
validation measure are calculated at [μθ, σθ] = [2, 0.1].  It is 
found that central FDM (CFDM) is extremely sensitive to the 
perturbation size while CVM is stable for any perturbation size.  
Thus, it can be seen that appropriate perturbation size of CFDM 
is hard to find.  When the perturbation size is 7%~10%, the 
sensitivity using CFDM with respect to μθ is close to the result 
from CVM.  Therefore, it implies that CVM provides accurate 
and stable sensitivity.  

 

 
 

Figure 3. 3D Eight-node Cantilever Beam Model 
 

 
 
 
 

Table 1. Comparison of Sensitivity of Validation Measure 
 

Perturbation 
size 

/dH d θµ  

CVM (A) CFDM (B) Agreement 
(A/B×100) 

0.001% −0.06883 22.40762 -0.31% 
0.01% −0.06868 −0.81769 8.40% 
0.1% −0.06876 −0.41942 16.39% 
1% −0.06873 −0.08002 85.89% 
4% −0.06870 −0.06368 107.88% 
7% −0.06867 −0.06633 103.53% 

10% −0.06855 −0.06893 99.45% 
 
6.2 Conservative model validation: simply supported beam 

To demonstrate the proposed conservative model validation 
approach, a simply supported beam [7, 8] shown in Fig. 4 is 
considered as a numerical example in this section.  To test the 
developed method in this paper, the original beam problem in 
Refs. 7 and 8 has been modified to have random design variables.  
The modified beam has a fixed length (2m), while its rectangular 
cross-section has random width and height.  In addition, the 
static load, which is applied at the center of the beam, is a random 
parameter as well.  Young’s modulus is an unknown input 
variable whose statistical parameters are calibration parameters.  
The input random variables used in this example are defined in 
Table 2.  The response of this simply supported beam example 
is the deflection at midpoint of the beam. 

As shown in Fig. 5, two different stress-strain curves are 
used to stand for a simulation model and a physical experiment, 
respectively.  Firstly, the left curve in Fig. 5 represents a 
simplified material (linear hardening for plastic region σ=σY+Aε, 
where σY=225MPa and A=4100MPa).  The surrogate response 
for the FE model using the simplified material has been created 
using the Dynamic Kriging (DKG) method [21, 22] and treated 
as a simulation model.  It has been demonstrated that the DKG 
is the most accurate metamodeling method by having the 
smallest error compared to other metamodels [23, 24].  
Secondly, the right curve in Fig. 5 indicates more realistic 
material (a power law [25] for plastic region with σ=σY+Cεn, 
where σY=225MPa, n=0.5 and C=2068MPa).  The FE model 
using this more realistic material is treated as the true physical 
model that represents experiments.   

 
 

 
Figure 4. Simply Supported Beam Model 
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Table 2. Information of Input Random Variables 
 

Input Random Variable Distribution 
Type Mean Standard 

Deviation 
Load (N) Normal 1900 40 

Width (mm) Normal 52.5 1.6 
Height (mm) Normal 20 0.5 

True Young’s modulus 
(GPa) Normal 206 4 

Initial Guess of Young’s 
modulus (GPa) Normal 220 8 

 
 

 
 

Figure 5. Stress-strain Curve (left: simulation model, right: 
experiments) 

 
The simulation output PDF using the initial guess of 

Young’s modulus and the true output PDF using the true 
distribution of Young’s modulus are illustrated in Fig. 6.  
Failure occurs when the deflection at midpoint is larger than 
51.5mm as shown in Fig. 6.  In comparison with the true 
probability of failure (11.09%), it can be noted that the estimated 
probability of failure using the simulation model (3.24%) is 
underestimated at the current design.  This implies that the 
simulation-based design could fail to the actual product testing 
due to the underestimated probability of failure.  Thus, it calls 
for the conservative model validation method. 

 

 
 

Figure 6. True and Simulation Output PDFs 
 

In this example, we assume that the simulation output PDF 
is available because simulation responses using the Dynamic 
Kriging model are cheap and can be obtained as many as 
required.  However, the true output PDF in Fig. 6 cannot be 
obtained in reality; typically only a small amount of data is 
available for the model validation due to the expense of full-scale 

product testing.  Therefore, the true probability of failure is 
usually unknown.  To test if the developed model validation can 
tackle this issue, five experimental data points, which is a very 
small number, were randomly drawn from the true output PDF.  
Only the selected five data points are used for the model 
validation to demonstrate that the updated simulation model 
provides a conservative fit to the true output PDF. 

Additionally, the result of the proposed model validation is 
compared to that from the model validation using MLE.  For 
both methods, mean and standard deviation of Young’s modulus 
are the statistical calibration parameter.  The model bias δ(x) in 
Eq. (1) is assumed to follow normal distribution.  The means 
and standard deviations of Young’s modulus and model bias are 
four optimization variables in the model-updating optimization 
process of Eq. (6).  Model validation using MLE does not 
include Bayesian analysis in Section 4 and uses only given data, 
without considering the uncertainty due to the lack of data.  The 
conservative model validation using the proposed conservative 
model validation has been carried out using two different 
conservativeness levels of 90% and 95%.  Model validations 
using both methods (the conservative model validation and 
MLE) have been performed 10 times for different datasets of five 
data points (which were drawn from the true output PDF). 

The estimated probabilities of failure using the updated 
simulation models are shown in Table 3.  As for the model 
validation with MLE, eight datasets out of ten (underlined in 
Table 3) underestimate the probabilities of failure.  On the other 
hand, the conservative model validation (I) using 90% 
conservativeness level leads to the conservative design except 
for datasets 2, 7 and 8.  When the conservativeness level is large 
(95%), the conservative model validation (II) leads to a safe 
design except for dataset 8, but maybe overly conservative 
overall compared to the true value of probability of failure.  
Even though the updated simulation model using the 
conservative model validation may not be exactly accurate, it 
prevents the danger of underestimating the probability of failure.  
Therefore, the conservative model validation is necessary when 
a small amount of experimental data is provided. 

Output PDFs of the updated simulation model using both 
methods are shown in Fig. 7.  Three datasets (1, 8 and 10) are 
used to present the updated simulation output PDFs.  As shown 
in Fig. 7(a), dataset 1 is negatively skewed whereas the true 
output PDF is positively skewed.  It is noted that this biased 
data leads to overly conservative results with limited data.  
Hence, the validated simulation model obtained from both 
methods overestimates the probability of failure.  Dataset 8 
given in Fig. 7(b) is extremely positively skewed; four out of five 
data points are clustered around the left tail of the true output 
PDF.  In this situation, the probability of failure obtained from 
the model validation using MLE is merely 1.5%.  Even the 
conservative model validation 2 using 95% conservativeness 
level result is not conservative enough (10.06%) compared to the 
true probability of failure (11.09%).  However, it is clearly 
shown that the conservative model validation tends to be safer 
than the model validation with MLE.  As shown in Fig. 7(c), 
dataset 10 is sparsely located and positively skewed.  The 
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updated simulation model using MLE is less conservative 
(4.92%) than the true one, so the actual testing of a product 
designed based on the simulation model would not be safe.  On 
the other hand, the conservative model validation provides a 
reliable simulation model by estimating the probability of failure 
conservatively (12.29% or 16.24%).  Therefore, based on the 
model validation results under different data sets, it indicates that 
obtained experimental data must be appropriate and unbiased.  
If given small amount of experimental data is biased and does 
not represent the true output PDF well, even the conservative 
model validation falls into the underestimated probability of 
failure like data set 8. 

 
Table 3. Estimated Probability of Failure of Updated 

Simulation Model under Different Data Sets 
 

Dataset 

Conservative 
model 

validation 
(I)a 

Conservative 
model 

validation 
(II)b 

Model 
validation 

using 
MLE 

True 
PF 

1 29.87% 35.52% 18.18% 11.09% 
2 9.82% 12.93% 4.10% 11.09% 
3 11.51% 14.45% 4.70% 11.09% 
4 18.90% 22.35% 9.18% 11.09% 
5 21.20% 26.19% 8.72% 11.09% 
6 33.29% 39.90% 18.72% 11.09% 
7 8.59% 11.40% 4.03% 11.09% 
8 7.40% 10.06% 1.50% 11.09% 
9 28.83% 43.48% 8.84% 11.09% 

10 12.29% 16.24% 4.92% 11.09% 
a 90% conservativeness level 
b 95% conservativeness level 

    

 
(a) Dataset 1 – Negatively Skewed Data (skewness: -0.6854) 

 

 
(b) Dataset 8 – Extremely Positively Skewed Data (skewness: 

1.0651) 

 
(c) Dataset 10 – Positively Skewed Data (skewness: 0.7583) 

 
Figure 7. Comparison with Conservative Model Validation 

and MLE under Various Datasets 
 
 

6.3 Convergence study: the effect of experimental data size 
In Section 6.2, we showed that the conservative model 

validation can provide an overall conservative fit of the true 
output PDF even with very limited data.  On the other hand, the 
model validation with MLE has a high risk of underestimated 
probability of failure.  However, certain biased data sets seems 
overly conservative when the conservative model validation as 
described in Section 6.2 is used.  Hence, it is questionable 
whether it is indeed overly conservative or it is inevitable due the 
limited number of data that are biased.  In this section, the 
amount of experimental data of the simply supported beam 
example is increased up to 4,000.  Ten different amounts of data 
(5, 10, 50, 100, 300, 500, 1000, 2000, 3000 and 4,000) are 
considered to test the effect of experimental data size.  
Conservative model validation in this convergence test 
consistently used 90% conservativeness level.  The estimated 
probability of failure of the updated simulation model with 
different data sizes is shown in Table 4.  It is found that the 
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estimated probability of failure from both methods converges to 
the true probability of failure as the experimental data size 
increases.  It can be noticed that the conservative model 
validation in the case of 4000 experimental data size is still not 
enough to be close to the true probability of failure.  
Theoretically, the posterior distribution of probability of failure 
is nothing but Dirac Delta measure when infinite experimental 
data size is available; however, only finite size of experimental 
data can be numerically used.  Therefore, the conservative 
model validation using 90% conservativeness level tends to be 
conservative (11.95%) than the true value (11.09%) while the 
output PDF at posterior mean (11.42%) of distribution of 
probability of failure estimates closer to the true value. 

In addition, Fig. 8 shows that the updated simulation output 
PDF obtained from both methods converges to the true output 
PDF as the experimental data size increases.  Therefore, it can 
be seen that both conservative model validation and MLE can 
provide an accurate simulation output PDF with a large amount 
of experimental data.  Also, it can be found that the overly 
conservative results in Section 6.2 are due to the extremely small 
amount of data.  Furthermore, in reality, actual product testing 
is extremely expensive in order to get a large amount of 
experimental data.  Thus, accurate simulation output PDF 
cannot be obtained with a small amount of experimental data.  
In this paper, it is concluded that conservative estimation of 
output PDF is essential to build a safe design when insufficient 
experimental data is provided.  Despite that the increased cost 
by a conservatively designed product, only few actual product 
testing can be used, which may lead to cost-effectiveness overall.  
Thus, the user can have trade-off option between the testing cost 
and optimized product design. 

 
 

 
Table 4. Estimated Probability of Failure of Updated 

Simulation Model under Different Data Sizes 
 

Data size Conservative 
model validation 

Model 
validation using 

MLE 
True PF 

5 18.90% 9.18% 11.09% 
10 9.44% 5.35% 11.09% 
50 11.01% 7.75% 11.09% 

100 12.80% 10.96% 11.09% 
300 13.73% 13.24% 11.09% 
500 12.13% 11.92% 11.09% 

1000 11.68% 11.26% 11.09% 
2000 11.64% 11.52% 11.09% 
3000 11.98% 11.47% 11.09% 
4000 11.95% 11.60% 11.09% 

 
 

 
(a) 5 Experimental data 

 

 
(b) 50 Experimental data 

 

 
(c) 1000 Experimental data 
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(d) 3000 Experimental data 

 
Figure 8. Effect of Different Experimental data Sizes on 

Simulation Output PDF 
 

7. DISCUSSIONS AND CONCLUSIONS 
In this paper, we proposed a conservative model validation 

approach that assures a reliable and conservative simulation 
model even with a lack of experimental data.  The key feature 
of the proposed method is that it investigates and quantifies the 
uncertainty induced by the limited experimental data.  Under 
the uncertainty, predicted output PDF and probability of failure 
become uncertain and subjective.  To tackle this issue, a 
conservative estimation to obtain the target output PDF and 
probability of failure for validation have been successfully 
developed using Bayesian analysis.  Then a model-updating 
optimization has been successfully applied using the complex 
variable method (CVM) for sensitivity analysis to provide a 
conservative fit of the simulation output PDF to the conservative 
target output PDF.  The optimization process minimizes the 
distance between the simulation output PDF and the 
conservative target output PDF by satisfying the conservative 
probability of failure.  The principle of this proposed model 
validation approach is to achieve reliable and conservative 
simulation-based design by estimating the probability of failure 
of the simulation model at a user-specified conservativeness 
level.  The result using the developed conservative model 
validation was compared to the result using MLE, which has 
been widely used in the model validation area.  It was shown 
that the model validation using MLE fails to avoid the 
underestimation of the probability of failure.  On the other 
hand, it was demonstrated that the conservative model validation 
proposed in this paper provides conservative and safe simulation 
model even with a lack of experimental data.  As the simulation 
model is not perfect, although the characterized calibration 
parameter and bias may not be exactly accurate, it provides 
conservative fit to the true output PDF.  Therefore, a product 
design with the simulation model, which is updated using the 
developed method, will be a reliable design even with a lack of 
experimental data.  The conservative model validation 

presented in this paper can be applied to a wide variety of 
physical systems for design purposes.  Future work will extend 
to model validation under design changes so that it can be 
integrated with RBDO.   
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