1. REPORT DATE (DD-MM-YYYY)
February 2015

2. REPORT TYPE
Briefing Charts

3. DATES COVERED (From - To)
February 2015-March 2015

4. TITLE AND SUBTITLE
Epitrochoid Power-Law Nozzle Rapid Prototype Build/Test Project

5a. CONTRACT NUMBER
In-House

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER
P0E64847

6. AUTHOR(S)
Eric Paulson

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory (AFMC)
AFRL/RQRC
10 E. Saturn Blvd.
Edwards AFB, CA 93524-7680

8. PERFORMING ORGANIZATION REPORT NO.

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory (AFMC)
AFRL/RQR
5 Pollux Drive
Edwards AFB CA 93524-7048

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)
AFRL-RQ-ED-VG-2015-084

12. DISTRIBUTION / AVAILABILITY STATEMENT
Distribution A: Approved for Public Release; Distribution Unlimited.

13. SUPPLEMENTARY NOTES
Briefing charts presented at Senior design project meeting, 16 March 2015. PA#15122

14. ABSTRACT
Briefing charts

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unclassified</td>
<td>Unclassified</td>
<td>Unclassified</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT
SAR

18. NUMBER OF PAGES
14

19. NAME OF RESPONSIBLE PERSON
Eric Paulson

19b. TELEPHONE NO (include area code)
661-525-5841

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
Epitrochoid Power-Law Nozzle
Rapid Prototype Build/Test Project

Mr. Eric J. Paulson-Vehicle Analyst
Rocket Propulsion Division
Combustion devices Branch
Systems Analysis Group

Approved for public release; distribution is unlimited. PA clearance # 15122
Epitrochoid Power-Law Nozzle Build/Test Overview

• **Who:**
 – **PM:** Eric Paulson RQRC Systems Analysis Group
 – Partners: Dr. Shelley, Lancaster University Center

• **What:** 6-month Rapid Prototype Build/Test N_2 cold flow prototype of Epitrochoid Power-law Nozzle (EPN)

• **Where:** Lancaster University Center (LUC)

• **Why:**
 – Demo initial proof of concept for new 3D multiple plume nozzle
 – Demo new cold flow nozzle manufacture/test approach

• **Cost:** To Be Determined (TBD)
Economics of Decreasing Annual Rocket Engine Production

Approved for public release; distribution is unlimited. PA clearance # 15122.
Epitrochoid Power-Law Nozzle Build/Test
Build on SpaceX Multiengine Approach

Engines: Merlin 1D on Falcon 9 v1.1 (Photo SpaceX)

Approved for public release; distribution is unlimited. PA clearance # 15122.
• Falcon 9 launch video here
Epitrochoid Power-Law Nozzle Build/Test
A Type of Radially Lobed Nozzle

Lobed Nozzle Extension for Better Gas Dynamic Incorporation of Modular Thrust Cells Exhaust

- Implementation Requires a Parametric Design of Lobed Shape
- Epitrochoid Planar Curve Fits the Bill

Parameterized by R_1, R_2, k, and d

- R_1: primary circle radius
- R_2: secondary circle radius
- k: ratio of R_1/R_2
- d: normalized generating parameter

Approved for public release; distribution is unlimited. PA clearance # 15122.
A power-law relationship for R1 primary circle radius as function of x defines a semi-infinite surface from x=0 plane. Adding x_{min} & x_{max} bounds creates a diverging radially lobed nozzle extension shape.
Typical Nozzle Test Article Costs

• Multiple nozzle cold-flow testing using traditional manufacture would be prohibitive

 — Typically 1-3 test articles tested over 8 week test period in cold-flow facility

 — Currently: $30-100k manufacturing cost per metallic test nozzle depending on complexity

 — $30k for mechanical design of test article

• NASA-MSFC Rapid Prototyping Demo costs: $3-5K for in-house manufacture & process development, per nozzle

Manufacturing cost reduction of 90-95% per nozzle test article
NASA-MSFC Lessons
New Material Requires New Design Approach

• Weaker than metal
 — distribute flange loads
• Thermal insulator instead of conductor
 — account for thermal gradients
• Avoid multipart designs with lots seals:
 — build in the passages
 — “Cartridge” test article and housing

Approved for public release; distribution is unlimited. PA clearance # 15122.
• Objectives

 ─ Develop extremely cheap and fast method to build experimental test nozzles
 ─ Develop extremely cheap and fast test rig to bench-level sea-level cold flow test
 ─ Develop cheap/fast method to build lobed Epitrochoid Power-law (EP) nozzle extension
 ─ Demo proof-of-concept cold flow testing of the EP nozzle
Takeaway Questions
Why is This Innovative

• Some related work occurring in industry: metallic additive mfgr demoed/used for small thrust cells, propellant injectors and valve housings

• Cold flow nozzles are being built same way as they were in 1960.
 — EP nozzle: a new way to utilize features of high performance engines advances and the economies of scale of the multi-engine approach of SpaceX Falcon 9
 — Rapid Prototype cold flow testing:
 • Enable order-of-magnitude cost reduction for build
 • Enable extremely rapid, affordable design exploration for 3D classes of nozzles

Approved for public release; distribution is unlimited. PA clearance # 15122.
Takeaway Questions
What is Success?

• Lots of off ramps to declare success
 – Feasible new quick/cheap cold flow test design approach (criteria=better than current approach with usable wall pressure data)
 – Feasible to build axisymmetric cold flow nozzle test articles using plastic-based inexpensive rapid additive manufacturing
 – Feasible to rapid prototype lobed nozzle extension
 – Feasible lobed nozzle extension
 • Criteria=demo proof-of-concept for stable full-flowing lobed nozzle at sea level

Approved for public release; distribution is unlimited. PA clearance # 15122.
Why Choose to Work This Project?

• Fame, glory, and the accolades of your peers…

• Opportunity to legitimately call yourself a rocket engineer

• Chance to work on something cutting edge
 – No other teams in US working on low cost cold-flow test nozzle designs currently
 – The lobed epitrochoid power-law nozzle concept is new and original: you’re looking at the inventor

• Opportunity to publish/present the initial results for what may continue into a bigger program

Approved for public release; distribution is unlimited. PA clearance # 15122.