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1. Introduction 

Typically, state estimators are designed to blend the information present in a model 
of how the states progress through time, called the process model, with 
measurements of the system outputs. For example, consider the case of a linear 
discrete-time Kalman filter for estimating a linear time-invariant system with a 
process model given by: 

 1 1 1k k k k− − −= + +x Fx Bu w . (1) 

Where the noise input kw is a white random sequence and the deterministic input 
vector 1k−u is known. This model is used to form the state prediction 1ˆ k

−
+x from the 

last corrected state estimate 1ˆ k
+
−x . That is: 

 1 1ˆ ˆk k k
− +

− −= +x Fx Bu . (2) 

The Kalman filter seeks to blend this prediction with a measurement of the current 
state, which is corrupted by the noise term kυ : 

 k k k= +z Hx υ . (3) 

It accomplishes this task by computing a Kalman gain K so that when the corrected 
state is calculated via: 

 ( )ˆ ˆ ˆk k k k
+ − −= + −x x K z Hx , (4) 

the covariance of the new estimate error is minimized.1 In some applications 
however, there are no measurements present, but there is more than one way to 
predict the state based on the previous estimate. Suppose there is a second process 
model: 

 1 1 1k k k k− − −= + +x Gx En v , (5) 

with noisy inputs kv and known deterministic inputs 1k−n . The problem is to combine 
the 2 predictions , 1 1ˆ ˆk f k k

− +
− −= +x Fx Bu and , 1 1ˆ ˆk g k k

− +
− −= +x Gx En so that the combined state 

estimate has the smallest variance. This situation does not fit the format for which 
observability is defined. At no point is the true state kx mapped to a measurement. 
This is different from the multiple model estimation problem, which uses 
measurement residuals to make an optimal guess at which process model is correct. 
The problem discussed here is most similar to decentralized Kalman filtering, 
which combines several independent Kalman filter estimates, but all of the Kalman 
filters use the same propagation equations. The main issue tackled in decentralized 
filtering is dealing with networks of sensors that may or may not have access to the 
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“central” state estimate and covariance matrix and the various timing and data 
transfer issues associated with such systems.   

This problem could present itself in navigation applications. In the example used 
here, one process model comes from projectile flight dynamics, while another 
process model comes from inertial measurement unit (IMU) integration. The 
primary motivation for this work is to improve on the methodologies used in Fairfax 
and Fresconi,2 which addresses this application in more detail. Another application 
would be the blending of 2 uncorrected inertial measurement units, which is 
becoming more prevalent as the size and cost of microelectromechanical system 
(MEMS) inertial devices continues to decrease.  

In the next section, an estimator is derived for the simple linear 2-process-model 
system described in the introduction. In Section 3 a simulation example is given 
that blends a dynamic model of a ballistic projectile with an IMU output. Section 4 
discusses the conclusions and future work.  

2. Estimator Derivation 

The simple scenario involves process model 1, which is given above in Eq. 1, and 
has an initial state error covariance of: 

 1, 1, 1,
T

k f k f k f
+
− − − =  P E e e , (6) 

and process noise that is normally distributed as: 
 
 ( )1 ~ ,k wN−w 0 Q . (7) 

The error vector ke is defined as the true state minus the estimated state: 

 ˆk k k= −e x x . (8) 

This must be combined with process model 2, which is given above in Eq. 5 and 
has an initial state error covariance of: 

 1, 1, 1,
T

k g k g k g
+
− − − =  P E e e , (9) 

and process noise that is normally distributed as: 

 ( )1 ~ ,k vN−v 0 Q . (10) 

An estimator that blends these 2 process models is hypothesized to have the form: 

 ( )1 1 1 1 1 1ˆ ˆ ˆ ˆk k k k k k k
+ + + +

− − − − − −= + + + − −x Fx Bu K Gx En Fx Bu . (11) 
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The goal is then to find what K must be to minimize T
k kE + +  e e . The expression for 

the estimator error can be determined by subtracting the estimated state from the 
true state: 

 ( )1, 1 1 1 1

ˆ

ˆ ˆ
k k k

k f k k k k k

+ +

+ + +
− − − − −

= −

= + − + − −

e x x

Fe w K Gx En Fx Bu
. (12) 

The term inside the parenthesis can be written in terms of the errors by noting that: 

 1 1 1 1 1 1k k k k k k k k− − − − − −− + = − − − + + + =x x Gx En v Fx Bu w 0 . (13) 

The new expression for the estimator error is: 

 ( )1, 1 1 1 1 1k k f k k k k k
+ + + +

− − − − − −= + + + − −e Fe w K Ge v Fe w . (14) 

Using the assumption that the process noise from the 2 systems is uncorrelated leads 
to the simplification: 

 T TE E   = =   wv vw 0 . (15) 

A second assumption is that noise terms are uncorrelated with the current state 
errors: 

 T T
k k k kE E   = =   e v e w 0 . (16) 

There are 2 situations under which the estimator is being used. The first situation is 
that the estimator has been continually blending the 2 process models. In this case 
the errors at the previous step are identical, and have the same covariance, that is: 

 1 1 1
T

k k kE + + +
− − −  = e e P . (17) 

The estimator covariance is then: 

 ( ) ( )
( )

1

1 1 1 1

1 1 1 1

, T T
k k k w

T T T T T
k w k k w k

T T T T T
k k k k w v

E + + +
−

+ + + +
− − − −

+ + + +
− − − −

  = + 

+ − − + + − − +

+ + − − + +

e e FP F Q

FP F Q FP G K K FP F Q GP F

K FP F GP G GP F FP G Q Q K





. (18) 

The value of K is determined by taking the derivative of the trace of the estimator 
covariance and solving for the zero slope condition, that is: 

 
( )

( )
( )

1 1 1 1

1 1

2

2

T
k k T T T T

k k k k w v

T T
k w k

d tr E

d

+ +

+ + + +
− − − −

+ +
− −

     = + − − + +

− + −

e e
K FP F GP G GP F FP G Q Q

N
FP F Q FP G

. (19) 

The estimator gain is therefore: 
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    ( )( ) 1

1 1 1 1 1 1
T T T T T T

k w k k k k k w v

−+ + + + + +
− − − − − −= + − + − − + +K FP F Q FP G FP F GP G GP F FP G Q Q . (20) 

Substituting this into parts of Eq. 12 simplifies the estimator covariance expression 
to: 

 ( )1 1 1
T T T

k k w k w k
+ + + +

− − −= + − + −P FP F Q K FP F Q GP F . (21) 

In some cases the 2 process models are identical, such as when blending 2 IMUs. 
This simplification reduces the gain to a simple function of the process noise 
covariance matrices: 

 ( ) 1
w w v

−= +K Q Q Q . (22) 

The covariance matrix update is then: 

 ( ) 1
1

T
k k w w w v w

−+ +
−= + − +P FP F Q Q Q Q Q . (23) 

The second situation is that the process models have been running independently 
from each other up until the current time. In this case, their errors are assumed to 
be uncorrelated:3 

 1, 1, 1, 1,
T T

k f k g k g k fE E− − − −
− − − −   = =   e e e e 0 . (24) 

The estimator gain is: 

 
( )( )
( )

1

1, 1, 1,

1

, , ,

T T T
k f w k f k g w v

k f k f k g

−− − −
− − −

−− − −

= + + + +

= +

K FP F Q FP F GP G Q Q

P P P
. (25) 

The covariance update is: 
 , ,k k f k f

+ − −= −P P KP . (26) 

3. Simulation Example 

To verify the results in the above section, a simulation experiment was performed 
on 2 simple process models with known statistics. The first is a point mass flight 
dynamic model of a ballistic projectile that is driven by a white noise forcing 
function. The next model is a simplified inertial measurement model, in which the 
accelerations of the projectile are numerically integrated after adding white noise 
to them.  

3.1 Flight Dynamic Model 

The dynamic model for the ballistic projectile has the form: 



 

5 

 
2 2

0 0
2

xx z ACx x
z z gm

ρ +     
= − + +     

     
w

 

 
. (27) 

Where the following constants are defined below in the table:  

Table Nomenclature and values used for simple dynamic model 

Name Symbol Value Used Units 
Air Density ρ  1.2 kg/m3 

Cross-Sectional Area A  20.155 4π  m2 

Axial Force Coefficient 0xC  0.2 nondimensional 
Mass m  40 kg 
Gravitational 
Acceleration 

g  9.81 m/s2 

 

The initial conditions for the projectile state vector are given by: 

 0

0 
0 

500
500

x m
z m
x m s
z m s

   
   
   = =   
   
   −   

x




. (28) 

The dynamic model is nonlinear. Normally the equations of motion from Eq. 27 
would be integrated numerically with a Runge-Kutte integration algorithm. 
However, to keep the statistics more “known” in both models, a simple Euler 
integration algorithm is used to form the discrete time model: 

 

1

11

2 2
1 1 1 0

11
1

2 21 1 1 0
1

2

2

k

kk k

k k k k x
kk

k k

k k k k x
k

x
zx x

z z x z AC txx x m
z z x z AC

z g
m

−

−−

− − −
−−

−

−
− −

−

  
  

      
            ρ += + + ∆      
      
          ρ +  +

    

w





 


 

   


  . (29) 

In order to propagate the covariance of the model, the state transition matrix is 
formed by taking the jacobian of the state-propagation equations with respect to the 
states: 

 
( )

2
x0 x0 x0 1 1

x0 1 1 x

2
1 1
2 2 2 21

1 1 1 1

2 2
1 1

2 2 2 2
1 1 1 1

0 x0

1 0 t 0
0 1 0 t

2 C t C t C t0 0 1
2 2

C t C t 2 C t0 0 1
2 2

k k

k
k k k k

k k

k

k

k

k

k

k

k

k

A x A z A x z
m x z m x z

A x z A x A z
m x z m x z

t
− −

−
−

−

− − −

− −

− − − −

−

− −

∆
∆

∆ ρ + ∆ ρ ∆ ρ
− −

+ +

∆ ρ ∆ ρ + ∆ ρ
− −

 
 
 
 
 ∆

+

=
 
 
 
  +

  

  

  

  

F
 . (30) 



 

6 

The process noise covariance matrix was determined by using the following 
equation, although the resulting expression is too lengthy to display: 

 ( ) ( )
0

t T
w ct t d

∆
= ∆ − τ ∆ − τ τ∫Q F Q F . (31) 

The cQ matrix is given by:4 

 2

2

0 0 0 0
0 0 0 0
0 0 0
0 0 0

c
w

w

t

 
 
 = ∆
 σ
 

σ 

Q . (32) 

An example 10-second trajectory is plotted in Fig. 1. 

 

Fig. 1 Example dynamic model ballistic trajectory 

An ensemble of 100 “true” trajectories was run with 10wσ = m/s2 by integrating  
Eq. 29. An estimated trajectory was run by integrating: 

 

1

1

2 2
1 1 0, 1,

1

2 2
1 1 0

1

ˆ

ˆ

ˆ ˆˆ ˆ ˆ
2

ˆ ˆ
ˆ

2

k

k

k k xk f k f
k

k k x
k

x

z

x z AC tx
m

x z AC
z g

m

−

−

− −−
−

− −
−

 
 
 
 
 ρ += + ∆ 
 
 
ρ + +  

x x





 


 


. (33) 
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The resulting root sum squared (rss) deviation from the nominal trajectory run with 
zero noise was compared to the1σ values taken from the diagonals of the propagated 
error covariance matrix. The 2 results are shown in Fig. 2. The figure shows that 
the covariance propagation is modeled consistently with the random process being 
simulated. 

 

Fig. 2 Predicted vs. measured error standard deviation for the dynamic model 

3.2 Inertial Measurement Model 

The inertial measurement model consists of integrating accelerometer signals ˆxa and
ˆza : 

 ˆ 0
ˆ

x

z

ax
az g
    

= + +     
    

v



. (34) 

The true accelerometer values xa and za are generated from the dynamic model 
equations: 

 
2 2

0

2
kx k k x

k
kz

xa x z AC
za m

ρ +   
= − +   

   
w

 


. (35) 

Each simulation of the dynamic model therefore also produces a noiseless 
accelerometer trajectory, which is then corrupted with noise: 
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 , , ,

, , ,

ˆ
ˆ

x k x k x k

z k z k z k

a a v
a a v
     

= +     
     

, (36) 

where each noise term ,x kv and ,z kv is normally distributed with zero mean and 
standard deviation vσ . 

Although the accelerometers are generated using the dynamic model equations, in 
practice the dynamic model is usually not known or utilized when integrating an 
IMU. Using this modeling approach, the accelerometers act as deterministic inputs: 

 ( ), 1,

0 0 0
ˆ0 0 0
ˆ0 0

0

x
k g k g k

z

a
t

at
t tg

−

   
       = ∆ + + +    ∆       ∆ ∆   

x G x v , (37) 

 ( )

1 0 0
0 1 0
0 0 1 0
0 0 0 1

t
t

t

∆ 
 ∆ ∆ =
 
 
 

G . (38) 

Similar to the dynamic model case, the discrete time process noise covariance is 
calculated from: 

 ( ) ( )
0

t T
v ct t d

∆
= ∆ − τ ∆ − τ τ∫Q G Q G . (39) 

The cQ matrix is given by: 
 

 2

2

0 0 0 0
0 0 0 0
0 0 0
0 0 0

c
v

v

t

 
 
 = ∆
 σ
 

σ 

Q . (40) 

Each estimated trajectory from the IMU model is calculated by integrating: 
 

 ( ), 1,

0 0 0
ˆ0 0 0

ˆ ˆ
ˆ0 0

0

x
k g k g

z

a
t

at
t tg

−

   
       = ∆ + +    ∆       ∆ ∆   

x G x . (41) 

The ensemble standard deviation is compared to the standard deviation from the 
propagated covariance when 10vσ = m/s2. The results are shown in Fig. 3. 
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Fig. 3 Predicted vs. measured error standard deviation for the IMU model 

3.3 Estimator Performance 

The multiple process model estimator (MPME) from Section 2 was used to 
combine the predicted dynamic model trajectory from Eq. 33 with the predicted 
IMU trajectory from Eq. 41. Figure 4 verifies that the covariance update given in 
Eq. 15 is consistent with the actual measured error covariance. 



 

10 

 

Fig. 4 Predicted vs. measured error standard deviation for the state estimator 

Fig. 5 shows that for this example, the MPME produces a lower ensemble variance 
than either independent process model. The simulation example presented in this 
section was also run with different values of wσ and vσ . In all cases the estimator has 
less error than either independent process model on average, but the improvement 
is more noticeable the closer the 2 noise values are to each other. The MPME was 
also run with the process models flipped—that is, 

( )1 1 1 1 1 1ˆ ˆ ˆ ˆk k k k k k k
+ + + +

− − − − − −= + + + − −x Gx En K Fx Bu Gx En —with identical results.5 
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Fig. 5 Comparison of the ensemble standard deviation values from the 2 independent 
process models and the combined state estimate 

4. Conclusions 

A multiple process model estimator was designed to blend the predictions of 2 
separate discrete-time process models when no measurements are available to 
obtain an optimal state estimate. The estimator was validated with a simple example 
with known statistics in which one process model based on projectile flight 
dynamics was combined with a separate process model based on inertial 
measurement integration. Although the systems were greatly simplified, they were 
useful for verifying the estimator. It was found that on average, the estimator 
produces state estimates with lower variance than either independent process 
model. These results should prove useful in situations where the process is truly 
random and the statistical distributions of the forcing functions are known. 

The case where the dynamic model is not actually driven by white noise was not 
addressed here. It is expected that the marginal improvements gained by blending 
2 noisy process models will be lost if either of the models includes deterministic 
modeling errors.
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3. The - superscript denotes that the errors have not been through any kind of 
“corrector” step.    

4. The t∆ term comes from the fact that Euler integration is being used to 
propagate the model. 

5. The entire systems where switched including process noise covariance 
matrices. The point of the exercise was to show that it doesn’t matter which 
process model is considered model 1 and which is model 2. 
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