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1. Summary
In spring 2012, the Defense Advanced Research Projects Agency (DARPA)  announced the DARPA 
Robotics Challenge (DRC).  In response, TORC Robotics, Inc (TORC®) led the proposal effort and
gathered expertise from across the globe. Team ViGIR – the Virginia-Germany Interdisciplinary Robotics 
team – was named in recognition of its original members. TORC Robotics (Blacksburg, VA) led the team 
and worked on the robot control interface, communications, and behaviors. Researchers at TU Darmstadt 
led development of the onboard software, including perception, behaviors, and motion planning. 
Researchers at Virginia Tech led the Operator Control Station (OCS) development. The initial proposal 
identified researchers from Cornell University and Oregon State University as future contributors. 

DARPA selected Team ViGIR as one of 11 funded Track B participants. Team ViGIR – at this point 
consisting of TORC, TU Darmstadt, and Virginia Tech – attended the project kickoff in October 2012, 
and began work on developing our software for the DARPA Virtual Robotics Challenge (VRC) held in 
June 2013. Team ViGIR developed its software in parallel with both the simulation system and the Atlas 
robot design. In addition to the funded Track B teams, another 115 teams registered as unfunded Track C 
teams; 26 teams passed the initial qualification tests. Team ViGIR finished with 27 points, which placed 
sixth out of 22 teams that actually scored points in the VRC. 

The VRC results qualified Team ViGIR to receive an Atlas robot 
built by Boston Dynamics, Inc (BDI). Team ViGIR attended robot 
training in July 2013, and began set up of their lab. Researchers 
from Oregon State University joined Team ViGIR at this time, and 
focused on the hand control and grasping interface. The team 
modified their VRC software base to accommodate changes to the 
robot design and software interface. After receiving their Atlas 
robot on August 27, 2013, the team began intensive experiments 
and preparation for the December 2013 Trials. At the trials, Team 
ViGIR scored eight points, which tied them for ninth place. Figure 
1 shows Florian, named for the German patron saint of first 
responders1, attempting to attach the hose after scoring two points
in the hose task. A detailed system overview paper, which 
discussed the results of the DRC Trials, was published in [1] 
(Appendix A). 

Initially, this score missed the cut off for continued participation in 
the DRC. After Team Schaft dropped out of the competition, DARPA extended partial funding and the 
invitation to continue for the three ninth place teams. Initially, Team ViGIR defined a streamlined 
participation plan based on limited funding, but after DARPA provided additional funds in the fall of 
2014 and moved the Finals to June 2015, Team ViGIR added Cornell University as originally planned. 
Additionally, the team added researchers from University of Hannover (Germany) with expertise in 
system identification and controls. 

1 http://www.publicsafety.net/st_florian.htm (accessed July 30, 2015) 

Figure 1.  Florian, Team ViGIR’s Atlas Robot 
participating in the 2013 DRC Trials. 
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During preparation for the DRC Finals, BDI took possession of the robot for three months to perform the 
upgrade to the new untethered “Atlas Unplugged” upgrade. BDI delivered the partially upgraded robot on 
February 21, 2015, about six weeks after the initial plan; Team ViGIR began work with the upgraded 
robot, but did not receive the upgraded arms until March 24, 2015. Team ViGIR worked through several 
hardware issues during the spring, and continued to test and refine their software up until they departed 
for the DRC Finals on May 29, 2015. 

Team ViGIR competed in the DRC Finals on June 5-6, 2105 in Pomona, California. On Day 1, the team 
scored 3 points, and were stopped just shy of achieving the fourth point as our sixty-minute time limit 
expired. The robot worked well, but the team experienced unexpected communication issues during the 
run. The operators adapted, but were slower than expected due to software issues caused by a backlog in 
communications between the robot and field computer. The team adjusted the software, and were 
cautiously optimistic that they would be able to score 5 or 6 points on Day 2. Unfortunately, a series of 
hardware issues caused numerous problems on Day 2. In the end, the team earned only 2 points on Day 2, 
and ended the competition with a disappointing 3 points. 

In the months after the competition, Team ViGIR worked to prepare their software for release as open 
source, and conducted experiments on several advanced features that were not ready in time for the DRC 
Finals. 

This report discusses the results of each phase, the developed software architecture, experimental results, 
and the status of the software release. The report focuses on Team ViGIR’s specific areas of emphasis and 
innovation. The report presents future directions for our ongoing research, and concludes with a 
discussion of the lessons learned. Appendices provide technical details, and describe the software being 
released as part of our open source effort. 

Approved for Public Release; Distribution Unlimited.
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2. INTRODUCTION
This section provides a brief overview of the DRC and an introduction to the members of Team ViGIR. 
The section then provides an overview of the competition results for Team ViGIR during each phase, and 
focuses on the programmatic elements of the contract. The section concludes with an overview of the 
remaining sections of this report, which cover the technical details of our approach. 

2.1. Project 

In the spring of 2012, the DARPA proposed the DRC to accelerate the development and evaluation of 
disaster response robots that have the capability for early response and mitigation of disasters. This effort 
was partly motivated by the earthquake and tsunami that struck the Tohoku region of eastern Japan on 
March 11, 2011, and led to subsequent damage to the Fukushima Daiichi nuclear plant. The DRC concept 
was designed to mimic the conceptual tasks that might be required of a robot to respond to the initial 
damage and avert subsequent catastrophes. 

DARPA structured the DRC as four separate funding tracks: 

� Track A – DARPA funded teams develop hardware of their own design and software,
� Track B – DARPA funded

competitors in the VRC
(Simulation Challenge);
winners get Government
Furnished equipment (GFE)
in the form of the Atlas robot
developed by Boston
Dynamics

� Track C – Self funded
competitors in Virtual
(Simulation) Challenge that
will be eligible for DARPA
funding and GFE Atlas after
VRC

� Track D – Self funded
competitors that develop
hardware of their own design
and software.

Figure 2 shows the structure and 
funding levels, along with the final numbers of competitors in each track. Team ViGIR competed as a 
Track B team in the Virtual Robotics Challenge. 

Figure 2.  DARPA DRC Structure (courtesy DARPA)

Approved for Public Release; Distribution Unlimited.
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2.2. Team 

Team ViGIR2 – the Virginia-Germany Interdisciplinary Robotics team – was named in recognition of its
original members. The following section provides an overview of team members, and their primary 
responsibilities. During design and development, the software was conceptually divided into OCS 
software that interfaced with the human operators, and Onboard software that ran on the robot or field 
computers. Communications between the OCS and Onboard software was through a degraded 
communications link. In general, all team members had access to all software, and various members 
contributed to different components at different stages. 

TORC Robotics, Inc (Blacksburg, VA, USA) TORC served as project management, provided technical 
leadership, and hosted the robot test lab in Blacksburg, VA. TORC (http://www.torcrobotics.com), the 
primary software developer for Team VictorTango in the 2007 DARPA Urban Challenge, is a leading 
provider of unmanned and autonomous ground vehicle solutions for the defense, agricultural, automotive, 
and mining industries. Team VictorTango finished in 3rd place, and was one of only three teams to finish
the course without penalty. TORC components and systems have been integrated on over 100 unmanned 
and autonomous ground vehicle platforms ranging in size from 5 pounds to 240 tons. TORC’s robotic 
components and systems provide customers with rapid solutions by leveraging proven technology to 
ensure customer success. 

TORC personnel were the primary developers of the robot software interface and communication systems 
used throughout the DRC. TORC provided machine shop access and technician support as needed. 

Technische Universität Darmstadt (Darmstadt, Germany)  TU Darmstadt, and specifically the 
Simulation, Systems Optimization and Robotics Group at the Department of Computer Science 
(https://www.sim.informatik.tu-darmstadt.de/en/), served as the Onboard software lead. TU Darmstadt is 
one of the leading public engineering research universities in Germany. They conduct research in 
autonomous robot teams, bio-inspired robots and dynamic modeling and optimization methods. The 
research results have been honored, among others, with the 1st prize of the EURON/EUROP European 
Robotics Technology Transfer Award, the Louis Vuitton Best Humanoid Award, and several world 
championship titles for autonomous humanoid and four-legged robot soccer teams in the highly 
competitive annual RoboCup competitions. As four-time winners of the Best in Class Autonomy Award 
in the RoboCup Rescue League, they have provided open-source navigation software that has been reused 
and adopted by numerous international research groups. 

Due to the international character of the group, TORC Robotics could not use its intellectual property; 
therefore the decision was made to use the ROS system for middleware and base capabilities. TU 
Darmstadt brought significant experience with ROS to the team. 

Virginia Tech (Blacksburg, VA) Virginia Tech, specifically the 3D Interaction lab 
(http://www.hci.vt.edu/ ) at the Center for Human-Computer Interaction (CHCI) in the Department of 
Computer Science, served as OCS lead. CHCI is a world-class interdisciplinary research center at 
Virginia Tech, exploring the design of technological artifacts to support human activity and the impact of 
interactive technologies on the user experience. Housed in the Department of Computer Science, CHCI 
has 29 faculty affiliates across the university, including internationally recognized leaders in areas such as 

2 http://www.teamvigir.org (accessed July 30, 2015) 
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virtual and augmented reality, information visualization, gestural interaction, graphics and animation, 
creativity and the arts, and social collaborative computing. CHCI members lend their skills in user 
interface design, user experience evaluation, and usability engineering to projects in a broad range of 
application domains. 

These three groups – TORC, TU Darmstadt, and Virginia Tech – formed the core of Team ViGIR, and 
worked together from the beginning of the DRC. After the initial success in the VRC, researchers from 
Oregon State University joined Team ViGIR full time. The initial proposal called for Cornell University 
to join at this time; however, after reviewing the then current state of the software, additional costs, and 
timeline before the trials, TORC in consultation with Cornell decided that Cornell would wait until after 
the DRC Trials to join. 

Oregon State University (Corvallis, OR) Oregon State University, specifically the Robotics and Human 
Control Systems Lab (http://mime.oregonstate.edu/research/rhcs/), focused on grasping and manipulation, 
with a specific emphasis on testing and interfacing the robotic hands provided for the Atlas robot. The 
Robotics and Human Control Systems Lab has two goals: 1) To develop a deeper understanding of the 
neural control and biomechanics in the human body using robotics techniques, and 2) To develop the 
design and control methodologies (including human-inspired) that enable robots to operate robustly in 
unstructured environments. Application areas include robotic grasping and manipulation, mobile robotics, 
human-robot interaction, and rehabilitation. 

Cornell University (Ithaca, NY) Cornell University, specifically the Verifiable Robotics Research 
Group (http://verifiablerobotics.com/), focused on the automatic synthesis of high-level behaviors and the 
manual development of autonomous behaviors for the team. The Verifiable Robotics Research Group 
conducts cutting edge research on high-level, verifiable robotics; the group develops theory, algorithms 
and tools that allow people to interact with robots at a high-level using language while providing 
guarantees for the robots' behavior. 

These five – TORC, TU Darmstadt, and Virginia Tech, Oregon State, and Cornell – were the original 
members of Team ViGIR as defined in the original proposal. With the extended budget, Team ViGIR 
decided to enhance our controls experience and recruited another German research group to develop 
compliant impedance controllers for whole-body control of the robot, and then focus on getting up and 
vehicle egress behaviors. 

Leibniz Universität Hannover (Hannover, Germany)  Hannover, specifically the Institute for 
Automatic Control (IRT) (http://www.uni-hannover.de/en/), joined our group to focus on system 
identification and compliant manipulation. The Leibniz University Hanover is among the nine largest 
technical universities in Germany ("TU9"). The Institute for Automatic Control (IRT), aims to advance 
the scientific and technological foundations for intelligent and autonomous robots capable of interaction 
with their environment. IRT developed the first German dynamical walking bipedal robot. Recent focus 
of the institute is laid on soft-robotics mechatronics and control, physical human-robot interaction, 
machine learning and optimal control, and human motor control. IRT has been awarded numerous 
scientific awards, including several best paper awards at ICRA, IROS, and Transactions on Robotics. 
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2.3. DARPA Robotics Challenge Phases 

This section provides a brief historical overview of the different phases of the competition, and describes 
Team ViGIR’s performance in each competition phase. 

2.3.1. Phase 1A- Virtual Robotics Challenge 

Representatives from TORC Robotics, TU Darmstadt, and Virginia Tech attended the project kickoff 
October 24-25, 2012 in Arlington, VA. Immediately following the kickoff , the team worked to define the 
basic software architecture and support infrastructure. The team arranged for a computer donation of five 
industrial Intel Core i7 machines with NVidia graphics cards from Foxguard Solutions3.

Given the multinational character of the team, TORC was unable to contribute existing IP to the project; 
therefore, we chose to base our software on the open source Robot Operating System (ROS) software4,
including the ROS 3D visualization tool rviz5. The team chose to make extensive use of existing ROS-
integrated tools such as MoveIt!6 And Point Cloud Library (PCL)7 as the base for algorithm development.
To facilitate collaboration, TORC hosted an external wiki-based project-planning site using the Redmine8

framework, and a GitLab9-based software repository. All team members had full access to the sites.

As the robot design and software interface was under development, Team ViGIR developed contingency 
plans for developing basic stability and walking algorithms, but initially focused on perception, planning, 
and operator interfaces under the constrained communications. Once it was confirmed that BDI would 
provide basic walking and stability control for the simulated robot, the team was able to continue its focus 
on the basic system. From the outset, Team ViGIR planned for a comprehensive approach to operator 
interaction with the robot, and avoided scripted behaviors that were finely tuned for the simulation tasks; 
while this may have been better suited for the defined structure of the virtual competition, it would have 
been impractical for realistic scenarios. Figure 3 shows an operator at the OCS during the VRC. 

Contrary to our expectations, it quickly became apparent that both the robot and simulation engine were 
still under development, and in fact being developed in parallel with limited data sharing. Where we 
expected to receive a well-defined Application Programming Interface (API) at the kickoff, the initial 
version was not delivered until December 2012. The Open Source Robotics Foundation (OSRF)10 did not
release the initial API version that supported walking and balancing until Gazebo drcsim 2.2.0 was 
released on March 11, 2013, only three months before competition. This required unexpected work on our 
end to adapt to changing software performance and specifications. The team worked to define a flexible 
software structure, then worked within an agile project management framework to incrementally add 
capabilities within a spiral development cycle. This allowed us to test some features early, while 
permitting us to adapt to expected changes to the government supplied simulation software being 
developed by OSRF.  

3 http://www.foxguardsolutions.com (accessed July 30, 2015) 
4 http://www.ros.org (accessed July 30, 2015) 
5 http://wiki.ros.org/rviz (accessed July 30, 2015) 
6 http://moveit.ros.org (accessed July 30, 2015) 
7 http://www.pointclouds.org(accessed July 30, 2015) 
8 http://www.redmine.org (accessed July 30, 2015) 
9 https://about.gitlab.com/ (accessed July 30, 2015) 
10 http://www.osrfoundation.org (accessed July 30, 2015) 

Approved for Public Release; Distribution Unlimited.

http://www.foxguardsolutions.com/
http://www.ros.org/
http://wiki.ros.org/rviz
http://moveit.ros.org/
http://www.pointclouds.org/
http://www.redmine.org/
https://about.gitlab.com/
http://www.osrfoundation.org/


 

7 

Team ViGIR was one of eleven 
funded teams competing in Track B 
teams. As the competition 
approached, another 115 teams 
registered as unfunded Track C 
teams; of these 126 total teams only 
26 teams passed the initial 
qualification tests. During the 
competition, only 22 teams scored 
points with Team ViGIR finishing 
in sixth place with 27 points. Figure 
3 shows our operator at the OCS 
during the VRC competition. 

The team published a brief overview paper [2] about their VRC development and experience; this paper , 
is included in Appendix A. 

2.3.2. Phase 1B- DRC Trials 

Team ViGIR attended robot training in July 2013, and began to set up of their lab. As TORC could not 
have foreign nationals at their garage, Team ViGIR used warehouse space donated by Foxguard 
Solutions. The space required an electrical upgrade, which delayed our receiving the robot until 27-
August-2013. The team set up a short-term housing rental near the lab; one Oregon State student spent the 
entire semester in Virginia, while TU Darmstadt students rotated through the lab spending a few weeks at 
a time. 

Given the original VRC design focus on providing a flexible user interface and software architecture, the 
overall software architecture did not change between the VRC and the DRC Trials. On the other hand, the 
robot interface API was significantly different from the simulation API, and required significant changes 
to accommodate the new API. Team ViGIR leveraged a shared C++ source file from another Atlas team 
to develop an approach that worked with the robot hardware and the Gazebo simulation. The limited 
fidelity of the simulation and constantly evolving hardware interface limited the utility of the simulation 
for tuning of the control parameters; therefore, while the system used similar control approaches, it used 
completely different gain sets between the robot and simulation. Remote members of Team ViGIR used 
the simulation to test logic, user interface, and task process, while the lab team in Virginia focused on 
hardware testing and control tuning. The software development focus during this time was on adding 
additional capabilities to existing modules, and improving performance. 

Team ViGIR published a detailed system overview paper in [1]; this paper, which discussed the system 
and results of the DRC Trials, is included in Appendix A. 

PhD student researchers from LIRMM11 in France visited Team ViGIR to work on whole-body motion
planning for the ladder task. Their approach used model-based offline planning and optimization and has 

11 http://www.lirmm.fr/lirmm_eng/users/utilisateurs-lirmm/equipes/idh/abderrahmane-kheddar (accessed July 30, 2015) 

Figure 3.  View of OCS during VRC
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been successfully applied to the (joint position controlled) HRP-2 robot. However, it was not robust 
enough to accommodate the significant modeling errors in the Gazebo model of Atlas and controller 
errors during execution. As neither a better model nor time for model calibration were available before the 
DRC Trials, Team ViGIR did not use the approach during the Trials. During Phase 2 this research for 
Atlas did not continue as LIRMM became part of the DRC Finals Team AIST-NEDO through the French-
Japanese CNRS-AIST joint 

The biggest challenge was the limited time between receiving the robot and the trials. The tasks of 
converting software to work on the robot, tuning controls to work with the robot hardware, and 
developing new interfaces for the actual hardware took considerable developer resources. During testing, 
we were debugging both our own code and the newly released versions of the BDI API. Given limited 
developers and time, we prioritized development decisions and focused on practicing a limited number of 
approaches to the tasks. In reviewing the evolving rule changes and developer resources, Team ViGIR 
made two fateful decisions. First, we chose to skip the driving task to focus on more general manipulation 
tasks. Second, we chose to focus on the wrong cutting tool based on a perceived ease of triggering. 
Although the team recognized the importance of stopping development and practicing with features in 
place, this mythical code freeze did not happen as our testing continued to reveal limitations that required 
updates. As our main operators were also our main developers, this represented a constant struggle to 
balance the need for testing and training with the need to fix bugs and extend capabilities. Further 
complicating this issue for Team ViGIR was the geographically distributed team. Our entire team was 
only on site together for the month prior to competition; prior to that, only a subset of our team was at the 
lab at any given time. 

During the preparation for the DRC Trials, our robot was reliable and had consistent performance. We 
had some leak issues and a broken cable, but the Atlas hardware was not generally an issue. Our reported 
issues to BDI were mostly related to debugging software, sometimes on our side and sometimes with their 
API (e.g. step index handling). Our robot checked out well prior to shipping to the DRC Trials 
competition; unfortunately, this consistent behavior did not last after arriving in Homestead, FL. 

The robot did not perform well during testing at the Trials. Upon arrival, we found that BDI had replaced 
a foot due to an apparent sensor issue that had not been seen in Blacksburg. The robot passed initial 
checkout standing and in manipulate mode, but consistently fell over when walking or stepping. After 
BDI assisted other teams, they began to checkout our robot overnight, and spent the next day testing and 
tuning trying to improve stability. They tried replacing the new foot, but continued stability issues 
prevented us from practicing during our normal slot. BDI eventually diagnosed the issue as a failing hip 
actuator, and performed a hip replacement the night before competition. These issues severely restricted 
our practice time at competition to the point that our first successful step was one hour prior to the first 
event. 

Per task performance during the competition is documented in [1], which can be found in Appendix A. 
Figure 4 shows images from our robot during competition along with the points achieved during each 
task. We finished the competition with eight total points in a three-way tie for ninth place; the top eight 
competitors advanced to the DRC Finals. During winter 2014, Team Schaft (now owned by Google) 
dropped from the competition, which allowed DARPA to extend funding to Team ViGIR and Team 
THOR, and invite the third Track D team as a finalist. 

Approved for Public Release; Distribution Unlimited.



 

    
9 

 

2.3.3. Phase 2- DRC Finals 

This section provides a historical overview of Team ViGIR’s efforts during Phase 2.  

2.3.3.1. Downtime (January – April 2014) 

After a brief recovery period following the disappointing performance in the DRC Trials, Team ViGIR 
regrouped to begin documenting our efforts, and strategizing a way forward. During this time, Virginia 
Tech students approached TORC about using their THOR robot with our software. Dr. Hong, who was in 
the process of moving his RoMeLa lab from Virginia Tech to UCLA was not interested, but the students 
remaining at Virginia Tech reached out to the Virginia Tech administration for support in continuing to 
develop the new robot. 

During the negotiations between Dr. Hong and Virginia Tech, DARPA announced the invitation to 
continue to the DRC Finals, with Team ViGIR and Team THOR splitting Team Schaft’s share of the $1 
million support contract. Team ViGIR notified Virginia Tech of our intent to focus on the Atlas robot, but 
agreed that we would make our software available to them to use if they pursued a separate entry. After a 
prolonged negotiation, Team THOR split into a UCLA/UPenn team using the Robotis THOR-MANG 
platform, and a new Team VALOR using the new ESCHER robot being developed by Virginia Tech. 

Figure 4.  Performance at DRC Trials 
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Team VALOR chose to leverage Team ViGIR’s software for VALOR’s high-level planning and operator 
control interface. 

During the delay, Team ViGIR provided DARPA and BDI the opportunity to display the robot at the 
Pentagon12.

2.3.3.2. Restart (May – December 2014) 

Team ViGIR reworked its budget to reflect the initial agreement for partial funding. The limited funding 
required creativity in project planning; the team decided that it was impractical to bring Cornell onto the 
team with such limited funding. While waiting on the final contract details, Team ViGIR began a search 
for new lab space as our prior lab space had been rented out to a new tenant. 

Initially, we discussed available space on the Virginia Tech campus in exchange for our software support 
for Team VALOR. As the approval process drug out, the Montgomery County Economic Development 
Authority provided a larger more appropriate space. This space required an electrical upgrade by moving 
the 480V transformer from our original space to the new lab. This again delayed getting our robot 
functional until June 19, 2014. 

During this set up time, DARPA notified Team ViGIR of the possibility of gaining additional funds due 
the delay in final competition schedule. Team ViGIR submitted a proposal that included additional test 
support equipment along with increased hours for researchers, and permitted bringing Cornell back 
onboard. Under the increased funding, TU Darmstadt partnered with Leibniz University of Hannover to 
provide researchers with experience in advanced controls. Cornell was able to start in September 2014 
under contingent funding for the fall semester; the final ECP contract modification, which provided the 
same funding level as other Track A and B teams, took effect in October 2014. 

One of the distinguishing features of Team ViGIR’s proposal was the use of synthesis techniques to 
generate autonomous behaviors. As Cornell came on board late due to budget uncertainty, the team chose 
to focus on manual specification of the autonomous behaviors. This approach allowed Cornell researchers 
to get up to speed on our system, while contributing to the autonomous behavior development for the 
competition. In parallel, the Cornell team worked on defining the synthesis framework within the ROS 
SMACH13-based hierarchical state machine framework. The team demonstrated these synthesis concepts
in experiments after the competition; we discuss these results in this final report and point the way to 
future research that will continued by members of Team ViGIR. 

As team discussed the basic architecture that we used in the DRC Trials [1], we agreed that the basic 
structure was sound but needed some improvements. First was an improvement to the manipulability of 
the robot, which was being handled by BDI’s redesign of the Atlas robot. Second were improvements to 
the state estimation and calibration of the robot arms; after researching several alternatives, Team ViGIR 

12 http://www.cbsnews.com/news/pentagon-introduces-atlas-its-new-robo-sapien/ (accessed 30-July-2015) 
13 http://wiki.ros.org/smach (accessed July 30, 2015) 
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made use of the Pronto14 system being open sourced by MIT for robot posture estimation, and developed
a custom calibration motion to detect and compensate for variable encoder offset issues. 

The team made a decision to move to a newer development environment that provided access to newer 
libraries and offered better long-term support for our future open source efforts. The VRC and DRC Trials 
used the ROS Hydro ecosystem with an Ubuntu 12.04 Operating System and a hybrid rosbuild and 
Catkin15 build system. After discussion, the team decided to migrate to ROS Indigo, which required a
jump to Ubuntu 14.04, and chose to migrate all of our software to the catkin build system. The team 
implemented this changeover incrementally over the summer and fall 2014 while we developed new 
features. In addition to updated code, this software conversion provided simplified installation and remote 
deployment options using the catkin install feature. 

In order to provide better support for autonomous control and behavioral interfaces, the team decided to 
standardize on the ROS ActionLib16 interface. As part of this process, the team converted the robot
interface to use ROS Controllers framework17. This provided a more ROS-centric development, and better
integration with existing tools such as MoveIt!. As the team implemented new interfaces or made 
improvements to existing modules, some of these, such as the footstep planner were converted to the 
Action interfaces as well. 

The team worked on an approximately eight-week cycle with six weeks of development and simulation 
based testing, followed by travel to the lab for hardware testing. These test sprints were held in late June 
2014, September 2014, and October/November 2014.  

During the fall 2014, Vice Media contacted TORC and stated that they wanted to do a report on “how the 

software you’re developing might help with search and rescue efforts in the future.”  We spoke with them 
on the phone along these lines, but once on site for videotaping, the questions devolved into “killer 
robots.”  They published their Dawn of Killer Robots video18 on April 16, 2015, which included footage
of Team ViGIR and Team VALOR. 

Team ViGIR worked through November 2014 with the original Atlas robot, and then packed and shipped 
the robot back to Boston Dynamics for the new Atlas Unplugged upgrade. November 2014 through 
January 2015 included significant development on the grasping interfaces and footstep planner as the 
team worked remotely without access to the robot hardware and used the old Atlas simulation model. 

2.3.3.3. Atlas Unplugged (January – May 2015) 

The team anticipated the upgraded robot’s return in early January, and planned travel for our German 
partners for integrated testing beginning in mid-January after an initial checkout period. The focus of this 
test was to be system identification and compliant controls development, in preparation for working on 
the fall recovery and vehicle egress motions. Unfortunately, BDI had significant hardware delays. 

14 https://github.com/mitdrc/pronto (accessed August 19, 2015) 
15 http://wiki.ros.org/catkin (accessed July 30, 2015) 
16 http://wiki.ros.org/actionlib (accessed July 30, 2015) 
17 http://wiki.ros.org/ros_control (accessed July 30, 2015) 
18 http://motherboard.vice.com/read/inhuman-kind-killer-robots (accessed July 30, 2015) 
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Given the delays, BDI provided Team ViGIR limited access to the robot at a workweek in Boston starting 
January 12, 2015; this gave all the teams a chance to work on the newly released API. The new API broke 
compatibility between the robot hardware and simulation environment, which required a non-trivial 
conversion effort. This change necessitated having different models for simulation and hardware based 
testing for several months. After additional delays, BDI pushed delivery of the partially upgraded robot to 
February 21, 2015, only three and one half months before competition. 

During this hardware delay, some of the students at TU Darmstadt decided to qualify their THOR-MANG 
robot for the DRC Finals as a contingency plan. DARPA accepted this qualification with the stipulation 
that the entry be treated as a completely separate team. This new team, now called Team Hector, used the 
Team ViGIR software as a base, and contributed upgrades to several modules as they tested our software. 

In early March 2015, the team traveled to the DRC Test Bed event to test the communications bridge 
under the competition set up. The team identified several issues with our setup, and worked to address 
those issues as discussed in Section 3.3. 

BDI was unable to install the new electric arms on Atlas until late March; these arms had seven degrees of 
freedom for improved manipulability, but required different control tuning. In addition to the hardware 
delays, there were several issues and hardware failures as the new design was being beta-tested in the 
field. During this time, Team ViGIR required three arm replacements, two perception computer 
replacements, and two perception node swaps to fix a PPS error. Unfortunately, these issues were 
common to all of the Atlas teams, which taxed BDI personnel as they tried valiantly to support seven 
robots in the field with the new design. In the end, our robot did not receive its final hardware upgrade 
until Monday June 1, 2015 at the competition site. 

Team ViGIR had planned to assess the IHMC walking and whole body controller. IHMC had similar 
Atlas hardware issues, therefore they were unable to test their open source software for release in a timely 
fashion. As we could not test the open source system early enough, we chose not to devote resources to 
integrating our software with their robot interface and control system, and continued to rely on BDI’s base 
level stepping and balancing controller. 

Another casualty of the hardware issues and delays was the development of our compliant controller. 
Team ViGIR had partnered with researchers from the Leibniz University of Hannover, through the sub-
contract with TU Darmstadt, to develop a compliant controller specifically for use while in contact with 
rigid objects. We intended to use the compliant controller during the cutting task, vehicle egress, and fall 
recovery motions. Initial development got underway in Q4 2014, with January planned for system ID and 
testing; BDI did not deliver the hardware until late February, and then delivered the robot with some 
issues remaining, which severely limited our development time. In the end, the team chose not to use this 
compliant controller in competition. There were conditions where the performance was worse than the 
basic position control, and we were unable to get the issues resolved in time for operator training. This 
report includes results of the efforts related to system identification and controller development in 
Appendix D; this includes additional fixes and tests conducted after the Finals competition. 

Initially, Team ViGIR had planned to focus on the fall recovery and vehicle egress behaviors prior to 
developing the driving interface. The fallback plan had been to walk the course in lieu of driving if we 
could not egress reliably. As hardware issues delayed development of our compliant controller, this 
directly affected development of an egress motion. Given the limited development and testing time due to 
hardware issues, as well as potential risk to the robot, Team ViGIR chose not to pursue fall recovery or 
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vehicle egress behaviors after the pump upgrade in late March. Prior to the pump upgrade, the robot did 
not have sufficient power to raise its arms with hands attached, much less push up after a fall. Given the 
limited spare parts and subsequent down time caused by any needed repair, the team decided it could not 
risk damage to the robot as the boundary between success and failure is very small, and would require 
extensive testing and tuning on the robot hardware. 

Team ViGIR opened our lab to Team Hector, and allowed them to make use of our test facilities prior to 
competition in exchange for testing our high-level software, and assisting in development of some 
capabilities. As the decision to allow a reset instead of requiring vehicle egress came relatively late in the 
game, Team ViGIR chose to let Team Hector develop the basic driving interface, while we focused on 
other software issues. Testing with the THOR-MANG robot outdoors was much easier as their robot 
could more easily fit into the vehicle and operate the controls, and operate outdoors on battery power. 
Team ViGIR developed a compliant steering handle concept, which we shared with Team Hector. After 
students working for Team Hector developed the basic interface, Team ViGIR customized the robot 
commands for Atlas. As this driving interface came together relatively late, the focus was on sending 
steering commands to robot; the robot did not have any onboard planner for obstacle avoidance and 
generating steering commands. 

Researchers at Oregon State worked on a number of components including a hand guard, hand cameras, 
and tactile sensing. The team developed a Raspberry Pi-based interface for the hand electronics as 
described in Appendix B. Initially there were plans to use Takktile tactile sensors, along with grasp 
quality analysis software; the student did not complete this work in time for proper integration, so the 
team chose to not use the tactile sensors. In the end, only the small palm cameras were used in 
competition. The team designed a hand guard to protect the electronics and fingers during a fall, and to 
provide the ability to push off during a fall recovery. Once we decided against developing fall recovery 
and no longer needed to push off the ground, we decided that the risk of the necessarily bulky hand guard 
outweighed the risk to the electronics during a fall; therefore, the guard was not used in competition. A 
final research thrust was an online grasp planner. While showing promise in isolation, the integration into 
the larger system proved too much for the student researcher, and the larger team chose not to devote 
scarce resources to integrating this software as we felt the template-based approach was sufficient for the 
tasks shown at the South Carolina Test Bed. 

Team ViGIR continued our collaboration with Team VALOR by jointly contracting a dedicated tractor-
trailer truck to ship our robots and equipment to California. Team Hector added their equipment to the 
shipment. The truck departed Blacksburg on May 28, 2015. While the truck hauled the equipment, the 
team took a well-deserved break to get some rest and relaxation before arriving in Pomona May 30. The 
truck arrived safely on June 1, 2015. 

2.3.3.4.  Finals Setup (June 1-4, 2015) 

Unloading and unpacking proceeded relatively smoothly. DARPA provided sufficient equipment and 
cooperative personnel to assist the unloading. The set up on site was sufficient for our needs. After 
concerns regarding the gantry height were resolved, the team began checkout of our robot to verify 
performance after the transit across the USA. That evening, BDI replaced a faulty component and 
replaced a damaged footpad. At this point, our Atlas Unplugged robot was finally 100%. 

During a subsequent BDI checkout, they reported that our robot appeared to be “running hot,” but they 
could not find any obvious cause that they could fix. Randomly swapping out components did not seem 
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warranted. Over the course of the week, two different BDI technicians gave us the same report, but could 
not find any resolution. 

During this time, Team ViGIR was working to resolve lingering issues with the communications 
software. 

Team ViGIR had the first chance to test the robot on battery power June 3 at Pomona. Unfortunately, the 
checkout was in another building that did not have access to the DRC network infrastructure; this required 
us to transport our field and operator computers to the building. We chose to bring only one operator 
station computer, which caused significant confusion among our multiple operators as they tried to share 
the one terminal; this made the operator training time less useful than we had hoped. In our normal mode 
of operation, each operator has an independent workstation that shares data to allow distributed 
collaboration. 

At the dress rehearsal on June 4, Team ViGIR chose 
to focus on practicing the driving task (Figure 5) and 
forgo risking damage to the robot in a fall off tether. 
As the team had not had the opportunity to practice 
with the Atlas robot in a moving vehicle, the team 
practiced the driving portion twice by requesting a 
reset after the first run. During both runs, the 
communications system and driving interface worked 
well. In the first run, the team approached the finish 
line fast and the DARPA observer E-stopped the 
vehicle prior to crossing the line. The second run went 
well, and the field team practiced the egress.  

The biggest issue noted by the field team during dress rehearsal was the difficulty working with the small 
gantries provided by DARPA. Our team was able to get everything lined up in the time limits allotted, 
though we did experience some difficulty getting the gantry in position due to the soft dirt at the starting 
gate. Once underway there were no issues until we attempted to remove the robot from the vehicle with 
the government furnished gantry at which time the gantry trolley got stuck in place making it very 
difficult to remove the robot from the vehicle. This issue was reported to DARPA and the gantry was 
either fixed or replaced before Day 1. 

Figure 5.  Driving practice during DRC Dress Rehearsal
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2.3.3.5. Competition Day 1 (June 5, 2015) 

On competition Day 1, we received three points as time expired just shy of achieving the fourth. 

The actual competition run faced more issues in regards to field operations than the dress rehearsal. In 
order to make up schedule slippage due to the prior teams issue, DARPA personnel wanted us to start the 
communications checkout prior to BDI installing the battery even though it would prematurely start our 
20-minute setup period. Our Field Team Lead coordinated with government observer to address this 
issue; however, in the end, we are not certain that we received the full 20-minutes after BDI completed 
the battery installation. The government gantry was too low to allow us to place the robot in position in 
the vehicle in the same manner as the 
prior day. The team had to get four of the 
five members standing on the vehicle to 
lower the suspension enough for atlas to 
get in the correct position for us to drive 
which cost us several minutes. The team 
was forced to rush the setup process 
compared to the dress rehearsal, and our 
set up over ran our start time by 
approximately three minutes. 

In spite of the issues at setup, our robot 
named Florian worked well and our 
operating team directed Florian through 
the driving course for one point (Figure 
6). After crossing the driving finish line, 
we executed our planned reset without 
issue. 

After the ten-minute reset penalty, the team worked to open the door, but noticed that certain systems 
were not operating as expected due to communications issues, including an apparent backlog of data sent 
between the onboard and field computers. This was not the expected degraded communications between 
the OCS and field. Speaking with other teams, we found that they had experienced similar issues, and 
their monitoring detected that the communications bandwidth dropped to less than twenty percent of 
maximum as the robots approached the grand stands. Our teams did not experience these issues during the 
dress rehearsal, and speculate that the presence of 
spectators with smartphones and increased media 
transmissions introduced significantly more interference 
with the wireless communications between the field and 
onboard computers during the actual competition. 

The operators were still able to direct the robot to open 
the door and walk through for our second point, and 
open the valve for our third point (Figure 7). While we 
successfully achieved these three points, the operations 
under these conditions were much slower than expected. 
Near the end of our run, while reaching for the switch 
that was part of the surprise task, our right arm 

Figure 7.  Opening the valve on Day 1 of DRC Finals 

Figure 6.  Operators on DRC Finals Day 1 
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overheated and stopped functioning. Time expired before we were able to recover and achieve the fourth 
point. 

At the end of the Day 1 run, our field team, assisted by personnel from Boston Dynamics, recovered the 
robot without a damaging fall. 

After reviewing our performance, we felt that we understood the communication problem and had a plan 
for Day 2. That night we rearranged the software to minimize the wireless communications with our field 
computer, and made several changes to reduce our required bandwidth. During preliminary testing that 
night, the changes were working well. 

2.3.3.6. Competition Day 2 (June 6, 2015) 

During our robot checkout on the morning of Day 2, the robot and control software worked well. As the 
field team loaded our robot for transport to the robot course, our operators were cautiously optimistic that 
we could score 5 or 6 points during our run. 

Given issues with the gantry on Day 1, we opted to bring our own gantry to the start for Day 2. 

As the team powered up the robot after arriving at the start line, the robot passed the initial checkout 
including hand operation and arm calibration. At a later point in the checkout, the team discovered that 
the robot right arm had stopped working and was completely dead. BDI sent a technician over to 
investigate and DARPA granted us a twenty-minute delay to debug the hardware issue. Our team was still 
under considerable time pressure to debug the issue and restart our system software while the robot baked 
in the California sun. The team disconnected the hand and did a full robot power cycle to test if the arm 
was truly broken; the power cycle restored functionality to the arm. After calibrating the arms, the field 
team plugged all hand electronics back in and the arm continued to work properly during checkout. 

By this time, we had used half of our extension time, so DARPA granted an additional ten minutes before 
our clock started to load the robot. The insertion of the robot into the vehicle went much smoother with 
our larger gantry and we were able to start without spending any run time.  

During our drive, there was an unexplained communications delay between our operator interface and the 
robot. At one point on the course, the vehicle did not move when first commanded; after it started 
moving, our operators requested it to stop, then watched helplessly as the robot continued to drive into a 
barrier. (The system was not doing autonomous motion planning for the vehicle steering.)  After resetting 
the robot and vehicle to the start line, the robot continued to bake in the sun with its pump running while 
we waited for the 10-minute penalty to expire. 

This time our robot and vehicle successfully crossed the finish line with our team driving cautiously down 
the course. We requested our planned reset again. After waiting through the remainder of our 10-minute 
penalty, our team quickly – as compared to Day 1 – opened the door, and began to position the robot to 
walk through the door. At this point, the robot pump shut off and the robot fell to the ground (Figure 8). 
After reviewing our operator station screen cast videos, we could see that the reported reason for the 
pump shutoff was a communications failure with the BDI software. Our software appeared to be operating 
normally, but the robot was running extremely hot, which may have contributed to the communications 
issues. 
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Our robot survived the fall, and our team reset 
for another attempt at the doorway. During the 
restart, we again had an issue with the right arm, 
and decided to bypass the custom hand 
electronics that may have been damaged during 
the initial transit to the arena. Unfortunately, after 
waiting through another 10-minute penalty, the 
robot fell again half way through the door, likely 
caused by damage sustained in the original fall. 
At this point, running low on time, energy, and 
spirit, our team stopped for the day. 

2.3.3.7. Post Competition 

After the competition, Team ViGIR shipped the 
robot back to Blacksburg, VA. After the robot 
checkout in Blacksburg, it appeared that the 
robot suffered only minimal cosmetic damage 
during its two falls. During subsequent experiments, a sensor failed on the robot and prevented the robot 
from being able to step or walk. The team continued testing robot controls, grasping, and manipulation 
based behaviors. Later more leg sensors failed, which prevented the robot from standing. The technical 
sections of this report document the results of these experiments. At the conclusion of these experiments, 
the robot was returned to the government as requested. 

2.4. Report Overview 

With this historical context in place, the remainder of this report focuses on the technical contributions. 
The report presents experiments that validate performance beyond that witnessed in the DRC 
competitions. The report documents the software in its current state, including changes made after the 
finals in support of our efforts to open source our code base. The main body of the report serves as an 
introduction to the technical details, which we present in the appendices. Section 3 introduces the design 
philosophy, software architecture, and innovations developed by Team ViGIR during the course of this 
competition; Section 4 discusses significant challenges and focuses on the experimental results. Section 3 
and 4 reference the same appendices grouped by major component; each appendix contains a brief 
introduction and embedded PDF files corresponding to technical papers and reports written in another 
format. Section 5 concludes the report with a discussion of lessons learned, and future work that is 
necessary to bring the original vision to reality. Section 6 includes a limited bibliography of works 
published by the team; the papers included in the appendices cite references that are more general. The 
document concludes with appendices that embed technical papers and reports prepared by the team. 

Figure 8.  Robot collapsing due to pump shutdown after opening the 
door on Day 2 of the DRC Finals.
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3. METHODS, ASSUMPTIONS, AND 
PROCEDURES 

From the outset, TeamViGIR functioned as an open collaborative research and development effort where 
all team members shared and contributed to the code base, with the intent of open sourcing our software 
at the end of the project to facilitate future development toward humanitarian rescue robotics. This section 
provides an overview of our software architecture, and ties this to our open source software19 released 
concurrent with this document. 

The major design focus of Team ViGIR, and a major focus of the DRC, is the development of an 
approach that leverages the complementary strengths and weaknesses of the robot system and human 
operator(s). While full bandwidth and update rate access to all sensory systems is available onboard the 
robot system, cognitive and decision-making abilities of a human operator are still vastly superior for the 
near future. This is especially true for disaster scenarios, as only very limited assumptions about their 
structure can be made beforehand. Team ViGIR took the approach of making the operators members of 
the team, while permitting the robot to exercise supervised autonomy given task level directions. See [1] 
included in Appendix A for an overview of our design approach. 

The software architecture employed by Team ViGIR included the Operator Control Station (OCS) and the 
Onboard software, which includes software running on the robot as well as on an external field computer. 
The field computer looked toward future systems that include more computational power onboard, and 
would not require a separate field computer. Where the DRC Trials used three field computers and one 
onboard computer running BDI software, the Atlas Unplugged version used at the DRC Finals included 
three perception computers onboard in addition to the BDI control computer; Team ViGIR made use of 
one field computer to handle communications at the DRC Finals. The Communications Bridge 
(CommsBridge) software developed for this project handled the communications between the OCS and 
Onboard software. Figure 9 shows the basic architecture followed in this project. 

 

                                                 

19 http://www.github.com/team-vigir 

Figure 9.  Software Architecture 
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3.1. Operator Control Station 

The OCS includes both the User Interface (UI) components as well as a number of software components 
including OCS-side planning, communications, and multi-operator coordination. In many instances, these 
non-UI OCS components mirror major components on the Onboard side. This section begins with an 
overview of design priorities, and then focuses on the operator roles and UI components; Appendix C 
provides a brief overview of the software included in the open source software release, and the non-UI 
components in particular. 

3.1.1. Design Approach 

Section 3 of [1] (Appendix A) provides an overview of our design philosophy from the outset of the 
project, and its implementation through the DRC Trials. We summarize our primary design principles as 
follows: 

Human capabilities: Since the DRC was a competition with tight time constraints, it was important to 
leverage the abilities of human operators and take advantage of the things they were good at, rather than 
working only towards full robot autonomy. For example, humans can easily pick out salient features in 
real-world scenes and describe their position and orientation. This led to our use of 3D templates. 
Templates (3D models of important objects/features in the environment) allow the primary and secondary 
operators to annotate perception data with semantic information. For example, if the operator sees a 
known object in the point cloud (e.g., a tool), he can insert a template representing that tool in the 3D 
view at that location, thus informing other operators and the onboard systems about that object. Figure 12 
in Section 3.1.3.1 shows the addition of template information into the scene; Section 3.2.4 discusses 
template use in more detail. 

Pre-visualization: Software on the OCS side has access to a wealth of information about the robot and 
the environment, providing an opportunity to visualize proposed actions virtually before executing them 
on the physical robot. To make decisions about whether to execute, cancel, or modify the action, operators 
must be able to visualize the expected results. Thus, a second major feature of our OCS is the “ghost” or 
simulation robot, which is a transparent duplicate of the ATLAS robot visualization. The ghost robot 
allows the primary operator to plan and validate motions before executing them with the physical robot. 
The ghost robot is also color-coded to give the operators feedback about the internal state of the onboard 
systems, such as collision checking for motion planning, to prevent unexpected actions. Both of these 
features can be used in and visualized at any of the views described below. 

Multiple operators: Although autonomy was an important goal of the DRC, it was clear from the outset 
that human operators would play a major role in making high-level decisions and giving supervision and 
direction to the robot’s (semi-) autonomous capabilities. It was also clear that a single operator would not 
have enough perceptual or motor bandwidth to take in all the information coming from the robot and 
provide all the information needed by the robot. Thus, we designed an OCS that could be run in multiple 
instances with multiple configurations, tailored for multiple operators with different roles. 

Parallelism: Closely tied to the concept of multiple operators is the idea that multiple actions can be 
performed on the OCS side in parallel. An operator can plan the next movement while the current one is 
being executed. Multiple operators can be working on planning, template placement, visual inspection of 
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sensor data, and other operations, all at the same time. This principle was critical to enable good 
performance under tight time constraints and in the presence of degraded communications. 

Appropriate specificity: Our OCS design had to strike a careful balance between generic interfaces that 
could be used in any situation, and highly specific interfaces that were tailored for individual tasks, sub-
tasks, or robot capabilities. For the DRC Trials, DARPA provided all task information ahead of time, so a 
task-specific OCS might be quite successful. However, we wanted to demonstrate a flexible OCS that 
could be used for multiple tasks with unknown parameters, such as the surprise task at the DRC Finals. 
Our only task-specific UI was a specialized widget for driving. 

Advanced interfaces: Our team included members with expertise in virtual reality (VR) and 3D 
interaction, and we felt from the outset that these technologies might be beneficial for robot operation. 
Immersive VR for 3D visualization, either from the robot’s point-of-view or elsewhere, could allow 
operators to easily access any view of the robot and its environment; this could prove very useful for 
visual inspection of alignment and positioning. 3D interaction could give operators powerful techniques 
for manipulating objects, such as 3D templates, with multiple integrated degrees-of-freedom. At the same 
time, we realized that these interfaces would be experimental in this domain, so we focused much of our 
effort on a more standard desktop interface (albeit one with multiple monitors and 3D mouse capabilities). 

Iterative design and evaluation: Like all good UI development efforts, our OCS design needed 
constant testing and iteration. Fine-grained iteration took place throughout the project. A major new 
iteration was planned and developed after the DRC Trials. 

In analyzing the OCS used at the DRC Trials, we noted two major issues. The first issue was a lack of 
integration of specialized control widgets, which increased the learning curve of our UI; a key goal of 
development during Phase 2 was to better integrate these widgets and make them accessible from the 
main UI through the use of pop up context sensitive menus and readily accessible icons.  

The second issue was the use of our 
multiple operators. In the run up to the 
DRC Trials, we had limited time to train 
on stable system software. This led to 
different people having different 
specialties, with operators switching 
roles during the tasks (e.g. step planning 
vs. manipulation). This directly led to a 
loss of situational awareness that caused 
a fall during the door task at DRC Trials. 
Thus, during Phase 2, the team worked to 
provide streamlined control interfaces 
with better UI integration to simplify the 
use of interfaces, and to better define the 
roles and responsibilities of each type of 
operator.  

A final design goal was to incorporate 
better 3D visualization tools for fine 
alignment, and validation of positioning. 

Main 

Auxiliary Supervisor 

Immersed

Figure 10.  Layout of the operators during DRC Finals
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3.1.2. Operator Roles 

Team ViGIR used multiple operators for both the DRC Trials and Finals. The individual operator stations 
were separate instances of the same UI that shared data between operators; thus, if one operator requested 
a point cloud, the same point cloud would be visible on all stations. This allowed the operators to 
coordinate verbally with one another, which permitted operation as a “Wizard of Oz” interface where one 
operator could request another to gather the additional information needed [1]; this reduced the cognitive 
load on any one operator. 

For the DRC Finals, Team ViGIR used four operators with well-defined roles: 
� Supervisor 
� Main 
� Auxiliary 
� Immersed 

Figure 10 shows the arrangement of these four operators during the DRC Finals. The remainder of 
Section 3.1.2 describes the primary roles of each operator. 

3.1.2.1. Supervisor 

The Supervisor was responsible for overseeing and managing the execution of high-level behaviors via 
our Flexible Behavioral Engine’s  (FlexBE) graphical user interface; this is presented in Section 3.1.3.4. 
The supervisor was also responsible for keeping the operators on task and ensuring that operations were 
conducted according to plan. 

3.1.2.2. Main Operator 

The Main Operator was responsible for the interacting with the OCS UI to plan or verify motion 
generated by behaviors, and for conducting manual operations if autonomous behaviors failed. The main 
operator was responsible for specifying footstep goals, managing templates, and performing manual 
manipulation. 

3.1.2.3. Auxiliary Operator 

The Auxiliary operator was responsible for gathering perception data in support of the main operator in 
order to maintain a high-level of situational awareness, as well as inserting templates or other semantic 
information as requested by behaviors. For our team, the Auxiliary operator also served as team lead 
during the run, and was responsible for making the final decisions on tactics during the run. 

3.1.2.4. Immersed Operator 

For the DRC Finals, Team ViGIR added an operator station that included an Oculus Rift DK220 virtual 
reality head-mounted display (HMD). The HMD’s 3D position and orientation was tracked, allowing the 

                                                 

20 https://www.oculus.com/en-us/dk2/  (accessed July 30, 2015) 
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operator to move/turn his head naturally to obtain new views of the 3D scene. This permitted the 
Immersed Operator to visually inspect fine alignments (e.g., will the robot fit through the door if the 
proposed footstep plan is used?) and assist in situational awareness by making use of both the 3D sensor 
data and the modeled information including the robot and object templates.  

This operator was running an instance of the same OCS used by other operators, with a specially-designed 
3D stereoscopic view for the Oculus Rift. Navigation was performed with a pair of Razer Hydra 6-DOF 
controllers; buttons on these controllers were also used to toggle or adjust various aspects of the 3D view 
shown in the HMD and to quickly move to different points-of-interest in the environment. Initially, we 
expected the Immersed Operator to aid in template manipulation as well, since the 6-DOF controllers are 
ideal for rapid placement and rotation of 3D templates, but this feature was not tested sufficiently before 
the Finals to allow its use.  

3.1.3. Major User Interface Features 

The Main and Auxiliary operators had a separate instance of the three major interfaces (main, map, and 
camera views); the Supervisor had access to a specialized FlexBE interface to the behavior executive; and 
the Immersed operator had a specialized version of the main view.  

Since we use ROS, we took advantage of the several existing UI tools that it provides, mainly librviz
21 

and rqt
22. Leveraging the existing tools in librviz for visualizing 3D data communicated via ROS was 

very important given the short development timeline. All of the major views use existing or customized 
(e.g., adding support to our own methods for picking geometry) versions of rviz plugins; the team 
implemented some completely new plugins that implement some of the unique features of our OCS (e.g., 
templates). In the development of our main widgets, we extended the base librviz capabilities with Ogre

23 
and Qt

24. For the development of simple 2D widgets, we used rqt extensively; this allowed us to quickly 
prototype widgets during development that acted as windows for specific controllers on the onboard side 
(e.g., footstep controller parameters). The OCS now integrates these more specific widgets, which can be 
accessed and hidden by clicking specific icons on the major UI windows. Figure 11 shows the screen 
view of the Main operator station, which includes all three major interfaces, during the DRC Finals valve 
task. This view shows the camera view to the left, main view in the center, and map view to the right; in 
this case, additional specific widgets cover the map view. 

                                                 

21 http://wiki.ros.org/rviz  (accessed July 30, 2015) 
22 http://wiki.ros.org/rqt  (accessed July 30, 2015) 
23 http://www.ogre3d.org/  (accessed July 30, 2015) 
24 http://www.qt.io/  (accessed July 30, 2015) 
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3.1.3.1. Main View 

The main view widget, which is primarily used for visualization of 3D data and fine manipulation control, 
is an interactive 3D view built on the librviz base. The main view includes custom extensions to simplify 
selection and addition of template information, and manipulation of 3D data. It allows the operator to 
control end effectors, visualize the 2D and 3D reconstructions of the environment, annotate these 
visualizations with templates, and plan robot motion by controlling the ghost robot. A single icon in the 
upper left allows the operator to toggle between a single 3D view and four 3D visualizations with 
different points of view and settings (orthographic/perspective) to facilitate spatial judgments and aid 
depth perception. 

The main view includes a number of visualization and control components. The right panel on the main 
view includes options for controlling what data is displayed on this particular display; the controls include 
all of the standard RViz marker types. The hand grasp controls, which interface with our template-based 
affordance scheme described in 3.2.4, are shown in the bottom middle of the view; these can be accessed 
via the hand icon on the lower right corner of the view. The top menu bar includes icons for accessing 
specific joint and footstep control widgets; clicking these icons toggles the display of these widgets for a 
specific instance of the view. 

The main view also includes context sensitive pop-up menus to provide easy access to common control 
interactions. Figure 12 shows a close up of the main view during the Day 1 valve task, where a pop-up 
menu is being used to insert a template into the world model. To avoid too much clicking and menu 
selection, most of the options in these pop-up menus are also accessible via keyboard shortcuts 
(i.e., hotkeys). 

 

Figure 11.  Main operator views – camera, main, and map – during of DRC Finals valve task on Day 1. 
Note that by task specific control widgets, which can be accessed from the main view, cover the map UI. 
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In this example, the operator has selected a particular cell within the Octomap25 representation of LIDAR  
data. The operator is in the process of selecting the proper valve template, which will automatically be 
placed at the referenced Octomap cell. After an operator places a template marker in the 3D view, any of 
the operators can perform fine alignment using customized versions of the ROS interactive markers26. 

A key use of the main view is to manipulate templates and visualize the target pose of the robot prior to 
execution through the use of the “ghost robot.”  Figure 13 shows the ghost robot in the “pre-grasp” pose 
used before inserting the valve turning attachment into the valve. As discussed in Section 3.2.4, the pre-
grasp target is defined relative to the template placed relative to the 3D world frame. The main view 
allows the operators to verify the template placement and the target robot pose relative to sensor data. The 
operator can easily monitor execution errors by checking the final pose of the actual robot against the 
ghost robot. A simple hotkey allows the operator to snap the ghost to the current state of the robot. The 
operator can also select an end effector of the ghost to allow for direct manipulation of the end effector 
target pose by using interactive markers. 

                                                 

25 http://wiki.ros.org/octomap (accessed July 30, 2015) 
26 http://wiki.ros.org/interactive_markers (accessed July 30, 2015) 

Figure 12.  Main View showing placing a template via context menu onto selected Octomap cell 
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3.1.3.2. Map View 

The map view is a top-down orthographic view widget that is used for navigation and to request more 
information about the environment. The operator can select a region of interest in the environment by 
clicking and dragging to create a box selection as shown in Figure 14, and then choose what type of data 
are needed (e.g., a grid map, LIDAR/stereo point clouds, etc.). Fine control over the amount of data being 
requested helps in reducing the amount of information transmitted over the network and what is shown on 
the screen. 

The map view provides context sensitive menus for interacting with the footstep planner and footstep 
execution actions. Figure 15 shows the grid map display on the map view; the grid map is used by the 
footstep planner as described in Section 3.2.5. 

Any sensor or 3D modeling data, including the ghost robot or templates, will be shown projected into the 
map view by default; these projections can be disabled by unselecting the appropriate item on the right 
hand side of the map view. 

  

Figure 13.  Main View showing the target position of the ghost robot relative to valve template. 
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Figure 15.  Map view showing the grid map used for footstep planning

Figure 14.  Map view showing region of interest selection
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3.1.3.3. Camera View 

The camera view allows the operator to request single images or video feeds with varying resolution from 
every camera on the robot, with up to four images displayed at a time. Three-dimensional data – including 
sensor data, templates, and robot models – can be overlaid on the images to validate the sensor data and 
catch errors due to drift in position/orientation estimation. Figure 16 shows an example overlaying 3D 
point cloud data and a valve template over the main camera feed during the valve task on Day 1 of the 
DRC Finals; the yellow sphere projected into the image represents the section target corresponding to 
Figure 12.  

Figure 16.  Camera view showing point cloud data and valve template
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3.1.3.4. Behaviors View (FlexBE GUI) 

The Flexible Behavior Engine (FlexBE) discussed in Section 3.2.6, which was developed as Team 
ViGIR’s approach to high-level control, increases the reliability of high-level behaviors by giving the 
operator a clear understanding of what is happening internally, and allows the operator to intervene as 
necessary. FlexBE includes an extensive graphical user interface for both development and execution of 
behaviors as shown in Figure 17. 

As shown in figure 1, FlexBE’s user interface consists of four different views. The first two on the top 
row are mainly used for development as discussed in Appendix G; the lower right view is just for 
configuration of the user interface itself. The lower left view is used during robot operation to monitor and 
control execution of the behaviors in real time. 

The Runtime Control view, shown in detail in Figure 18, can start and monitor execution of developed 
behaviors. When a behavior is running, the view shows the currently active state in the center of its main 
panel, the previous state at the left, and possible next states at the right. Furthermore, textual feedback is 
provided as well as again documentation of the active state in order to help the operator to understand 
what the robot is about to do. 

As communications between the OCS operator and the onboard software was subject to delays, the 
FlexBE user interface included a synchronization status bar This “RC Sync” bar provided a  

Figure 17.  FlexBE, the Flexible Behavior Executive, showing the four primary views. 
Clockwise from the upper left these are the: Behavior Dashboard, Statemachine Editor, Configuration view, and the Runtime 
Control view. 
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mechanism for monitoring command execution and connection quality between the operator’s interface 
and the onboard behavior engine. As you can tell from the status in Figure 18, the issued transition 
command is about to get completed while there is a short, but not critical delay in the communication. 

Another feature of the Runtime Control interface is the ability to “lock” states to allow for online 
modification of the behavior. State locking and editing is presented in Appendix G. 

 

3.2. Onboard Systems 

3.2.1. Robot Controls and Interface 

Team ViGIR developed a custom C++ interface that used ROS ActionLib and ros_controllers to interface 
the remaining system software to the robot via the BDI proprietary API, and to convert data to/from the 
BDI data structures. This section discusses the architecture, the approach to joint position control used at 
the Finals, and implementation of more advanced control strategies. 

Figure 18.  FlexBE Runtime Control View. 
Forcing the transition “changed” while monitoring behavior execution. Since the robot is in the field, the command cannot be 
executed immediately due to the communication delay. 
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3.2.1.1. Interface Architecture 

The vigir_atlas_controller interface followed the ROS Control paradigm27 of a controller manager that
invokes controllers that interact with a robot hardware interface. The vigir_atlas_controller interface took 
this one step further and used three instances of the controller manager to guarantee the order of 
execution. 

The first manager handles control mode controllers including the custom controller that accepted mode 
change action requests and one that handled stability monitoring and fall detection. Team ViGIR extended 
the BDI control modes (e.g. STAND, WALK, MANIPULATE) to allow multiple modes that specified 
different combinations of joint controllers and modes. For example, we differentiated between stand and 
stand_manipulate, which activated the upper body joint controllers. 

The second controller manager interfaced with a number of joint trajectory controllers28 that handled
control of various appendage chains (e.g. left arm, right leg, torso, whole body), and provided the ability 
to send per joint trajectories to a designated appendage chain. Depending on the particular control mode 
selected, different controllers would become active with different gain sets selected, as discussed in the 
next sub section. 

The third controller manager handled whole robot behaviors such as footstep control in STEP or WALK, 
or the compliant controller. The compliant control uses joint targets defined by the joint trajectory 
controllers.  

The vigir_atlas_controller, along with the individual controller implementations, can be found in the 
vigir_atlas_ros_control repository in the software release; this code cannot be open sourced due to the use 
of BDI proprietary libraries. The package depends heavily on open sourced packages in the 
vigir_ros_control repository, which provides the structure for the three controller managers, and loading 
the Gazebo simulation robot model into a dynamics model29 that is used for kinematics and dynamics
calculations for the controllers. See the package source code for more details and Appendix J for usage 
guidelines. 

3.2.1.2. Joint Position Control 

The vigir_atlas_controller interface used the ROS joint trajectory controllers to accept 
FollowJointTrajectory30 actions using the ROS trajectory_msgs/JointTrajectory.msg31 format. The
controller interpolates the trajectory commands to yield an instantaneous joint position command. This is 
used to calculate the servo valve commands using a combination of encoder-based PID control, and the 
embedded BDI actuator based position control. 

27 http://wiki.ros.org/ros_control (accessed July 30, 2015) 
28 http://wiki.ros.org/joint_trajectory_controller (accessed July 30, 2015) 
29 https://bitbucket.org/rbdl/rbdl/ (accessed July 30, 2015) 
30 http://wiki.ros.org/joint_trajectory_controller (accessed July 30, 2015) 
31 http://docs.ros.org/api/trajectory_msgs/html/msg/JointTrajectory.html (accessed July 30, 2015) 
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Each per appendage chain controller used a customized version of the PID controller from the ROS 
control_toolbox32. The customized version in our fork includes an integral reset when the controller is 
activated to provide bumpless control based on the old joint command. This PID uses the encoder based 
joint position estimates for more accurate positioning; the interface passes the controller output to the 
robot in the ff_const term used by BDI33. 

To provide faster response, and robustness to variations in the communications, the interface also makes 
use of the embedded PD joint position controller provided by BDI. These gains are set based on the 
desired control mode, and passed to the robot each time step. The controller tracks the offset between the 
actuator based position estimate and the encoder based position estimate, and adds the offset to the 
embedded joint position command to maintain consistency with the trajectory command. 

After calibration, this combined approach proved reliable and was used at the DRC Finals. 

3.2.1.3. Advanced Control 

From a theoretical point of view, there is no exact model-based feedforward or feedback compensation 
possible with the above joint position control scheme, since the hydraulic arm joints are commanded at 
hydraulic current level, which is equivalent to the joint velocity. Model based calculations give joint 
torques, so the addition of these quantities does not result in a physically feasible model of the controlled 
system, unlike for example for electric motors, where the commanded value is also the motor torque or 
the equivalent electric current. 

Further, the disadvantage of the PD position control is that a good position accuracy can only be achieved 
with high parameter gains, where the robot is not compliant and collisions often result in a robot fall due 
to high contact forces. 

To overcome these disadvantages for the arm control, we investigated and implemented a model based 
controller concept called joint impedance control. While this approach was not used during the DRC 
Finals due to some lingering issues, we present it here for completeness; Section 4.2.1 presents our post-
Finals experimental results. 

Joint impedance control uses a cascaded control scheme consisting of an inner joint torque loop (𝝉, 𝝉d) 
with an outer PD position control (𝒒, 𝒒d) with variable damping gains and model based compensations as 
seen in Figure 19. This controller is configured with the more intuitive parameters joint stiffness for 
position tracking and modal damping coefficient for velocity tracking and interaction behavior. For the 
explicit formulation, see Appendix D. 

                                                 

32 http://wiki.ros.org/control_toolbox (accessed July 30, 2015) 
33 Boston Dynamics Atlas Robot Software and Control Manual, ATLAS-01-0019–v3.3, pg. 19 
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In Figure 19, on the side of the onboard computers, we first denote the arm joint torque 𝝉, the joint 
positions and velocities 𝒒 and 𝒒̇ from the Atlas API and the desired joint trajectory 𝒒d, 𝒒̇d from the 
onboard trajectory planning from MoveIt! as an input to the joint impedance control scheme. Further, we 
denote the desired joint torque calculated by the impedance controller algorithm 𝝉d,JIC, the added desired 
joint torque of the integral term 𝝉d,I, and the resulting desired joint torque 𝝉d commanded to the BDI E-
Box through the Atlas API. On the other side, the desired joint torques are calculated into the desired 
electric current controlling the hydraulic valves 𝒊d,hydr and desired electric motor current 𝒊d,elec in the 
corresponding actuators. From these inputs, the actuator dynamics give the actual hydraulic and electric 
joint torques 𝝉hydr and 𝝉elec. This internal process is not covered in our scheme. 

For the inner joint torque loop we discovered, that the proportional joint torque control based on the 
hydraulic pressure in the valve has a high steady-state error which directly results in position errors. We 
implemented an outer integral loop for the joint torque to increase the joint torque tracking performance. 
Appendix D shows the detailed results of the influence of the integral gain. 

Figure 19 explicitly emphasizes the location of the implementation of the different control blocks. This 
has a strong influence on the stability, since the communication from the BDI E-Box to the onboard 
computers running our custom code suffered from a 2-3ms time delay. Presumably due to this delay, only 
lower damping coefficients compared to other impedance controller implementations (e.g. in Hannover 
robotic labs) leads to a stable behavior in all robot states. 

The dynamic arm model we used consisted of inertial, centrifugal, coriolis and gravitational forces and a 
viscous and Coulomb friction model; therefore, we only neglected the torso movement and the 
complexity of the friction on the real system. 

3.2.2. Perception 

The perception system is responsible for gathering data from the onboard sensors, and making the data 
available to the operators and planning systems. For the Atlas robot, the sensors included an inertial 

Figure 19. Block diagram of the Joint Impedance Controller control scheme  
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measurement unit, joint state measurement, and the integrated Multisense stereo camera and LIDAR 
sensor. 

A system wide overview of our perception system in given in [1] in Appendix A; this subsection 
discusses the major upgrades to this system for the DRC Finals. 

3.2.2.1. State Estimation 

The BDI API provides both internal state estimates for the robot joints as well as an estimate of the robot 
pose relative to a fixed frame with the origin relative to the pose where the robot has been switched on. 
The estimate is based on proprioception and IMU sensing. The internal system uses knowledge of the 
standing foot for forward kinematics based motion estimation that is fused with IMU data. 

This state estimation system provides sufficient performance for many applications such as stepping and 
walking on flat ground. When stepping over rough terrain, however, even slight drift by a few centimeters 
can result in the robot falling. Team ViGIR and other teams identified this shortcoming during the DRC 
Trials [1]. To reduce drift, we switched to using MIT's pronto34 state estimator, which exhibits lower drift 
due to improved forward kinematics estimates. In principle, pronto can completely eliminate drift by 
using the LIDAR sensor for external sensing; we opted not to use LIDAR-based corrections during the 
DRC Finals, as the external sensing approach used in pronto relies on a static world assumption. This 
could be violated during a competition run due to moving people, equipment or other unmodeled motion 
in the environment of the robot. 

3.2.2.2. Constrained World Modeling 

To effectively leverage the human operator's cognitive and decision making capabilities, a state estimate 
and world model must be made available over the constrained bandwidth link between robot and operator. 
With ATLAS onboard sensors providing data at a rate in excess of 100 MB/s compression is both crucial 
and a significant challenge. 

The (communication) constraints under which the perception system has to work changed over the course 
of the competition as follows: 

� In the VRC competition, a bandwidth budget for communication between robot and operator was 
allocated for each mission and communication was cut off after the budget was exceeded 

� In the DRC Trials, communication was constrained by limiting bandwidth and introducing 
latency, alternating between a "good comms" and "bad comms" setting. 

� In the DRC Finals, 3 communication channels were used, one 9600 baud line from robot to 
operator, one 9600 baud line in the opposite direction and one high bandwidth connection that is 
blocked for a period of 10-30 seconds 

Team ViGIR designed the perception system to provide situational awareness and state estimation for the 
operator under all of these conditions. To achieve reliable and efficient manipulation with a remote 
operator in the loop, 3D geometry data is crucial. This data is compressed and handled by the 

                                                 

34 https://github.com/ipab-slmc/pronto-distro 
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Worldmodel Server, which aggregates 3D data from the Multisense LIDAR and makes it available via a 
ROS interface that allows for the selection of regions of interest, aggregation history size and filtering 
parameters. 

In the case of available bursty communication, two instances of the world model server are used, one for 
the onboard/robot side and one for the OCS side. As direct transmission of point cloud data is impossible, 
specialized processing on LIDAR data is performed to make each packet compact enough to fit within a 
standard 1500 Byte limit and compress it as to be able to transmit a maximum of data during a 
communications burst. Direct transmission of point cloud data generated onboard the robot would cause 
prohibitive bandwidth cost as the point cloud representation with at least three floating point values for 
each Cartesian point is not a compact one . For this reason, the natural and compact representation of a 
laser scan as an array of range values is used instead. To fully reconstruct the 3D geometry captured by a 
single scan, a high fidelity projection of the scan has to be performed however, taking into account motion 
of the LIDAR during the data capture process. If this motion is not considered, scan data shows visible 
skew and ghosting (double walls) when converted to a point cloud. We thus use the following approach: 

� Perform a 3D high fidelity projection onboard the robot and perform self-filtering 
� Compress the scan data by writing the range values to a uint16 array representing millimeters and 

also encoding self filtering information. Threshold and map intensity information to a uint8. 
� Add information about the scanner transform in world frame, one transform for the start of the 

scan and one for the end. 
� Split the compressed scan into chunks that are small enough to be compressible to less than 1500 

Bytes. 

On the OCS side, the compression process is reversed and resulting scan data is used to update the OCS 
world model. This approach improved consistency of the data. 

The size of a LaserScan message is dominated by the range and intensity fields, with a Hokuyo 
UTM30LX-EW providing 1080 measurements per scan. For compression, float value ranges are 
converted to millimeters and stored in a unsigned 16 bit number. 

Self-filtering of robot parts from LIDAR data requires knowledge of the whole transform tree of the robot 
and thus has to be performed on the onboard side if transmission of high bandwidth transform data to 
OCS is to be avoided. Per default, self-filtering is thus performed onboard and compressed laser scan data 
is annotated with a bit per scan point indicating if it belongs to the robot. 

Intensity data is converted from float to a unsigned 8 bit number. Here, a loss in fidelity is acceptable as 
intensity is mainly used for visualization and a range of 28 values is sufficient. 

 

 

 

Table 1.  Comparison of message sizes for laser scan representations 
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 Standard LaserScan 
[Bytes] 

Localized LaserScan 
[Bytes] 

Compressed Localized 
LaserScan [Bytes] 

header >~ 16 - - 

metadata 7 * 4 - - 

ranges 4 * 1080 2 * 1080 < ⅓ * 2 * 1080 

intensities 4 * 1080 1 * 1080 < ⅓ * 1080 

total 8684 3240 < 1080 

 

With the bandwidth constraints encountered at the DRC Finals, the transmission of geometry data was not 
feasible when the high rate data line was blocked. For this reason, the operator(s) had to rely on 
previously transmitted data during the outage period. The system updated robot state information over the 
9600 baud line, which allowed the operator to see robot motion relative to previously retrieved 3D 
geometry data. 

3.2.2.3. Textured Meshes 

To provide the highest practically possible amount of fidelity for this 3D geometry data, Team ViGIR 
developed an infrastructure for generating textured meshes out of both LIDAR point clouds and stereo 
camera based depth images. Compared to plain point cloud visualization, Figure 20 shows that this 
approach allows for a clear view of geometry and texturing of mesh surfaces, which is more intuitive for 
scene understanding. 

ATLAS cannot perform rotation of the Multisense sensor head around the yaw axis, greatly limiting the 
field of view of the main sensor system. Prior to the ATLAS v5 arm upgrade, this issue was much more 
severe, as the volume of good manipulability for the arms was outside the Multisense field of view. To 
remedy this issue, Team ViGIR developed a system for rectification the Fisheye lenses of the SA cameras 
using a ROS integrated version of the OCamLib library35. This allows generating novel rectified views 
from fisheye images not exhibiting severe distortion that otherwise makes judging of spatial relations 
difficult for operators; See Figure 21 for an example. With the better arms of the ATLAS v5 version and 
the relocation of SA cameras from the chest to the upper head, this functionality was deemed less crucial 
and integration for ATLAS v5 was skipped. 

                                                 

35 https://sites.google.com/site/scarabotix/ocamcalib-toolbox 

Approved for Public Release; Distribution Unlimited. 



 

    
37 

 

Figure 20.  Mesh-based Visualization. 
Top row: RGB and stereo-based depth image; bottom row: three novel views of the textured mesh 

Figure 21.  Fisheye Camera Rectification. 
Distorted fisheye image (left). Rectified image close demonstrating a virtual ideal pin-hole camera (right). 

Approved for Public Release; Distribution Unlimited. 



 

    
38 

3.2.3. Motion Planning 

The motion planning system provides the backend that allows the system to perform complex joint 
motions in a reliable and intuitive fashion as is necessary for manipulation tasks. Given the unstructured 
nature of disaster environments, automated collision avoidance is a desirable capability as it allows to 
significantly reduce the workload for the operator and is required for carefree task-based planning. After 
an evaluation of existing approaches, Team ViGIR chose to base its motion planning system on the 
MoveIt! planning system, which is integrated with ROS. Full ROS integration, an active user community, 
and capability of real-time obstacle avoidance were reasons for the selection of MoveIt!. A 
comprehensive overview of development up to the DRC Trials is available in [1]. 

3.2.3.1. Planning Backend 

To allow for reliable manipulation, the MoveIt! API was used and DRC-specific capabilities were 
implemented in a separate move_group capability plugin. This offered the advantage of retaining standard 
MoveIt! library planning features, while simultaneously allowing the development of extended 
capabilities specific for DRC tasks. 

With limited reachability, especially before the ATLAS v5 upgrade, it often was desirable to provide the 
capability to plan with torso motion as to compensate for limited arm reachability. Restricting the range of 
motion of single joints is not an intended use case with MoveIt!, so this capability was added additionally. 

Per default, trajectory execution speed could not be changed online. Instead, trajectories would always be 
time parametrized according to the velocity limits supplied in the robot model (URDF) file. To allow for 
changing the execution speed online, a velocity scaling factor has been introduced that can be set on a per 
motion plan request basis. This addition has already been merged into standard MoveIt!. 

An iterative parabolic time parametrization approach is used as the standard approach for generating 
trajectories per default. During experiments on Atlas, this approach was shown to produce significant 
velocity and acceleration spikes, resulting in jerky arm motion due to the splines that were defined 
between knot points. The default time parameterization was changed to do a velocity scaling iterative 
parabolic calculation, followed by a recalculation of the interior velocities and accelerations assuming 
piecewise quantic splines with continuous velocity and acceleration at the knot points. This resulted in 
smoother motions. 

The planning system is exposed via a ROS Action server interface and thus provides feedback about the 
planning and plan execution process. The Action interface is the sole entry point for requesting and 
executing motion plans and is used for (in order of increasing autonomy) tele-operation, affordance-based 
manipulation planning, and for motion plan requests generated by the behavior executive. For tele-
operation, an onboard node translates compressed and compact motion requests by the operator into an 
Action request that then gets forwarded to the planning system. 

While the default motion planning system performs well for “standard” manipulation tasks requiring only 
upper body motion, sampling based planning falls short for planning whole body motions that require the 
consideration of balance constraints. To support this need, Team ViGIR integrated the optimization-based 
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Drake36 planning approach developed by MIT. The choice to use either the default sampling-based 
planning approach or to use Drake is specified by the plan request. Drake has also been integrated with 
the “ghost robot” on the OCS side and the operator can use Drake-based whole body inverse kinematics 
to pre-plan tasks like reaching towards the ground for picking up objects (see Figure 22). As this 
capability was not required during the DRC Finals, it was not used there. 

 

3.2.4. Manipulation 

Team ViGIR focused on developing a manipulation approach that will allow the operator and the robot to 
cooperate and perform efficient high-level interaction with the remote environment. This approach is 
based on the concept of Object Templates37 (OT); see [3] in Appendix E. An OT is a 3D mesh in a virtual 
environment that is augmented physical and semantic information related to the object of interest that it 
visually represents. An operator inserts the OT into the OCS scene, and manipulates the template to align 
with sensor data that corresponds to the real object. Once an OT is aligned, its specified 3D position can 
then be used to perform locomotion to approach to it and arm motion planning to grasp and manipulate 
the real object.  

3.2.4.1. Affordances 

We based our approach on the concept of affordances, which are the possibilities of action that an object 
in the environment offers. In the current state of the art, several teams converged to a similar affordance 
                                                 

36 https://github.com/RobotLocomotion/drake 
37 The term object template can also be found in this report as, e.g. "valve template" to refer to specific objects or just 
"template" if the object is already implied. 

Figure 22.  Using Drake inverse kinematics for reaching down to the ground with the “ghost robot” 
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based manipulation approach (MIT, IHMC, NASA). These three teams for example, use their OT to 
provide potential grasp poses to the operator as well as information about manipulation standing 
positions. They are also used to generate end-effector trajectories when objects are grasped, e.g. when 
they want to turn the valve, they manually rotate the OT in their user interface and send the generated 
trajectories to the robot.  

In contrast, the approach developed by Team ViGIR goes beyond the state of the art because it presents 
the operator the affordances of the object; see Appendix E for more details. In addition to being used for 
standing poses and grasp poses, the OT internally defines the motions that the object offers and allows the 
operator to easily select the required affordance (e.g. selecting and clicking the Turn affordance) (see 
Figure 23). The OT provides the necessary information regarding path constraints that enable the planning 
software to generate the desired trajectories and perform the manipulation motion using the motion 
planning capabilities presented in Section 3.2.3. 

 

3.2.4.2. Object Template Library 

The manipulation tasks during the VRC and the DRC Trials were well defined and the objects required to 
manipulate were known a priori. Nonetheless, Team ViGIR created an Object Template Library (OTL) 
that can include any number of objects. This accounts for potential unknown objects that might be 
available in a disaster scenario; similar to the surprise tasks presented during the DRC Finals. The OTL is 
divided into three blocks of information: the object library (physical and semantic information), the grasp 

Figure 23.  The Object Template of a door being grasped by the robot's end-effector. 
The Manipulation Widget is shown for both hands (left is yellow and right is cyan). The affordances combo box is zoomed in 
to show the available motions of the door, e.g. turn Clockwise (CW) or turn counterclockwise (CCW) as well as pushing and 
pulling, among others. 
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pose library (end-effector grasp pose information), and the stand pose library (robot stand pose 
information). The grasp pose library and the stand pose library have a relationship of many to one with 
the object library. Each object in the object library has a unique type that is used to relate one or many 
grasps to one OT as well as for stand poses. An entity-relationship model using Crow’s foot notation38 
can be seen in Figure 24. 

 

3.2.4.3. Object Template Server 

The Object Template Server (OTS) implements the Object Templates concept. The OTS is responsible of 
loading and providing OT information to any client that requested it. For example, the Main View widget 
will request 3D geometry mesh information from the object template to display, as well as finger joint 
configuration while displaying potential end-effector poses to grasp such object. Other clients such as the 
Manipulation Widget (Figure 23) could request grasp information and affordance information from the 
OTS. Additionally, Section 3.2.6 describes how the autonomous behaviors use the OTS provided 
information. 

Given the network setup constraints on the DRC, the OTS was required to provide information for both, 
the OCS side and the Onboard side. In the OCS side, the OTS provides information to all the widgets that 
use OTs. It also manages the instantiated OT that the operator has inserted in the 3D environment. To 
replicate the same status in the Onboard side, another instance of the OTS is created in the Onboard side. 
The OTS in the Onboard side is responsible of keeping OT information to be considered for motion 
planning, e.g. as collision objects or attached collision objects to the robot. Both OTS were kept 
synchronized through the Communications Bridge; in case there was any synchronization issue, both OTS 
are re-synchronized by instantiating a new OT. The architecture of the OTS can be seen in Figure 25. 

                                                 

38 Crow’s foot notation: http://tdan.com/crows-feet-are-best/7474 (accessed July 30, 2015)  

Figure 24.  Relationship between objects, grasps and stand poses libraries using Crow’s foot notation 
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3.2.5. Footstep Planning 

A key challenge of the DRC was enabling the robot be able to tackle locomotion tasks such as the 
traversal of sloped stairs, ramps and rubble. While Team ViGIR depended on the BDI footstep controller 
for stepping and stability, the specification of footstep placements remained a significant challenge; Team 
ViGIR extended an existing planner for 2D environments to handle this more complex 3D terrain. 

The footstep planner has to satisfy two main capabilities: The planner has to solve the navigation problem 
of finding the shortest safe path in a given environment. Secondly, it has to generate a feasible sequence 
of footstep placements, which can be executed by the robot with minimal risk of failure. Additionally, the 
DRC competition discouraged the use of slow footstep planning approaches due to mission time limits. 
Here, operator performance highly depends on the speed and performance of the used footstep planning 
system, so planning efficiency becomes important. It is desirable that the planning system provides all 
parameters of the walking controller for each step, so that the complex low-level walking controller 
interface is completely hidden from the operator to reduce the chance of operator error. Our footstep 
planning approach satisfies these needs, and requires the operator to only provide a goal position to start 
planning. 

Footstep planning systems have not been applied to human-size real robots in complex terrain scenarios 
such as the DRC before. Although the increased size of the humanoid robot enhances the locomotion 

Figure 25.  Object Template Server communication concept. 
Object Template Server (purple) is instantiated in both, OCS (orange) and Onboard (blue) sides. Each OTS provides 
information to the controller blocks in Onboard (yellow) and to the user interface widgets in the OCS (pink). Additionally, 
both OTS are kept synchronized through the communications bridge (green). 
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versatility, dynamics have a larger impact on the robot system, making stability control challenging. 
Therefore, the footstep planner has to trade-off the versatile locomotion capabilities and risk of falls; This 
is difficult given the lack of detailed knowledge or feedback of the underlying walking controller. 

The DRC tasks required the capability to solve difficult terrain traversal tasks in full six Degrees of 
Freedom (DoF). As a suitable implementation was not readily available, we decided to extend 
significantly an existing open source footstep planning approach for flat surfaces. We have chosen to 
extend the approach of Garimort and Hornung39 as it already was available for ROS and is based on the 
proven search-based ARA* (Anytime A*) planning algorithm delivering the best solution within a 
specified time limit. As the robot operates on state estimates based on noisy sensor data, there is no huge 
benefit of having the global optimal solution at all. Therefore, the operator may be satisfied with a 
suboptimal solution, which is close to the global optimum, but can be found in significantly shorter time. 

Prior to the DRC Trials we have introduced the first search-based footstep planner capable of generating 
sequences of footstep placements in full 3D under planning time constraints and using an environment 
model based on on-line sensor data. The planner solves the navigation problem of finding shortest paths 
in difficult terrain scenarios while simultaneously computing footstep placements appropriate for BDI’s 
walking controller. The planner comes with an improved 3D terrain generator which is recently able to 
generate terrain models for the footstep planning system on-line (see Appendix F). It is able to efficiently 
compute the full 6 DoF foot pose for foot placements based on 3D scans of the environment. This new 
terrain model generator has already been applied and validated successfully for real world scenarios. In 
addition, our novel collision check strategy based on ground contact estimation allows the planner to 
consider overhanging steps which enhances significantly the performance in rough terrain scenarios. 
Figure 26 shows a real world example of the entire footstep planning pipeline consisting of perception, 
planning and execution. More detailed information about this approach is available in our published work 
[4] and [1]. 

   
Terrain map showing surface normals Generated footstep plan on OCS Execution by the real robot 

Figure 26.  Footstep Planning Pipeline 

After the DRC Trials, the footstep planner was refactored into a complete robot agnostic footstep planning 
framework that could be used by variety humanoid robot systems including those of Team VALOR, and 
eventually Team Hector. Our main objective is to provide a versatile and highly capable footstep planning 
framework using ROS, while at the same time retaining the ability of integration and expandability. Users 
of the framework only have to implement and extend robot specific functionality to interface with the 
planner. Already implemented, tested, and proven algorithms can be left untouched to decrease the 
possibility of error. 
                                                 

39 http://wiki.ros.org/footstep_planner 
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The footstep planning framework is based on a versatile plugin and parameter management system. 
Plugins have been added for all points where the user might want to take influence on the planner’s 
behavior (see Figure 27). These plugins allow efficiently adding custom code into the planning system 
without any modification to the framework itself. The plugins are maintained by a dedicated plugin 
manager was written which is used to obtain efficiently all available plugins filtered by their semantic 
functionality. Details about the entire plugin system are provided in Appendix F. 

 

Figure 27.  Advanced footstep planning system architecture 

As all user created code needs usually their own parameters to run correctly, a parameter management 
system has been introduced as well. This system is able to overcome the basic conflict of rigid message 
types needed by ROS for interprocess communication and the need of flexible content of parameter sets 
due to user defined parameters (see Appendix F). 

During the DRC Trials we have noticed the inability to refine generated footstep plans as a shortcoming. 
Although, the planner is able to generate feasible plans, there always remains a possibility that the 
resulting plan contains undesirable steps due to noisy sensor data. In this case, the operator previously had 
to request a new step plan in the hope to get a better result which may end in an infinite loop without 
mission progress. For this reason, the footstep planning system was extended to provide multiple services 
to manage footstep plans. These services can be used by user interface to enable interactive footstep 
planning allowing full human in the loop planning. This mode allows for plan stitching, plan revalidation 
and editing single steps with assistance of the footstep planner (more details see Appendix F). The 
operator is able to quickly adjust single steps while the planner will automatically update the 3D position 
of the new foot pose if enabled and provides immediate feedback if the modified step sequence is still 

Simplified illustration of the footstep planning pipeline showing where plugins can be used to affect the planner’s behavior. 
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feasible for the walking controller. This new interactive planning mode significantly improves mission 
performance during locomotion tasks, which is exemplarily demonstrated in Figure 28. 

 

Operator has received a step plan for 
getting on top of a cinder block. In this case 
the operator is not satisfied with placement 
of step 4 as it is too close in front of the 
cinder block. 

 

Operator selects step 4 for editing. Terrain 
model has been hidden for a better 
visibility of interactive marker. 

 

Step 4 has been moved slightly away from 
the cinder block by the operator. 

Approved for Public Release; Distribution Unlimited. 



 

    
46 

 

Final result of modified footstep plan which 
is ready for execution. 

Figure 28.  Example how the operator is able to modify a generated footstep plan. 

As the performance of the planning system highly depends on the quality of the world model, situations 
may occur where the planner gets stuck and does not deliver any feasible results. For this special case a 
pattern based mode was introduced which allows the operator to command simple movements. A special 
user interface was implemented which allows to define the pattern to be generated (see Figure 29). 

  
Figure 29.  Step pattern widget (left) and resulting step plan (right) 

 

3.2.6. High-level Behavior Control 

Team ViGIR’s based our approach to high-level behavior control on modeling robot behaviors as 
hierarchical state machines, which allows for modular composition and intuitive specification in different 
levels of abstraction.  In addition to the logic of execution, behaviors also encode the data flowing through 
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the behavior. Detailed monitoring of the state of execution and any errors that occur assists the operator 
when giving commands. The developed framework is able to cope with severe restrictions on the 
communication channel to the robot and is robust regarding runtime failure. In addition, verification of 
specified behaviors greatly reduces the risk of failure at runtime. This section presents the onboard 
Flexible Behavior Engine (FlexBE); Section 3.1.3.4 previously introduced the operator-side graphical 
user interface (FlexBE GUI). Appendix G provides an extensive treatment of the entire FlexBE system. 

The concept of level of autonomy allows the system to use the individual capabilities of both robot and 
operator in a cooperative manner. Each behavior transition defines a level of autonomy that is required to 
execute the respective transition. There are four different autonomy levels: Off, Low, High, Full. The 
autonomy level mechanism allows the operator to reduce the autonomy of the onboard software and thus 
prevents the robot from making decisions on its own. As a result, behaviors are able to deal with changing 
uncertainty in scenarios while using the same state machine for implementation of the actions to be taken. 

Figure 30 depicts a task-level behavior, “Open Door” in the FlexBE framework. A behavior consists of 
states (yellow), state machines (gray), and other, embedded behaviors (pink). The transitions (arrows) 
define the logic of the execution. Their color indicates the required autonomy level, which are illustrated 
in Figure 31. 

FlexBE monitors the state status, and if a transition is otherwise enabled, FlexBE will prevent the 
transition from occurring if the operator has reduced the autonomy level below that specified for the state 
transition. This allows the operator to adjust the permissions given to the robot on the fly based on 
changing conditions in the field. The FlexBE UI indicates this blocking by recoloring the transitions as 
shown in Figure 32. 

Figure 30.  Task level “Open Door” behavior in the FlexBE framework 
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In addition to the logical flow of the process, the behavior also encodes the flow of data through the states 
as shown in Figure 33. 

Figure 31.  Example decisions for different Autonomy Level 

Figure 32.  Supervising a behavior during its execution (FlexBE runtime control view). 
The state “Move_to_90%_Joint_Limits” returned the outcome “reached”, but the behavior is not authorized to transition to 
the next state because the required autonomy level of that transition (“High”, green) is higher than the current autonomy 
level set by the operator (“Low”, blue). 
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The ability to perform runtime modifications is the most complex command available in FlexBE. It 
enables the operator to make arbitrary changes to the structure of a behavior without the need for 
stopping, compiling and re-starting it. Although this capability is very helpful regarding adaptability to 
unexpected situations, it also introduces some challenges. FlexBE takes steps to avoid failures related to 
runtime modifications and defines constraints to preserve consistency across versions of a behavior. 
Figure 34 illustrates an active, but locked, behavior. 

When a behavior is locked in one of its states or sub-statemachines, these components are still executed, 
but the behavior cannot proceed. As depicted in Figure 34, internal sub-statemachine transitions are 
allowed, while outcomes causing a transition to the next state at the level of the locked container would be 

Figure 33.  A behavior also encodes the flow of data (black arrows; transitions are grayed out). 

Figure 34.  Behavior is running, but currently locked in one of its sub-statemachines.  
Blocked and allowed transitions are colored red and green, respectively. 
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blocked. This mechanism ensures consistency across changes, without requiring the robot to pause and 
wait for the operator to make changes. 

FlexBE is built on top of the SMACH40 high-level executive Python framework. Although SMACH 
offers a solid basis for defining hierarchical state machines, the provided features are not sufficient for 
realizing what is required for our behavior control approach. Therefore, to create a powerful behavior 
engine supporting a high level of abstraction, FlexBE extends the SMACH framework with some features 
inevitably required to realize the concepts of cooperation and communication between operator and robot. 
In brief, the extension is made by inheriting the SMACH classes StateMachine and State (see Appendix G 
for details). 

Section 4.2.4 and Appendix H present the behaviors that were developed over the DRC. Those behaviors 
are based on the FlexBE behavior engine, were designed in FlexBE’s Editor, and are executed via 
FlexBE’s Runtime Control interface (both components of FlexBE’s GUI). In addition to behaviors, 
Appendix H enumerates all states and presents extensive experimental demonstrations. 

3.3. Communications Bridge 

During the DRC competitions, the robot onboard/field computers were connected to the OCS computers 
via a 1 GB/s network connection that passed through a network traffic shaper; the traffic shaper 
introduced communication restrictions intended to mimic the effects of poor wireless communications and 
encourage robot autonomy. All operator interactions with the robot occurred through the OCS hardware, 
with commands sent to the onboard software via the traffic shaper connection  

As stated above, our team chose to use ROS for our communications middleware. The ROS system uses a 
publisher/subscriber model with a centralized roscore to coordinate communications between ROS nodes. 
This is not suitable for use with the communication challenges defined for the DRC competitions, as the 
system cannot tolerate a loss of communications of any node to the centralized roscore. For this reason, 
the team chose to use two separate ROS networks for the onboard and OCS software and develop a 
custom communications bridge (CommsBridge) to handle data transfer between the ROS networks. As 
the same topic names are used on both sides, the setup allows seamless testing as a single ROS network. 
Section 2.4 in [1], which is included in Appendix A, describes the specific communication challenges 
used during the DARPA VRC and DRC Trials, and the design of our CommsBridge for those 
competition. 

For the DRC Finals, DARPA implemented a new communications restriction plan to increase the need for 
autonomy. The plan featured two always on channels that permitted 9600 bits per second data between 
robot and OCS; a third channel provided periodic bursts of 300 Mbits/s of data from the robot to the OCS, 
followed by variable blackout periods. 

In reviewing the prior CommsBridge design in light of the new restriction, there were several relevant 
features – templated topic handling, compression, and custom state handling – and a few that required 
changes.  

                                                 

40 http://wiki.ros.org/smach (accessed July 30, 2015) 

Approved for Public Release; Distribution Unlimited. 

http://wiki.ros.org/smach


 

    
51 

With periodic bursts of high-rate data, image compression and region of interest selection were deemed 
less relevant, and the ability to send image data via UDP over the high rate channel more relevant. TCP 
communications of compressed images was deemed problematic as the channel might open or close in the 
middle of an image transmission; the lost packets would render the entire image useless. Instead, Team 
ViGIR developed an approach to divide the image into tiles that could be individually compressed and 
transmitted in one single UDP packet. The image tiles were reassembled into a coherent image on the 
OCS side of the CommsBridge as shown in Figure 35. The previous image data was retained so that lost 
packets did not result in a completely corrupted image. 

A few systems that required significant amounts of data transmission were split to have a mirrored 
approach between the OCS and onboard. An example was the footstep planner; when running the 
CommsBridge, a special OCS/Onboard Footstep manager handled coordination between the OCS 
controls and two OCS/onboard footstep planner instances. This reduced the required communications 
through the always on data channels. 

Team ViGIR implemented and tested these changes during Q1 2015, and the approach seemed to be 
working well in our lab. At the initial testing at the South Carolina Test Bed in March 2015, we 
uncovered a major shortcoming of our approach relative to the particular implementation of the DARPA 
communications. While our average rate was well below the limitations, the burst rate was higher and the 
limited packet buffer design implemented by DARPA would overflow causing the system to drop 
numerous packets. Team ViGIR revisited the design, and implemented a per channel relay. 

 

Figure 35  Video capture with artifacts 

This software worked by connecting to a list of signals on either side and organizing each packet to send 
across based on a predetermined priority of the message. The bridge adhered to the bandwidth limit by 
calculating the wait it needed based on the bandwidth that particular bridge was configured for and would 
keep itself busy during that wait time by preparing the next packet. Multiple bridges were created to 
handle the fat pipe, each handling specific parts with the amount of bandwidth we wanted to allocate to 
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each. This system worked well in testing and had one side of the bridge running on the field computer and 
the other side on a dedicated OCS machine.  

At the heart of the Comms Bridge software we have several instances of the bridge node, each configured 
to send across a specific set of messages at the bitrates required to keep them within the bandwidth 
limitations. The nodes operated by tagging every message it received with a timestamp, priority, and a 
few flags based on how that individual signal was configured and storing them in a map where message 
priority and time stamp dictated its position. Then the next time the node had to busy wait for its next 
chance to send a packet, it would go through the map of messages it needed to send and started taking the 
messages off the top until it went through all of the messages. If a message was too big for the current 
packet it was skipped over but left in the map for the next packet. Then if the node had a big enough 
packet to send, it would check to see if it had waited long enough for it too not exceed the bandwidth 
restrictions by sending this next packet and do so if it could. To prevent holding onto stale data, the node 
would ignore the minimum packet size if it had been too long since the last time it sent a packet. The 
receiving side of the bridge was very simple where all it would do is extract the data from each packet and 
retransmit it on its side of the bridge for other software to use.  

To ensure that we could send everything we wanted specific messages such as the robot state, images, and 
LIDAR data, were handled in a special manner as discussed in Section 3.2.2.2 to allow us to compress the 
data even further than we could with a generic message. To handle dropouts, a buffer of the last 30 
seconds of compressed LIDAR data was sent over multiple times a second to make sure the latest point 
cloud data could be reconstructed on the OCS. 

State data used a custom packing format. Joint positions were encoded as signed 2-byte numbers to 
represent ±π to 1/10,000 radian as opposed to a 8-byte double precision number. Likewise, pose 
information was defined using six 2-byte numbers to represent positions relative to a periodically updated 
reference position and the qx,qy,qz values of scaled normalized quaternion. The reference pose was 
updated every 16 seconds using a standard double precision pose. The remaining data signals were 
structured such that they compressed the data as much as they could on their own. 
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4. RESULTS AND DISCUSSION 
Given the project overview and system background presented in Sections 2 and 3, this section discusses 
the particular challenges of the project and the technical results of our approach. Section 4.1 discusses the 
significant challenges faced by our team that affected our performance. Section 4.2 presents experimental 
results for the major sub-systems first introduced in Section 3.2; the results refer to the appendices for 
technical details. 

4.1. Significant Challenges 

This subsection discusses particular challenges, both programmatic and technical, that our team faced 
during the course of this project. Particular attention is paid to the issues that directly impacted our 
performances during the competition events. 

4.1.1. Schedule 

The primary challenge facing the team was schedule. The project entailed the most challenging robotics 
program to date that implemented on an extremely aggressive timeline. Team ViGIR faced an additional 
challenge of building our team and infrastructure from scratch. Where other groups had extensive 
histories with humanoid robotics, we assembled Team ViGIR for this particular project. Furthermore, the 
team lacked an existing automated unit and simulation-based testing framework; the effort to set such a 
system up required resources that we did not have available within the confines of this project. 

As discussed in Section 2.3.1, we defined the basic structure of our software architecture during the VRC 
while both the simulation and robot hardware were being developed in parallel. The lack of specificity up 
front delayed implementation of some controllers, and required subsequent rework. Later differences 
between the simulation and robot API have required addition rework under the extremely compressed 
timeline between robot delivery and the DRC Trials. 

The compressed schedule, limited developer resources, and hardware issues on site at the DRC Trials 
limited our ability to train operators for the DRC Trials. A few mistakes during the competition kept us 
from directly advancing to the DRC Finals, which ultimately cost us at least four months of development 
time, and six months until our robot was again ready for testing. This delay prevented us from bringing 
Cornell onboard early, and limited the autonomous behavior development we could do. This self-inflicted 
wound to our schedule prevented portions of our system from being ready for testing prior to the robot 
departure in November 2014. 

The biggest challenge leading up to the DRC Finals, and cause of subsequent scheduling issues, was the 
Atlas Unplugged hardware issues as discussed in Sections 2.3.3.3 and 4.1.4. These hardware issues were 
mostly due to the compressed development schedule that BDI was working under. 
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4.1.2. Geographic Dispersion 

A unique aspect to our team was the diversity in both nationality and geographic location. Darmstadt, 
Germany to Corvallis, Oregon spans a nine-hour time difference, which made communication and 
coordination a constant challenge. The team made extensive use of web-based project tools including a 
Redmine issue tracker and wiki for collaborative sharing of information, and Git-based shared code 
repository. Weekly teleconferences were held via Skype, but the lack of face-to-face time led to 
integration issues with some sub-systems. 

Travel costs and extensive time away from family limited the amount of testing for colleagues in 
Germany. While our planned development and test sprints worked well in the fall, the constant hardware 
issues negatively affected test schedules in spring 2015 as travel plans needed to be changed. Some 
planned tests could not be run during time on-site due to recurrent hardware issues, and could not be 
adequately tested in simulation due to the simulator fidelity issues discussed above. 

4.1.3. Simulation 

The simulator fidelity was a significant disappointment; from our perspective, the issues were primarily 

due to the lack of coordination between OSRF and BDI. The simulation did not perform well after the 

VRC, as BDI required a proprietary library that they did not update. We did not have our own simulation 

environment (c.f. IHMC), and our geographically dispersed team required the simulation for system 

checkout. 

Several significant issues made it especially difficult for our team. The updated system models could not 

walk in simulation until spring 2015; this required use to maintain different setups to test basic step 

controllers and manipulation. The system swayed in MANIPULATE mode to the point that we could not 

test grasping and manipulation without “pinning the hip.”  These issues prevented testing of integrated 

behaviors such as “walk to the table and pick up cutting tool” during crucial phases of the project. The 

inconsistencies between the robot and simulation API’s (e.g. number of joints, naming conventions) 

likewise caused difficulties and required developer resources. 

4.1.4. Hardware 

Compared to the relatively reliable hardware used in the DRC Trials, the Atlas Unplugged version had 
numerous hardware issues during 2015 as discussed in Section 2.3.3.3. The initial delivery was delayed 
by six weeks, and then had recurrent hardware issues as it was being beta tested in the field. While other 
teams had similar hardware problems, the delays significantly affected our team due to the geographic 
dispersion. 

The final hardware issue occurred on Day 2 of the competition in what we surmise to be a failure initiated 
by a problem in the custom hand electronics and compounded by overheating due to the delay. As 
discussed in Section 2.3.3.6, the robot had an initial arm failure that delayed our start while the robot sat 
in the California sun. An unexplained communication issue caused issued during the driving task. After 
additional delays due to resets, the robot experienced an unexplained communications error that induced a 
pump shutdown. The robot interface continued to update prior to the shutdown, which indicates the 
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software was operating; one possible explanation is an overheating issue. Other teams reported issues 
with their switch when overheated. Unfortunately, our onboard logging was not operational during this 
phase, and we cannot reconstruct a definitive cause. 

4.1.5. Developer Resources 

Team ViGIR was fortunate to have our core group of developers with us throughout the project; however, 

this small group required significant assistance from a larger group of student volunteer developers and 

some limited part time software developers. The complex system, both the actual robot software and the 

ROS catkin build system, had a steep learning curve and required very capable developers. Integration of 

new team members was made more difficult by evolving software and rules, and the struggle to maintain 

online reference documentation under the schedule pressures. In several cases, new developers were 

unable to grasp the system, and therefore consumed more resources than they contributed. Some 

developers made good progress on some novel aspects, but were unable to get their software integrated 

independently, and required too many resources from the core team. In other cases, the students made 

significant contributions, but were only with the project for a short time. 

The allocation of scarce developer resources was made more difficult due to changes in the hardware or 

simulation system design and to changes in the rules. For example, the team invested in developing a 

compliant whole body planning and control framework based on the expectation that the robot would 

need to egress and get up from a fall without a reset. After investing resources to get these researchers up 

to speed and integrated with the team, and make software modifications to support their efforts, the delays 

to the robot hardware delivery and limitations of the hardware performance prevented the development of 

the compliant controller in time for the competition. Furthermore, changes to the rules rendered this effort 

unnecessary. Thus, while the controller team made good progress as detailed in Sections 3.2.1.3, 4.2.1, 

and Appendix D, the investment did not pay off at the competition because of external issues. 

4.1.6. Build and Test Infrastructure 

Team ViGIR lacked a dedicated developer to handle infrastructure and testing. This led to shared 

responsibility across the core developer team. Early on, Team ViGIR recognized the need for an 

automated build and test environment, but lacked the in-house expertise in both the testing tool chain and 

ROS build system. The team attempted setting up such a system twice. The first automated build system 

was based on the existing infrastructure at TU Darmstadt, but did not include automated testing and was 

only accessible to certain people on the team. The team abandoned the second effort to set up a common 

build and test infrastructure due to personnel changes and resource restrictions in the lead up to the DRC 

Finals. 

Lacking such a system, it was up to individual developers to test their changes prior to merging into the 

main code branch; unfortunately, changes that worked in one part of the system, could negatively affect 

another sub-system. Lacking a robust high-fidelity simulation as discussed above, the team did not have 

an automated way of testing behaviors and integrated system capabilities. Without automatic simulation-

based validation, these errors could go undetected outside the full system integration. Thus, the team 

faced a constant struggle to balance keeping an up to date integrated system for testing with the operators, 

with premature introduction of bugs into the system that would negatively impact other developers 

productivity. The geographic dispersion of our team magnified this issue. 
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The large integrated build environment could take a significant amount of compile time for relatively 

minor changes to base messages or headers. Thus, a simple change to one package might result in a 

significant delay for the developer of an unrelated package just due to build time. There are tools to 

manage this complexity within the ROS catkin ecosystem, but lacking a developer dedicated to 

infrastructure, the team was unaware of some of these, and did not get them integrated into our system 

prior to the competition. 

4.1.7. Communications 

After working well during the DARPA VRC and DRC Trials, the CommsBridge development 
represented a significant challenge during spring 2015. As discussed in Section 3.3, issues discovered at 
the DRC Test Bed in South Carolina necessitated a change in our design relatively late in the 
development cycle. This, combined with delays in system development caused the hardware delays and 
changes in developer availability, led to delays in getting a fully functional CommsBridge until the team 
was on site in Pomona, CA. Beyond taxing the developers, this affected the full system testing the team 
was able to do during network checkout in the lead up to the Finals. In spite of these issues, the system 
worked well during the dress rehearsal on June 4, 2015. 

During the competition, the team experienced unexpected communications issues between the field 
computer and the onboard computers. Team ViGIR had arranged its behaviors software running on the 
field computer with the communications bridge software; this decision was a legacy of using the 
behaviors to do automatic logging on the field computer for certain tests. Under this arrangement, our 
normal bandwidth across the network between onboard and field was well below the 300 Mb/s rate, and 
appeared to give ample headroom for wireless packet loss. At the competition, as the robot approached 
the grand stands we began to experience a communication backlog that prevented our autonomous 
behaviors some working reliably. While we were not monitoring the network bandwidth directly, we 
heard from the WPI/CMU team that they saw their monitored bandwidth drop to less than 50 Mb/s, which 
was above our average through put, and likely contributed to a network backlog. In spite of this loss of 
autonomous behaviors, our operators were able to adapt and score three points and nearly scored a fourth 
point. 

In the evening after the Day 1 competition, Team ViGIR worked to rearrange their software to reduce the 
expected communications across the wireless channel. During testing that night, and in checkout prior to 
our Day 2 run, the changes appeared to be working well. Unfortunately, the aforementioned hardware 
problems impacted our run on Day 2. 

While the autonomy worked as expected during our run on Day 2, we did have another delay evident 
from our video of the operators console during our driving task. At one point the operator can be seen 
giving commands, but the vehicle does not immediately respond. The vehicle then begins to respond to 
the commands, but does not stop when commanded and contacts a barrier. As our logs were not enabled 
during this run, we are unsure if this was caused by our CommsBridge or the wireless communications. 

Overall, the communications with the robot cause significantly more unexpected issues at the DRC Finals 
than in the earlier stages. In the future, we will work to improve our CommsBridge and incorporate 
monitoring of the bandwidth across all channels, along with automatic logging that does not require the 
operator to start the logging process. 
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4.2. Experimental Results 

4.2.1. Robot Modeling and Control 

Model based compensations like dynamics and gravitation compensation need exact knowledge of the 
model parameters. Experiments with the joint impedance controller using the given CAD based 
parameters provided by BDI showed that further identification was necessary to execute trajectories 
without jerky motions and to achieve gravity compensation where the arms are backdriveable with 
moderate force and hold in position without interaction. 

For the identification, a base parameter regressor formulation of the robot arm dynamics is needed, which 
cannot be provided by a numerical library such as the RBDL, which was used for the trials [1]. All 
kinematic and dynamic equations had to be computed analytically using computer algebra systems, and 
parameter regrouping algorithms had to be applied. Appendix D explains the explicit algorithm based on 
IRT expertise and design tools. 

We iteratively ran dynamic trajectories optimized for parameter excitation and identified the dynamic 
parameters. By using the latest identified parameters in the model, we could execute the trajectories 
smoother and faster in order to iteratively improve the next identification results.  

Appendix D presents our experimental results that show a better velocity and similar position tracking 
performance for arbitrary trajectories than with the existing PD position controller. The especially good 
velocity tracking leads to smoother movement compared to the sometimes shaky movements with our 
current PD gainset. See Appendix D for figures and characteristic values used for the controller 
comparison. 

Another advantage of the model based control approach is the ability to observe disturbance forces. We 
implemented a joint torque disturbance observer, which is able to detect collisions only from regarding 
the measured joint torques without the need of the force-torque sensors, which suffered drift and 
calibration issues. In our experiments shown in Appendix D, we demonstrate the ability to switch to a safe 
gravity compensation-only mode after a collision with an obstacle. See Appendix D for the 
implementation of the disturbance observer and explicit results. 

4.2.2. Manipulation 

To evaluate the Object Template manipulation approach we present both, the results obtained during the 
manipulation tasks in the DRC and also individual laboratory experiments. Detailed results of the DRC 
Trials can be found in [3] included in Appendix E. These experiments show how a human operator using 
OT can interact with the remote robot in a high-level task command manner. Appendix H shows 
experiments of how Team ViGIR used the OT in a higher level autonomy. 

During the DRC Trials, the hose task was the most challenging task for manipulation. It required picking 
up the fire-hose, align it and attach it to a wye turning the nozzle which have 1cm2 knobs around it. Even 
though there was no Atlas team that successfully attached the fire-hose to the wye, the time analysis 
presented in [3] shows that using the Object Template approach Team ViGIR was the fastest team to pick 
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up the hose and bring it in a position near the wye. Team ViGIR ran out of time just shy of attaching the 
fire-hose, having the nozzle turned but no threads engaged (see Figure 36 and video41).  
 

 

 

 

 

 

 

 

 

Another task in the DRC that required constrained paths for manipulation was the Valve task. Because of 
simplicity, the lever valve was turned using Cartesian teleoperation. The other two circular valves were 
turned using the Circular Markers developed for the Trials. While the main operator was in charge of 
placing the end effector inside the valve, the auxiliary operator placed the axis of rotation of the Circular 
Marker matching the axis of rotation of the valve. After the alignment was complete, the robot was 
commanded to perform the circular motions required to turn the valve (see Figure 37). 

For the DRC Finals, we improved our approach as described in Section 3.2.4 and we were prepared to 
perform all manipulation tasks using affordance based manipulation (see Figure 38). Object Templates 
were created for the door, the valve and the drill describing the required motions that the robot needs to 
perform to achieve the manipulation task. We tested manipulation of these objects using the approach and 
preliminary results can be seen in Appendix E. 

Unfortunately, due to communication issues during the first day of the Finals and hardware issues during 
the second day, we were only able to show our approach applied to the door and valve tasks. Nonetheless, 
after the DRC Finals, Team ViGIR continued performing experimental evaluation of the approach. 

                                                 

41 https://www.youtube.com/watch?v=qHYGPMgysXI  

Figure 36.  Team ViGIR during the Hose Task in the DRC Trials. 
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During our Post-DRC experiment season, we tested the Object Template approach in manipulation tasks 
such as opening the door, turning the valve, and the surprise task of the cord plug. We performed these 
tests in two different ways: an operator commanded all the actions of the robot (pre-grasp, grasp, and 

Figure 37.  Team ViGIR during the Valve Task in the DRC Trials. 

Figure 38.  Opening door using affordances defined in the Door Object Template. 
Upper Left: Final grasp pose. Upper right: Final grasp posture. Lower left: Using counterclockwise turn affordance with 60 
degree. Lower right: Using push affordance with 0.05m. 
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affordance execution) as shown in Appendix E, and letting a behavior control all the actions of the robot 
(with the exception of object recognition and Object Template alignment) as shown in Appendix H.  

An additional advantage of the Object Template approach presented here is that the operator has the 
ability to use objects in a different way than how they were designed. As described in [5] included in 
Appendix E, improvisation is an ability that can increase robustness while attempting manipulation tasks 
in post-disaster environments.  

For more information, see Appendix E and our video playlist42 that includes all manipulation 
experiments: 

 

4.2.3. Footstep Planning 

This section provides a brief overview of experiments using our footstep planning framework during 
DCR Trials and Finals. Detailed results of the DRC Trials can be found in [1] and [4] included in 
Appendices A and F. 

Section 3.2.5 presented an integrated footstep planner which has been evaluated successfully during the 
DRC Trials. The only falls were due to operator error or hardware issues; but the footstep planner 
performed as expected. The novel ground contact estimation allows overhanging steps which significantly 
improves planning performance for the terrain task; therefore, it took only a few minutes and very few 
interaction steps by the operator to cross the pitch ramp43  and the chevron hurdle44 during our terrain task 
run at the DRC Trials. 

Although the planner has worked very well for us, it took a lot of time to tune all parameters for a good 
performance. Many experiments were required to determine the limits of the walking controller and even 
more experiments to discover all special cases. This motivates further investigation how to simplify this 
process. 

As discussed in Section 3.2.5 the footstep planner is also required to solve navigation problems like 
walking through narrow doorways. Unfortunately, operator error caused a fall during this task at the DRC 
Trials, but a video45 of the robot walking autonomously through a very narrow doorway without any 
collisions using our footstep planner is available. 

These examples show that planner is capable of solving navigation problems as well as generating 
feasible plans within seconds. Unfortunately, it is still too slow for online replanning when the robot is 
already walking; here, we need a result in less than a second to be able to inform the walking controller 
about the new step sequence in time. For this reason a walking monitor was implemented which can 
trigger a soft stop if it detects any issues during step plan execution. The problem of replanning efficiency 
will be a topic for future work. 

                                                 

42 https://www.youtube.com/playlist?list=PL7v9EfkjLswJQn2yZE3qv5sECx-qZbeXO 
43https://www.youtube.com/watch?v=7Qv__bLa3j4 
44 https://www.youtube.com/watch?v=vAtqVKGWvFM 
45https://www.youtube.com/watch?v=BlUfl5iSAkU 
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Summarizing, the planner is capable of utilizing existing black box walking controllers and generating 
feasible step plans in rough terrain scenarios in short time. But it is still not working flawlessly. Especially 
in rough terrain scenarios the quality of the generated plan highly depends on the quality of the perceived 
environment. If the perceived data is too noisy or even incomplete due to obstruction, information needed 
by the planner is too inaccurate. In case of noisy data, foot placement cannot be determined correctly; if 
the world model is incomplete, the planner cannot take into account unseen obstacles that may lead to 
colliding foot placements. As it cannot be guaranteed that the world model is correct and complete, we 
have never used the planner in a fully autonomous manner even though this would be possible through 
behaviors. Therefore, the operator is responsible for validating the footstep plan (e.g. through camera 
images) before permitting execution. 

For the convenience of the operator the footstep planning system has been integrated into the OCS with 
different layers of abstraction. At the highest level of abstraction, the operator is supposed to trigger 
planning using a template or dragging a goal pose using an interactive marker (see Figure 39). The only 
needed interaction with the planning system consist of a dropdown selection box where the operator can 
switch between different planner parameter sets e.g. 2D vs. 3D planning (see Figure 40). Advanced 
features are hidden in the settings menu where you can change basic footstep planner parameters e.g. time 
budget and the behavior of footstep editing mode (see Figure 41). If the operator decides to manually 
adjust step placement, he can simply activate the edit mode by double clicking on the desired step. 
Afterwards an interactive marker appears which the operator can use to move and freely change the step 
placement (see Figure 28 in Section 3.2.5). Depending on the selected edit step mode in the settings menu, 
the planner will automatically adjust the moved step according to the underlying terrain. In any mode the 
planner indicates with a colormap from green to red how feasible the new step placement is for the 
walking controller, where red warns about violated constraints. If the entire planning system is failing for 
some reason, the operator has access to all advanced footstep planning features as well as detailed 
parameters (see Appendix F) through special widgets. In such worse case scenarios, the operator is even 
able to generate manually patterns of foot placements using the pattern based generation mode (see Figure 
29 in Section 3.2.5). 

 
Figure 39.  Interactive marker to define goal of the step plan request. 
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Figure 40.  Drop down box to select a predefined parameter set. 

 

Figure 41.  Menu granting access to the most important planner parameters. 

At the DRC Trials the operator had to request and refresh manually the terrain model when the robot has 
to travel across rough terrain. A goal for the finals was to disburden the operator from all low-level tasks 
like this one. For this reason we have enhanced the terrain generator by the capability to create and update 
automatically the terrain model on-line which is demonstrated in the Appendix F. 

Our efforts of refactoring the footstep planner to a footstep planning framework has already showed 
results, but it is still an ongoing work. We have been able to provide the footstep planning framework to 
Team Hector and Team VALOR. After implementing the mandatory hardware interface and defining the 
correct parameters, the entire footstep planning framework presented in Section 3.2.5 became available 
for them. Therefore, the robots ESCHER and THOR-Mang used our footstep planning approach and the 
OCS with their own walking controllers. Unfortunately, hardware issues at the DRC Finals kept them 
from showing their full locomotion planning potential during DRC Finals. 

The entire footstep planning framework is already available as open-source code under GitHub: 

● https://github.com/team-vigir/vigir_footstep_planning_msgs 
● https://github.com/team-vigir/vigir_footstep_planning_basics 
● https://github.com/team-vigir/vigir_footstep_planning_core 
● https://github.com/team-vigir/vigir_terrain_classifier 
● https://github.com/team-vigir/vigir_pluginlib 
● https://github.com/team-vigir/vigir_generic_params 
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4.2.4. Behavior Control  

Team ViGIR created behaviors for some of the tasks in the DRC Finals. Specifically, we had “Open 
Door,” “Turn Valve,” and “Cut hole in Wall” behaviors46. For the driving task, we had a behavior for 
positioning the robot for car entry and then for driving (“ATLAS Vehicle Checkout”). We did not attempt 
the vehicle egress task, therefore we did not create a behavior for it. Moreover, we did not create 
behaviors for the uneven terrain and stairs, since those tasks did not involve complex sequences of 
locomotion and object manipulation. 

In addition to the task-specific behaviors, 
we had behaviors for performing the initial 
ATLAS checkout upon startup as well as 
for calibrating the hydraulic joint offsets. 
For example, the latter (“Praying Mantis 
Calibration”) was employed when ATLAS 
was placed outside the door area (as part of 
the requested reset) after the driving task 
(see Figure 42). This behavior drives the 
hydraulic joints to their limits in order to 
measure the encoder offsets and properly 
calibrate those joints. Performing this 
calibration was crucial for accurate 
manipulation; using a pre-defined behavior 
speeded up the checkout, and reduced 
errors. 

DRC Finals 

On Day 1 of the DRC Finals, due to the unexpected communication issues mentioned in Section 2.3.3.5, 
action requests originating from the Behavior Engine (deployed on the field computer) were not being 
serviced by the corresponding action 
servers (deployed on one of the onboard 
computers). Examples include footstep 
execution and motion planning for the arms 
(Figure 43). Even the “Praying Mantis 
Calibration” (Figure 42) did not work as 
expected and thus the hydraulic joints were 
not calibrated. To conclude our summary of 
Day 1, the contribution of behaviors to our 
performance was negligible. 

Between our two runs, we moved the Behavior Engine deployment to an onboard computer, in an effort 
to circumvent the unexpected communication issues. Thus, on Day 2 of the DRC Finals, behavior 
execution was working as expected (Figure 44 and Figure 45). Based on our experience with opening the 
                                                 

46 The state machines corresponding to behaviors mentioned in this section can be found in Appendix H. 

Figure 42.  ATLAS executing the “Praying Mantis Calibration” behavior 

Figure 43.  Behaviors errors on DRC Finals Day 1 
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door using the “Open Door” behavior, we hypothesize that the “Turn Valve” and “Cut Hole in Wall” 
behaviors would also have executed as expected.  

 

 

Figure 44.  The “Open Door” behavior successfully guiding ATLAS towards the closed door on Day 2 
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Post-Finals Lab Experiments 

In order to validate the efficacy of the task-level behaviors, we carried out the three DRC tasks, door, 
valve, and wall cutting, in the lab. However, a hardware issue with our ATLAS’ left hip prevented it from 
walking or stepping. Therefore, we skipped the locomotion part of those tasks. This was the only 
difference in terms of behavior design between the lab experiments and the DRC Finals. In addition, we 
created a variation of the “Open Door” behavior in order to compare two strategies for turning the handle; 
pushing it from below with the fingers in the “fist” configuration (i.e., completely closed) vs grasping and 
turning it in a more human-like manner.  

From our lab experiments, we have included a total of four demos in this report; two for the “Open Door” 
behavior (one for each turning strategy), one for the “Turn Valve” behavior, and one for the “Cut Hole in 
Wall” behavior. These demos are presented in detail in Appendix H. 

 

4.2.5. Behavior Synthesis 

Team ViGIR concluded early on that the DRC Finals rules encouraged, if not mandated, increased robot 
autonomy as well as interaction with the robot at a higher level of abstraction compared to the previous 
phases of the competition. To this end, we developed FlexBE (Section 3.2.6), which extends the SMACH 
Executive framework. It also adds a graphical user interface (GUI) (Section 3.1.3.4) for facilitating the 
creation of behaviors, i.e., hierarchical state machines, for our Boston Dynamics ATLAS humanoid robot.  

Figure 45.  The “Open Door” behavior in process of turning the door handle on Day 2 
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Use of FlexBE’s graphical editor resulted in significant productivity boosts in terms of development time 
and also provided basic syntactic verification capabilities. However, the development process was still 
manual, relatively slow, required an expert user, and provided no guarantee that the resulting behavior 
satisfied the implicit user specification. This motivated the use of techniques from the nascent field of 
formal methods in robotics. Specifically, we set out to automatically generate (synthesize) correct-by-
construction state machines from an explicit user specification. 

First, we create a formal mission specification, expressed in Linear Temporal Logic (LTL), by 
augmenting the high-level specification provided by the user (e.g. the final objective) with robot and 
context specific constraints (e.g., action preconditions) as well as initial conditions. We then synthesize a 
provably correct automaton from the LTL formulas using a freely available, off-the-shelf synthesizer. 
Finally, from the synthesized automaton, we generate instructions that FlexBE uses to instantiate the state 
machine, i.e., generate Python code. Figure 46 depicts the corresponding ROS packages and the nominal 
workflow. 

 

As shown in Figure 46, the synthesis action server (vigir_synthesis_manager) receives a synthesis request 
from the user via FlexBE’s GUI. Given the user’s high-level specification, the server first requests a full 
set of LTL formulas from the LTL Compilation service (vigir_ltl_specification). The LTL Synthesis 
service (vigir_ltl_synthesizer) acts as a wrapper for an external LTL synthesizer. Upon request, it returns 
an automaton that is guaranteed to satisfy the LTL specification, if one exists. Finally, the server requests 
a state instantiation message from the State Machine Generation service (vigir_sm_generation). The 
resulting message contains instructions that FlexBE can use to generate Python code: an executable state 
machine that instantiates the synthesized automaton. The corresponding action, services, and messages 
are defined in the vigir_synthesis_msgs package. 

 

Figure 46.  Behavior Synthesis ROS packages (vigir_behavior_synthesis) and nominal workflow. 
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The main theoretical contribution behind the Behavior Synthesis functionality is the modeling of actions 
with multiple possible outcomes (e.g. “completed”, “failed”, “preempted”, etc.) in Linear Temporal 
Logic. We dub this the “Activation-Outcomes” reactive LTL specification paradigm. Its software 
implementation is part of the vigir_ltl_specification ROS package (see Figure 46). The theory behind 
Behavior Synthesis is presented in detail in Appendix I for the case of our ATLAS humanoid robot. 

Behavior Synthesis has been integrated with FlexBE, which serves as a front-end to synthesis manager 
action server (see Figure 46). Developers do not have to start with an empty state machine when starting 
to create a new behavior or new parts of an existing behavior. Instead, they can provide a set of initial 
conditions as well as high-level goals to be achieved by this part of the behavior. Behavior synthesis will 
then draft a state machine that achieves these goals in a correct-by-construction manner. Developers can 
then further extend or modify the synthesized state machine, if desired, and also connect it to other parts 
of the behavior. 

Synthesis works seamlessly with the process of runtime modifications to behaviors, resulting in powerful 
synergy effects. For example, it makes it much easier and faster for users to specify runtime changes since 
they only have to give high-level commands to the synthesizer instead of completely modeling the 
changes themselves. In addition, it could enable incorporation of even more powerful autonomous 
adaptation. In scenarios where the environment can be much better perceived by the robot, and the 
consequences of failure are considerably low, using a combination of behavior synthesis and runtime 
modifications will allow the robot to change its own behavior during execution depending on how the 
world changes. It will also achieve that in a provably correct manner, thanks to the strong guarantees of 
synthesis. This is a topic of future work.  

Behavior Synthesis was not used during the DRC Finals for a number of reasons. First of all, the main 
developer of this functionality was also involved with the (manual) development of behaviors and states, 
which was deemed to be of higher priority. In addition, it was decided that this individual would be one of 
the four robot operators during the Finals, which imposed additional constraints on development time. 
Finally, there was a major technical reason for not employing Behavior Synthesis; the severe restrictions 
on communications during the Finals, which became apparent during the testing in South Carolina. 
Specifically, synthesizing a behavior on the operator’s side and sending it to the robot for execution 
would result in prohibitively large packet sizes, which would be completely rejected by the network. 
Performing synthesis onboard could have circumvented this, because only small messages encoding the 
high-level objectives would travel over the degraded network. However, this would have been a major 
paradigm shift in terms of software architecture, since the FlexBE Editor (GUI), which performs the final 
step of Python code generation, is designed to run on the operator’s side. This is another topic of future 
work in terms of development. 

However, after the DRC Finals, we completed development of the Behavior Synthesis packages and 
performed a series of experiments in the lab. Appendix I describes these experiments in detail; Figures 
Figure 47 through Figure 49 depict one of the experiments. 

In Figure 47, the user is in the process of specifying the initial conditions (STAND_PREP control mode) 
and goals (“look down”, “pickup object”) of the state machine to be synthesized. Clicking on the 
“Synthesize” button sends the Behavior Synthesis request to the corresponding action server (see Figure 
46). Figure 48 shows the synthesized state machine. 
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Figure 47.  The FlexBE Editor’s synthesis menu. 

Figure 48.  The synthesized state machine for pickup object.  
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In addition, the LTL Compilation process added additional constraints, such as the preconditions of 
executing the “pickup object” action: being in the MANIPULATE control mode and having an object 
template. In addition, since the initial condition was STAND_PREP and ATLAS needed to be in 
MANIPULATE, the synthesis process automatically added a state for transitioning from STAND_PREP 
to STAND in between as well.  

Figure 49 shows the execution of the resulting state machine on the Atlas robot without modification. The 
user did have to manually choose which arm/hand side (left or right) Atlas should use to pick the object 
up. This is an artifact of the design of the state primitive (in this case, an embedded behavior), which 
could be changed to allow the user to set the arm/hand side as part of the specification (e.g. by inputting 
“pickup_object_right” in the “Goal” field; see Figure 48). 

 

 

  

Figure 49.  The synthesized state machine executed on Atlas. 
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5. CONCLUSIONS 
This section discusses particular lessons learned, and presents our immediate plans for future research that 
builds upon the infrastructure that is now in place. 

5.1. Lessons Learned 

There are a number of lessons learned and improvements that can be made to individual components; 
these are left to the individual sections and appendices. In this section, we focus on team-level lessons 
learned that could have improved our performance, and on particular issues that we saw that DARPA may 
want to consider for future competitions. 

5.1.1. Maintain Adaptability 

With these types of competitions, especially ones under such tight schedules, the rules will change. 
Likewise, hardware delivery schedules will slip. It is important to plan for these changes, and to maintain 
adaptability in the system design. In spite of the challenges of functioning as a distributed team, this was a 
strength of Team ViGIR. While some resources were misspent in retrospect, overall the team defined a 
flexible architecture and adapted to changes in resources and schedule. 

One lesson is the need to prune unproductive research branches quicker, and to avoid spending developer 
resources unnecessarily. This is complicated when operating with volunteer student resources, who have 
their own semester projects to complete. 

5.1.2. Prioritize Infrastructure 

Proper infrastructure is required.  

The fidelity and completeness of the OSRF Gazebo-based drcsim was lacking, especially during Phase 2. 
This was driven both by development time pressures and a (perceived) lack of cooperation and 
transparency between BDI and OSRF. The issues, which were discussed in Section 4.1.3, severely 
impacted our team. While these issues were raised numerous times with both vendors and DARPA during 
Phase 1, we should have escalated them more; by Phase 2, the lack of progress became expected given the 
hardware development issues. In retrospect, we failed to escalate this issue sufficiently during the summer 
of 2014 when there was time to address the issue. 

The second issue was with our internal software infrastructure for automated builds and testing. We used 
the Catkin build system from ROS, but lacked an integrated system for automated builds and simulation-
based testing, which would have been helpful for ensuring overall software quality and ensuring a 
functional build for all parties. We tried a couple of times to set this up with part time student help, but 
this requires a significant level of expertise and focus to do correctly. Finding the right person for this job 
is critical, and something we failed to do with our resources. 
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Ideally, designing and developing this infrastructure should come before any development in a test-driven 
development framework. Adding such a system to a large complex system after the fact became a time 
consuming challenge, when developer time was at a premium. It is our position that having improved 
open source support for build and automated testing of these integrated systems would be greatly desired; 
this necessarily entails better simulation. 

5.1.3. Separate Development and Testing 

Our team struggled with having the same core group of developers working in design, software 
development, system testing, and operations. This resulted in overcommitted developers, and insufficient 
testing. Ideally, we would have had the designers testing the software that other people implement based 
on specifications; unfortunately, limited developer resources and the level of expertise required to develop 
the software prevented us from correcting this issue. 

5.1.4. Force Early Integration 

A continual challenge was the need to balance development and testing. This was made worse by the 
distributed nature of our team, and the split between OCS and onboard software development. In many 
cases the interfaces to the onboard software were evolving, which made integration with the OCS 
difficult; this caused developers to fall back into using simplified setups and engineering widgets to test 
their sub-system components. This led to stove-piping and last minute integration efforts after the 
interfaces were sufficiently mature. 

For any given onboard module, the components needed to interface with our OCS and behaviors systems. 
Due to the distribution of expertise, we ended up with multiple streams of development that were coming 
together at the same time. Our intent was that module developers would be responsible for integration 
with behaviors; unfortunately, delays in development, delays in hardware availability for testing, and the 
distributed nature of our team conspired to push much of the integration onto our behaviors team. This led 
to rushed integration, duplication of effort, and insufficient testing of the integrated system. 

The obvious answer is to maintain better accountability for deliverables, and strictly enforce test dates. 
This is challenging in any instances, and particularly so with a distributed team that depended on student 
developers using an imperfect simulation environment. 

5.1.5. Require more openness from GFE Vendors 

This is more of a DARPA program level lesson. As discussed above, the collaboration between BDI and 
OSRF was lacking, and insufficient resources were devoted to maintaining the simulation environment 
and releasing updates in a timely fashion. A more open and collaborative development arrangement was 
required. 

5.1.6. Task difficulty  

Overall, we felt the tasks were at an appropriate level of difficulty; however, in our opinion, the debris 
task missed the mark. The winning team and several other lightweight teams were able to push their way 
through the lightweight debris pile. As this was intended to be a manipulation challenge, it seems the task 
needed more interlocking parts to require manipulation and removal piece by piece. 
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5.2. Future Work 

The work started under this DRC effort is continuing across our different sub-teams, both individually 
and in collaboration. 

5.2.1. TU Darmstadt 

Research in both humanoid and more conventional wheeled and tracked rescue robot systems will 
continue at TU Darmstadt. While teams at the DRC demonstrated impressive performance, there are 
significant research challenges that need to be solved before rescue robot systems are robust and mature 
enough to perform tasks of similar complexity to those in the DRC in a real disaster. The following 
research topics thus will be pursued: 

� Perception and state estimation 
o Rich environment representations for supporting situational awareness/decision making of 

human operators facing previously unknown situations 
o Terrain classification (non-rigid, slippery terrain etc.) 
o Drift-free state estimation using internal and external sensing 

� Human Robot Interaction 
o Tight integration between robot capabilities (planning), automated behavior synthesis and 

user interface tools for specifying tasks in complex and challenging environments 
� Integration of heterogeneous robot platforms (such as bipeds, ground vehicles and/or UAVs) into 

a cooperating team 
� Footstep Planning 

o Extend to adaptive level-of-detail planning to decrease planning time 
o Investigations in adaptive planner policies providing more safe plans and easier migration 

of new robots 
o Expand the footstep planning framework 

5.2.2. Hanover 

As long as the real robot platform Atlas is unavailable for us, we will use our existing control framework 
for a simulation based student lab, where students will understand the necessary steps of robot modeling 
and control design. We will extend our analytical robot model to complete upper body dynamics and 
finally full-body dynamics and try to implement full body (joint) impedance control and simple balancing 
control schemes. This will also be part of the student lab if it works in the gazebo simulation despite the 
aforementioned drawbacks. 

If a humanoid robot platform would be available again, we will try to implement the control schemes 
mentioned above and would try to implement control for bimanual manipulation and cartesian impedance 
control. 

5.2.3. Cornell University (Verifiable Robotics Research Group) 

We want to improve our Linear Temporal Logic (LTL) -based Behavior Synthesis in a few ways. First, 
we want to allow the user to input richer high-level specifications in the behavior synthesis request; for 
example, to specify the robot's reaction to a dynamic, or even adversarial environment. This is already 
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supported by the “back-end”, i.e., the reactive LTL synthesis algorithm. It is a matter of facilitating the 
specification of such complex requirements by the user on a higher level, without having to write LTL 
formulas by hand. Furthermore, the more complex the specifications get, the more important it becomes 
to provide the user with feedback in cases of unsynthesizable specifications, ideally in natural or 
structured English. Our research group has already demonstrated this concept in different settings and we 
would like to apply such user-feedback techniques to behavior synthesis and integrate them tightly with 
the ROS-based behavior synthesis subsystem. 

An aspect of Behavior Synthesis that we did not explore in depth in the context of the DRC is online 
synthesis and even re-synthesis on-the-fly. A simple version of the former concept, online synthesis, was 
demonstrated  in Appendix J.2.4. However, we believe that a system could automatically invoke behavior 
synthesis during execution, by treating it as a state primitive, no different than footstep planning or 
closing the fingers. Only this state primitive would have the power to alter the structure of the active 
behavior itself, in accordance with some formal specification. 

While our approach to behavior synthesis is, in principle, robot-agnostic, we have only demonstrated it on 
Team ViGIR’s ATLAS humanoid robot. We want to facilitate the integration of other popular robotic 
platforms, such as the KUKA youBot mobile manipulator, by providing state primitives that will serve as 
building blocks for behavior synthesis. 

Finally, a new, but related, research direction we plan to pursue in conjunction with Dr. David Conner, 
who has moved from TORC Robotics to Christopher Newport University, is “Capability Specification”. 
Behavior synthesis relies on a developer mapping abstract symbols (used in LTL formulas) to the 
system’s atomic capabilities (implemented in software). Currently, this requires system level expertise. 
We believe that annotating the software components, that is the ROS packages, with formal specifications 
of their capabilities, would allow behavior synthesis to automatically generate this mapping and any 
associated constraints (such as the pre-conditions and post-conditions of various actions). The team 
intends to explore ways to formalize these capabilities in a formal yet generic manner that is amenable to 
automatic generation of system level behaviors based on the capabilities of the deployed sub-systems. 
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A. VRC AND TRIALS SYSTEM PAPERS 
This section embeds [2] and [1] for easy reference. 

Reference [2] provides a brief overview of the system and Team ViGIR’s results in the 2013 VRC. 

Reference [1] provides a system overview and details Team ViGIR’s performance in each task at the 2013 
DRC Trials. 
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B. SYSTEM HARDWARE MODIFICATIONS 
Hand Hardware and Robotiq Modifications 

In an attempt to gain better vantage points for the various manipulation tasks, we affixed one small, low-
resolution camera to the palm of each Robotiq hand facing outward from the middle of the paired fingers. 
The cameras offered views that proved useful for object contact verification, driving obstacle avoidance, 
and other task confirmations, but they, and the devices that supported them, were not as robust as was 
necessary for the robot’s stature or for the tasks attempted. As the DRC finals drew close, hardware 
maintenance issues and low part availability rendered these cameras all but useless; they can be seen in 
the above pictures of the DRC Finals, but they are inoperable at this point. 

In addition to palm cameras, we attempted to outfit the Robotiq hands with sets of tactile sensors to 
predict executed grasp quality and to provide operators with colored contact information in the OCS. 
Initially, we had planned to implement a machine learning algorithm that might predict, in real-time, the 
robustness of a grasp based on the number of finger contacts and the strength of each contact. The result 
could then be displayed to an operator or passed along to a behavior, which may decide to continue the 
task at hand or to replan and re-execute. Although much effort was put into these sensors and the 
machine-learning processing, the tactile hardware proved even less robust than the camera apparatus and 
necessitated removal prior to the DRC Finals. 

The last duty attempted by the hand electronics was determining whether or not the team had successfully 
engaged the cutting apparatus for the Drill Task. For this, we made use of small USB microphones 
planted on the side of each hand and monitored their average volume levels after initiating the Drill Task. 
During testing we found that the cutting tool produced a loud enough response when activated that we 
could readily detect it via the microphone. The microphone system was fully implemented by the time of 
the DRC Finals, but was also not used. 

All of the aforementioned electronics were powered by a 24V line split off of each of Florian’s arms and 
relied on Ethernet for communication. The 24V line was run through a variable step-down DC-DC 
voltage converter and fed into a Raspberry Pi 1 B+ and a small three-port Ethernet switch. Custom cases 
were designed and printed for each component (camera, raspberry pi, Ethernet switch, and DC-DC 
converter) to safeguard them from physical shock and electrical conductors. The raspberry pi ran the 
Debian-based Raspbian operating system and was outfit with ROS indigo. 

The raspberry pi functioned as a command and control center and information relay, handling 
camera/tactile control/resetting and transmitting the captured information through the ROS framework to 
the proper listeners. The microphone and takktile sensors made use of the raspberry pi’s built-in USB 
ports while the camera was attached to an onboard ribbon connector. 

Relevant Faults 

Much of the programming behind the components behaved as expected, but weak links in the chain of 
devices often caused failures. For the palm cameras, the ribbon cable connecting the camera in the palm 
to the raspberry pi mounted on the side of the hand was often sharply bent or punctured during operation. 
Initially, we had planned to encase the sensitive electronics in a guard around the hand, but this approach 
became cumbersome and was eventually discarded near the DRC Finals. As such, we could not produce a 
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viable replacement protection and the camera cables became fragile equipment on a particularly heavy 
robot. 

The tactile sensors suffered the interesting fault of having their communication wires ripped from their 
sockets regardless of their attached orientation. This caused communication issues on the sensors’ I2C 
buses often accompanied by a loss of data and a stalled state for each sensor. Efforts were made to 
programmatically reset the boards and continue on with the lost sensor, but our approaches were not 
robust enough for use in the DRC Finals. 
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C. OPERATOR STATION COMPONENTS 
In addition to the UI components discussed in Section3.1.3, the OCS included a number of components 
that coordinated communications between the different operators and the onboard software. These non-UI 
components include: 

� vigir_ocs_footstep_manager 

o Stores a stack of step plans (so we can undo/redo as needed) 

o Talks to the ocs footstep planner to plan footsteps based on local information only 

o Talks to the onboard footstep planner 

 Can talk directly to the planner to re-calculate ocs footstep plan based on data 

available onboard 

 Can use the onboard footstep manager to send minimal information onboard for 

planning in constrained communications 

o Receives information from the ocs/onboard planner, then creates and publishes 

visualizations 

� vigir_ocs_template_nodelet (should have its name changed to manager) 

o Talks to the grasp widget and all the grasp components 

o Stores and publishes current templates 

o Handles template-related actions (add/remove/update) 

o Stores template/grasp information, affordances, template manipulation, etc (Alberto?) 

� vigir_ocs_behavior_manager 

o Communication with behaviors 

o Handles requests, sends operator responses 

o Can handle multiple requests at the same time 

o “complexactionserver” (threaded action server) 

o from python to c++ and back to use python pickle for serialization 

� vigir_ocs_global_hotkey 

o handles global (OS level) keyboard events and sends messages to the OCS views 

� vigir_ocs_interactive_marker_server_nodelet 

o handles interactive markers added to the views  

o makes sure they are added correctly to all views 

� vigir_ocs_robot_state_manager 

o singleton containing the robot state manager instances for the robot and ghost robot 

These packages can be found in the vigir_ocs_common repository47. 

  

                                                 

47 http://github.com/team-vigir/vigir_ocs_common  
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D. ROBOT MODELING AND CONTROL 
This appendix gives details about the different aspects of robot modeling, identification, and our 
impedance-based control approach. We start with a summary of the paper submission included at the end 
of Appendix D, continue with details about the integral torque controller in Appendix D.2, the friction 
identification experiments (Appendix D.3) and the examined friction compensation mechanisms (D.4), 
further experiments for arm dynamics parameter identification in Appendix D.5 and an evaluation of the 
compliance of the different controllers in Appendix D.6. 

D.1. Summary of theoretical basics and basic experiments 

A detailed summary of the theoretical approach and the experimental results of the joint impedance 
controller, the identification process and the disturbance observer can be seen in our submitted paper for 
the 2015 IEEE-RAS International Conference on Humanoid Robots, which is attached at then end of this 
appendix. 

In Section I of the paper, we summarize the current state of the art of compliant control and impedance 
control for humanoid and hydraulic actuated robots. We come to the conclusion, that compliant control is 
absolutely necessary for humanoid robots in typical usage scenarios and that some promising approaches 
have already been researched in this field, which we combine in our control scheme for the Atlas robot. 

In Section II.A of the paper, we give an overview of our kinematic, dynamic and friction model to 
describe the robot and the linear regressor formulation needed for feasible parameter identification. 
Section II.B continues with a description of our excitation trajectories for the identification based on 
Fourier series and polynomial functions. The parameter identification is done with a least squares 
approach weighted by sensor noise covariance. Section II.C explains the joint impedance controller 
approach and Section II.D. gives details about the formulation of the disturbance observer used for 
collision detection and model error compensation. 

We begin our results in Section III.A of the paper with a description of the performance of our 
identification algorithm by comparing measured joint torques to the torques calculated from the identified 
model. This model accuracy was also experimentally validated by moving the arm in gravitation free 
mode, where a typical position teaching could be performed with only little drift in some poses. The high 
joint friction however helps to keep a position, if joint torque errors from model inaccuracies stay below 
the static friction. 

This influence of the dynamic model is also shown in the first part of Section III.B. We show the abilities 
of the impedance controller compared to the existing tuned PD position controller: Our controller 
achieves a comparable position tracking and an improved velocity tracking. 

Further we show the ability of the disturbance observer to qualitatively estimate the disturbance joint 
torque from model errors correctly. The ability to tune the impedance controller with different stiffness 
and damping coefficients is shown with a set of step response experiments. 
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D.2. Inner joint torque loop with integral feedback 

In Section 3.2.1.3 Figure 19, it was pointed out that an integral controller is needed for the inner joint 
torque loop due to high steady-state-error of the proportional controller. Figure 50 shows the joint torque 
and position errors of the second arm joint for a complex trajectory with moderate velocity. With an 
increased integral gain, we could decrease the joint effort error about 90 % and decrease the joint position 
error for the hydraulic joints about 20 % in some movements and poses. The mean position error for this 
kind of trajectory could be reduced about 5% and for faster trajectories about 30%. 

 

 

D.3. Friction identification 

As already discussed in [1] and pointed out by other teams, the friction in the hydraulic valves has a 
strong influence on the quality of the arm control. Since the friction effects are located in the seals 
between the hydraulic pressure measurement and the actuated link, the measured torque always contains 
the friction. This especially influences the concept of joint impedance control, which normally assumes 
real joint torque measurements between gear friction of commonly used electric drives and the actuated 
link. 

To identify joint friction, we executed trajectories with different constant velocities. Only with the model 
based controller and iteratively improved feedforward of dynamics and friction, we were able to run the 
trajectories smoothly without stick-slip-effect, which is shown in Figure 51 in comparison to the same 
experiment with the PD-position controller. 
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The resulting friction curves with our viscous and Coulomb friction model are shown in Figure 52. The 
line marked as “mean” is calculated from a linear regression of the mean joint torque and velocity of the 
single experiments marked “exp.”. The line marked as “raw” is calculated with a linear regression of all 
measured velocity and torque data points, which biases the friction identification, since trajectories with 
slow velocity take more time, produce more data points and are therefore weighted higher. 

 

D.4. Friction compensation and friction feedforward 

We examined two different approaches for the friction compensation: Model based friction compensation 
with feedback of the measured velocity with 

τ̂f,comp = diag(d̂v) q̇ + diag(μ̂C)sgn( q̇) 

and friction feedforward only as in 

τ̂f,ff = diag(d̂v) q̇d + diag(μ̂C)sgn( q̇d). 

Figure 51. Velocity and joint torque plots for constant velocity trajectory tracking  
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These terms are placed in the term τ̂f in Equ. (2) in D.7 included in this appendix. 

Figure 53 shows the results of these two approaches compared to the impedance controller without 
compensation and the tuned PD position controller. An interval in a complex dynamic trajectory with 
moderate velocity is regarded with position, velocity, and effort of the third arm joint of the left arm. 

 

With the friction feedforward control, the position tracking in intervals with low velocity is improved due 
to a better overcoming of the static friction. The position error decreased according to Table D-1 and is 
lower than with the PD position controller 

Table D-1: Comparison of Cartesian errors with different friction handling modes 

Mode Mean Cartesian 
error [mm] 

End Cartesian 
error [mm] 

Only Impedance Controller 9.3 9.5 
ImpCtrl. and friction feedforward 4.4 1.6 
ImpCtrl. and friction 
compensation 

7.9 4.9 

Tuned PD position controller 13.1 3.7 
The friction feedforward does not provide compliance in absence of a commanded velocity, since the arm 
friction is not compensated and the reaction force for low contact forces is the static friction. These low 
contact forces are not visible by the pressure sensors and therefore cannot be taken into account by the 
impedance controller. Since the main use-case of the impedance controller is to avoid falls after heavy 
collisions, we decided to use the friction feedforward with this drawback to compliance. 
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Also, our current implementation of the friction compensation cannot be set to the fully identified friction 
values from Figure 52 without having position oscillations with visibly high amplitude and low 
frequency. Therefore, the friction compensation compared above only uses friction coefficients reduced 
by ca. 50%. The oscillations probably result from the time delay and the switching between static and 
dynamic friction compensation. 

D.5. Dynamic Arm identification  

In addition to the identification results presented in [6], previously identified friction from Figure 7 in [6] 
was included to the robot regressor model. The aim was to reduce the parameter space from 59 to 45 
unknowns and to improve the identification results by the implementation of more model based 
knowledge into the identification model. Assuming a robot arm model of  

𝝉m = 𝚽𝜷 − 𝝉ext 

from Eq. (7) of [6] (with 𝝉ext = 0), the influence of a parametrized friction model with parameters 𝒅v, 𝝁c 
can be incorporated by subtracting 𝝉f =  𝚽f (𝒅v 𝝁c)

T from both sides of Eq. (7). This effects the loss of 
friction related columns within the regressor formulation 𝚽 = 𝚽b, which is represented by rigid body 
parameter only. The influence of friction to the motor torque 𝝉m can be written as 𝝉m,f = 𝝉m −

 𝚽f (𝒅v 𝝁c)
T. The following procedure of the identification algorithm is kept equal as described in [6]. 

A comparison between the base parameter vector 𝜷hum15 from [6], where friction was identified within 
the least squares optimization, and the base parameter vector 𝜷frct, using single joint friction values, can 
be seen in Figure 54. The figure shows the model prediction to an unknown trajectory which should 
exclude the problem of self-fitting. 

Similar performance in the torque prediction can be observed for the parameter vectors 𝜷hum15 and 𝜷frct 
for the joints shz, shx, ely and elx. In shz improved results can be noticed by 𝜷frct. However, both 
methods provide larger errors for this joint. 

The following table shows the mean square errors between measured and modeled torques for the used 
parameter vectors  𝜷hum15 and 𝜷frct for the hydraulic joints. Shz and shx show lower errors for parameter 
vector 𝜷frct. Whereas, superior results are obtained in ely and and elx by 𝜷hum15. 

Table 2: Mean square errors at arm identification using different base parameter vectors 

 Mean square error 𝜷hum15[Nm²] Mean square error 𝜷frct [Nm²] 
shz 101.98 47.56 
shx 29.63 25.62 
ely 12.69 27.53 
elx 14.18 31.22 

 

As already mentioned in [6], the wrist joints do not seem to be identifiable by such global methods in case 
of this robot. Although friction was identified in single axis experiments, the predicted torques have no 
correlation with the measured torques for wry, wrx and wry2. The reasons can probably be found in small 
masses and inertias of the wrist elements, which effect a weak excitation of rigid body parameters, and in 
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the use of current based torque measurement on actuator side, which are inferior to joint side torque 
measurements. The joint wry2 is not shown for illustration reasons because similar results to wrx and wry 
were achieved in which the model showed large errors. 

The influence of Coulomb friction can be noticed within the plots by a clear step within the torque 
measurement which can only be explained by the signum function of the Coulomb term. Looking at shx 
these effects are described by the single axis identification of Fig. (7). In ely the peak of the Coulomb 
friction in 𝜷frct seems to be too high but the magnitude of the step height between modeled and measured 
torque matches. In this case the step is shifted by the terms of the rigid body model. Looking at elx a 
match as described in the previous example cannot be noticed, but different magnitudes in step height can 
be seen. Consequently, a single axis identification does provide correct Coulomb parameters in every case 
which is probably effected by time depending effects of the friction. For the remaining joints a statement 
cannot be made because no clear steps can be noticed. 

 

As mentioned above, we discovered an inferior correlation between measured and modeled torques of shz 
in contrast to joints ely, elx. That is why we concluded a weak excitation of dynamic parameters which 
are related to potential energies of the arm in tilted poses. A cancelation of the related columns within the 
regressor formulation 𝚽 was not considered since a totally upright robot pose cannot be guaranteed 
completely for a humanoid robot. Therefore, we also executed the dynamic trajectories in two additional 
tilted poses shown in Figure 55 and implemented those results to the identification. The first identification 
results did not lead to an improved model correlation for shz. The reasons are subject of our ongoing 
research. 
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Finally, it can be concluded that the single axis identification of friction are a valid alternative method in 
contrast to a full identification of rigid body and friction parameters, but significant improvements could 
not be observed for the overall modeling accuracy by this approach. Possible explanations are probably 
time depending influences of friction within the robot joints.  

The tilted orientation of the robot has not shown promising results yet. The identification of a robot arm 
does not seem to be an issue of covering arbitrary arm positions and robot orientations, but more a 
problem of finding those orientations which optimally excite all parameters. That is why the robot 
orientation should be taken into account for further trajectory optimizations within the identification 
procedure.  

D.6. Compliance demonstration 

In addition to the experiments mentioned in [6], we tested the compliance by placing an obstacle in the 
way of a typical grasping motion as depicted in Figure 56 and comparing the behavior in different 
manipulation modes: PD position controlled, impedance controlled with low stiffness and impedance 
controlled with high stiffness with and without collision detection. 

 

 

Figure 55. Different settings for the Robot with fixed upper body for arm identification 

(a) (b) (c) 

Figure 56. Experimental setup: High stiffness (a), low stiffness (b) and collision detection (c) 

(a) (b) (c) 
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Figure 57 shows the measured values of force-torque-sensor, observed disturbance torque and joint 
position during a collision of the end-effector with a standing cinderblock using a Styrofoam protection. 

With the PD position controller and the impedance controller set to a high joint stiffness of 300 Nm/rad, 
the end effector pushes the cinderblock out of the way and the collision forces reach about 70 N during 
the impact. If the robot was standing during this experiment and the collision force would be bigger, the 
robot would fall, as for example experienced in our tests before the finals. However both PD-position and 
stiff joint impedance controller achieve high position accuracies without the obstacle of respectively 
6 mm and 4 mm at the end of the grasp motion. Figure 56-a depicts this result. 

One mechanism to achieve compliant behavior is setting a low joint stiffness of 100 Nm/rad to the 
impedance controller. In our collision experiment the end effector pushes into the obstacle, but the 
collision force does not get high enough to push it away, so the arm gets stuck at the obstacle (see Figure 
56-b). The position accuracy with low stiffness at the end of the grasping motion is about 9 mm and 
therefore only useful for safe transition motions, not for grasping motions (since this error increases 
significantly with attached hands and grasped objects). 

Another mechanism to ensure a safe behavior after the collision is using the stiff impedance controller 
with collision detection based on the estimated disturbance joint torque. This approach currently allows a 
threshold for collision detection of about 10 Nm joint effort. After detecting the collision, the arm can be 
set into gravity-free mode, which is pointed out in the joint position plot in Figure 57 and can be seen in 
Figure 56-c. 

The joint friction torque and our remaining dynamic identification model error is currently the limit for 
the collision detection threshold, since a wrongly estimated friction state in the disturbance observer could 
otherwise lead to a false collision alert. 

Improving the identification of the dynamics model would allow decreasing the collision threshold further 
and detecting also minor collisions. With the current setting of the disturbance observer, it took about 
300 ms to detect the collision with the cinderblock. With a higher observer Gain in Eqn. (22) of [6], a 
faster convergence of the disturbance observer can be achieved with the risk of overshoot in the observed 
disturbance torque exceeding the detection threshold. 
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D.7. Humanoids 2015 Paper On Modeling and Control [6] 

Approved for Public Release; Distribution Unlimited.

1298219308C
Rectangle



 

    
128 

 

Approved for Public Release; Distribution Unlimited. 

1298219308C
Rectangle



 

    
129 

 

Approved for Public Release; Distribution Unlimited. 

1298219308C
Rectangle



 

    
130 

 

Approved for Public Release; Distribution Unlimited. 

1298219308C
Rectangle



 

    
131 

 

Approved for Public Release; Distribution Unlimited. 

1298219308C
Rectangle



 

    
132 

 

Approved for Public Release; Distribution Unlimited. 

1298219308C
Rectangle



 

    
133 

 

Approved for Public Release; Distribution Unlimited. 

1298219308C
Rectangle



 

    
134 

 

Approved for Public Release; Distribution Unlimited. 

1298219308C
Rectangle



 

    
135 

E. MANIPULATION PLANNING SYSTEM 
This appendix provides details on the implementation of the manipulation system. This appendix includes 
two sections that cover information in more detail, and describe experiments conducted after the DRC 
Finals. Appendix G-3 includes a technical paper [3] that covers our design through the DRC Trials, and 
G-4 includes another recent paper [5] submitted to the Humanoids 2015 conference that extends our 
concept of “usability”. 

E.1. Object Template and Usability-based Manipulation 

The initial version of the Object Template approach used during the VRC considered only the 3D mesh of 
the object and potential grasp pose information. With these capabilities we were able to score the “lift 
fire-hose from the table” point in all of the five runs. However, the lack of manipulation capability in an 
affordance level such as “turn” required the operator to perform the rotation motions to attach the fire-
hose manually, which in a cartesian-space teleoperated approach have high complexity. The results of the 
VRC can be shown in [2]. 

After the development phase between the VRC and the DRC Trials, we incorporated additional 
capabilities to our OT approach. These capabilities included physical information of the object of interest, 
such as mass and center of mass, which were used for control while manipulating objects (e.g. the drill). 
Also, we implemented Cartesian and Circular Markers to generate constrained paths for the robot’s end-
effectors. These markers are visualized as floating independent frame of references that were manipulated 
by the human operator and located in a desired pose. Cartesian plans are calculated using the initial end-
effectors pose and the origin of the marker as target pose. Circular motions were calculated using 
individual Cartesian paths around the “X” vector of the marker as rotation axis (see [1] Appendix A).  

After the DRC Trials, we evolved our OT to provide the functionality that the Cartesian and Circular 
markers were providing. With the new OT implementation it was now possible to assign multiple motion 
constraints into one single frame of reference plus all the previous functionality of the OTs. This brought 
the concept of affordances to the OT because now we are able to define motions that the object offered 
[3].  

Additionally we developed the concept of “usability.” Usabilities allow the operator to select points of 
interest in a grasped object so that this point can be used while planning motions. Instead of having one 
“tool tip” per object, the OTL can describe multiple points in the reference frame of an Object Template. 
For example, the Drill Template will have at least three usabilities: the origin of the template, the 
ON/OFF switch, and the bit (see Figure 59). These usabilities allow objects that are grasped by the robot 
to be considered as online-augmented end-effectors. With this information, affordances can then be 
executed using these points as reference for motion planning. As shown in Figure 59, the Drill Template 
(left) has three usabilities: Origin, Trigger, and Bit. The Paint Roller Template (right) has three usabilities: 
Origin, Base, and Roller. The “bit” in the drill is located around 10 cm above the origin of the reference 
frame of the Drill Template, for this reason special planning has to be done to achieve the desired cut 
pattern in the wall (see Figure 58). 

As shown in Figure 58, normal planning with respect to the robot hand creates a smaller (dark green) 
circle about the center axis of rotation of the wall template based on the relative position of the hand (left). 
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Using the drill bit usability as the reference point results in the correct hand motion pattern to cut the  
wall, since the drill bit is the one rotating around the axis of the Wall Template (right).  

 

 

 

 

 

 

As described in Section 3.2.4, the Object Template Library is divided in three main groups of 
information. Here we present example XML flies of each group. The Grasp Template Library, shown in 
Figure 60, is used to store pre-calculated potential grasp poses for the robot’s end-effectors. It also defines 
the finger postures required for a particular grasp, before closing the fingers and after closing the fingers. 
The final-grasp is the pose that the end-effector needs to reach before closing the fingers.  

Figure 59.  Object usabilities for the drill and paint roller 

Figure 58. Cut circle in wall with the drill tool. 
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An approaching_vector is defined in a way that the end-effector can safely reach a pose near the object.  

After reaching this “pre-grasp” pose, the end-effector only needs to move in the direction of the 
approaching_vector  to reach the final-pose. Each grasp has its own ID and they are linked to one single 
template_type. 

Figure 60.  Grasp Template Library XML file 
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Another issue to be tackled was the determination of suitable stand poses for manipulation relative to a 
given object. An inverse reachability approach, available as open source as part of the Simox library48 was 
integrated with Team ViGIR's software for this purpose. Prior knowledge about DRC tasks made the use 
of this automated inverse reachability system and the added complexity introduced by it unnecessary. To 
simplify usage, Team ViGIR used the Stand Template Library, shown in Figure 61, to store pre-
calculated stance poses for the robot pelvis that will allow the robot to properly reach the object. It is a six 
degree of freedom pose of the robot’s pelvis with respect to the OT frame of reference. Each stand pose 
has its own ID and they are linked to one single template_type. For use within real disaster environments, 
a fully integrated inverse reachability approach that considers possible collisions with the environment, 
biped balance constraints, and of sensor visibility is desireable. 

                                                 

48 Vahrenkamp, Nikolaus, Tamim Asfour, and Rudiger Dillmann. "Robot placement based on reachability inversion." Robotics and 
Automation (ICRA), 2013 IEEE International Conference on 6 May. 2013: 1970-1975. 

Figure 61.  Stand Template Library XML file 
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The Object Template Library, shown in Figure 62, contains the physical information of the real object it 
represents. It has also 3D mesh information of the shape that can be linked with a path to a PLY mesh file. 
The OTL also contains the semantic information of the object in the way of affordances and usabilities. 
The template_type is used to relate information of a template to the Grasp Library and the Stand Library. 

Figure 62.  Object Template Library XML file 
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E.1.1. Manipulation Control Widget 

The user interface used to interact with the remote robots consist of a manipulation widget for each hand 
(see Figure 63). This widget is access from the Main UI window presented in Section 3.1.3.1. This widget 
is responsible of providing to the human operator all the functionalities that the OT approach has.  

Once an OT is inserted in the environment, the operator can double click that OT to let know the 

Manipulation Widget that that is the OT of interest. The Manipulation Widget then displays all the 
information available for this OT (see. Figure 64). The pre-grasp and final grasp poses for a specific 
Grasp Template can be shown. The fingers can be Opened, Closed, set to the specific joint configuration 
defined for that Grasp, and there is the possibility to select the percentage of closure if the fingers are 
going to be manually controlled. If the object is going to be moved around the environment, the operator 
can “Attach” the OT to the robot, allowing the motion planner to consider the real object for collision 
avoidance, in the same way the OT can be detached from the robot. The Usability combo box allows the 
operator to select the frame of reference in the end-effector that the motion planning is going to be done 
with respect to (e.g. Palm, Poke Stick, the origin of the template, or any point of interest included as a 
usability in the OTL). Affordances can be executed with different parameters. Once the affordance is 
selected from the combo box, the default values for that affordance are automatically loaded, afterwards 
the operator can change this parameters. The displacement parameters use degrees for rotational motions 
and meters for translational motions. The operator can also select if the motion is going to be performed 
keeping the end-effector orientation or not. In case the affordance is rotational, the operator can give a 
pitch to that affordance to convert the circular motion into a “spiral” motion. Finally, the speed of the 
motion execution can also be set.  

Figure 63.  Manipulation Control Widgets for each Hand. 

Approved for Public Release; Distribution Unlimited. 



 

    
141 

 

E.1.2. Transfer of Manipulation Skills between Objects 

During some practice tests, we found ourselves using a different OT than the one that was designed for 
that task. For example, while turning the steering wheel of the Polaris vehicle, we initially used the Valve 
Template before creating the Steering Wheel template. This is possible given that motions required to 
perform a manipulation task do not depend on how and where the robot has grasped the object. In a 
recently submitted to paper [5], we present an approach that shows how the operator can use an OT to 
perform versatile manipulation tasks. This is demonstrated during an experiment where the robot is not 
able to reach a valve because the stand position required is blocked by debris. A combination of two DRC 
tasks was created and the use of OT allows the operator, for example, to pick up a piece of debris and 
utilize it to reach and turn the valve [Appendix Experiments]. 

E.1.3. Object Template Alignment  

It is a known disadvantage, as shown during experiments with behaviors in Blacksburg, that manual 
alignment of OT consumes most of the time during a manipulation task. Initially Team ViGIR during the 
VRC, and later on in collaboration with Team VALOR during the DRC Finals, attempted to develop 
automatic OT matching algorithms to match the 3D mesh to the perceived sensor data to determine the 
6D pose of the object. Test results of automatic OT alignment to the sensor data corresponding to the real 
object were not robust enough, and had too many corner cases. During the competition and the 
experiments,  auxiliary operator manually aided in performing object identification and alignment of the 
OT to the sensor data. 

 

 

 

Figure 64.  Description of Manipulation Widget functions that interact with Object Templates (OT). 
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E.2. Manipulation Experiments 

To validate the theoretical concepts described in Section 3.2.4, we performed some experiments that 
demonstrate how manipulation tasks can be efficiently performed by the human operator using the Object 
Template approach. Appendix H contains experiments that show how the same usabilities and affordances 
can be incorporated into autonomous behaviors. A playlist with all experiment videos can be found here: 
https://www.youtube.com/playlist?list=PL7v9EfkjLswJQn2yZE3qv5sECx-qZbeXO . 

E.2.1. Wall Task 

The wall task is considered the most challenging manipulation task in the DRC. It requires object 
manipulation, interacting with small object parts such as the ON/OFF switch, and planning with 
environmental constraints such as the wall plane and the region that needs to be cut.  

This experiment shows how the human operator using the Manipulation Widget commands the robot to 
pick up the drill and draw a circle in the wall. In this case, the task requires to perform motion planning in 
two different frame of references at the same time: the wall and the drill. On one side, the Cut-Circle 
affordance of the wall needs to be used to generate a circular motion around the frame of reference of the 
wall. On the other side, the robot needs to calculate the path to follow, not with respect to the hand, but 
with respect to the drill bit. This is a perfect example where the operator can use the affordances of the 
wall while selecting and planning with respect to the drill bit usability. In Figure 65 and the associated 
video49, we used a marker in place of the drill bit to demonstrate the path. 

                                                 

49 https://www.google.com/url?q=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D4aIpvpqwvJY  

Figure 65.  Drawing a circle using affordances defined in the Wall and Drill Object Templates. 
Upper left: Picking up drill. Upper right: Using “Insert” affordance of the drill. Lower left: Using “Cut-Circle” affordance of 
the wall. Lower right: Circle completed. 
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E.2.2. Cord Plug Surprise Task 

From the 3 surprise tasks, the Cord Plug task was the most challenging because of the accuracy required 
to introduce the cord plug into the socket. While we did not get to attempt the Cord Plug Task on Day 2 of 
the DRC Finals due to hardware issues, we demonstrated this task in experiments. 

During this experiment, we performed the Cord Plug task in around 3 minutes. Using the Manipulation 
Widget, the operator can easily send the robot’s hand to pre-grasp and final grasp positions for both 
sockets, the operator only needs requiring only to use afterwards the “extract” and “insert” affordances of 
the socket. Given inaccuracies while grasping the cord plug, the pre-calculated insert positions of the 
socket are not aligned. However, after minimal alignment from the operator, the “insert” affordance of the 
socket can be used. Since this affordance only describes the the motion of the hand needs to be parallel to 
the axis of insertion of the socket, the orientation of the hand is not relevant to perform the manipulation 
motion of insertion (see Figure 66 and video50). 

E.2.3. Robustness Experiments 

After the DRC, Team ViGIR continued performing experiments with the Atlas robot. While some of the 
experiments were a repetition of the DRC tasks, we tested the robustness of our approach for cases where 
the robot is not able to reach the objects of interest (situation that can easily happen in a post-disaster 
scenario). 

As described in Section 3.2.4, the manipulation skills that the affordances provide are grasp-agnostic. 
That said, we envisioned a disaster scenario similar to a combination of the Valve Task and the Debris 
Task in the DRC. In this scenario, access to the valve is blocked by debris. Normally, the robot would 
have first to remove all debris until it gains access to the valve, and then perform the turning motion. 

                                                 

50 https://www.google.com/url?q=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DtduZBtkuDWM  

Figure 66.  Cord Plug Surprise Task Demonstration 
From top-left to bottom-right: Pre-grasp, grasp, extract, pre-insert, insert, release. 
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However, if the case is that the debris cannot be removed completely (e.g., it is heavy or big), then the 
task would be impossible complete. To demonstrate how the OT approach can allow the operator to 
improvise, provide the following experiment. 

The operator identifies a piece of debris that can be used to reach and turn the valve. The operator 
performs the required manipulation motions to pick up a stick from the debris (just like in the Debris 
Task) but it then uses this stick  to turn the valve by inserting the edge within the crossbars of the valve. 
Once the stick is in place, without any modification to the approach, the operator can then execute the turn 
affordance of the valve, and the required circular motions to turn the valve will be done using the stick 
(see Figure 67 and the associated video51). 

In another experiment, Atlas is unable to turn a valve because it is in a higher place than it can reach. The 
human operator identifies a long L-shaped stick (e.g. paint roller) which can be grasped and used to reach 
the valve. This experiment is different from the previous one, because in this case, the point that needs to 
follow a circular path around the valve is not located in the end-effector, but in the “roller” part of the 
object. To plan with respect to a point of interests in the grasped object, the operator can select the 
“usability” that belongs to that point (in this case is the “roller” usability). With this online-augmented 
end-effector, the turning affordance of the valve can then be used in the same way as when turning the 
valve with the hands (see Figure 68 and associated video52). 

 

 

 

                                                 

51 https://www.youtube.com/watch?v=HN8PEf4ftmU (accessed August 19, 2015) 
52 https://www.youtube.com/watch?v=4km_aaatA0M (accessed August 19, 2015) 

Figure 67.  Atlas using a stick to turn the valve 
Atlas is unable to reach a valve because of debris blocking the stand pose needed to grasp the valve with the hands (left). The 

human operator identifies a stick among the debris and uses it to reach the valve (right). The turning affordance of the valve is 
used in the same way when grasping the valve with the hands as when having a stick inserted within the cross bar of the valve. 
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Figure 68.  Atlas turning a high non-reachable valve using a paint roller 
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E.3. Humanoids 2014 Paper on Manipulation [3] 
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Humanoids 2015 Paper on Manipulation [5]
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F. FOOTSTEP PLANNING SYSTEM 
In this section we present more details about the developed footstep planning system and framework. 

F.1. Footstep Planning System 

The basic footstep planning approach is already described in Section 3.2.5 and [4]. This approach tackles 
multiple challenges to enable full-size humanoid robots to cross difficult terrain in real world application. 
Even with no details of the underlying walking controller available, the planner is able to utilize the 
versatile locomotion capabilities of a full-size humanoid robot. It is capable of generating full 6 DoF 
footstep sequences that allows safe execution by walking controllers. A terrain model generator allows 
generating a quickly accessible 3D world model from all perceived 3D laser scans. Hence, we have 
presented an integrated footstep planner as it comes with full perception and planning pipeline. For further 
details we would like to refer to the mentioned sources. 

This approach has been evaluated successfully with the Atlas robot in real world experiments. During the 
DRC Trials the integrated footstep planner allowed traversing the pitch ramp and chevron hurdles within 
eight minutes. The operator only had to command the desired goal position behind the obstacle. During 
the competition the footstep planner has already worked well, but there were still issues which had to be 
addressed until DRC Finals. 

During the DRC Trials a major issue encountered was limited operator ability to correct planning. If the 
planning system failed to deliver a feasible solution for some reason e.g. a bad world model due to 
obstructed obstacles, the operator could not assist the planner effectively. The operator could only define 
simple step pattern commands using a dedicated widget. But back then the pattern mode was not able to 
assist the operator in terms of 3D planning or step validation. 

For this reason the footstep planner was extended to provide better services for interaction via graphical 
user interfaces (in our particular case Team ViGIR’s OCS). These services provide the following features: 

● Stitch multiple plans
● Revalidation of the entire step plan
● Modify single steps of a plan
● Operator assistance (e.g. automatic 3D foot placement adjustment)
● Planning preemption
● Goal pose to feet poses transformation
● Waypoint mode (in preparation)

While depending on the implementation of the graphical user interface, all these features enable 
interactive footstep planning with the human in the loop. The operator can request a footstep plan and in 
case of bad steps just modify them instead of triggering replanning or manual pattern generation. An 
example how the interactive planning mode looks like is illustrated by Figure 28 in Section 3.2.5. In 
addition to the usage by graphical user interfaces these services provide a wide range of helper tools for 
any high-level software (e.g. behavior control), granting easier access to the comprehensive footstep 
planning interface. 
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Since the DRC Trials we have been able to improve the overall planning performance of the planner. 
Especially the planning runtime has been improved which allows to planner to optimize plans faster and 
deliver better results. The 3D terrain generator has been improved as well, providing the ability to 
generate terrain models for the footstep planning system online. This new terrain model generator has 
already been applied and validated for real world scenarios as shown in the results section. 

F.2. Footstep Planning Framework 

After the DRC Trials many opportunities arose to show that our approach supports a wide range of 
walking controllers for biped humanoid robots. First, IHMC announced to make their controller software 
available for all Atlas teams. Afterwards, Team VALOR adapted the Team ViGIR software infrastructure 
for use with their robot ESCHER. Lastly, Team Hector qualified their THOR-Mang robot for the DRC 
Finals. The planning system has been integrated with these three different biped humanoid robots, with 
each of these coming with their own walking controller. This provided the opportunity to show that the 
footstep planning approach can successfully be deployed on other full-size humanoids besides ATLAS. 
But variations of different available robot systems raised the question how to do this correctly. 

This motivated the development of a footstep planning framework based on our prior work. The main 
objective is to provide an integrated footstep planning framework which may be deployed easily into an 
existing ROS setup. As a framework the planner has to be expandable for new features but closed for 
modifications. Any user of the framework should only have to implement and extend robot specific 
elements to get the advanced planning system running instead of developing a modified version of an 
existing planner or even starting from scratch each time. All already implemented and thus proven 
algorithms are kept untouched which decreases the likelihood of errors and saves a lot of implementation 
effort. Although, the framework must generalize well, it is able to solve difficult terrain task problems and 
utilize the versatile locomotion capabilities of the given walking controller. 

 

In order to meet this objective the plugin management system vigir_pluginlib
53 has been implemented. It 

provides the capability to manage versatile plugins which can be also used outside of the footstep 
planning domain. Our package is based on pluginlib

54 which already allows for dynamically loading 
plugins using the ROS build infrastructure. We have extended the package into a semantic plugin 
management system. The practical implementation consists of two parts: The plugin base class and the 
plugin manager. 

F.2.1. Plugins 

Plugins are used to efficiently inject user specific code into the planning pipeline. The user is able to 
execute robot specific code during the footstep planning process without any modifications to the 
framework. 

The plugin base class contains the basic maintenance variables and methods which are needed by the 
plugin manager. Each plugin can be identified by its unique name and contains semantic hints about the 
                                                 

53 https://github.com/team-vigir/vigir_pluginlib 
54 http://wiki.ros.org/pluginlib 
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plugin’s semantic base class in order to efficiently identify the plugin type and its capabilities. The 
semantic base class is not to be confused with the plugin base class, but rather is a specialized plugin base 
class which defines the functionality and content of all derived plugins. Figure 69 illustrates an example 
inheritance hierarchy for plugins which also shows that it is possible that semantic plugins are derived 
from other semantic plugins. In this case all derived plugins will give only semantic hints to the latest 
semantic base class in the hierarchy. 

Figure 69.  Example for a plugin inheritance hierarchy.  

In some cases a plugin type may cause concurrency issues due to their intended purpose, when multiple 
instances of the same semantic base class exist. For this reason each semantic base class is able to declare 
itself to be a unique type. This declaration will disallow the plugin manager to maintain more than one 
instance of this plugin type at the same time. Once this uniqueness has been defined by any inherited 
semantic base class, each derived class must not remove this classification. Despite of a clear sign of a 
class hierarchy design flaw this could cause unexpected side effects. 

Each (custom) package is able to export their own semantic base classes as well as concrete plugins using 
the ROS toolchain. Therefore, all generic tools like a user interface and even the plugin manager are 
getting automatically aware of every new plugin. 

F.2.2. Plugin Manager 

The plugin manager is responsible for maintaining and providing simple access to all plugins. Currently, 
the plugin loading sequence has to be hardcoded in the initialization of the footstep planner node. The 
option to load dynamically plugins is in preparation. In the meantime the plugin manager already supports 

Hereby, it is illustrated to which base class the semantic hint will point to. 
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adding, replacing and removal of plugins during runtime. It is possible to retrieve specific plugins in 
multiple ways: By name, by semantic hints, and by inheritance hierarchy. 

Every plugin has to be named uniquely in the entire system and thus can be uniquely identified by its 
name. Therefore, the first and most straight-forward way to obtain a plugin from the plugin manager is by 
name (see Figure 70). Retrieving plugins by semantic hints will only deliver the ones which exactly match 
the given semantic hints. The inheritance hierarchy will be ignored as illustrated in Figure 71. This mode 
is less important and should only be used if an efficient lookup of a specific plugin type is needed, but the 
name is not known. In general, the most flexible and dynamic mode is lookup by inheritance hierarchy 
which should be preferred. In this mode the manager will check if a plugin inherits from the requested 
semantic base class. The manager is able to return all plugins that fulfill the requirements defined by the 
semantic base class independent of any semantic hints or plugin names (see Figure 72). This concept 
assumes that all plugins as well as the inheritance hierarchy are designed cleanly, thus all defined 
functionality of the inherited semantic base classes must be implemented properly by the plugin. 

 

Figure 70.  Example for obtaining plugins by their name.  
Here, the plugin named Car have been requested. 
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Figure 71. Example for obtaining plugins by their semantic hint. 

Figure 72.  Example for obtaining plugins by their inheritance hierarchy. 

Here, all plugins having the semantic hint of Drawable have been requested. 

Here, all plugins derived from Drawable have been requested. 
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The plugin manager itself is automatically instantiated for the entire system as a singleton. This design 
decision was made to prevent issues due to multiple plugin manager instances and allows providing 
global and simplified access. It automatically sets up all ROS services and action servers which provides 
generic access to the plugin management capabilities (e.g. dynamically loading plugins). 

F.2.3. Parameter Management System 

In real world application different terrain scenarios need to be tackled (e.g. flat surface, stairs or sloped 
terrain). The footstep planner can perform best if a dedicated set of parameters has been defined for each 
kind of terrain scenario. This also allows the operator to switch easily between different planning 
behaviors. Furthermore, it is desirable to be able to modify a parameter set if the situation requires it. In 
general these requirements can be solved using the available ROS message infrastructure. Plugins 
however, are supposed to extend the footstep planner with new features. The structure of parameter sets 
may vary which is in conflict to ROS messages as they require a static structure. A simple solution would 
be separate configuration files and well as user interfaces for each plugin which is undesirable due to high 
maintenance effort. 

This motivated the development of a new parameter management system. The XML-RPC library already 
used by ROS system is used, as it already provides a suitable data structure for our purpose. Each 
parameter set can thus be modeled as nested XML-RPC values. This data representation allows easily 
applying a marshalling algorithm converting the data into a byte stream. The resulting byte stream can be 
packed into a regular ROS message as a vector of characters. This overcomes the basic conflict of static 
ROS message structures for interprocess communication and the need of flexible content due to user 
defined parameter sets. Although the approach is introduced here in the context of footstep planning, it 
can be used for any software system. 

With the new parameter management system it is now very easy to manage multiple parameter set 
configuration files. If a new parameter set is needed, the new configuration file only has to be placed in a 
preconfigured folder. The parameter manager is able to locally load and store all parameter sets found in 
this folder. The OCS makes use of this feature and automatically updates the user interface to show all 
given parameter sets which can be selected by the operator afterwards (see Figure 40 in Section 4.2.3). 

The parameter manager has been designed in a similar way like the plugin manager. It is automatically 
instantiated as a singleton, able to maintain multiple parameter sets and provides services for adding, 
removing and editing parameter sets which can be accessed via ROS service and action servers. In Figure 
73 generic graphical user interface using these services is shown. It allows modifying parameter sets of 
any parameter set structure on-line. 
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Figure 73.  Parameter Editor Widget 

F.2.4. The Footstep Planning Framework 

The new plugin and parameter management systems form the infrastructure base of the footstep planning 
framework. The footstep planner pipeline has been checked for places where a user might want to affect 
the behavior of the planner. For each found place a semantic base class has been introduced: 

● CollisionCheckPlugin: Basic collision check of a given state or transition
● CollisionCheckGridMapPlugin: Specialized CollisionCheckPlugin for occupancy grid maps
● HeuristicPlugin: Computes heuristic value from current state to goal state
● PostProcessPlugin: Allows performing additional computation after each step or step plan has

been computed.
● ReachabilityPlugin: Check if transition between two states is valid
● StepCostEstimatorPlugin: Estimates cost and risk for given transition
● StepPlanMsgPlugin (unique): Marshalling interface for robot specific data
● TerrainModelPlugin (unique): Provides 3D model of environment

The last two semantic base classes are defined to be unique which means there can be only one running 
instance at once. Figure 27 in Section 3.2.5 shows when which plugin takes effect on the planner pipeline. 
For a quick deployment of the framework concrete plugin implementations for common cases do already 
exist for all these semantic base classes. 

One of our main goals is keeping the footstep planner efficiency high as possible. Therefore, the 
computational overhead of the plugin system must be kept to a minimum. It obviously is inefficient to 
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retrieve needed plugins for each single call during the planning process. For this reason the planner 
retrieves all plugins only once and pushes the given parameters into them before starting planning. 
Additionally, a mutex locks all critical callback functions of the planning system. The footstep planner is 
thus protected against any changes of the plugin as well as parameter manager during the planning 
process. 

The deployment into an existing ROS setup requires multiple steps, but many of them are optional. The 
first step is to create a ROS node which initializes custom plugins and adds them to the plugin manager. 
This step is going to become obsolete in the next version as the plugin manager will be able to instantiate 
default as well as customized plugins using configuration files. The most important integration part is the 
mandatory hardware interface. There currently is no explicit hardware interface provided by the footstep 
planning framework. In general each new robot or walking controller requires implementation effort for 
an appropriate hardware adapter which is can translate the generated footstep plan so it can be used by the 
walking controller. 

Advanced walking controllers usually need very specific data to perform complex locomotion. For 
instance, this data could be intermediate trajectory points of the foot or the convex hull of expected 
ground contact. The framework has been designed to be able to provide this capability. The presented 
plugin system allows perform any kind of additional computing needed by the walking controller. 
Analogously to the parameter management system, all custom data can be carried as byte stream within 
the regular step plan messages. Marshalling algorithms already available for basic data types can be 
applied here as well. Marshalling for complex data types has to be implemented as customized 
StepPlanMsgPlugin. The framework is thus able to pack all custom data into the generic step plan 
message and send it to the hardware adapter, where it gets unpacked and forwarded to the walking 
controller. This illustrates how our framework supports any kind of walking controller without any 
modifications. 

F.3. Results & Conclusions 

For detailed results of our integrated footstep planner we refer to one of our publications. Thus, the 
following section we will focus on the new framework. 

Although the novel footstep planning framework is still under development, it has already been evaluated. 
Thanks to the framework we could provide our footstep planning system to the three completely different 
humanoid robots: Atlas, ESCHER and THOR-Mang. Team VALOR (ESCHER) and Team Hector 
(THOR-Mang) have utilized the footstep planner for their own robots during the DRC Finals. They could 
perform locomotion tasks using exactly the same high level software as Team ViGIR. Thus far, in total 
five walking controllers have been interfaced successfully with the framework. The use with Atlas 
showed the benefit of the expandability, as BDI’s step mode needs additional data for each step to 
perform 3D walking. This data is be provided by dedicated plugins. 

As already mentioned above, the 3D terrain generator has been enhanced to generate terrain models for 
the footstep planning system online. Figure 74 shows an example of a real world experiment. The terrain 
generator is able to accumulate all data while walking. The data stays consistent; the robot is thus able to 
step on the cinder block. 
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Figure 74.  Example how the terrain model is extended while walking during a real robot experiment. 

The DRC Finals showed that our objective of a versatile footstep planning framework was achieved. The 
three mentioned robots are using different walking controllers, but the footstep planner core can be 
maintained easily across all robot platforms. Although the framework does already work well, there are 
still some issues and missing features which will be delivered in future versions. 

The entire footstep planning has been already open-sourced at GitHub: 

● https://github.com/team-vigir/vigir_footstep_planning_msgs
● https://github.com/team-vigir/vigir_footstep_planning_basics
● https://github.com/team-vigir/vigir_footstep_planning_core
● https://github.com/team-vigir/vigir_terrain_classifier
● https://github.com/team-vigir/vigir_pluginlib
● https://github.com/team-vigir/vigir_generic_params

By open sourcing our software we want to reduce re-invention of the wheel in the community and enable 
others to quickly get a footstep planning system working on their robots. 

F.4. Future Work 

Based on remaining issues and ideas there still are many options for improvement of the footstep planning 
framework. Many of them are already in preparation and will be available freely at GitHub. We are 
generally focused currently on improving performance and efficiency of the planner. 

The upper row shows the 3D data and estimated normals (red lines). The lower row shows a visualization of 
the generated height map. 

Approved for Public Release; Distribution Unlimited.

https://github.com/team-vigir/vigir_footstep_planning_msgs
https://github.com/team-vigir/vigir_footstep_planning_basics
https://github.com/team-vigir/vigir_footstep_planning_core
https://github.com/team-vigir/vigir_terrain_classifier
https://github.com/team-vigir/vigir_pluginlib
https://github.com/team-vigir/vigir_generic_params


 

172 

The basic footstep planner provides further opportunity for improvement. In future work we would like to 
see the ability of adaptive level-of-detail planning similar to what is described by Hornung et. al. in their 
paper55. This approach enables the planner to automatically switch the level of planning detail depending
on the perceived environment. In our case the planner may use pattern generation on flat surfaces in the 
absence of any obstacles and then switch over to 3D planning when difficult terrain has to be traversed. 
This promises more efficient planning and should take away switching parameter sets from the operator. 

It is desirable to improve the world modeling continuously as the performance of the footstep planner 
highly depends on world model quality. In general, methods should be investigated in order to increases 
robustness against noisy sensor data and obstructed perception. In certain cases it is also desirable to 
detect new features like grip of the surface. This ability can prevent the planner to plan over slippery 
terrain or at least consider it for feasible foot placements and therefore reduces errors in execution and 
possibility of falls. This challenge has been already encouraged by the VRC but not in any following 
competition. 

Independent of any slippery terrain, placement errors can occur anytime during footstep execution. In this 
case the planner should be able to quickly deliver an adjusted sequence of footsteps in order to 
compensate for drift with respect to the underlying surface. This also leads to the question if it is possible 
to use the placement error as feedback for the footstep planning system in order to adapt the planning 
policy. We already investigated the option of using Gaussian Process Regression learning but it was 
shown to be unsuitable for our purposes [4]. Therefore, it is still an open topic how to adapt planning 
policies efficiently and how to automatically identify the constraints of the walking controller. 

It took a lot of time to tune all parameters for good planning performance. Many experiments were 
required to determine the limits of the walking controller and even more experiments to discover all 
special cases. This motivates the investigation of intelligent approaches for identification and adaption of 
parameters for a given walking controller. 

The development of the footstep planning framework is ongoing. As mentioned in one of the previous 
paragraphs, plugins must be instantiated hard-coded by a customized footstep planning node. This flaw 
will be removed in the upcoming version of the plugin manager. After this update, plugins can be 
instantiated just by using configuration files and additionally can be managed using a graphical user 
interface. Afterwards the next development milestone will be the support of collections of plugins. This 
allows the operator to replace multiple plugins at once and ensures that a predefined set of plugins is 
active. The behavior of the planner can thus be changed dynamically, allowing higher flexibility than a 
parameter system. 

Currently there is no hardware interface provided by the framework. In future work the interfaces of 
walking controllers may be compared and a common interface extracted. Based on this evaluation it might 
be possible to provide at least a hardware interface skeleton which should support the migration of the 
footstep planning framework. 

55 Hornung, A. "Adaptive Level-of-Detail Planning for Efficient Humanoid ..." 2012. 

<http://ieeexplore.ieee.org/iel5/6215071/6224548/06224898.pdf?arnumber=6224898> 
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F.5. Humanoids 2014 Paper on Locomotion Planning [4] 
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G. BEHAVIOR EXECUTIVE SYSTEM 
This appendix presents the details of FlexBE, Team ViGIR’s behavior engine and high-level executive. In 
addition to the behavior engine, which acts as a “back-end”, the appendix presents FlexBE’s graphical 
user interface (GUI), which serves as a “front-end” to the Behaviors subsystem. The text is  from 
Chapters 3 through 5 of [7], which is available online in its entirety56.

Chapter 3 focuses on the underlying concepts and discusses the theoretical background in an abstract 
manner. After summarizing the available basis provided by previous work in a uniform way, concepts 
regarding operator interaction and runtime modifications are added on top. Finally, consequences for 
behavior development are discussed. Chapters 4 and 5, presents various aspects of the implemented 
software based on the developed concepts.  

Chapter 4 targets the onboard behavior engine and shows how execution of behaviors is solved by 
FlexBE and how the process of behavior switching during runtime is integrated. Subsequently, after an 
initial discussion regarding the detailed approach specific to the user interface, chapter 5 presents the 
behavior control system, including code generation of behaviors and controlling their execution. 

56 http://www.sim.informatik.tu-darmstadt.de/publ/da/2015_Schillinger_MA.pdf (accessed August 11, 2015) 
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H. BEHAVIOR EXAMPLES 
This appendix presents details of the construction of states used in the behaviors presented in 
Section 4.2.4. 

H.1. State Details 

In the following section we will enumerate all states that were included in a behavior that was used during 
the DRC Finals or the experimental demonstrations in the lab. Since the list will not include any details, 
we will first present the inner working of one state, PlanFootstepsState, which is representative of a large 
class of states that interface with a ROS action server. Figure 75 shows the python constructor for the 
state’s class definition. 

Figure 76 shows the python code for the state’s on_enter method that is responsible for initializing the 
state before each execution. 

Figure 75.  The PlanFootstepsState’s constructor.

This is where the outcomes, input keys, and output keys are defined for all states. In this example, the constructor handles the 
initialization of an action client that will later send footstep plan requests to the onboard footstep manager (which will in turn 
contact the onboard footstep planner).  As with all states, the attributes (done, failed) that correspond to the two outcomes are 
initialized.  
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Figure 77 shows the python code for the states’ execute method that is called every update cycle for 
which the state is active. 

Figure 76.  The PlanFootstepsState’s on_enter method.

The two aforementioned attributes, done and failed, are reset (since a state can be entered many times during behavior 
execution). The main purpose of this state’s on_enter method is to create and send a footstep plan request.  The request is 
populated with information provided to this state via its input key, “step_goal”, as well as the constructor’s input argument, 
“mode”. 
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H.2. List of States 

All states that were included in a behavior that was used during the DRC Finals or the experimental 
demonstrations in the lab are enumerated below, in groups of related functionality: 

� Footstep Planning and Execution states
o CreateStepGoalState
o PlanFootstepsState
o FootstepPlanRelativeState
o ExecuteStepPlanActionState

� Object Templates -related states
o GetTemplateAffordanceState
o GetTemplateFingerConfigState
o GetTemplateGraspState
o GetTemplatePoseState
o GetTemplatePregraspState
o GetTemplateStandPoseState
o GetTemplateUsabilityState
o AttachObjectState
o DetachObjectState

� Motion Planning and Execution states

Figure 77.  The PlanFootstepsState’s execute method.

The PlanFoostepsState’s execute method is executed until the onboard footstep manager has responded with a result. If 
planning was successful, it writes the result to its output key, “plan_header”, and returns the outcome “planned”.  If planning 
was unsuccessful, it notifies the operator and returns the outcome “failed”. 
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o PlanAffordanceState 
o PlanEndeffectorCartesianWaypointsState 
o PlanEndeffectorPoseState 
o ExecuteTrajectoryMsgState 
o MoveitPredefinedPoseState 
o FingerConfigurationState 
o HandTrajectoryState 
o TiltHeadState 

� ATLAS-specific states 
o ChangeControlModeActionState 
o CheckControlModeActionState 
o RobotStateCommandState  

� Various helper states 
o GetPoseInFrameState 
o GetWristPoseState 
o CurrentJointPositionsState 
o UpdateJointCalibrationState 

� Generic States 
o CalculationState 
o FlexibleCalculationState 
o CheckConditionState 
o DecisionState 
o OperatorDecisionState 
o InputState 
o LogState 
o WaitState 

 

H.3. List of Behaviors 

We briefly present all behaviors that were used in the DRC Finals or the experimental demonstrations in 
the lab. In many behaviors, groups of states are placed together in a state machine (gray blocks) in a 
hierarchical fashion. We do not show the contents of those state machines here, in the interest of space. 

 

Calibration and Startup Behaviors 

These behaviors were used during the initial robot start for checkout and to calibrate joint position 
sensors. 
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Figure 79.  “Praying Mantis Calibration” Behavior.

Figure 78.  “Atlas Checkout” Behavior.
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Helper Behaviors 
 
Helper behaviors are behaviors that are developed to be embedded into larger task-level behaviors. In 
other words, these are lower-level states within the hierarchical state machine. 
 
  

Figure 80.  “Atlas Vehicle Checkout” Behavior (used before Driving Task) 
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Figure 81.  “Walk to Template” Helper Behavior

Figure 82.  “Grasp Object” Helper Behavior
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Figure 83.  “Pickup Object” Helper Behavior 

Figure 84.  “Open Door” Helper Behavior (DRC Task #3) 
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Figure 85.  “Turn Valve” Helper Behavior (DRC Task #4)

Figure 86.  “Cut Hole in Wall” Helper Behavior (DRC Task #6)
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H.4. Experimental Demonstration of Behaviors 

The lab setup for the task-specific behaviors demonstrations was as follows. ATLAS was positioned in 
front of the object of interest (e.g. door, valve, wall), since a hardware issue with our ATLAS’ left hip 
prevented any demo that involved walking or stepping. Calibration of the electric and hydraulic joints was 
performed in advance (using the “ATLAS Checkout” behavior above). Moreover, two operators were 
performing the behavior execution and perception tasks on a single OCS computer. 
 

H.4.1. Demo #1: “Open Door” (by pushing the handle from below) 

 
 

 
 

Figure 87.  Requesting Door Object Template from Operator 
 

Figure 88.  Behavior positions Atlas relative to template 
With the template identifier available, the behavior can position ATLAS and guide its right arm to the template’s “pre-grasp 
pose”, which it obtained by querying the template server. 
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Figure 89.  Atlas pushing the door handle from below

In this demo, we employed the tactic of pushing the door handle from below, with the fingers closed in a “fist”. This tactic was 
more robust to inaccuracies in end effector position. 
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Figure 90.  Atlas unlatching the door using “turnCCW” affordance

With the end effector in position, the behavior executes the “turnCCW” affordance of the door template, which results in a 
counterclockwise circular arc. It then executes the “push” affordance, which results in motion perpendicular to the door. As a 
result, the door is unlatched. 
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The next steps of this behavior would have been to bring the arms to the sides, center the torso, and then 
request a footstep plan in order to “strafe” (step sideways) through the doorway. 

Figure 91.  With the door unlatched, the behavior pushes the door completely open.
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H.4.2. Demo #2: “Open Door” (by grasping and turning the handle) 

This demo differs from Demo #1 only in the tactic employed for unlatching the door. 
 

 
 

Figure 92.  Different behavior used to grasp the door handle with fingers 
In this demo, the behavior requests different “pre-grasp” and “grasp” poses. In between, it opens the fingers (top). The result is 
the fingers around the door handle (bottom). 
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Figure 93.  The behavior closes the fingers around the door handle.
But not in a “fist”-like manner like in Demo #1. Rather, it requests a specific grasp posture from the template server. 

Figure 94.  The behavior executes the “turn CW” affordance to unlatch the door.
With a firm grasp of the door handle, the behavior turns the handle in a clockwise circular arc. It then pushes the 
door as in Demo #1. 
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H.4.3. Demo #3: “Turn Valve” 

This behavior is employing the strategy of turning the valve by inserting a “poke stick” attached to 
ATLAS’ left wrist (see Figure 98). We used this strategy during Day 1 of the DRC Finals. 

Figure 95.  Atlas releases the door handle after unlatching. 
This tactic requires that ATLAS releases its grasp on the door handle in between unlatching the door and pushing it wide open 
with its arm.Once the behavior starts, it requests a door object template from the operator (right).  The operator places and 
aligns the door template, then sends its identifier to the behavior (left). 
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Figure 96.  First, request an object template (purple valve) from the operator

Figure 97.  Operator verifies relative position of “poke stick” and valve.

Once the end effector, the “poke stick” in this case, is in front of the valve, the behavior asks the operator to check whether it is 
clear for insertion. If not, the operator has a chance to manually adjust the end-effector’s position and then let the behavior 
proceed (the transition is “blocked”). 

Figure 98.  The behavior then executes the “insert” affordance of the valve template.
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Figure 99.  the behavior executes the “open” valve affordance

With the end effector inserted, the behavior executes the “open” valve affordance, which results in counter-clockwise rotation 
around the valve’s axis (top).  If the desired amount of rotation is not achieved by one execution of the affordance, the behavior 
gives the option of repeating the turning step (bottom right).  Due to the end effector (“poke stick”) configuration, valve 
turning can be repeated ad infinitum.  The kinematics do not impose any limits on rotation. 
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H.4.4. Demo #4: “Cut Hole in Wall” (emulated by drawing circle with marker) 

We chose to emulate the “cut hole in wall” task by drawing a circle on a whiteboard by attaching a dry 
erase marker at the tip of the cutting tool; however, the behavior did not have to be modified in any way 
to account for this new task setup. This task is similar to the one presented in Appendix E but using the 
advantages of the behavior engine.  

Figure 100.  Once the valve is open, the behavior returns the arm to ATLAS’ side.

Figure 101.  Executing the behavior and failure recovery.

When the behavior tries to move the right hand to the template’s “pre-grasp” pose, planning fails (top right). The template had 
been misplaced, so the behavior allows the operator to properly align the template (bottom left) and then repeat the planning 
step with the same (or different) “pre-grasp” pose (bottom right). 
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Figure 102.  Atlas grasping tool after operator intervention.
Once ATLAS’ hand moves to the “grasp” pose, the operator notices that the template’s height is incorrect (top).  Again, the 
behavior allows the operator to make adjustments to the template’s position (middle left) and then repeat the previous step 
(middle right). As a result, the hand has a proper grasp around the cutting tool (bottom). 
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Figure 103.  After grasping, the behavior “attaches” the object to the robot model in MoveIt!.

After grasping, the behavior “attaches” the object to the robot model in the MoveIt! Planning scene.  It can then request a 
motion plan for lifting the object that accounts for the object in terms of collisions. 

Figure 104.  Inputting the wall cutting template.

This task involves two objects (cutting tool and wall with circular pattern), therefore the behavior is now asking the operator to 
provide the wall template. 
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Figure 105.  The behavior then moves the cutting tool to a pose in front of the wall

The behavior then moves the cutting tool to a pose in front of the wall, specifically at the top of the 
circular pattern.  It then executes the wall template’s “insert” affordance.  (Normally, the drill would 
now penetrate the wall; the dry erase marker has to make contact with the whiteboard, but not push 
against it too hard.  This was not taken into account by the behavior.) 
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Figure 106.  The behavior is executing the “cut_circle” affordance of the wall template.
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Figure 107.  After “cutting”,  the behavior executes the negative “insert” affordance.

Once the hole has been cut (circle has been drawn), the behavior executes the “insert” affordance (but with a negative 
displacement value) in order to retract the cutting tool (top right).  The dry erase marker was pushed too hard against the 
whiteboard and got misaligned (bottom).  This contributed to the drawing of only an incomplete circle (top left). 
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I. BEHAVIOR SYNTHESIS SYSTEM 
I.1. Behavior Synthesis from High-level User Specifications 

The attached technical report elaborates on the application of our “activation-outcomes” LTL 
specification paradigm to our ATLAS robot. 
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I.1.1. Technical Report 
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I.2. Experimental Demonstration of Behavior Synthesis 

We first provide an overview of the lab setup and software configuration for the Behavior Synthesis 
experiments. Then, we present three experimental demos. Two demonstrate synthesis “starting from 
scratch”, whereas the third demonstrates the use of synthesis to modify an existing behavior “on-the-fly”, 
i.e., while the initial behavior is being executed on ATLAS.

I.2.1. Experimental Setup 

The lab setup for the Behavior Synthesis demonstration was as follows. ATLAS was positioned in front 
of a table and a cutting tool was placed on the table. Calibration of the electric and hydraulic joints had 
been performed in advance. A hardware issue with our ATLAS’ left hip prevented any demo that 
involved walking or stepping, so all of the demos below only involve manipulation. Moreover, a single 
operator was performing the synthesis, behavior execution, and perception tasks on a single OCS 
computer. 
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In addition to the partial specification provided by the user (initial conditions and goals), the LTL 
Compilation service takes into account the BDI control mode transition system as well as the 
preconditions of the various actions. For the purposes of these demos, these are specified in configuration 
files (see Figures Figure 108 and Figure 109). The configuration files were written a priori and did not 
have to change in between runs or demos. The user does have to use the same keywords as the 
configuration files when inputting the high-level specification (e.g. “stand”, “grasp_object”). Finally, a 
separate configuration file served as a mapping between these keywords (the atomic propositions) and the 
state primitives (see Appendix H). An excerpt is depicted in Figure 110. 

Figure 108.  BDI control mode constraints encoded as a transition system.

For each control mode (depicted in purple), the allowed control mode transitions are listed below (yellow). 
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Figure 109.  Action preconditions.

The actions are depicted in purple and their preconditions are listed in yellow. The empty brackets (“[ ]”) denote that these 
actions do not have any preconditions. Alternatively, they could have been omitted from this configuration file altogether. 
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Figure 110.  Excerpt from the mapping between atomic propositions and FlexBE state primitives.
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I.2.2. Demo #1: Behavior Synthesis with a single goal 

Parameters: 

● Initial control mode: STAND
● Goals: “grasp object”

Figure 111.  The user is specifying the initial condition (STAND) and final goal (“grasp object”).
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Figure 112.  The resulting synthesized state machine includes the preconditions of grasping. 

Figure 113.  The synthesized state machine is ready to be executed. 
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I.2.3. Demo #2: Behavior Synthesis with multiple goals 

Parameters: 

● Initial control mode: STAND
● Goals: “look down”, “grasp object”

Figure 114.  The final goal (“grasp object”) has been accomplished.

Figure 115.  The user is specifying two goals (“look down” and “grasp object”).
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Figure 116.  The resulting state machine starts with “look down”, then proceeds as in Demo #1.

Figure 117.  Atlas executing the “look down” behavior.

ATLAS’ neck was tilted upwards before behavior execution (top). As specified by the user (“look_down”), the synthesized 
behavior first tilted the neck down, which brought the object of interest within the camera’s field of view (bottom). 
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I.2.4. Demo #3: Behavior Synthesis “on-the-fly” via Runtime Modification 

Parameters: 

● Initial behavior: “Pick up Tool”
● Initial control mode (when locked): MANIPULATE
● Goals: “footstep_execution”

Figure 118.  Execution of the synthesized state machine proceeds as in Demo #1.
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Figure 119.  Changing behavior during execution 
The initially executed behavior (top) involves picking up the cutting tool. Once execution reaches the transition to 
MANIPULATE, the behavior is “locked”   (middle and bottom). 
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Figure 120.  With behavior execution locked, the user switches to the Editor window

With behavior execution locked, the user switches to the Editor window and specifies the initial condition (MANIPULATE) 
and goal (“footstep execution”) of a new state machine.

Figure 121.  The new, synthesized state machine (top) is connected to the initial behavior (bottom).

Specifically, the transition leading from MANIPULATE (the “pivot” state, depicted in orange) to “pick up object” now leads to 
“back up”, the synthesized state machine.
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Figure 122.  The modified behavior is saved and the user resumes execution. 
The user resumes execution by clicking on the “Go for it!” button.  Note how the transition that originally led to “pick up 
object” (top) now leads to “back up” (bottom). 

Figure 123.  Execution has resumed and the synthesized state machine (blue) is executed. 
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J. OPEN SOURCE SOFTWARE GUIDE 

J.1. Installation 

Team ViGIR's open source software is provided with a focus on accessibility for interested developers. 
The complexity of comprehensive robot software can lead to deterrence of otherwise interested 
researchers if the usage instructions are very complex and/or error prone. For this reason, we provide a 
install and usage scripts that allow installing and running all software with few terminal commands. The 
most recent installation instructions can always be found in the vigir_rosinstall package. 

J.2. Components 

In the following, we provide a brief overview of important ROS packages and the provided capabilities. 

J.2.1. Infrastructure 

vigir_rosinstall: Provides the installation scripts that allow a quick and convenient install of all Team 
ViGIR software. 

vigir_scripts: Provides helper scripts that support managing the Team ViGIR workspace 

vigir_atlas_common: Provides the ATLAS robot model and related model data such as for hands and 
Multisense sensor head. 

J.2.2. Robot Control 

vigir_ros_control: Provides generic interfaces and tools for humanoid robot control. The packages in this 
repository are robot-agnostic and can be used as a toolbox to create controllers for humanoid robots. 
Examples of provided capabilities are inverse dynamics (gravity compensating) controllers, friction 
compensating controllers and trajectory smooting functionality. 

vigir_atlas_ros_control: Provides ATLAS-specific robot control software. This repository contains the 
main ATLAS controller as used by Team ViGIR and controllers for impedance control of ATLAS, as 
well as tools related to low level control. This package is NOT opensourced due to proprietary BDI 
information. 

J.2.3. Hardware Drivers 

The hardware driver for the Multisense SL sensor head is used as provided by Carnegie Robotics, thus no 
dedicated repository is used for it. 
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vigir_pgr_camera: Provides a driver for the Blackfly cameras used as SA cameras on ATLAS. The 
driver provides a region of interest of the wide angle lens rotated to be upright and without black borders. 
 
 
vigir_grasp_control: Provides an interface to allow  trajectories and actions to be sent to the various hand 
types the robot supports. 
 
 
vigir_manipulation_controller: Provides a controller for handling and interacting with various object 
templates. This package also manages the various types of hands themselves. 
 
 

J.2.4. Perception 

 
 
vigir_wide_angle_image_proc: Provides a ROS nodelet for rectifying high distortion fisheye camera 
images such as those provided by the ATLAS SA cameras. 
 
 
vigir_perception: Provides major perception components. This includes tools for scan compression and 
transmission over constrained connections, generation of meshes from depth image and point cloud data 
as well as the main worldmodel server node. 
 
 
 

J.2.5. Motion Planning 

 
 
vigir_manipulation_planning: Provides main motion planning capabilities. this includes custom 
move_group components, the LIDAR octomap updater plugin and the affordance template system 
described in [Section Manipulation] 
 
 

J.2.6. Behavior Control 

 
 
flexbe_behvaior_engine: Contains the Flexbe Behavior Engine (FlexBE) ROS Packages. 
 
 
flexbe_chrome_app: HTML/CCS/Javascript source code of the FlexBE GUI, a Google Chrome app. 
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vigir_behaviors: Team and  robot specific part of FlexBE such as additional states for interfacing with 
Team ViGIR software. It also contains all of the implemented behaviors. 

vigir_behavior_synthesis: ROS packages that enable the automatic synthesis of executable state 
machines. 

ReSpeC: Reactive (LTL) Specification Construction kit. A ROS-independent Python framework used by 
vigir_behavior_synthesis. 

J.2.7. Operator Control Station 

vigir_ocs_common: Provides main operator control station capabilities. The three main widgets are 
contained in this repository, along with the various specialized task-specific user interface elements. 

vigir_rviz: Provides a fork of the rviz visualization tool commonly used with ROS. The intention is to 
merge modifications by Team ViGIR upstream into the ROS version and remove the vigir_rviz repository 
afterwards. 
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