
TEAM VIGIR: DARPA ROBOTICS CHALLENGE

TORC ROBOTICS, LLC

OCTOBER 2015

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2015-226

 UNITED STATES AIR FORCE  ROME, NY 13441 AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose
other than Government procurement does not in any way obligate the U.S. Government. The fact that
the Government formulated or supplied the drawings, specifications, or other data does not license the
holder or any other person or corporation; or convey any rights or permission to manufacture, use, or
sell any patented invention that may relate to them.

This report is the result of contracted fundamental research deemed exempt from public affairs security
and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and AFRL/CA policy
clarification memorandum dated 16 Jan 09. This report is available to the general public, including
foreign nationals. Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2015-226 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE DIRECTOR:

 / S /
MICHAEL J. WESSING

 / S /
ROGER J. DZIEGIEL, JR.
Work Unit Manager Deputy Chief, Information Intelligence

Systems & Analysis Division
Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

OCTOBER 2015
2. REPORT TYPE

FINAL TECHNICAL REPORT
3. DATES COVERED (From - To)

OCT 2012 – AUG 2015
4. TITLE AND SUBTITLE

TEAM VIGIR: DARPA ROBOTICS CHALLENGE

5a. CONTRACT NUMBER
FA8750-12-C-0337

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
62702E

6. AUTHOR(S)

David Conner, S. Kohlbrecher, A. Romay, A. Stumpf,
S. Maniatopoulos , M. Schappler, and B. Waxler

5d. PROJECT NUMBER
ROBO

5e. TASK NUMBER
PR

5f. WORK UNIT NUMBER
01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
TORC Robotics, LLC
405 Partnership Drive
Blacksburg, VA 24060

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RIED DARPA
525 Brooks Road 675 North Randolph St
Rome NY 13441-4505 Arlington, VA 22203-2114

10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/RI
11. SPONSOR/MONITOR’S REPORT NUMBER

AFRL-RI-RS-TR-2015-226
12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited. This report is the result of contracted fundamental research deemed
exempt from public affairs security and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and
AFRL/CA policy clarification memorandum dated 16 Jan 09.
13. SUPPLEMENTARY NOTES

14. ABSTRACT
 This report documents Team ViGIR’s efforts in the DARPA Robotics Challenge (DRC) between October 2012 and
August 2015. Team ViGIR, a multinational collaborative research and development effort that spanned nine time
zones, began as a Track B participant in the simulation-based Virtual Robotics Challenge; after placing in the top six,
we began working the Atlas humanoid robotic system developed by Boston Dynamics. Team ViGIR competed in both
the DRC Trials and DRC Finals. This report documents our performance, lessons learned along the way, and
describes the novel contributions of our team. Specific focus areas include template-based manipulation, footstep
planning, and autonomous behavior specification and execution. The software used in the competition and described
in this report is being open sourced at http://github.com/team-vigir as part of our commitment to improving the
capabilities of humanitarian rescue robotics.

15. SUBJECT TERMS
Robotics, Mobility, Platform Dexterity, Supervised Autonomy, Wireless, Ground

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
ROGER J. DZIEGIEL JR.

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
 N/A

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

238

i

TABLE OF CONTENTS

LIST OF FIGURES AND TABLES ... IV
ACKNOWLEDGEMENTS ... VIII
1. SUMMARY .. 1
2. INTRODUCTION .. 3

2.1. PROJECT ... 3
2.2. TEAM .. 4
2.3. DARPA ROBOTICS CHALLENGE PHASES ... 6

2.3.1. Phase 1A- Virtual Robotics Challenge .. 6
2.3.2. Phase 1B- DRC Trials .. 7
2.3.3. Phase 2- DRC Finals.. 9

2.3.3.1. Downtime (January – April 2014) .. 9
2.3.3.2. Restart (May – December 2014) ... 10
2.3.3.3. Atlas Unplugged (January – May 2015) ... 11
2.3.3.4. Finals Setup (June 1-4, 2015) ... 13
2.3.3.5. Competition Day 1 (June 5, 2015) ... 15
2.3.3.6. Competition Day 2 (June 6, 2015) ... 16
2.3.3.7. Post Competition ... 17

2.4. REPORT OVERVIEW .. 17
3. METHODS, ASSUMPTIONS, AND PROCEDURES ... 19

3.1. OPERATOR CONTROL STATION .. 20
3.1.1. Design Approach .. 20

Human capabilities: .. 20
Pre-visualization: .. 20
Multiple operators: .. 20
Parallelism:……….. 20
Appropriate specificity: .. 21
Advanced interfaces: .. 21
Iterative design and evaluation: ... 21

3.1.2. Operator Roles ... 22
3.1.2.1. Supervisor .. 22
3.1.2.2. Main Operator ... 22
3.1.2.3. Auxiliary Operator ... 22
3.1.2.4. Immersed Operator ... 22

3.1.3. Major User Interface Features ... 23
3.1.3.1. Main View.. 24
3.1.3.2. Map View .. 26
3.1.3.3. Camera View ... 28
3.1.3.4. Behaviors View (FlexBE GUI) ... 29

3.2. ONBOARD SYSTEMS .. 30
3.2.1. Robot Controls and Interface ... 30

3.2.1.1. Interface Architecture ... 31
3.2.1.2. Joint Position Control .. 31
3.2.1.3. Advanced Control .. 32

3.2.2. Perception .. 33
3.2.2.1. State Estimation .. 34
3.2.2.2. Constrained World Modeling .. 34
3.2.2.3. Textured Meshes ... 36

3.2.3. Motion Planning .. 38
3.2.3.1. Planning Backend .. 38

3.2.4. Manipulation ... 39
3.2.4.1. Affordances ... 39
3.2.4.2. Object Template Library .. 40
3.2.4.3. Object Template Server ... 41

3.2.5. Footstep Planning .. 42

ii

3.2.6. High-level Behavior Control ... 46
3.3. COMMUNICATIONS BRIDGE .. 50

4. RESULTS AND DISCUSSION .. 53
4.1. SIGNIFICANT CHALLENGES .. 53

4.1.1. Schedule ... 53
4.1.2. Geographic Dispersion ... 54
4.1.3. Simulation .. 54
4.1.4. Hardware ... 54
4.1.5. Developer Resources .. 55
4.1.6. Build and Test Infrastructure ... 55
4.1.7. Communications .. 56

4.2. EXPERIMENTAL RESULTS .. 57
4.2.1. Robot Modeling and Control ... 57
4.2.2. Manipulation ... 57
4.2.3. Footstep Planning .. 60
4.2.4. Behavior Control .. 63

Post-Finals Lab Experiments ... 65
4.2.5. Behavior Synthesis ... 65

5. CONCLUSIONS ... 71
5.1. LESSONS LEARNED .. 71

5.1.1. Maintain Adaptability .. 71
5.1.2. Prioritize Infrastructure.. 71
5.1.3. Separate Development and Testing ... 72
5.1.4. Force Early Integration .. 72
5.1.5. Require more openness from GFE Vendors.. 72
5.1.6. Task difficulty ... 72

5.2. FUTURE WORK .. 73
5.2.1. TU Darmstadt .. 73
5.2.2. Hanover ... 73
5.2.3. Cornell University (Verifiable Robotics Research Group) ... 73

6. REFERENCES .. 75
A. VRC AND TRIALS SYSTEM PAPERS.. 76
B. SYSTEM HARDWARE MODIFICATIONS ... 113
C. OPERATOR STATION COMPONENTS .. 115
D. ROBOT MODELING AND CONTROL .. 117

D.1. SUMMARY OF THEORETICAL BASICS AND BASIC EXPERIMENTS .. 117
D.2. INNER JOINT TORQUE LOOP WITH INTEGRAL FEEDBACK ... 118
D.3. FRICTION IDENTIFICATION .. 118
D.4. FRICTION COMPENSATION AND FRICTION FEEDFORWARD ... 119
D.5. DYNAMIC ARM IDENTIFICATION .. 121
D.6. COMPLIANCE DEMONSTRATION .. 123
D.7. HUMANOIDS 2015 PAPER ON MODELING AND CONTROL [6] .. 127

E. MANIPULATION PLANNING SYSTEM ... 135
E.1. OBJECT TEMPLATE AND USABILITY-BASED MANIPULATION ... 135

E.1.1. Manipulation Control Widget .. 140
E.1.2. Transfer of Manipulation Skills between Objects .. 141
E.1.3. Object Template Alignment ... 141

E.2. MANIPULATION EXPERIMENTS .. 142
E.2.1. Wall Task ... 142
E.2.2. Cord Plug Surprise Task ... 143
E.2.3. Robustness Experiments .. 143

E.3. HUMANOIDS 2014 PAPER ON MANIPULATION [3] ... 147
HUMANOIDS 2015 PAPER ON MANIPULATION [5] ... 155

iii

F. FOOTSTEP PLANNING SYSTEM .. 163
F.1. FOOTSTEP PLANNING SYSTEM .. 163
F.2. FOOTSTEP PLANNING FRAMEWORK ... 164

F.2.1. Plugins ... 164
F.2.2. Plugin Manager ... 165
F.2.3. Parameter Management System ... 168
F.2.4. The Footstep Planning Framework .. 169

F.3. RESULTS & CONCLUSIONS .. 170
F.4. FUTURE WORK .. 171
F.5. HUMANOIDS 2014 PAPER ON LOCOMOTION PLANNING [4] .. 173

G. BEHAVIOR EXECUTIVE SYSTEM .. 181
H. BEHAVIOR EXAMPLES .. 183

H.1. STATE DETAILS .. 183
H.2. LIST OF STATES .. 185
H.3. LIST OF BEHAVIORS ... 186
H.4. EXPERIMENTAL DEMONSTRATION OF BEHAVIORS ... 192

H.4.1. Demo #1: “Open Door” (by pushing the handle from below) .. 192
H.4.2. Demo #2: “Open Door” (by grasping and turning the handle) .. 196
H.4.3. Demo #3: “Turn Valve” .. 198
H.4.4. Demo #4: “Cut Hole in Wall” (emulated by drawing circle with marker) .. 201

I. BEHAVIOR SYNTHESIS SYSTEM .. 207
I.1. BEHAVIOR SYNTHESIS FROM HIGH-LEVEL USER SPECIFICATIONS ... 207

I.1.1. Technical Report .. 208
I.2. EXPERIMENTAL DEMONSTRATION OF BEHAVIOR SYNTHESIS .. 211

I.2.1. Experimental Setup .. 211
I.2.2. Demo #1: Behavior Synthesis with a single goal ... 215
I.2.3. Demo #2: Behavior Synthesis with multiple goals ... 217
I.2.4. Demo #3: Behavior Synthesis “on-the-fly” via Runtime Modification ... 219

J. OPEN SOURCE SOFTWARE GUIDE .. 223
J.1. INSTALLATION .. 223
J.2. COMPONENTS ... 223

J.2.1. Infrastructure ... 223
J.2.2. Robot Control ... 223
J.2.3. Hardware Drivers ... 223
J.2.4. Perception .. 224
J.2.5. Motion Planning .. 224
J.2.6. Behavior Control .. 224
J.2.7. Operator Control Station ... 225

K. LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS .. 227

iv

LIST OF FIGURES AND TABLES
Figure 1. Florian, Team ViGIR’s Atlas Robot participating in the 2013 DRC Trials. 1

Figure 2. DARPA DRC Structure (courtesy DARPA) ... 3

Figure 3. View of OCS during VRC ... 7

Figure 4. Performance at DRC Trials ... 9

Figure 5. Driving practice during DRC Dress Rehearsal .. 14

Figure 6. Operators on DRC Finals Day 1 .. 15

Figure 7. Opening the valve on Day 1 of DRC Finals .. 15

Figure 8. Robot collapsing due to pump shutdown after opening the door on Day 2 of the DRC Finals. . 17

Figure 9. Software Architecture .. 19

Figure 10. Layout of the operators during DRC Finals .. 21

Figure 11. Main operator views – camera, main, and map – during of DRC Finals valve task on Day 1. 24

Figure 12. Main View showing placing a template via context menu onto selected Octomap cell 25

Figure 13. Main View showing the target position of the ghost robot relative to valve template. 26

Figure 14. Map view showing region of interest selection ... 27

Figure 15. Map view showing the grid map used for footstep planning .. 27

Figure 16. Camera view showing point cloud data and valve template .. 28

Figure 17. FlexBE, the Flexible Behavior Executive, showing the four primary views. 29

Figure 18. FlexBE Runtime Control View. .. 30

Figure 19. Block diagram of the Joint Impedance Controller control scheme .. 33

Figure 20. Mesh-based Visualization. ... 37

Figure 21. Fisheye Camera Rectification. ... 37

Figure 22. Using Drake inverse kinematics for reaching down to the ground with the “ghost robot” 39

Figure 23. The Object Template of a door being grasped by the robot's end-effector. 40

Figure 24. Relationship between objects, grasps and stand poses libraries using Crow’s foot notation 41

Figure 25. Object Template Server communication concept. ... 42

Figure 26. Footstep Planning Pipeline .. 43

Figure 27. Advanced footstep planning system architecture .. 44

Figure 28. Example how the operator is able to modify a generated footstep plan. 46

Figure 29. Step pattern widget (left) and resulting step plan (right) ... 46

Figure 30. Task level “Open Door” behavior in the FlexBE framework.. 47

Figure 31. Example decisions for different Autonomy Level... 48

file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366248
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366249
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366250
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366251
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366252
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366253
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366254
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366255
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366256
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366257
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366258
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366259
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366260
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366261
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366262
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366263
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366264
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366265
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366266
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366267
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366268
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366269
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366270
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366271
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366272
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366277
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366278

v

Figure 32. Supervising a behavior during its execution (FlexBE runtime control view). 48

Figure 33. A behavior also encodes the flow of data (black arrows; transitions are grayed out). 49

Figure 34. Behavior is running, but currently locked in one of its sub-statemachines. 49

Figure 35 Video capture with artifacts .. 51

Figure 36. Team ViGIR during the Hose Task in the DRC Trials. .. 58

Figure 37. Team ViGIR during the Valve Task in the DRC Trials. ... 59

Figure 38. Opening door using affordances defined in the Door Object Template. 59

Figure 39. Interactive marker to define goal of the step plan request. .. 61

Figure 40. Drop down box to select a predefined parameter set. .. 62

Figure 41. Menu granting access to the most important planner parameters.. 62

Figure 42. ATLAS executing the “Praying Mantis Calibration” behavior ... 63

Figure 43. Behaviors errors on DRC Finals Day 1 ... 63

Figure 44. The “Open Door” behavior successfully guiding ATLAS towards the closed door on Day 2 . 64

Figure 45. The “Open Door” behavior in process of turning the door handle on Day 2 65

Figure 46. Behavior Synthesis ROS packages (vigir_behavior_synthesis) and nominal workflow........... 66

Figure 47. The FlexBE Editor’s synthesis menu. ... 68

Figure 48. The synthesized state machine for pickup object. ... 68

Figure 49. The synthesized state machine executed on Atlas. .. 69

Figure 50. Torque and position error for different settings of integral inner torque loop.......................... 118

Figure 51. Velocity and joint torque plots for constant velocity trajectory tracking 119

Figure 52. Joint friction diagrams from constant velocity experiments... 119

Figure 53. Comparison of mechanisms to cope with joint friction .. 120

Figure 54. Measured and modeled torque for the left arm of ATLAS .. 122

Figure 55. Different settings for the Robot with fixed upper body for arm identification 123

Figure 56. Experimental setup: High stiffness (a), low stiffness (b) and collision detection (c) 123

Figure 57. Typical measured forces, observed disturbance torque, and joint position 125

Figure 58. Cut circle in wall with the drill tool. ... 136

Figure 59. Object usabilities for the drill and paint roller ... 136

Figure 60. Grasp Template Library XML file .. 137

Figure 61. Stand Template Library XML file ... 138

Figure 62. Object Template Library XML file ... 139

Figure 63. Manipulation Control Widgets for each Hand. ... 140

Figure 64. Description of Manipulation Widget functions that interact with Object Templates (OT). 141

file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366279
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366280
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366281
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366283
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366284
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366285
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366289
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366290
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366291
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366292
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366293
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366294
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366295
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366296
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366297
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366298
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366299
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366300
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366301
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366302
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366303
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366304
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366305
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366306
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366307
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366308
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366309
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366310
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366311

vi

Figure 65. Drawing a circle using affordances defined in the Wall and Drill Object Templates. 142

Figure 66. Cord Plug Surprise Task Demonstration ... 143

Figure 67. Atlas using a stick to turn the valve ... 144

Figure 68. Atlas turning a high non-reachable valve using a paint roller ... 145

Figure 69. Example for a plugin inheritance hierarchy... 165

Figure 70. Example for obtaining plugins by their name.. 166

Figure 71. Example for obtaining plugins by their semantic hint. ... 167

Figure 72. Example for obtaining plugins by their inheritance hierarchy. ... 167

Figure 73. Parameter Editor Widget ... 169

Figure 74. Example how the terrain model is extended while walking during a real robot experiment. . 171

Figure 75. The PlanFootstepsState’s constructor. ... 183

Figure 76. The PlanFootstepsState’s on_enter method. .. 184

Figure 77. The PlanFootstepsState’s execute method. ... 185

Figure 78. “Atlas Checkout” Behavior. .. 187

Figure 79. “Praying Mantis Calibration” Behavior... 187

Figure 80. “Atlas Vehicle Checkout” Behavior (used before Driving Task) ... 188

Figure 81. “Walk to Template” Helper Behavior ... 189

Figure 82. “Grasp Object” Helper Behavior ... 189

Figure 83. “Pickup Object” Helper Behavior ... 190

Figure 84. “Open Door” Helper Behavior (DRC Task #3) ... 190

Figure 85. “Turn Valve” Helper Behavior (DRC Task #4) .. 191

Figure 86. “Cut Hole in Wall” Helper Behavior (DRC Task #6) ... 191

Figure 87. Requesting Door Object Template from Operator .. 192

Figure 88. Behavior positions Atlas relative to template .. 192

Figure 89. Atlas pushing the door handle from below .. 193

Figure 90. Atlas unlatching the door using “turnCCW” affordance ... 194

Figure 91. With the door unlatched, the behavior pushes the door completely open. 195

Figure 92. Different behavior used to grasp the door handle with fingers ... 196

Figure 93. The behavior closes the fingers around the door handle. .. 197

Figure 94. The behavior executes the “turn CW” affordance to unlatch the door. 197

Figure 95. Atlas releases the door handle after unlatching. .. 198

Figure 96. First, request an object template (purple valve) from the operator .. 199

Figure 97. Operator verifies relative position of “poke stick” and valve.. 199

file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366312
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366313
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366314
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366315
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366322
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366323
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366324
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366325
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366326
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366327
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366328
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366329
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366330
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366331
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366332
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366333
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366334
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366335
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366336
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366337
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366338
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366339
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366340
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366341
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366342
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366343
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366344

vii

Figure 98. The behavior then executes the “insert” affordance of the valve template. 199

Figure 99. the behavior executes the “open” valve affordance ... 200

Figure 100. Once the valve is open, the behavior returns the arm to ATLAS’ side. 201

Figure 101. Executing the behavior and failure recovery. .. 201

Figure 102. Atlas grasping tool after operator intervention. ... 202

Figure 103. After grasping, the behavior “attaches” the object to the robot model in MoveIt!. 203

Figure 104. Inputting the wall cutting template. ... 203

Figure 105. The behavior then moves the cutting tool to a pose in front of the wall 204

Figure 106. The behavior is executing the “cut_circle” affordance of the wall template. 205

Figure 107. After “cutting”, the behavior executes the negative “insert” affordance. 206

Figure 108. BDI control mode constraints encoded as a transition system. ... 212

Figure 109. Action preconditions. ... 213

Figure 110. Excerpt from the mapping between atomic propositions and FlexBE state primitives. 214

Figure 111. The user is specifying the initial condition (STAND) and final goal (“grasp object”). 215

Figure 112. The resulting synthesized state machine includes the preconditions of grasping. 216

Figure 113. The synthesized state machine is ready to be executed. .. 216

Figure 114. The final goal (“grasp object”) has been accomplished. ... 217

Figure 115. The user is specifying two goals (“look down” and “grasp object”). 217

Figure 116. The resulting state machine starts with “look down”, then proceeds as in Demo #1. 218

Figure 117. Atlas executing the “look down” behavior. ... 218

Figure 118. Execution of the synthesized state machine proceeds as in Demo #1. 219

Figure 119. Changing behavior during execution ... 220

Figure 120. With behavior execution locked, the user switches to the Editor window 221

Figure 121. The new, synthesized state machine (top) is connected to the initial behavior (bottom). 221

Figure 122. The modified behavior is saved and the user resumes execution. ... 222

Figure 123. Execution has resumed and the synthesized state machine (blue) is executed...................... 222

file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366345
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366346
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366347
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366348
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366349
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366350
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366351
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366352
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366353
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366354
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366355
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366356
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366357
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366358
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366359
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366360
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366361
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366362
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366363
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366364
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366365
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366366
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366367
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366368
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366369
file:///C:/Users/waxler/Desktop/Team%20ViGIR%20Final%20Report%204.docx%23_Toc428366370

viii

ACKNOWLEDGEMENTS

This report represents the combined efforts of our team, which spreads across two continents with a nine-
hour time difference between Germany and Oregon. The major contributors include:

TORC Robotics, Inc
David C. Conner, PhD, Principal Investigator and Team Lead
Ben Waxler, Software Engineer

Technische Universität Darmstadt
Oskar von Stryk, PhD, Principal Investigator
Stefan Kohlbrecher, Onboard Software Lead, PhD Candidate
Alberto Isay Romay Tovar, PhD Candidate
Alex Stumpf, PhD Candidate
Philipp Schillinger, Masters Student

Virginia Tech
Doug Bowman, PhD, Principal Investigator
Felipe Bacim, Operator Control Station Lead, PhD Candidate

Oregon State University
Ravi Balasubramanian, PhD, Principal Investigator
Alex Goins, Masters Student (Phase 1B)
Jackson Carter, Undergraduate (Phase 2)

Cornell University (Phase 2)
Hadas Kress-Gazit, PhD, Principal Investigator
Spyros Maniatopoulos, PhD Candidate

Gottfried Wilhelm Leibniz Universität Hannover (Phase 2)
Sami Haddadin, PhD, Principal Investigator
Moritz Schappler, PhD Candidate

In addition to those listed here, this report builds upon and ties together a number of academic papers
published in conference proceedings and journals. These papers are included in the appendices with each
contributor acknowledged therein.

1

1. Summary
In spring 2012, the Defense Advanced Research Projects Agency (DARPA) announced the DARPA
Robotics Challenge (DRC). In response, TORC Robotics, Inc (TORC®) led the proposal effort and
gathered expertise from across the globe. Team ViGIR – the Virginia-Germany Interdisciplinary Robotics
team – was named in recognition of its original members. TORC Robotics (Blacksburg, VA) led the team
and worked on the robot control interface, communications, and behaviors. Researchers at TU Darmstadt
led development of the onboard software, including perception, behaviors, and motion planning.
Researchers at Virginia Tech led the Operator Control Station (OCS) development. The initial proposal
identified researchers from Cornell University and Oregon State University as future contributors.

DARPA selected Team ViGIR as one of 11 funded Track B participants. Team ViGIR – at this point
consisting of TORC, TU Darmstadt, and Virginia Tech – attended the project kickoff in October 2012,
and began work on developing our software for the DARPA Virtual Robotics Challenge (VRC) held in
June 2013. Team ViGIR developed its software in parallel with both the simulation system and the Atlas
robot design. In addition to the funded Track B teams, another 115 teams registered as unfunded Track C
teams; 26 teams passed the initial qualification tests. Team ViGIR finished with 27 points, which placed
sixth out of 22 teams that actually scored points in the VRC.

The VRC results qualified Team ViGIR to receive an Atlas robot
built by Boston Dynamics, Inc (BDI). Team ViGIR attended robot
training in July 2013, and began set up of their lab. Researchers
from Oregon State University joined Team ViGIR at this time, and
focused on the hand control and grasping interface. The team
modified their VRC software base to accommodate changes to the
robot design and software interface. After receiving their Atlas
robot on August 27, 2013, the team began intensive experiments
and preparation for the December 2013 Trials. At the trials, Team
ViGIR scored eight points, which tied them for ninth place. Figure
1 shows Florian, named for the German patron saint of first
responders1, attempting to attach the hose after scoring two points
in the hose task. A detailed system overview paper, which
discussed the results of the DRC Trials, was published in [1]
(Appendix A).

Initially, this score missed the cut off for continued participation in
the DRC. After Team Schaft dropped out of the competition, DARPA extended partial funding and the
invitation to continue for the three ninth place teams. Initially, Team ViGIR defined a streamlined
participation plan based on limited funding, but after DARPA provided additional funds in the fall of
2014 and moved the Finals to June 2015, Team ViGIR added Cornell University as originally planned.
Additionally, the team added researchers from University of Hannover (Germany) with expertise in
system identification and controls.

1 http://www.publicsafety.net/st_florian.htm (accessed July 30, 2015)

Figure 1. Florian, Team ViGIR’s Atlas Robot
participating in the 2013 DRC Trials.

Approved for Public Release; Distribution Unlimited.

http://www.publicsafety.net/st_florian.htm

2

During preparation for the DRC Finals, BDI took possession of the robot for three months to perform the
upgrade to the new untethered “Atlas Unplugged” upgrade. BDI delivered the partially upgraded robot on
February 21, 2015, about six weeks after the initial plan; Team ViGIR began work with the upgraded
robot, but did not receive the upgraded arms until March 24, 2015. Team ViGIR worked through several
hardware issues during the spring, and continued to test and refine their software up until they departed
for the DRC Finals on May 29, 2015.

Team ViGIR competed in the DRC Finals on June 5-6, 2105 in Pomona, California. On Day 1, the team
scored 3 points, and were stopped just shy of achieving the fourth point as our sixty-minute time limit
expired. The robot worked well, but the team experienced unexpected communication issues during the
run. The operators adapted, but were slower than expected due to software issues caused by a backlog in
communications between the robot and field computer. The team adjusted the software, and were
cautiously optimistic that they would be able to score 5 or 6 points on Day 2. Unfortunately, a series of
hardware issues caused numerous problems on Day 2. In the end, the team earned only 2 points on Day 2,
and ended the competition with a disappointing 3 points.

In the months after the competition, Team ViGIR worked to prepare their software for release as open
source, and conducted experiments on several advanced features that were not ready in time for the DRC
Finals.

This report discusses the results of each phase, the developed software architecture, experimental results,
and the status of the software release. The report focuses on Team ViGIR’s specific areas of emphasis and
innovation. The report presents future directions for our ongoing research, and concludes with a
discussion of the lessons learned. Appendices provide technical details, and describe the software being
released as part of our open source effort.

Approved for Public Release; Distribution Unlimited.

3

2. INTRODUCTION
This section provides a brief overview of the DRC and an introduction to the members of Team ViGIR.
The section then provides an overview of the competition results for Team ViGIR during each phase, and
focuses on the programmatic elements of the contract. The section concludes with an overview of the
remaining sections of this report, which cover the technical details of our approach.

2.1. Project

In the spring of 2012, the DARPA proposed the DRC to accelerate the development and evaluation of
disaster response robots that have the capability for early response and mitigation of disasters. This effort
was partly motivated by the earthquake and tsunami that struck the Tohoku region of eastern Japan on
March 11, 2011, and led to subsequent damage to the Fukushima Daiichi nuclear plant. The DRC concept
was designed to mimic the conceptual tasks that might be required of a robot to respond to the initial
damage and avert subsequent catastrophes.

DARPA structured the DRC as four separate funding tracks:

� Track A – DARPA funded teams develop hardware of their own design and software,
� Track B – DARPA funded

competitors in the VRC
(Simulation Challenge);
winners get Government
Furnished equipment (GFE)
in the form of the Atlas robot
developed by Boston
Dynamics

� Track C – Self funded
competitors in Virtual
(Simulation) Challenge that
will be eligible for DARPA
funding and GFE Atlas after
VRC

� Track D – Self funded
competitors that develop
hardware of their own design
and software.

Figure 2 shows the structure and
funding levels, along with the final numbers of competitors in each track. Team ViGIR competed as a
Track B team in the Virtual Robotics Challenge.

Figure 2. DARPA DRC Structure (courtesy DARPA)

Approved for Public Release; Distribution Unlimited.

4

2.2. Team

Team ViGIR2 – the Virginia-Germany Interdisciplinary Robotics team – was named in recognition of its
original members. The following section provides an overview of team members, and their primary
responsibilities. During design and development, the software was conceptually divided into OCS
software that interfaced with the human operators, and Onboard software that ran on the robot or field
computers. Communications between the OCS and Onboard software was through a degraded
communications link. In general, all team members had access to all software, and various members
contributed to different components at different stages.

TORC Robotics, Inc (Blacksburg, VA, USA) TORC served as project management, provided technical
leadership, and hosted the robot test lab in Blacksburg, VA. TORC (http://www.torcrobotics.com), the
primary software developer for Team VictorTango in the 2007 DARPA Urban Challenge, is a leading
provider of unmanned and autonomous ground vehicle solutions for the defense, agricultural, automotive,
and mining industries. Team VictorTango finished in 3rd place, and was one of only three teams to finish
the course without penalty. TORC components and systems have been integrated on over 100 unmanned
and autonomous ground vehicle platforms ranging in size from 5 pounds to 240 tons. TORC’s robotic
components and systems provide customers with rapid solutions by leveraging proven technology to
ensure customer success.

TORC personnel were the primary developers of the robot software interface and communication systems
used throughout the DRC. TORC provided machine shop access and technician support as needed.

Technische Universität Darmstadt (Darmstadt, Germany) TU Darmstadt, and specifically the
Simulation, Systems Optimization and Robotics Group at the Department of Computer Science
(https://www.sim.informatik.tu-darmstadt.de/en/), served as the Onboard software lead. TU Darmstadt is
one of the leading public engineering research universities in Germany. They conduct research in
autonomous robot teams, bio-inspired robots and dynamic modeling and optimization methods. The
research results have been honored, among others, with the 1st prize of the EURON/EUROP European
Robotics Technology Transfer Award, the Louis Vuitton Best Humanoid Award, and several world
championship titles for autonomous humanoid and four-legged robot soccer teams in the highly
competitive annual RoboCup competitions. As four-time winners of the Best in Class Autonomy Award
in the RoboCup Rescue League, they have provided open-source navigation software that has been reused
and adopted by numerous international research groups.

Due to the international character of the group, TORC Robotics could not use its intellectual property;
therefore the decision was made to use the ROS system for middleware and base capabilities. TU
Darmstadt brought significant experience with ROS to the team.

Virginia Tech (Blacksburg, VA) Virginia Tech, specifically the 3D Interaction lab
(http://www.hci.vt.edu/) at the Center for Human-Computer Interaction (CHCI) in the Department of
Computer Science, served as OCS lead. CHCI is a world-class interdisciplinary research center at
Virginia Tech, exploring the design of technological artifacts to support human activity and the impact of
interactive technologies on the user experience. Housed in the Department of Computer Science, CHCI
has 29 faculty affiliates across the university, including internationally recognized leaders in areas such as

2 http://www.teamvigir.org (accessed July 30, 2015)

Approved for Public Release; Distribution Unlimited.

http://www.torcrobotics.com/
https://www.sim.informatik.tu-darmstadt.de/en/
http://www.hci.vt.edu/
http://www.teamvigir.org/

5

virtual and augmented reality, information visualization, gestural interaction, graphics and animation,
creativity and the arts, and social collaborative computing. CHCI members lend their skills in user
interface design, user experience evaluation, and usability engineering to projects in a broad range of
application domains.

These three groups – TORC, TU Darmstadt, and Virginia Tech – formed the core of Team ViGIR, and
worked together from the beginning of the DRC. After the initial success in the VRC, researchers from
Oregon State University joined Team ViGIR full time. The initial proposal called for Cornell University
to join at this time; however, after reviewing the then current state of the software, additional costs, and
timeline before the trials, TORC in consultation with Cornell decided that Cornell would wait until after
the DRC Trials to join.

Oregon State University (Corvallis, OR) Oregon State University, specifically the Robotics and Human
Control Systems Lab (http://mime.oregonstate.edu/research/rhcs/), focused on grasping and manipulation,
with a specific emphasis on testing and interfacing the robotic hands provided for the Atlas robot. The
Robotics and Human Control Systems Lab has two goals: 1) To develop a deeper understanding of the
neural control and biomechanics in the human body using robotics techniques, and 2) To develop the
design and control methodologies (including human-inspired) that enable robots to operate robustly in
unstructured environments. Application areas include robotic grasping and manipulation, mobile robotics,
human-robot interaction, and rehabilitation.

Cornell University (Ithaca, NY) Cornell University, specifically the Verifiable Robotics Research
Group (http://verifiablerobotics.com/), focused on the automatic synthesis of high-level behaviors and the
manual development of autonomous behaviors for the team. The Verifiable Robotics Research Group
conducts cutting edge research on high-level, verifiable robotics; the group develops theory, algorithms
and tools that allow people to interact with robots at a high-level using language while providing
guarantees for the robots' behavior.

These five – TORC, TU Darmstadt, and Virginia Tech, Oregon State, and Cornell – were the original
members of Team ViGIR as defined in the original proposal. With the extended budget, Team ViGIR
decided to enhance our controls experience and recruited another German research group to develop
compliant impedance controllers for whole-body control of the robot, and then focus on getting up and
vehicle egress behaviors.

Leibniz Universität Hannover (Hannover, Germany) Hannover, specifically the Institute for
Automatic Control (IRT) (http://www.uni-hannover.de/en/), joined our group to focus on system
identification and compliant manipulation. The Leibniz University Hanover is among the nine largest
technical universities in Germany ("TU9"). The Institute for Automatic Control (IRT), aims to advance
the scientific and technological foundations for intelligent and autonomous robots capable of interaction
with their environment. IRT developed the first German dynamical walking bipedal robot. Recent focus
of the institute is laid on soft-robotics mechatronics and control, physical human-robot interaction,
machine learning and optimal control, and human motor control. IRT has been awarded numerous
scientific awards, including several best paper awards at ICRA, IROS, and Transactions on Robotics.

Approved for Public Release; Distribution Unlimited.

http://mime.oregonstate.edu/research/rhcs/
http://verifiablerobotics.com/
http://www.uni-hannover.de/en/

6

2.3. DARPA Robotics Challenge Phases

This section provides a brief historical overview of the different phases of the competition, and describes
Team ViGIR’s performance in each competition phase.

2.3.1. Phase 1A- Virtual Robotics Challenge

Representatives from TORC Robotics, TU Darmstadt, and Virginia Tech attended the project kickoff
October 24-25, 2012 in Arlington, VA. Immediately following the kickoff , the team worked to define the
basic software architecture and support infrastructure. The team arranged for a computer donation of five
industrial Intel Core i7 machines with NVidia graphics cards from Foxguard Solutions3.

Given the multinational character of the team, TORC was unable to contribute existing IP to the project;
therefore, we chose to base our software on the open source Robot Operating System (ROS) software4,
including the ROS 3D visualization tool rviz5. The team chose to make extensive use of existing ROS-
integrated tools such as MoveIt!6 And Point Cloud Library (PCL)7 as the base for algorithm development.
To facilitate collaboration, TORC hosted an external wiki-based project-planning site using the Redmine8

framework, and a GitLab9-based software repository. All team members had full access to the sites.

As the robot design and software interface was under development, Team ViGIR developed contingency
plans for developing basic stability and walking algorithms, but initially focused on perception, planning,
and operator interfaces under the constrained communications. Once it was confirmed that BDI would
provide basic walking and stability control for the simulated robot, the team was able to continue its focus
on the basic system. From the outset, Team ViGIR planned for a comprehensive approach to operator
interaction with the robot, and avoided scripted behaviors that were finely tuned for the simulation tasks;
while this may have been better suited for the defined structure of the virtual competition, it would have
been impractical for realistic scenarios. Figure 3 shows an operator at the OCS during the VRC.

Contrary to our expectations, it quickly became apparent that both the robot and simulation engine were
still under development, and in fact being developed in parallel with limited data sharing. Where we
expected to receive a well-defined Application Programming Interface (API) at the kickoff, the initial
version was not delivered until December 2012. The Open Source Robotics Foundation (OSRF)10 did not
release the initial API version that supported walking and balancing until Gazebo drcsim 2.2.0 was
released on March 11, 2013, only three months before competition. This required unexpected work on our
end to adapt to changing software performance and specifications. The team worked to define a flexible
software structure, then worked within an agile project management framework to incrementally add
capabilities within a spiral development cycle. This allowed us to test some features early, while
permitting us to adapt to expected changes to the government supplied simulation software being
developed by OSRF.

3 http://www.foxguardsolutions.com (accessed July 30, 2015)
4 http://www.ros.org (accessed July 30, 2015)
5 http://wiki.ros.org/rviz (accessed July 30, 2015)
6 http://moveit.ros.org (accessed July 30, 2015)
7 http://www.pointclouds.org(accessed July 30, 2015)
8 http://www.redmine.org (accessed July 30, 2015)
9 https://about.gitlab.com/ (accessed July 30, 2015)
10 http://www.osrfoundation.org (accessed July 30, 2015)

Approved for Public Release; Distribution Unlimited.

http://www.foxguardsolutions.com/
http://www.ros.org/
http://wiki.ros.org/rviz
http://moveit.ros.org/
http://www.pointclouds.org/
http://www.redmine.org/
https://about.gitlab.com/
http://www.osrfoundation.org/

7

Team ViGIR was one of eleven
funded teams competing in Track B
teams. As the competition
approached, another 115 teams
registered as unfunded Track C
teams; of these 126 total teams only
26 teams passed the initial
qualification tests. During the
competition, only 22 teams scored
points with Team ViGIR finishing
in sixth place with 27 points. Figure
3 shows our operator at the OCS
during the VRC competition.

The team published a brief overview paper [2] about their VRC development and experience; this paper ,
is included in Appendix A.

2.3.2. Phase 1B- DRC Trials

Team ViGIR attended robot training in July 2013, and began to set up of their lab. As TORC could not
have foreign nationals at their garage, Team ViGIR used warehouse space donated by Foxguard
Solutions. The space required an electrical upgrade, which delayed our receiving the robot until 27-
August-2013. The team set up a short-term housing rental near the lab; one Oregon State student spent the
entire semester in Virginia, while TU Darmstadt students rotated through the lab spending a few weeks at
a time.

Given the original VRC design focus on providing a flexible user interface and software architecture, the
overall software architecture did not change between the VRC and the DRC Trials. On the other hand, the
robot interface API was significantly different from the simulation API, and required significant changes
to accommodate the new API. Team ViGIR leveraged a shared C++ source file from another Atlas team
to develop an approach that worked with the robot hardware and the Gazebo simulation. The limited
fidelity of the simulation and constantly evolving hardware interface limited the utility of the simulation
for tuning of the control parameters; therefore, while the system used similar control approaches, it used
completely different gain sets between the robot and simulation. Remote members of Team ViGIR used
the simulation to test logic, user interface, and task process, while the lab team in Virginia focused on
hardware testing and control tuning. The software development focus during this time was on adding
additional capabilities to existing modules, and improving performance.

Team ViGIR published a detailed system overview paper in [1]; this paper, which discussed the system
and results of the DRC Trials, is included in Appendix A.

PhD student researchers from LIRMM11 in France visited Team ViGIR to work on whole-body motion
planning for the ladder task. Their approach used model-based offline planning and optimization and has

11 http://www.lirmm.fr/lirmm_eng/users/utilisateurs-lirmm/equipes/idh/abderrahmane-kheddar (accessed July 30, 2015)

Figure 3. View of OCS during VRC

Approved for Public Release; Distribution Unlimited.

http://www.lirmm.fr/lirmm_eng/users/utilisateurs-lirmm/equipes/idh/abderrahmane-kheddar

8

been successfully applied to the (joint position controlled) HRP-2 robot. However, it was not robust
enough to accommodate the significant modeling errors in the Gazebo model of Atlas and controller
errors during execution. As neither a better model nor time for model calibration were available before the
DRC Trials, Team ViGIR did not use the approach during the Trials. During Phase 2 this research for
Atlas did not continue as LIRMM became part of the DRC Finals Team AIST-NEDO through the French-
Japanese CNRS-AIST joint

The biggest challenge was the limited time between receiving the robot and the trials. The tasks of
converting software to work on the robot, tuning controls to work with the robot hardware, and
developing new interfaces for the actual hardware took considerable developer resources. During testing,
we were debugging both our own code and the newly released versions of the BDI API. Given limited
developers and time, we prioritized development decisions and focused on practicing a limited number of
approaches to the tasks. In reviewing the evolving rule changes and developer resources, Team ViGIR
made two fateful decisions. First, we chose to skip the driving task to focus on more general manipulation
tasks. Second, we chose to focus on the wrong cutting tool based on a perceived ease of triggering.
Although the team recognized the importance of stopping development and practicing with features in
place, this mythical code freeze did not happen as our testing continued to reveal limitations that required
updates. As our main operators were also our main developers, this represented a constant struggle to
balance the need for testing and training with the need to fix bugs and extend capabilities. Further
complicating this issue for Team ViGIR was the geographically distributed team. Our entire team was
only on site together for the month prior to competition; prior to that, only a subset of our team was at the
lab at any given time.

During the preparation for the DRC Trials, our robot was reliable and had consistent performance. We
had some leak issues and a broken cable, but the Atlas hardware was not generally an issue. Our reported
issues to BDI were mostly related to debugging software, sometimes on our side and sometimes with their
API (e.g. step index handling). Our robot checked out well prior to shipping to the DRC Trials
competition; unfortunately, this consistent behavior did not last after arriving in Homestead, FL.

The robot did not perform well during testing at the Trials. Upon arrival, we found that BDI had replaced
a foot due to an apparent sensor issue that had not been seen in Blacksburg. The robot passed initial
checkout standing and in manipulate mode, but consistently fell over when walking or stepping. After
BDI assisted other teams, they began to checkout our robot overnight, and spent the next day testing and
tuning trying to improve stability. They tried replacing the new foot, but continued stability issues
prevented us from practicing during our normal slot. BDI eventually diagnosed the issue as a failing hip
actuator, and performed a hip replacement the night before competition. These issues severely restricted
our practice time at competition to the point that our first successful step was one hour prior to the first
event.

Per task performance during the competition is documented in [1], which can be found in Appendix A.
Figure 4 shows images from our robot during competition along with the points achieved during each
task. We finished the competition with eight total points in a three-way tie for ninth place; the top eight
competitors advanced to the DRC Finals. During winter 2014, Team Schaft (now owned by Google)
dropped from the competition, which allowed DARPA to extend funding to Team ViGIR and Team
THOR, and invite the third Track D team as a finalist.

Approved for Public Release; Distribution Unlimited.

9

2.3.3. Phase 2- DRC Finals

This section provides a historical overview of Team ViGIR’s efforts during Phase 2.

2.3.3.1. Downtime (January – April 2014)

After a brief recovery period following the disappointing performance in the DRC Trials, Team ViGIR
regrouped to begin documenting our efforts, and strategizing a way forward. During this time, Virginia
Tech students approached TORC about using their THOR robot with our software. Dr. Hong, who was in
the process of moving his RoMeLa lab from Virginia Tech to UCLA was not interested, but the students
remaining at Virginia Tech reached out to the Virginia Tech administration for support in continuing to
develop the new robot.

During the negotiations between Dr. Hong and Virginia Tech, DARPA announced the invitation to
continue to the DRC Finals, with Team ViGIR and Team THOR splitting Team Schaft’s share of the $1
million support contract. Team ViGIR notified Virginia Tech of our intent to focus on the Atlas robot, but
agreed that we would make our software available to them to use if they pursued a separate entry. After a
prolonged negotiation, Team THOR split into a UCLA/UPenn team using the Robotis THOR-MANG
platform, and a new Team VALOR using the new ESCHER robot being developed by Virginia Tech.

Figure 4. Performance at DRC Trials

Approved for Public Release; Distribution Unlimited.

10

Team VALOR chose to leverage Team ViGIR’s software for VALOR’s high-level planning and operator
control interface.

During the delay, Team ViGIR provided DARPA and BDI the opportunity to display the robot at the
Pentagon12.

2.3.3.2. Restart (May – December 2014)

Team ViGIR reworked its budget to reflect the initial agreement for partial funding. The limited funding
required creativity in project planning; the team decided that it was impractical to bring Cornell onto the
team with such limited funding. While waiting on the final contract details, Team ViGIR began a search
for new lab space as our prior lab space had been rented out to a new tenant.

Initially, we discussed available space on the Virginia Tech campus in exchange for our software support
for Team VALOR. As the approval process drug out, the Montgomery County Economic Development
Authority provided a larger more appropriate space. This space required an electrical upgrade by moving
the 480V transformer from our original space to the new lab. This again delayed getting our robot
functional until June 19, 2014.

During this set up time, DARPA notified Team ViGIR of the possibility of gaining additional funds due
the delay in final competition schedule. Team ViGIR submitted a proposal that included additional test
support equipment along with increased hours for researchers, and permitted bringing Cornell back
onboard. Under the increased funding, TU Darmstadt partnered with Leibniz University of Hannover to
provide researchers with experience in advanced controls. Cornell was able to start in September 2014
under contingent funding for the fall semester; the final ECP contract modification, which provided the
same funding level as other Track A and B teams, took effect in October 2014.

One of the distinguishing features of Team ViGIR’s proposal was the use of synthesis techniques to
generate autonomous behaviors. As Cornell came on board late due to budget uncertainty, the team chose
to focus on manual specification of the autonomous behaviors. This approach allowed Cornell researchers
to get up to speed on our system, while contributing to the autonomous behavior development for the
competition. In parallel, the Cornell team worked on defining the synthesis framework within the ROS
SMACH13-based hierarchical state machine framework. The team demonstrated these synthesis concepts
in experiments after the competition; we discuss these results in this final report and point the way to
future research that will continued by members of Team ViGIR.

As team discussed the basic architecture that we used in the DRC Trials [1], we agreed that the basic
structure was sound but needed some improvements. First was an improvement to the manipulability of
the robot, which was being handled by BDI’s redesign of the Atlas robot. Second were improvements to
the state estimation and calibration of the robot arms; after researching several alternatives, Team ViGIR

12 http://www.cbsnews.com/news/pentagon-introduces-atlas-its-new-robo-sapien/ (accessed 30-July-2015)
13 http://wiki.ros.org/smach (accessed July 30, 2015)

Approved for Public Release; Distribution Unlimited.

http://www.cbsnews.com/news/pentagon-introduces-atlas-its-new-robo-sapien/
http://wiki.ros.org/smach

11

made use of the Pronto14 system being open sourced by MIT for robot posture estimation, and developed
a custom calibration motion to detect and compensate for variable encoder offset issues.

The team made a decision to move to a newer development environment that provided access to newer
libraries and offered better long-term support for our future open source efforts. The VRC and DRC Trials
used the ROS Hydro ecosystem with an Ubuntu 12.04 Operating System and a hybrid rosbuild and
Catkin15 build system. After discussion, the team decided to migrate to ROS Indigo, which required a
jump to Ubuntu 14.04, and chose to migrate all of our software to the catkin build system. The team
implemented this changeover incrementally over the summer and fall 2014 while we developed new
features. In addition to updated code, this software conversion provided simplified installation and remote
deployment options using the catkin install feature.

In order to provide better support for autonomous control and behavioral interfaces, the team decided to
standardize on the ROS ActionLib16 interface. As part of this process, the team converted the robot
interface to use ROS Controllers framework17. This provided a more ROS-centric development, and better
integration with existing tools such as MoveIt!. As the team implemented new interfaces or made
improvements to existing modules, some of these, such as the footstep planner were converted to the
Action interfaces as well.

The team worked on an approximately eight-week cycle with six weeks of development and simulation
based testing, followed by travel to the lab for hardware testing. These test sprints were held in late June
2014, September 2014, and October/November 2014.

During the fall 2014, Vice Media contacted TORC and stated that they wanted to do a report on “how the

software you’re developing might help with search and rescue efforts in the future.” We spoke with them
on the phone along these lines, but once on site for videotaping, the questions devolved into “killer
robots.” They published their Dawn of Killer Robots video18 on April 16, 2015, which included footage
of Team ViGIR and Team VALOR.

Team ViGIR worked through November 2014 with the original Atlas robot, and then packed and shipped
the robot back to Boston Dynamics for the new Atlas Unplugged upgrade. November 2014 through
January 2015 included significant development on the grasping interfaces and footstep planner as the
team worked remotely without access to the robot hardware and used the old Atlas simulation model.

2.3.3.3. Atlas Unplugged (January – May 2015)

The team anticipated the upgraded robot’s return in early January, and planned travel for our German
partners for integrated testing beginning in mid-January after an initial checkout period. The focus of this
test was to be system identification and compliant controls development, in preparation for working on
the fall recovery and vehicle egress motions. Unfortunately, BDI had significant hardware delays.

14 https://github.com/mitdrc/pronto (accessed August 19, 2015)
15 http://wiki.ros.org/catkin (accessed July 30, 2015)
16 http://wiki.ros.org/actionlib (accessed July 30, 2015)
17 http://wiki.ros.org/ros_control (accessed July 30, 2015)
18 http://motherboard.vice.com/read/inhuman-kind-killer-robots (accessed July 30, 2015)

Approved for Public Release; Distribution Unlimited.

https://github.com/mitdrc/pronto
http://wiki.ros.org/catkin
http://wiki.ros.org/actionlib
http://wiki.ros.org/ros_control
http://motherboard.vice.com/read/inhuman-kind-killer-robots

12

Given the delays, BDI provided Team ViGIR limited access to the robot at a workweek in Boston starting
January 12, 2015; this gave all the teams a chance to work on the newly released API. The new API broke
compatibility between the robot hardware and simulation environment, which required a non-trivial
conversion effort. This change necessitated having different models for simulation and hardware based
testing for several months. After additional delays, BDI pushed delivery of the partially upgraded robot to
February 21, 2015, only three and one half months before competition.

During this hardware delay, some of the students at TU Darmstadt decided to qualify their THOR-MANG
robot for the DRC Finals as a contingency plan. DARPA accepted this qualification with the stipulation
that the entry be treated as a completely separate team. This new team, now called Team Hector, used the
Team ViGIR software as a base, and contributed upgrades to several modules as they tested our software.

In early March 2015, the team traveled to the DRC Test Bed event to test the communications bridge
under the competition set up. The team identified several issues with our setup, and worked to address
those issues as discussed in Section 3.3.

BDI was unable to install the new electric arms on Atlas until late March; these arms had seven degrees of
freedom for improved manipulability, but required different control tuning. In addition to the hardware
delays, there were several issues and hardware failures as the new design was being beta-tested in the
field. During this time, Team ViGIR required three arm replacements, two perception computer
replacements, and two perception node swaps to fix a PPS error. Unfortunately, these issues were
common to all of the Atlas teams, which taxed BDI personnel as they tried valiantly to support seven
robots in the field with the new design. In the end, our robot did not receive its final hardware upgrade
until Monday June 1, 2015 at the competition site.

Team ViGIR had planned to assess the IHMC walking and whole body controller. IHMC had similar
Atlas hardware issues, therefore they were unable to test their open source software for release in a timely
fashion. As we could not test the open source system early enough, we chose not to devote resources to
integrating our software with their robot interface and control system, and continued to rely on BDI’s base
level stepping and balancing controller.

Another casualty of the hardware issues and delays was the development of our compliant controller.
Team ViGIR had partnered with researchers from the Leibniz University of Hannover, through the sub-
contract with TU Darmstadt, to develop a compliant controller specifically for use while in contact with
rigid objects. We intended to use the compliant controller during the cutting task, vehicle egress, and fall
recovery motions. Initial development got underway in Q4 2014, with January planned for system ID and
testing; BDI did not deliver the hardware until late February, and then delivered the robot with some
issues remaining, which severely limited our development time. In the end, the team chose not to use this
compliant controller in competition. There were conditions where the performance was worse than the
basic position control, and we were unable to get the issues resolved in time for operator training. This
report includes results of the efforts related to system identification and controller development in
Appendix D; this includes additional fixes and tests conducted after the Finals competition.

Initially, Team ViGIR had planned to focus on the fall recovery and vehicle egress behaviors prior to
developing the driving interface. The fallback plan had been to walk the course in lieu of driving if we
could not egress reliably. As hardware issues delayed development of our compliant controller, this
directly affected development of an egress motion. Given the limited development and testing time due to
hardware issues, as well as potential risk to the robot, Team ViGIR chose not to pursue fall recovery or

Approved for Public Release; Distribution Unlimited.

13

vehicle egress behaviors after the pump upgrade in late March. Prior to the pump upgrade, the robot did
not have sufficient power to raise its arms with hands attached, much less push up after a fall. Given the
limited spare parts and subsequent down time caused by any needed repair, the team decided it could not
risk damage to the robot as the boundary between success and failure is very small, and would require
extensive testing and tuning on the robot hardware.

Team ViGIR opened our lab to Team Hector, and allowed them to make use of our test facilities prior to
competition in exchange for testing our high-level software, and assisting in development of some
capabilities. As the decision to allow a reset instead of requiring vehicle egress came relatively late in the
game, Team ViGIR chose to let Team Hector develop the basic driving interface, while we focused on
other software issues. Testing with the THOR-MANG robot outdoors was much easier as their robot
could more easily fit into the vehicle and operate the controls, and operate outdoors on battery power.
Team ViGIR developed a compliant steering handle concept, which we shared with Team Hector. After
students working for Team Hector developed the basic interface, Team ViGIR customized the robot
commands for Atlas. As this driving interface came together relatively late, the focus was on sending
steering commands to robot; the robot did not have any onboard planner for obstacle avoidance and
generating steering commands.

Researchers at Oregon State worked on a number of components including a hand guard, hand cameras,
and tactile sensing. The team developed a Raspberry Pi-based interface for the hand electronics as
described in Appendix B. Initially there were plans to use Takktile tactile sensors, along with grasp
quality analysis software; the student did not complete this work in time for proper integration, so the
team chose to not use the tactile sensors. In the end, only the small palm cameras were used in
competition. The team designed a hand guard to protect the electronics and fingers during a fall, and to
provide the ability to push off during a fall recovery. Once we decided against developing fall recovery
and no longer needed to push off the ground, we decided that the risk of the necessarily bulky hand guard
outweighed the risk to the electronics during a fall; therefore, the guard was not used in competition. A
final research thrust was an online grasp planner. While showing promise in isolation, the integration into
the larger system proved too much for the student researcher, and the larger team chose not to devote
scarce resources to integrating this software as we felt the template-based approach was sufficient for the
tasks shown at the South Carolina Test Bed.

Team ViGIR continued our collaboration with Team VALOR by jointly contracting a dedicated tractor-
trailer truck to ship our robots and equipment to California. Team Hector added their equipment to the
shipment. The truck departed Blacksburg on May 28, 2015. While the truck hauled the equipment, the
team took a well-deserved break to get some rest and relaxation before arriving in Pomona May 30. The
truck arrived safely on June 1, 2015.

2.3.3.4. Finals Setup (June 1-4, 2015)

Unloading and unpacking proceeded relatively smoothly. DARPA provided sufficient equipment and
cooperative personnel to assist the unloading. The set up on site was sufficient for our needs. After
concerns regarding the gantry height were resolved, the team began checkout of our robot to verify
performance after the transit across the USA. That evening, BDI replaced a faulty component and
replaced a damaged footpad. At this point, our Atlas Unplugged robot was finally 100%.

During a subsequent BDI checkout, they reported that our robot appeared to be “running hot,” but they
could not find any obvious cause that they could fix. Randomly swapping out components did not seem

Approved for Public Release; Distribution Unlimited.

14

warranted. Over the course of the week, two different BDI technicians gave us the same report, but could
not find any resolution.

During this time, Team ViGIR was working to resolve lingering issues with the communications
software.

Team ViGIR had the first chance to test the robot on battery power June 3 at Pomona. Unfortunately, the
checkout was in another building that did not have access to the DRC network infrastructure; this required
us to transport our field and operator computers to the building. We chose to bring only one operator
station computer, which caused significant confusion among our multiple operators as they tried to share
the one terminal; this made the operator training time less useful than we had hoped. In our normal mode
of operation, each operator has an independent workstation that shares data to allow distributed
collaboration.

At the dress rehearsal on June 4, Team ViGIR chose
to focus on practicing the driving task (Figure 5) and
forgo risking damage to the robot in a fall off tether.
As the team had not had the opportunity to practice
with the Atlas robot in a moving vehicle, the team
practiced the driving portion twice by requesting a
reset after the first run. During both runs, the
communications system and driving interface worked
well. In the first run, the team approached the finish
line fast and the DARPA observer E-stopped the
vehicle prior to crossing the line. The second run went
well, and the field team practiced the egress.

The biggest issue noted by the field team during dress rehearsal was the difficulty working with the small
gantries provided by DARPA. Our team was able to get everything lined up in the time limits allotted,
though we did experience some difficulty getting the gantry in position due to the soft dirt at the starting
gate. Once underway there were no issues until we attempted to remove the robot from the vehicle with
the government furnished gantry at which time the gantry trolley got stuck in place making it very
difficult to remove the robot from the vehicle. This issue was reported to DARPA and the gantry was
either fixed or replaced before Day 1.

Figure 5. Driving practice during DRC Dress Rehearsal

Approved for Public Release; Distribution Unlimited.

15

2.3.3.5. Competition Day 1 (June 5, 2015)

On competition Day 1, we received three points as time expired just shy of achieving the fourth.

The actual competition run faced more issues in regards to field operations than the dress rehearsal. In
order to make up schedule slippage due to the prior teams issue, DARPA personnel wanted us to start the
communications checkout prior to BDI installing the battery even though it would prematurely start our
20-minute setup period. Our Field Team Lead coordinated with government observer to address this
issue; however, in the end, we are not certain that we received the full 20-minutes after BDI completed
the battery installation. The government gantry was too low to allow us to place the robot in position in
the vehicle in the same manner as the
prior day. The team had to get four of the
five members standing on the vehicle to
lower the suspension enough for atlas to
get in the correct position for us to drive
which cost us several minutes. The team
was forced to rush the setup process
compared to the dress rehearsal, and our
set up over ran our start time by
approximately three minutes.

In spite of the issues at setup, our robot
named Florian worked well and our
operating team directed Florian through
the driving course for one point (Figure
6). After crossing the driving finish line,
we executed our planned reset without
issue.

After the ten-minute reset penalty, the team worked to open the door, but noticed that certain systems
were not operating as expected due to communications issues, including an apparent backlog of data sent
between the onboard and field computers. This was not the expected degraded communications between
the OCS and field. Speaking with other teams, we found that they had experienced similar issues, and
their monitoring detected that the communications bandwidth dropped to less than twenty percent of
maximum as the robots approached the grand stands. Our teams did not experience these issues during the
dress rehearsal, and speculate that the presence of
spectators with smartphones and increased media
transmissions introduced significantly more interference
with the wireless communications between the field and
onboard computers during the actual competition.

The operators were still able to direct the robot to open
the door and walk through for our second point, and
open the valve for our third point (Figure 7). While we
successfully achieved these three points, the operations
under these conditions were much slower than expected.
Near the end of our run, while reaching for the switch
that was part of the surprise task, our right arm

Figure 7. Opening the valve on Day 1 of DRC Finals

Figure 6. Operators on DRC Finals Day 1

Approved for Public Release; Distribution Unlimited.

16

overheated and stopped functioning. Time expired before we were able to recover and achieve the fourth
point.

At the end of the Day 1 run, our field team, assisted by personnel from Boston Dynamics, recovered the
robot without a damaging fall.

After reviewing our performance, we felt that we understood the communication problem and had a plan
for Day 2. That night we rearranged the software to minimize the wireless communications with our field
computer, and made several changes to reduce our required bandwidth. During preliminary testing that
night, the changes were working well.

2.3.3.6. Competition Day 2 (June 6, 2015)

During our robot checkout on the morning of Day 2, the robot and control software worked well. As the
field team loaded our robot for transport to the robot course, our operators were cautiously optimistic that
we could score 5 or 6 points during our run.

Given issues with the gantry on Day 1, we opted to bring our own gantry to the start for Day 2.

As the team powered up the robot after arriving at the start line, the robot passed the initial checkout
including hand operation and arm calibration. At a later point in the checkout, the team discovered that
the robot right arm had stopped working and was completely dead. BDI sent a technician over to
investigate and DARPA granted us a twenty-minute delay to debug the hardware issue. Our team was still
under considerable time pressure to debug the issue and restart our system software while the robot baked
in the California sun. The team disconnected the hand and did a full robot power cycle to test if the arm
was truly broken; the power cycle restored functionality to the arm. After calibrating the arms, the field
team plugged all hand electronics back in and the arm continued to work properly during checkout.

By this time, we had used half of our extension time, so DARPA granted an additional ten minutes before
our clock started to load the robot. The insertion of the robot into the vehicle went much smoother with
our larger gantry and we were able to start without spending any run time.

During our drive, there was an unexplained communications delay between our operator interface and the
robot. At one point on the course, the vehicle did not move when first commanded; after it started
moving, our operators requested it to stop, then watched helplessly as the robot continued to drive into a
barrier. (The system was not doing autonomous motion planning for the vehicle steering.) After resetting
the robot and vehicle to the start line, the robot continued to bake in the sun with its pump running while
we waited for the 10-minute penalty to expire.

This time our robot and vehicle successfully crossed the finish line with our team driving cautiously down
the course. We requested our planned reset again. After waiting through the remainder of our 10-minute
penalty, our team quickly – as compared to Day 1 – opened the door, and began to position the robot to
walk through the door. At this point, the robot pump shut off and the robot fell to the ground (Figure 8).
After reviewing our operator station screen cast videos, we could see that the reported reason for the
pump shutoff was a communications failure with the BDI software. Our software appeared to be operating
normally, but the robot was running extremely hot, which may have contributed to the communications
issues.

Approved for Public Release; Distribution Unlimited.

17

Our robot survived the fall, and our team reset
for another attempt at the doorway. During the
restart, we again had an issue with the right arm,
and decided to bypass the custom hand
electronics that may have been damaged during
the initial transit to the arena. Unfortunately, after
waiting through another 10-minute penalty, the
robot fell again half way through the door, likely
caused by damage sustained in the original fall.
At this point, running low on time, energy, and
spirit, our team stopped for the day.

2.3.3.7. Post Competition

After the competition, Team ViGIR shipped the
robot back to Blacksburg, VA. After the robot
checkout in Blacksburg, it appeared that the
robot suffered only minimal cosmetic damage
during its two falls. During subsequent experiments, a sensor failed on the robot and prevented the robot
from being able to step or walk. The team continued testing robot controls, grasping, and manipulation
based behaviors. Later more leg sensors failed, which prevented the robot from standing. The technical
sections of this report document the results of these experiments. At the conclusion of these experiments,
the robot was returned to the government as requested.

2.4. Report Overview

With this historical context in place, the remainder of this report focuses on the technical contributions.
The report presents experiments that validate performance beyond that witnessed in the DRC
competitions. The report documents the software in its current state, including changes made after the
finals in support of our efforts to open source our code base. The main body of the report serves as an
introduction to the technical details, which we present in the appendices. Section 3 introduces the design
philosophy, software architecture, and innovations developed by Team ViGIR during the course of this
competition; Section 4 discusses significant challenges and focuses on the experimental results. Section 3
and 4 reference the same appendices grouped by major component; each appendix contains a brief
introduction and embedded PDF files corresponding to technical papers and reports written in another
format. Section 5 concludes the report with a discussion of lessons learned, and future work that is
necessary to bring the original vision to reality. Section 6 includes a limited bibliography of works
published by the team; the papers included in the appendices cite references that are more general. The
document concludes with appendices that embed technical papers and reports prepared by the team.

Figure 8. Robot collapsing due to pump shutdown after opening the
door on Day 2 of the DRC Finals.

Approved for Public Release; Distribution Unlimited.

18

This page intentionally blank.

Approved for Public Release; Distribution Unlimited.

19

3. METHODS, ASSUMPTIONS, AND
PROCEDURES

From the outset, TeamViGIR functioned as an open collaborative research and development effort where
all team members shared and contributed to the code base, with the intent of open sourcing our software
at the end of the project to facilitate future development toward humanitarian rescue robotics. This section
provides an overview of our software architecture, and ties this to our open source software19 released
concurrent with this document.

The major design focus of Team ViGIR, and a major focus of the DRC, is the development of an
approach that leverages the complementary strengths and weaknesses of the robot system and human
operator(s). While full bandwidth and update rate access to all sensory systems is available onboard the
robot system, cognitive and decision-making abilities of a human operator are still vastly superior for the
near future. This is especially true for disaster scenarios, as only very limited assumptions about their
structure can be made beforehand. Team ViGIR took the approach of making the operators members of
the team, while permitting the robot to exercise supervised autonomy given task level directions. See [1]
included in Appendix A for an overview of our design approach.

The software architecture employed by Team ViGIR included the Operator Control Station (OCS) and the
Onboard software, which includes software running on the robot as well as on an external field computer.
The field computer looked toward future systems that include more computational power onboard, and
would not require a separate field computer. Where the DRC Trials used three field computers and one
onboard computer running BDI software, the Atlas Unplugged version used at the DRC Finals included
three perception computers onboard in addition to the BDI control computer; Team ViGIR made use of
one field computer to handle communications at the DRC Finals. The Communications Bridge
(CommsBridge) software developed for this project handled the communications between the OCS and
Onboard software. Figure 9 shows the basic architecture followed in this project.

19 http://www.github.com/team-vigir

Figure 9. Software Architecture

Approved for Public Release; Distribution Unlimited.

http://www.github.com/team-vigir

20

3.1. Operator Control Station

The OCS includes both the User Interface (UI) components as well as a number of software components
including OCS-side planning, communications, and multi-operator coordination. In many instances, these
non-UI OCS components mirror major components on the Onboard side. This section begins with an
overview of design priorities, and then focuses on the operator roles and UI components; Appendix C
provides a brief overview of the software included in the open source software release, and the non-UI
components in particular.

3.1.1. Design Approach

Section 3 of [1] (Appendix A) provides an overview of our design philosophy from the outset of the
project, and its implementation through the DRC Trials. We summarize our primary design principles as
follows:

Human capabilities: Since the DRC was a competition with tight time constraints, it was important to
leverage the abilities of human operators and take advantage of the things they were good at, rather than
working only towards full robot autonomy. For example, humans can easily pick out salient features in
real-world scenes and describe their position and orientation. This led to our use of 3D templates.
Templates (3D models of important objects/features in the environment) allow the primary and secondary
operators to annotate perception data with semantic information. For example, if the operator sees a
known object in the point cloud (e.g., a tool), he can insert a template representing that tool in the 3D
view at that location, thus informing other operators and the onboard systems about that object. Figure 12
in Section 3.1.3.1 shows the addition of template information into the scene; Section 3.2.4 discusses
template use in more detail.

Pre-visualization: Software on the OCS side has access to a wealth of information about the robot and
the environment, providing an opportunity to visualize proposed actions virtually before executing them
on the physical robot. To make decisions about whether to execute, cancel, or modify the action, operators
must be able to visualize the expected results. Thus, a second major feature of our OCS is the “ghost” or
simulation robot, which is a transparent duplicate of the ATLAS robot visualization. The ghost robot
allows the primary operator to plan and validate motions before executing them with the physical robot.
The ghost robot is also color-coded to give the operators feedback about the internal state of the onboard
systems, such as collision checking for motion planning, to prevent unexpected actions. Both of these
features can be used in and visualized at any of the views described below.

Multiple operators: Although autonomy was an important goal of the DRC, it was clear from the outset
that human operators would play a major role in making high-level decisions and giving supervision and
direction to the robot’s (semi-) autonomous capabilities. It was also clear that a single operator would not
have enough perceptual or motor bandwidth to take in all the information coming from the robot and
provide all the information needed by the robot. Thus, we designed an OCS that could be run in multiple
instances with multiple configurations, tailored for multiple operators with different roles.

Parallelism: Closely tied to the concept of multiple operators is the idea that multiple actions can be
performed on the OCS side in parallel. An operator can plan the next movement while the current one is
being executed. Multiple operators can be working on planning, template placement, visual inspection of

Approved for Public Release; Distribution Unlimited.

21

sensor data, and other operations, all at the same time. This principle was critical to enable good
performance under tight time constraints and in the presence of degraded communications.

Appropriate specificity: Our OCS design had to strike a careful balance between generic interfaces that
could be used in any situation, and highly specific interfaces that were tailored for individual tasks, sub-
tasks, or robot capabilities. For the DRC Trials, DARPA provided all task information ahead of time, so a
task-specific OCS might be quite successful. However, we wanted to demonstrate a flexible OCS that
could be used for multiple tasks with unknown parameters, such as the surprise task at the DRC Finals.
Our only task-specific UI was a specialized widget for driving.

Advanced interfaces: Our team included members with expertise in virtual reality (VR) and 3D
interaction, and we felt from the outset that these technologies might be beneficial for robot operation.
Immersive VR for 3D visualization, either from the robot’s point-of-view or elsewhere, could allow
operators to easily access any view of the robot and its environment; this could prove very useful for
visual inspection of alignment and positioning. 3D interaction could give operators powerful techniques
for manipulating objects, such as 3D templates, with multiple integrated degrees-of-freedom. At the same
time, we realized that these interfaces would be experimental in this domain, so we focused much of our
effort on a more standard desktop interface (albeit one with multiple monitors and 3D mouse capabilities).

Iterative design and evaluation: Like all good UI development efforts, our OCS design needed
constant testing and iteration. Fine-grained iteration took place throughout the project. A major new
iteration was planned and developed after the DRC Trials.

In analyzing the OCS used at the DRC Trials, we noted two major issues. The first issue was a lack of
integration of specialized control widgets, which increased the learning curve of our UI; a key goal of
development during Phase 2 was to better integrate these widgets and make them accessible from the
main UI through the use of pop up context sensitive menus and readily accessible icons.

The second issue was the use of our
multiple operators. In the run up to the
DRC Trials, we had limited time to train
on stable system software. This led to
different people having different
specialties, with operators switching
roles during the tasks (e.g. step planning
vs. manipulation). This directly led to a
loss of situational awareness that caused
a fall during the door task at DRC Trials.
Thus, during Phase 2, the team worked to
provide streamlined control interfaces
with better UI integration to simplify the
use of interfaces, and to better define the
roles and responsibilities of each type of
operator.

A final design goal was to incorporate
better 3D visualization tools for fine
alignment, and validation of positioning.

Main

Auxiliary Supervisor

Immersed

Figure 10. Layout of the operators during DRC Finals

Approved for Public Release; Distribution Unlimited.

22

3.1.2. Operator Roles

Team ViGIR used multiple operators for both the DRC Trials and Finals. The individual operator stations
were separate instances of the same UI that shared data between operators; thus, if one operator requested
a point cloud, the same point cloud would be visible on all stations. This allowed the operators to
coordinate verbally with one another, which permitted operation as a “Wizard of Oz” interface where one
operator could request another to gather the additional information needed [1]; this reduced the cognitive
load on any one operator.

For the DRC Finals, Team ViGIR used four operators with well-defined roles:
� Supervisor
� Main
� Auxiliary
� Immersed

Figure 10 shows the arrangement of these four operators during the DRC Finals. The remainder of
Section 3.1.2 describes the primary roles of each operator.

3.1.2.1. Supervisor

The Supervisor was responsible for overseeing and managing the execution of high-level behaviors via
our Flexible Behavioral Engine’s (FlexBE) graphical user interface; this is presented in Section 3.1.3.4.
The supervisor was also responsible for keeping the operators on task and ensuring that operations were
conducted according to plan.

3.1.2.2. Main Operator

The Main Operator was responsible for the interacting with the OCS UI to plan or verify motion
generated by behaviors, and for conducting manual operations if autonomous behaviors failed. The main
operator was responsible for specifying footstep goals, managing templates, and performing manual
manipulation.

3.1.2.3. Auxiliary Operator

The Auxiliary operator was responsible for gathering perception data in support of the main operator in
order to maintain a high-level of situational awareness, as well as inserting templates or other semantic
information as requested by behaviors. For our team, the Auxiliary operator also served as team lead
during the run, and was responsible for making the final decisions on tactics during the run.

3.1.2.4. Immersed Operator

For the DRC Finals, Team ViGIR added an operator station that included an Oculus Rift DK220 virtual
reality head-mounted display (HMD). The HMD’s 3D position and orientation was tracked, allowing the

20 https://www.oculus.com/en-us/dk2/ (accessed July 30, 2015)

Approved for Public Release; Distribution Unlimited.

https://www.oculus.com/en-us/dk2/

23

operator to move/turn his head naturally to obtain new views of the 3D scene. This permitted the
Immersed Operator to visually inspect fine alignments (e.g., will the robot fit through the door if the
proposed footstep plan is used?) and assist in situational awareness by making use of both the 3D sensor
data and the modeled information including the robot and object templates.

This operator was running an instance of the same OCS used by other operators, with a specially-designed
3D stereoscopic view for the Oculus Rift. Navigation was performed with a pair of Razer Hydra 6-DOF
controllers; buttons on these controllers were also used to toggle or adjust various aspects of the 3D view
shown in the HMD and to quickly move to different points-of-interest in the environment. Initially, we
expected the Immersed Operator to aid in template manipulation as well, since the 6-DOF controllers are
ideal for rapid placement and rotation of 3D templates, but this feature was not tested sufficiently before
the Finals to allow its use.

3.1.3. Major User Interface Features

The Main and Auxiliary operators had a separate instance of the three major interfaces (main, map, and
camera views); the Supervisor had access to a specialized FlexBE interface to the behavior executive; and
the Immersed operator had a specialized version of the main view.

Since we use ROS, we took advantage of the several existing UI tools that it provides, mainly librviz
21

and rqt
22. Leveraging the existing tools in librviz for visualizing 3D data communicated via ROS was

very important given the short development timeline. All of the major views use existing or customized
(e.g., adding support to our own methods for picking geometry) versions of rviz plugins; the team
implemented some completely new plugins that implement some of the unique features of our OCS (e.g.,
templates). In the development of our main widgets, we extended the base librviz capabilities with Ogre

23
and Qt

24. For the development of simple 2D widgets, we used rqt extensively; this allowed us to quickly
prototype widgets during development that acted as windows for specific controllers on the onboard side
(e.g., footstep controller parameters). The OCS now integrates these more specific widgets, which can be
accessed and hidden by clicking specific icons on the major UI windows. Figure 11 shows the screen
view of the Main operator station, which includes all three major interfaces, during the DRC Finals valve
task. This view shows the camera view to the left, main view in the center, and map view to the right; in
this case, additional specific widgets cover the map view.

21 http://wiki.ros.org/rviz (accessed July 30, 2015)
22 http://wiki.ros.org/rqt (accessed July 30, 2015)
23 http://www.ogre3d.org/ (accessed July 30, 2015)
24 http://www.qt.io/ (accessed July 30, 2015)

Approved for Public Release; Distribution Unlimited.

http://wiki.ros.org/rviz
http://wiki.ros.org/rqt
http://www.ogre3d.org/
http://www.qt.io/

24

3.1.3.1. Main View

The main view widget, which is primarily used for visualization of 3D data and fine manipulation control,
is an interactive 3D view built on the librviz base. The main view includes custom extensions to simplify
selection and addition of template information, and manipulation of 3D data. It allows the operator to
control end effectors, visualize the 2D and 3D reconstructions of the environment, annotate these
visualizations with templates, and plan robot motion by controlling the ghost robot. A single icon in the
upper left allows the operator to toggle between a single 3D view and four 3D visualizations with
different points of view and settings (orthographic/perspective) to facilitate spatial judgments and aid
depth perception.

The main view includes a number of visualization and control components. The right panel on the main
view includes options for controlling what data is displayed on this particular display; the controls include
all of the standard RViz marker types. The hand grasp controls, which interface with our template-based
affordance scheme described in 3.2.4, are shown in the bottom middle of the view; these can be accessed
via the hand icon on the lower right corner of the view. The top menu bar includes icons for accessing
specific joint and footstep control widgets; clicking these icons toggles the display of these widgets for a
specific instance of the view.

The main view also includes context sensitive pop-up menus to provide easy access to common control
interactions. Figure 12 shows a close up of the main view during the Day 1 valve task, where a pop-up
menu is being used to insert a template into the world model. To avoid too much clicking and menu
selection, most of the options in these pop-up menus are also accessible via keyboard shortcuts
(i.e., hotkeys).

Figure 11. Main operator views – camera, main, and map – during of DRC Finals valve task on Day 1.
Note that by task specific control widgets, which can be accessed from the main view, cover the map UI.

Approved for Public Release; Distribution Unlimited.

25

In this example, the operator has selected a particular cell within the Octomap25 representation of LIDAR
data. The operator is in the process of selecting the proper valve template, which will automatically be
placed at the referenced Octomap cell. After an operator places a template marker in the 3D view, any of
the operators can perform fine alignment using customized versions of the ROS interactive markers26.

A key use of the main view is to manipulate templates and visualize the target pose of the robot prior to
execution through the use of the “ghost robot.” Figure 13 shows the ghost robot in the “pre-grasp” pose
used before inserting the valve turning attachment into the valve. As discussed in Section 3.2.4, the pre-
grasp target is defined relative to the template placed relative to the 3D world frame. The main view
allows the operators to verify the template placement and the target robot pose relative to sensor data. The
operator can easily monitor execution errors by checking the final pose of the actual robot against the
ghost robot. A simple hotkey allows the operator to snap the ghost to the current state of the robot. The
operator can also select an end effector of the ghost to allow for direct manipulation of the end effector
target pose by using interactive markers.

25 http://wiki.ros.org/octomap (accessed July 30, 2015)
26 http://wiki.ros.org/interactive_markers (accessed July 30, 2015)

Figure 12. Main View showing placing a template via context menu onto selected Octomap cell

Approved for Public Release; Distribution Unlimited.

http://wiki.ros.org/octomap
http://wiki.ros.org/interactive_markers

26

3.1.3.2. Map View

The map view is a top-down orthographic view widget that is used for navigation and to request more
information about the environment. The operator can select a region of interest in the environment by
clicking and dragging to create a box selection as shown in Figure 14, and then choose what type of data
are needed (e.g., a grid map, LIDAR/stereo point clouds, etc.). Fine control over the amount of data being
requested helps in reducing the amount of information transmitted over the network and what is shown on
the screen.

The map view provides context sensitive menus for interacting with the footstep planner and footstep
execution actions. Figure 15 shows the grid map display on the map view; the grid map is used by the
footstep planner as described in Section 3.2.5.

Any sensor or 3D modeling data, including the ghost robot or templates, will be shown projected into the
map view by default; these projections can be disabled by unselecting the appropriate item on the right
hand side of the map view.

Figure 13. Main View showing the target position of the ghost robot relative to valve template.

Approved for Public Release; Distribution Unlimited.

27

Figure 15. Map view showing the grid map used for footstep planning

Figure 14. Map view showing region of interest selection

Approved for Public Release; Distribution Unlimited.

28

3.1.3.3. Camera View

The camera view allows the operator to request single images or video feeds with varying resolution from
every camera on the robot, with up to four images displayed at a time. Three-dimensional data – including
sensor data, templates, and robot models – can be overlaid on the images to validate the sensor data and
catch errors due to drift in position/orientation estimation. Figure 16 shows an example overlaying 3D
point cloud data and a valve template over the main camera feed during the valve task on Day 1 of the
DRC Finals; the yellow sphere projected into the image represents the section target corresponding to
Figure 12.

Figure 16. Camera view showing point cloud data and valve template

Approved for Public Release; Distribution Unlimited.

29

3.1.3.4. Behaviors View (FlexBE GUI)

The Flexible Behavior Engine (FlexBE) discussed in Section 3.2.6, which was developed as Team
ViGIR’s approach to high-level control, increases the reliability of high-level behaviors by giving the
operator a clear understanding of what is happening internally, and allows the operator to intervene as
necessary. FlexBE includes an extensive graphical user interface for both development and execution of
behaviors as shown in Figure 17.

As shown in figure 1, FlexBE’s user interface consists of four different views. The first two on the top
row are mainly used for development as discussed in Appendix G; the lower right view is just for
configuration of the user interface itself. The lower left view is used during robot operation to monitor and
control execution of the behaviors in real time.

The Runtime Control view, shown in detail in Figure 18, can start and monitor execution of developed
behaviors. When a behavior is running, the view shows the currently active state in the center of its main
panel, the previous state at the left, and possible next states at the right. Furthermore, textual feedback is
provided as well as again documentation of the active state in order to help the operator to understand
what the robot is about to do.

As communications between the OCS operator and the onboard software was subject to delays, the
FlexBE user interface included a synchronization status bar This “RC Sync” bar provided a

Figure 17. FlexBE, the Flexible Behavior Executive, showing the four primary views.
Clockwise from the upper left these are the: Behavior Dashboard, Statemachine Editor, Configuration view, and the Runtime
Control view.

Approved for Public Release; Distribution Unlimited.

30

mechanism for monitoring command execution and connection quality between the operator’s interface
and the onboard behavior engine. As you can tell from the status in Figure 18, the issued transition
command is about to get completed while there is a short, but not critical delay in the communication.

Another feature of the Runtime Control interface is the ability to “lock” states to allow for online
modification of the behavior. State locking and editing is presented in Appendix G.

3.2. Onboard Systems

3.2.1. Robot Controls and Interface

Team ViGIR developed a custom C++ interface that used ROS ActionLib and ros_controllers to interface
the remaining system software to the robot via the BDI proprietary API, and to convert data to/from the
BDI data structures. This section discusses the architecture, the approach to joint position control used at
the Finals, and implementation of more advanced control strategies.

Figure 18. FlexBE Runtime Control View.
Forcing the transition “changed” while monitoring behavior execution. Since the robot is in the field, the command cannot be
executed immediately due to the communication delay.

Approved for Public Release; Distribution Unlimited.

31

3.2.1.1. Interface Architecture

The vigir_atlas_controller interface followed the ROS Control paradigm27 of a controller manager that
invokes controllers that interact with a robot hardware interface. The vigir_atlas_controller interface took
this one step further and used three instances of the controller manager to guarantee the order of
execution.

The first manager handles control mode controllers including the custom controller that accepted mode
change action requests and one that handled stability monitoring and fall detection. Team ViGIR extended
the BDI control modes (e.g. STAND, WALK, MANIPULATE) to allow multiple modes that specified
different combinations of joint controllers and modes. For example, we differentiated between stand and
stand_manipulate, which activated the upper body joint controllers.

The second controller manager interfaced with a number of joint trajectory controllers28 that handled
control of various appendage chains (e.g. left arm, right leg, torso, whole body), and provided the ability
to send per joint trajectories to a designated appendage chain. Depending on the particular control mode
selected, different controllers would become active with different gain sets selected, as discussed in the
next sub section.

The third controller manager handled whole robot behaviors such as footstep control in STEP or WALK,
or the compliant controller. The compliant control uses joint targets defined by the joint trajectory
controllers.

The vigir_atlas_controller, along with the individual controller implementations, can be found in the
vigir_atlas_ros_control repository in the software release; this code cannot be open sourced due to the use
of BDI proprietary libraries. The package depends heavily on open sourced packages in the
vigir_ros_control repository, which provides the structure for the three controller managers, and loading
the Gazebo simulation robot model into a dynamics model29 that is used for kinematics and dynamics
calculations for the controllers. See the package source code for more details and Appendix J for usage
guidelines.

3.2.1.2. Joint Position Control

The vigir_atlas_controller interface used the ROS joint trajectory controllers to accept
FollowJointTrajectory30 actions using the ROS trajectory_msgs/JointTrajectory.msg31 format. The
controller interpolates the trajectory commands to yield an instantaneous joint position command. This is
used to calculate the servo valve commands using a combination of encoder-based PID control, and the
embedded BDI actuator based position control.

27 http://wiki.ros.org/ros_control (accessed July 30, 2015)
28 http://wiki.ros.org/joint_trajectory_controller (accessed July 30, 2015)
29 https://bitbucket.org/rbdl/rbdl/ (accessed July 30, 2015)
30 http://wiki.ros.org/joint_trajectory_controller (accessed July 30, 2015)
31 http://docs.ros.org/api/trajectory_msgs/html/msg/JointTrajectory.html (accessed July 30, 2015)

Approved for Public Release; Distribution Unlimited.

http://wiki.ros.org/ros_control
http://wiki.ros.org/joint_trajectory_controller
https://bitbucket.org/rbdl/rbdl/
http://wiki.ros.org/joint_trajectory_controller
http://docs.ros.org/api/trajectory_msgs/html/msg/JointTrajectory.html

32

Each per appendage chain controller used a customized version of the PID controller from the ROS
control_toolbox32. The customized version in our fork includes an integral reset when the controller is
activated to provide bumpless control based on the old joint command. This PID uses the encoder based
joint position estimates for more accurate positioning; the interface passes the controller output to the
robot in the ff_const term used by BDI33.

To provide faster response, and robustness to variations in the communications, the interface also makes
use of the embedded PD joint position controller provided by BDI. These gains are set based on the
desired control mode, and passed to the robot each time step. The controller tracks the offset between the
actuator based position estimate and the encoder based position estimate, and adds the offset to the
embedded joint position command to maintain consistency with the trajectory command.

After calibration, this combined approach proved reliable and was used at the DRC Finals.

3.2.1.3. Advanced Control

From a theoretical point of view, there is no exact model-based feedforward or feedback compensation
possible with the above joint position control scheme, since the hydraulic arm joints are commanded at
hydraulic current level, which is equivalent to the joint velocity. Model based calculations give joint
torques, so the addition of these quantities does not result in a physically feasible model of the controlled
system, unlike for example for electric motors, where the commanded value is also the motor torque or
the equivalent electric current.

Further, the disadvantage of the PD position control is that a good position accuracy can only be achieved
with high parameter gains, where the robot is not compliant and collisions often result in a robot fall due
to high contact forces.

To overcome these disadvantages for the arm control, we investigated and implemented a model based
controller concept called joint impedance control. While this approach was not used during the DRC
Finals due to some lingering issues, we present it here for completeness; Section 4.2.1 presents our post-
Finals experimental results.

Joint impedance control uses a cascaded control scheme consisting of an inner joint torque loop (𝝉, 𝝉d)
with an outer PD position control (𝒒, 𝒒d) with variable damping gains and model based compensations as
seen in Figure 19. This controller is configured with the more intuitive parameters joint stiffness for
position tracking and modal damping coefficient for velocity tracking and interaction behavior. For the
explicit formulation, see Appendix D.

32 http://wiki.ros.org/control_toolbox (accessed July 30, 2015)
33 Boston Dynamics Atlas Robot Software and Control Manual, ATLAS-01-0019–v3.3, pg. 19

Approved for Public Release; Distribution Unlimited.

http://wiki.ros.org/control_toolbox

33

In Figure 19, on the side of the onboard computers, we first denote the arm joint torque 𝝉, the joint
positions and velocities 𝒒 and 𝒒̇ from the Atlas API and the desired joint trajectory 𝒒d, 𝒒̇d from the
onboard trajectory planning from MoveIt! as an input to the joint impedance control scheme. Further, we
denote the desired joint torque calculated by the impedance controller algorithm 𝝉d,JIC, the added desired
joint torque of the integral term 𝝉d,I, and the resulting desired joint torque 𝝉d commanded to the BDI E-
Box through the Atlas API. On the other side, the desired joint torques are calculated into the desired
electric current controlling the hydraulic valves 𝒊d,hydr and desired electric motor current 𝒊d,elec in the
corresponding actuators. From these inputs, the actuator dynamics give the actual hydraulic and electric
joint torques 𝝉hydr and 𝝉elec. This internal process is not covered in our scheme.

For the inner joint torque loop we discovered, that the proportional joint torque control based on the
hydraulic pressure in the valve has a high steady-state error which directly results in position errors. We
implemented an outer integral loop for the joint torque to increase the joint torque tracking performance.
Appendix D shows the detailed results of the influence of the integral gain.

Figure 19 explicitly emphasizes the location of the implementation of the different control blocks. This
has a strong influence on the stability, since the communication from the BDI E-Box to the onboard
computers running our custom code suffered from a 2-3ms time delay. Presumably due to this delay, only
lower damping coefficients compared to other impedance controller implementations (e.g. in Hannover
robotic labs) leads to a stable behavior in all robot states.

The dynamic arm model we used consisted of inertial, centrifugal, coriolis and gravitational forces and a
viscous and Coulomb friction model; therefore, we only neglected the torso movement and the
complexity of the friction on the real system.

3.2.2. Perception

The perception system is responsible for gathering data from the onboard sensors, and making the data
available to the operators and planning systems. For the Atlas robot, the sensors included an inertial

Figure 19. Block diagram of the Joint Impedance Controller control scheme

BDI

E-Box

Valves

Electric drives

Arm dynamics

Joint Impedance
Controller

−

𝝉d,JIC

𝝉d,I

𝝉d

𝒊d,hydr

𝒊d,elec

𝝉hydr

𝝉elec 𝝉,𝒒, 𝒒̇

Onboard
computer

𝒒d, 𝒒̇d,𝒒 d

Atlas
controller

Approved for Public Release; Distribution Unlimited.

34

measurement unit, joint state measurement, and the integrated Multisense stereo camera and LIDAR
sensor.

A system wide overview of our perception system in given in [1] in Appendix A; this subsection
discusses the major upgrades to this system for the DRC Finals.

3.2.2.1. State Estimation

The BDI API provides both internal state estimates for the robot joints as well as an estimate of the robot
pose relative to a fixed frame with the origin relative to the pose where the robot has been switched on.
The estimate is based on proprioception and IMU sensing. The internal system uses knowledge of the
standing foot for forward kinematics based motion estimation that is fused with IMU data.

This state estimation system provides sufficient performance for many applications such as stepping and
walking on flat ground. When stepping over rough terrain, however, even slight drift by a few centimeters
can result in the robot falling. Team ViGIR and other teams identified this shortcoming during the DRC
Trials [1]. To reduce drift, we switched to using MIT's pronto34 state estimator, which exhibits lower drift
due to improved forward kinematics estimates. In principle, pronto can completely eliminate drift by
using the LIDAR sensor for external sensing; we opted not to use LIDAR-based corrections during the
DRC Finals, as the external sensing approach used in pronto relies on a static world assumption. This
could be violated during a competition run due to moving people, equipment or other unmodeled motion
in the environment of the robot.

3.2.2.2. Constrained World Modeling

To effectively leverage the human operator's cognitive and decision making capabilities, a state estimate
and world model must be made available over the constrained bandwidth link between robot and operator.
With ATLAS onboard sensors providing data at a rate in excess of 100 MB/s compression is both crucial
and a significant challenge.

The (communication) constraints under which the perception system has to work changed over the course
of the competition as follows:

� In the VRC competition, a bandwidth budget for communication between robot and operator was
allocated for each mission and communication was cut off after the budget was exceeded

� In the DRC Trials, communication was constrained by limiting bandwidth and introducing
latency, alternating between a "good comms" and "bad comms" setting.

� In the DRC Finals, 3 communication channels were used, one 9600 baud line from robot to
operator, one 9600 baud line in the opposite direction and one high bandwidth connection that is
blocked for a period of 10-30 seconds

Team ViGIR designed the perception system to provide situational awareness and state estimation for the
operator under all of these conditions. To achieve reliable and efficient manipulation with a remote
operator in the loop, 3D geometry data is crucial. This data is compressed and handled by the

34 https://github.com/ipab-slmc/pronto-distro

Approved for Public Release; Distribution Unlimited.

35

Worldmodel Server, which aggregates 3D data from the Multisense LIDAR and makes it available via a
ROS interface that allows for the selection of regions of interest, aggregation history size and filtering
parameters.

In the case of available bursty communication, two instances of the world model server are used, one for
the onboard/robot side and one for the OCS side. As direct transmission of point cloud data is impossible,
specialized processing on LIDAR data is performed to make each packet compact enough to fit within a
standard 1500 Byte limit and compress it as to be able to transmit a maximum of data during a
communications burst. Direct transmission of point cloud data generated onboard the robot would cause
prohibitive bandwidth cost as the point cloud representation with at least three floating point values for
each Cartesian point is not a compact one . For this reason, the natural and compact representation of a
laser scan as an array of range values is used instead. To fully reconstruct the 3D geometry captured by a
single scan, a high fidelity projection of the scan has to be performed however, taking into account motion
of the LIDAR during the data capture process. If this motion is not considered, scan data shows visible
skew and ghosting (double walls) when converted to a point cloud. We thus use the following approach:

� Perform a 3D high fidelity projection onboard the robot and perform self-filtering
� Compress the scan data by writing the range values to a uint16 array representing millimeters and

also encoding self filtering information. Threshold and map intensity information to a uint8.
� Add information about the scanner transform in world frame, one transform for the start of the

scan and one for the end.
� Split the compressed scan into chunks that are small enough to be compressible to less than 1500

Bytes.

On the OCS side, the compression process is reversed and resulting scan data is used to update the OCS
world model. This approach improved consistency of the data.

The size of a LaserScan message is dominated by the range and intensity fields, with a Hokuyo
UTM30LX-EW providing 1080 measurements per scan. For compression, float value ranges are
converted to millimeters and stored in a unsigned 16 bit number.

Self-filtering of robot parts from LIDAR data requires knowledge of the whole transform tree of the robot
and thus has to be performed on the onboard side if transmission of high bandwidth transform data to
OCS is to be avoided. Per default, self-filtering is thus performed onboard and compressed laser scan data
is annotated with a bit per scan point indicating if it belongs to the robot.

Intensity data is converted from float to a unsigned 8 bit number. Here, a loss in fidelity is acceptable as
intensity is mainly used for visualization and a range of 28 values is sufficient.

Table 1. Comparison of message sizes for laser scan representations

Approved for Public Release; Distribution Unlimited.

36

 Standard LaserScan
[Bytes]

Localized LaserScan
[Bytes]

Compressed Localized
LaserScan [Bytes]

header >~ 16 - -

metadata 7 * 4 - -

ranges 4 * 1080 2 * 1080 < ⅓ * 2 * 1080

intensities 4 * 1080 1 * 1080 < ⅓ * 1080

total 8684 3240 < 1080

With the bandwidth constraints encountered at the DRC Finals, the transmission of geometry data was not
feasible when the high rate data line was blocked. For this reason, the operator(s) had to rely on
previously transmitted data during the outage period. The system updated robot state information over the
9600 baud line, which allowed the operator to see robot motion relative to previously retrieved 3D
geometry data.

3.2.2.3. Textured Meshes

To provide the highest practically possible amount of fidelity for this 3D geometry data, Team ViGIR
developed an infrastructure for generating textured meshes out of both LIDAR point clouds and stereo
camera based depth images. Compared to plain point cloud visualization, Figure 20 shows that this
approach allows for a clear view of geometry and texturing of mesh surfaces, which is more intuitive for
scene understanding.

ATLAS cannot perform rotation of the Multisense sensor head around the yaw axis, greatly limiting the
field of view of the main sensor system. Prior to the ATLAS v5 arm upgrade, this issue was much more
severe, as the volume of good manipulability for the arms was outside the Multisense field of view. To
remedy this issue, Team ViGIR developed a system for rectification the Fisheye lenses of the SA cameras
using a ROS integrated version of the OCamLib library35. This allows generating novel rectified views
from fisheye images not exhibiting severe distortion that otherwise makes judging of spatial relations
difficult for operators; See Figure 21 for an example. With the better arms of the ATLAS v5 version and
the relocation of SA cameras from the chest to the upper head, this functionality was deemed less crucial
and integration for ATLAS v5 was skipped.

35 https://sites.google.com/site/scarabotix/ocamcalib-toolbox

Approved for Public Release; Distribution Unlimited.

37

Figure 20. Mesh-based Visualization.
Top row: RGB and stereo-based depth image; bottom row: three novel views of the textured mesh

Figure 21. Fisheye Camera Rectification.
Distorted fisheye image (left). Rectified image close demonstrating a virtual ideal pin-hole camera (right).

Approved for Public Release; Distribution Unlimited.

38

3.2.3. Motion Planning

The motion planning system provides the backend that allows the system to perform complex joint
motions in a reliable and intuitive fashion as is necessary for manipulation tasks. Given the unstructured
nature of disaster environments, automated collision avoidance is a desirable capability as it allows to
significantly reduce the workload for the operator and is required for carefree task-based planning. After
an evaluation of existing approaches, Team ViGIR chose to base its motion planning system on the
MoveIt! planning system, which is integrated with ROS. Full ROS integration, an active user community,
and capability of real-time obstacle avoidance were reasons for the selection of MoveIt!. A
comprehensive overview of development up to the DRC Trials is available in [1].

3.2.3.1. Planning Backend

To allow for reliable manipulation, the MoveIt! API was used and DRC-specific capabilities were
implemented in a separate move_group capability plugin. This offered the advantage of retaining standard
MoveIt! library planning features, while simultaneously allowing the development of extended
capabilities specific for DRC tasks.

With limited reachability, especially before the ATLAS v5 upgrade, it often was desirable to provide the
capability to plan with torso motion as to compensate for limited arm reachability. Restricting the range of
motion of single joints is not an intended use case with MoveIt!, so this capability was added additionally.

Per default, trajectory execution speed could not be changed online. Instead, trajectories would always be
time parametrized according to the velocity limits supplied in the robot model (URDF) file. To allow for
changing the execution speed online, a velocity scaling factor has been introduced that can be set on a per
motion plan request basis. This addition has already been merged into standard MoveIt!.

An iterative parabolic time parametrization approach is used as the standard approach for generating
trajectories per default. During experiments on Atlas, this approach was shown to produce significant
velocity and acceleration spikes, resulting in jerky arm motion due to the splines that were defined
between knot points. The default time parameterization was changed to do a velocity scaling iterative
parabolic calculation, followed by a recalculation of the interior velocities and accelerations assuming
piecewise quantic splines with continuous velocity and acceleration at the knot points. This resulted in
smoother motions.

The planning system is exposed via a ROS Action server interface and thus provides feedback about the
planning and plan execution process. The Action interface is the sole entry point for requesting and
executing motion plans and is used for (in order of increasing autonomy) tele-operation, affordance-based
manipulation planning, and for motion plan requests generated by the behavior executive. For tele-
operation, an onboard node translates compressed and compact motion requests by the operator into an
Action request that then gets forwarded to the planning system.

While the default motion planning system performs well for “standard” manipulation tasks requiring only
upper body motion, sampling based planning falls short for planning whole body motions that require the
consideration of balance constraints. To support this need, Team ViGIR integrated the optimization-based

Approved for Public Release; Distribution Unlimited.

39

Drake36 planning approach developed by MIT. The choice to use either the default sampling-based
planning approach or to use Drake is specified by the plan request. Drake has also been integrated with
the “ghost robot” on the OCS side and the operator can use Drake-based whole body inverse kinematics
to pre-plan tasks like reaching towards the ground for picking up objects (see Figure 22). As this
capability was not required during the DRC Finals, it was not used there.

3.2.4. Manipulation

Team ViGIR focused on developing a manipulation approach that will allow the operator and the robot to
cooperate and perform efficient high-level interaction with the remote environment. This approach is
based on the concept of Object Templates37 (OT); see [3] in Appendix E. An OT is a 3D mesh in a virtual
environment that is augmented physical and semantic information related to the object of interest that it
visually represents. An operator inserts the OT into the OCS scene, and manipulates the template to align
with sensor data that corresponds to the real object. Once an OT is aligned, its specified 3D position can
then be used to perform locomotion to approach to it and arm motion planning to grasp and manipulate
the real object.

3.2.4.1. Affordances

We based our approach on the concept of affordances, which are the possibilities of action that an object
in the environment offers. In the current state of the art, several teams converged to a similar affordance

36 https://github.com/RobotLocomotion/drake
37 The term object template can also be found in this report as, e.g. "valve template" to refer to specific objects or just
"template" if the object is already implied.

Figure 22. Using Drake inverse kinematics for reaching down to the ground with the “ghost robot”

Approved for Public Release; Distribution Unlimited.

40

based manipulation approach (MIT, IHMC, NASA). These three teams for example, use their OT to
provide potential grasp poses to the operator as well as information about manipulation standing
positions. They are also used to generate end-effector trajectories when objects are grasped, e.g. when
they want to turn the valve, they manually rotate the OT in their user interface and send the generated
trajectories to the robot.

In contrast, the approach developed by Team ViGIR goes beyond the state of the art because it presents
the operator the affordances of the object; see Appendix E for more details. In addition to being used for
standing poses and grasp poses, the OT internally defines the motions that the object offers and allows the
operator to easily select the required affordance (e.g. selecting and clicking the Turn affordance) (see
Figure 23). The OT provides the necessary information regarding path constraints that enable the planning
software to generate the desired trajectories and perform the manipulation motion using the motion
planning capabilities presented in Section 3.2.3.

3.2.4.2. Object Template Library

The manipulation tasks during the VRC and the DRC Trials were well defined and the objects required to
manipulate were known a priori. Nonetheless, Team ViGIR created an Object Template Library (OTL)
that can include any number of objects. This accounts for potential unknown objects that might be
available in a disaster scenario; similar to the surprise tasks presented during the DRC Finals. The OTL is
divided into three blocks of information: the object library (physical and semantic information), the grasp

Figure 23. The Object Template of a door being grasped by the robot's end-effector.
The Manipulation Widget is shown for both hands (left is yellow and right is cyan). The affordances combo box is zoomed in
to show the available motions of the door, e.g. turn Clockwise (CW) or turn counterclockwise (CCW) as well as pushing and
pulling, among others.

Approved for Public Release; Distribution Unlimited.

41

pose library (end-effector grasp pose information), and the stand pose library (robot stand pose
information). The grasp pose library and the stand pose library have a relationship of many to one with
the object library. Each object in the object library has a unique type that is used to relate one or many
grasps to one OT as well as for stand poses. An entity-relationship model using Crow’s foot notation38
can be seen in Figure 24.

3.2.4.3. Object Template Server

The Object Template Server (OTS) implements the Object Templates concept. The OTS is responsible of
loading and providing OT information to any client that requested it. For example, the Main View widget
will request 3D geometry mesh information from the object template to display, as well as finger joint
configuration while displaying potential end-effector poses to grasp such object. Other clients such as the
Manipulation Widget (Figure 23) could request grasp information and affordance information from the
OTS. Additionally, Section 3.2.6 describes how the autonomous behaviors use the OTS provided
information.

Given the network setup constraints on the DRC, the OTS was required to provide information for both,
the OCS side and the Onboard side. In the OCS side, the OTS provides information to all the widgets that
use OTs. It also manages the instantiated OT that the operator has inserted in the 3D environment. To
replicate the same status in the Onboard side, another instance of the OTS is created in the Onboard side.
The OTS in the Onboard side is responsible of keeping OT information to be considered for motion
planning, e.g. as collision objects or attached collision objects to the robot. Both OTS were kept
synchronized through the Communications Bridge; in case there was any synchronization issue, both OTS
are re-synchronized by instantiating a new OT. The architecture of the OTS can be seen in Figure 25.

38 Crow’s foot notation: http://tdan.com/crows-feet-are-best/7474 (accessed July 30, 2015)

Figure 24. Relationship between objects, grasps and stand poses libraries using Crow’s foot notation

Approved for Public Release; Distribution Unlimited.

http://tdan.com/crows-feet-are-best/7474

42

3.2.5. Footstep Planning

A key challenge of the DRC was enabling the robot be able to tackle locomotion tasks such as the
traversal of sloped stairs, ramps and rubble. While Team ViGIR depended on the BDI footstep controller
for stepping and stability, the specification of footstep placements remained a significant challenge; Team
ViGIR extended an existing planner for 2D environments to handle this more complex 3D terrain.

The footstep planner has to satisfy two main capabilities: The planner has to solve the navigation problem
of finding the shortest safe path in a given environment. Secondly, it has to generate a feasible sequence
of footstep placements, which can be executed by the robot with minimal risk of failure. Additionally, the
DRC competition discouraged the use of slow footstep planning approaches due to mission time limits.
Here, operator performance highly depends on the speed and performance of the used footstep planning
system, so planning efficiency becomes important. It is desirable that the planning system provides all
parameters of the walking controller for each step, so that the complex low-level walking controller
interface is completely hidden from the operator to reduce the chance of operator error. Our footstep
planning approach satisfies these needs, and requires the operator to only provide a goal position to start
planning.

Footstep planning systems have not been applied to human-size real robots in complex terrain scenarios
such as the DRC before. Although the increased size of the humanoid robot enhances the locomotion

Figure 25. Object Template Server communication concept.
Object Template Server (purple) is instantiated in both, OCS (orange) and Onboard (blue) sides. Each OTS provides
information to the controller blocks in Onboard (yellow) and to the user interface widgets in the OCS (pink). Additionally,
both OTS are kept synchronized through the communications bridge (green).

Approved for Public Release; Distribution Unlimited.

43

versatility, dynamics have a larger impact on the robot system, making stability control challenging.
Therefore, the footstep planner has to trade-off the versatile locomotion capabilities and risk of falls; This
is difficult given the lack of detailed knowledge or feedback of the underlying walking controller.

The DRC tasks required the capability to solve difficult terrain traversal tasks in full six Degrees of
Freedom (DoF). As a suitable implementation was not readily available, we decided to extend
significantly an existing open source footstep planning approach for flat surfaces. We have chosen to
extend the approach of Garimort and Hornung39 as it already was available for ROS and is based on the
proven search-based ARA* (Anytime A*) planning algorithm delivering the best solution within a
specified time limit. As the robot operates on state estimates based on noisy sensor data, there is no huge
benefit of having the global optimal solution at all. Therefore, the operator may be satisfied with a
suboptimal solution, which is close to the global optimum, but can be found in significantly shorter time.

Prior to the DRC Trials we have introduced the first search-based footstep planner capable of generating
sequences of footstep placements in full 3D under planning time constraints and using an environment
model based on on-line sensor data. The planner solves the navigation problem of finding shortest paths
in difficult terrain scenarios while simultaneously computing footstep placements appropriate for BDI’s
walking controller. The planner comes with an improved 3D terrain generator which is recently able to
generate terrain models for the footstep planning system on-line (see Appendix F). It is able to efficiently
compute the full 6 DoF foot pose for foot placements based on 3D scans of the environment. This new
terrain model generator has already been applied and validated successfully for real world scenarios. In
addition, our novel collision check strategy based on ground contact estimation allows the planner to
consider overhanging steps which enhances significantly the performance in rough terrain scenarios.
Figure 26 shows a real world example of the entire footstep planning pipeline consisting of perception,
planning and execution. More detailed information about this approach is available in our published work
[4] and [1].

Terrain map showing surface normals Generated footstep plan on OCS Execution by the real robot

Figure 26. Footstep Planning Pipeline

After the DRC Trials, the footstep planner was refactored into a complete robot agnostic footstep planning
framework that could be used by variety humanoid robot systems including those of Team VALOR, and
eventually Team Hector. Our main objective is to provide a versatile and highly capable footstep planning
framework using ROS, while at the same time retaining the ability of integration and expandability. Users
of the framework only have to implement and extend robot specific functionality to interface with the
planner. Already implemented, tested, and proven algorithms can be left untouched to decrease the
possibility of error.

39 http://wiki.ros.org/footstep_planner

Approved for Public Release; Distribution Unlimited.

http://wiki.ros.org/footstep_planner

44

The footstep planning framework is based on a versatile plugin and parameter management system.
Plugins have been added for all points where the user might want to take influence on the planner’s
behavior (see Figure 27). These plugins allow efficiently adding custom code into the planning system
without any modification to the framework itself. The plugins are maintained by a dedicated plugin
manager was written which is used to obtain efficiently all available plugins filtered by their semantic
functionality. Details about the entire plugin system are provided in Appendix F.

Figure 27. Advanced footstep planning system architecture

As all user created code needs usually their own parameters to run correctly, a parameter management
system has been introduced as well. This system is able to overcome the basic conflict of rigid message
types needed by ROS for interprocess communication and the need of flexible content of parameter sets
due to user defined parameters (see Appendix F).

During the DRC Trials we have noticed the inability to refine generated footstep plans as a shortcoming.
Although, the planner is able to generate feasible plans, there always remains a possibility that the
resulting plan contains undesirable steps due to noisy sensor data. In this case, the operator previously had
to request a new step plan in the hope to get a better result which may end in an infinite loop without
mission progress. For this reason, the footstep planning system was extended to provide multiple services
to manage footstep plans. These services can be used by user interface to enable interactive footstep
planning allowing full human in the loop planning. This mode allows for plan stitching, plan revalidation
and editing single steps with assistance of the footstep planner (more details see Appendix F). The
operator is able to quickly adjust single steps while the planner will automatically update the 3D position
of the new foot pose if enabled and provides immediate feedback if the modified step sequence is still

Simplified illustration of the footstep planning pipeline showing where plugins can be used to affect the planner’s behavior.

Approved for Public Release; Distribution Unlimited.

45

feasible for the walking controller. This new interactive planning mode significantly improves mission
performance during locomotion tasks, which is exemplarily demonstrated in Figure 28.

Operator has received a step plan for
getting on top of a cinder block. In this case
the operator is not satisfied with placement
of step 4 as it is too close in front of the
cinder block.

Operator selects step 4 for editing. Terrain
model has been hidden for a better
visibility of interactive marker.

Step 4 has been moved slightly away from
the cinder block by the operator.

Approved for Public Release; Distribution Unlimited.

46

Final result of modified footstep plan which
is ready for execution.

Figure 28. Example how the operator is able to modify a generated footstep plan.

As the performance of the planning system highly depends on the quality of the world model, situations
may occur where the planner gets stuck and does not deliver any feasible results. For this special case a
pattern based mode was introduced which allows the operator to command simple movements. A special
user interface was implemented which allows to define the pattern to be generated (see Figure 29).

Figure 29. Step pattern widget (left) and resulting step plan (right)

3.2.6. High-level Behavior Control

Team ViGIR’s based our approach to high-level behavior control on modeling robot behaviors as
hierarchical state machines, which allows for modular composition and intuitive specification in different
levels of abstraction. In addition to the logic of execution, behaviors also encode the data flowing through

Approved for Public Release; Distribution Unlimited.

47

the behavior. Detailed monitoring of the state of execution and any errors that occur assists the operator
when giving commands. The developed framework is able to cope with severe restrictions on the
communication channel to the robot and is robust regarding runtime failure. In addition, verification of
specified behaviors greatly reduces the risk of failure at runtime. This section presents the onboard
Flexible Behavior Engine (FlexBE); Section 3.1.3.4 previously introduced the operator-side graphical
user interface (FlexBE GUI). Appendix G provides an extensive treatment of the entire FlexBE system.

The concept of level of autonomy allows the system to use the individual capabilities of both robot and
operator in a cooperative manner. Each behavior transition defines a level of autonomy that is required to
execute the respective transition. There are four different autonomy levels: Off, Low, High, Full. The
autonomy level mechanism allows the operator to reduce the autonomy of the onboard software and thus
prevents the robot from making decisions on its own. As a result, behaviors are able to deal with changing
uncertainty in scenarios while using the same state machine for implementation of the actions to be taken.

Figure 30 depicts a task-level behavior, “Open Door” in the FlexBE framework. A behavior consists of
states (yellow), state machines (gray), and other, embedded behaviors (pink). The transitions (arrows)
define the logic of the execution. Their color indicates the required autonomy level, which are illustrated
in Figure 31.

FlexBE monitors the state status, and if a transition is otherwise enabled, FlexBE will prevent the
transition from occurring if the operator has reduced the autonomy level below that specified for the state
transition. This allows the operator to adjust the permissions given to the robot on the fly based on
changing conditions in the field. The FlexBE UI indicates this blocking by recoloring the transitions as
shown in Figure 32.

Figure 30. Task level “Open Door” behavior in the FlexBE framework

Approved for Public Release; Distribution Unlimited.

48

In addition to the logical flow of the process, the behavior also encodes the flow of data through the states
as shown in Figure 33.

Figure 31. Example decisions for different Autonomy Level

Figure 32. Supervising a behavior during its execution (FlexBE runtime control view).
The state “Move_to_90%_Joint_Limits” returned the outcome “reached”, but the behavior is not authorized to transition to
the next state because the required autonomy level of that transition (“High”, green) is higher than the current autonomy
level set by the operator (“Low”, blue).

Approved for Public Release; Distribution Unlimited.

49

The ability to perform runtime modifications is the most complex command available in FlexBE. It
enables the operator to make arbitrary changes to the structure of a behavior without the need for
stopping, compiling and re-starting it. Although this capability is very helpful regarding adaptability to
unexpected situations, it also introduces some challenges. FlexBE takes steps to avoid failures related to
runtime modifications and defines constraints to preserve consistency across versions of a behavior.
Figure 34 illustrates an active, but locked, behavior.

When a behavior is locked in one of its states or sub-statemachines, these components are still executed,
but the behavior cannot proceed. As depicted in Figure 34, internal sub-statemachine transitions are
allowed, while outcomes causing a transition to the next state at the level of the locked container would be

Figure 33. A behavior also encodes the flow of data (black arrows; transitions are grayed out).

Figure 34. Behavior is running, but currently locked in one of its sub-statemachines.
Blocked and allowed transitions are colored red and green, respectively.

Approved for Public Release; Distribution Unlimited.

50

blocked. This mechanism ensures consistency across changes, without requiring the robot to pause and
wait for the operator to make changes.

FlexBE is built on top of the SMACH40 high-level executive Python framework. Although SMACH
offers a solid basis for defining hierarchical state machines, the provided features are not sufficient for
realizing what is required for our behavior control approach. Therefore, to create a powerful behavior
engine supporting a high level of abstraction, FlexBE extends the SMACH framework with some features
inevitably required to realize the concepts of cooperation and communication between operator and robot.
In brief, the extension is made by inheriting the SMACH classes StateMachine and State (see Appendix G
for details).

Section 4.2.4 and Appendix H present the behaviors that were developed over the DRC. Those behaviors
are based on the FlexBE behavior engine, were designed in FlexBE’s Editor, and are executed via
FlexBE’s Runtime Control interface (both components of FlexBE’s GUI). In addition to behaviors,
Appendix H enumerates all states and presents extensive experimental demonstrations.

3.3. Communications Bridge

During the DRC competitions, the robot onboard/field computers were connected to the OCS computers
via a 1 GB/s network connection that passed through a network traffic shaper; the traffic shaper
introduced communication restrictions intended to mimic the effects of poor wireless communications and
encourage robot autonomy. All operator interactions with the robot occurred through the OCS hardware,
with commands sent to the onboard software via the traffic shaper connection

As stated above, our team chose to use ROS for our communications middleware. The ROS system uses a
publisher/subscriber model with a centralized roscore to coordinate communications between ROS nodes.
This is not suitable for use with the communication challenges defined for the DRC competitions, as the
system cannot tolerate a loss of communications of any node to the centralized roscore. For this reason,
the team chose to use two separate ROS networks for the onboard and OCS software and develop a
custom communications bridge (CommsBridge) to handle data transfer between the ROS networks. As
the same topic names are used on both sides, the setup allows seamless testing as a single ROS network.
Section 2.4 in [1], which is included in Appendix A, describes the specific communication challenges
used during the DARPA VRC and DRC Trials, and the design of our CommsBridge for those
competition.

For the DRC Finals, DARPA implemented a new communications restriction plan to increase the need for
autonomy. The plan featured two always on channels that permitted 9600 bits per second data between
robot and OCS; a third channel provided periodic bursts of 300 Mbits/s of data from the robot to the OCS,
followed by variable blackout periods.

In reviewing the prior CommsBridge design in light of the new restriction, there were several relevant
features – templated topic handling, compression, and custom state handling – and a few that required
changes.

40 http://wiki.ros.org/smach (accessed July 30, 2015)

Approved for Public Release; Distribution Unlimited.

http://wiki.ros.org/smach

51

With periodic bursts of high-rate data, image compression and region of interest selection were deemed
less relevant, and the ability to send image data via UDP over the high rate channel more relevant. TCP
communications of compressed images was deemed problematic as the channel might open or close in the
middle of an image transmission; the lost packets would render the entire image useless. Instead, Team
ViGIR developed an approach to divide the image into tiles that could be individually compressed and
transmitted in one single UDP packet. The image tiles were reassembled into a coherent image on the
OCS side of the CommsBridge as shown in Figure 35. The previous image data was retained so that lost
packets did not result in a completely corrupted image.

A few systems that required significant amounts of data transmission were split to have a mirrored
approach between the OCS and onboard. An example was the footstep planner; when running the
CommsBridge, a special OCS/Onboard Footstep manager handled coordination between the OCS
controls and two OCS/onboard footstep planner instances. This reduced the required communications
through the always on data channels.

Team ViGIR implemented and tested these changes during Q1 2015, and the approach seemed to be
working well in our lab. At the initial testing at the South Carolina Test Bed in March 2015, we
uncovered a major shortcoming of our approach relative to the particular implementation of the DARPA
communications. While our average rate was well below the limitations, the burst rate was higher and the
limited packet buffer design implemented by DARPA would overflow causing the system to drop
numerous packets. Team ViGIR revisited the design, and implemented a per channel relay.

Figure 35 Video capture with artifacts

This software worked by connecting to a list of signals on either side and organizing each packet to send
across based on a predetermined priority of the message. The bridge adhered to the bandwidth limit by
calculating the wait it needed based on the bandwidth that particular bridge was configured for and would
keep itself busy during that wait time by preparing the next packet. Multiple bridges were created to
handle the fat pipe, each handling specific parts with the amount of bandwidth we wanted to allocate to

Approved for Public Release; Distribution Unlimited.

52

each. This system worked well in testing and had one side of the bridge running on the field computer and
the other side on a dedicated OCS machine.

At the heart of the Comms Bridge software we have several instances of the bridge node, each configured
to send across a specific set of messages at the bitrates required to keep them within the bandwidth
limitations. The nodes operated by tagging every message it received with a timestamp, priority, and a
few flags based on how that individual signal was configured and storing them in a map where message
priority and time stamp dictated its position. Then the next time the node had to busy wait for its next
chance to send a packet, it would go through the map of messages it needed to send and started taking the
messages off the top until it went through all of the messages. If a message was too big for the current
packet it was skipped over but left in the map for the next packet. Then if the node had a big enough
packet to send, it would check to see if it had waited long enough for it too not exceed the bandwidth
restrictions by sending this next packet and do so if it could. To prevent holding onto stale data, the node
would ignore the minimum packet size if it had been too long since the last time it sent a packet. The
receiving side of the bridge was very simple where all it would do is extract the data from each packet and
retransmit it on its side of the bridge for other software to use.

To ensure that we could send everything we wanted specific messages such as the robot state, images, and
LIDAR data, were handled in a special manner as discussed in Section 3.2.2.2 to allow us to compress the
data even further than we could with a generic message. To handle dropouts, a buffer of the last 30
seconds of compressed LIDAR data was sent over multiple times a second to make sure the latest point
cloud data could be reconstructed on the OCS.

State data used a custom packing format. Joint positions were encoded as signed 2-byte numbers to
represent ±π to 1/10,000 radian as opposed to a 8-byte double precision number. Likewise, pose
information was defined using six 2-byte numbers to represent positions relative to a periodically updated
reference position and the qx,qy,qz values of scaled normalized quaternion. The reference pose was
updated every 16 seconds using a standard double precision pose. The remaining data signals were
structured such that they compressed the data as much as they could on their own.

Approved for Public Release; Distribution Unlimited.

53

4. RESULTS AND DISCUSSION
Given the project overview and system background presented in Sections 2 and 3, this section discusses
the particular challenges of the project and the technical results of our approach. Section 4.1 discusses the
significant challenges faced by our team that affected our performance. Section 4.2 presents experimental
results for the major sub-systems first introduced in Section 3.2; the results refer to the appendices for
technical details.

4.1. Significant Challenges

This subsection discusses particular challenges, both programmatic and technical, that our team faced
during the course of this project. Particular attention is paid to the issues that directly impacted our
performances during the competition events.

4.1.1. Schedule

The primary challenge facing the team was schedule. The project entailed the most challenging robotics
program to date that implemented on an extremely aggressive timeline. Team ViGIR faced an additional
challenge of building our team and infrastructure from scratch. Where other groups had extensive
histories with humanoid robotics, we assembled Team ViGIR for this particular project. Furthermore, the
team lacked an existing automated unit and simulation-based testing framework; the effort to set such a
system up required resources that we did not have available within the confines of this project.

As discussed in Section 2.3.1, we defined the basic structure of our software architecture during the VRC
while both the simulation and robot hardware were being developed in parallel. The lack of specificity up
front delayed implementation of some controllers, and required subsequent rework. Later differences
between the simulation and robot API have required addition rework under the extremely compressed
timeline between robot delivery and the DRC Trials.

The compressed schedule, limited developer resources, and hardware issues on site at the DRC Trials
limited our ability to train operators for the DRC Trials. A few mistakes during the competition kept us
from directly advancing to the DRC Finals, which ultimately cost us at least four months of development
time, and six months until our robot was again ready for testing. This delay prevented us from bringing
Cornell onboard early, and limited the autonomous behavior development we could do. This self-inflicted
wound to our schedule prevented portions of our system from being ready for testing prior to the robot
departure in November 2014.

The biggest challenge leading up to the DRC Finals, and cause of subsequent scheduling issues, was the
Atlas Unplugged hardware issues as discussed in Sections 2.3.3.3 and 4.1.4. These hardware issues were
mostly due to the compressed development schedule that BDI was working under.

Approved for Public Release; Distribution Unlimited.

54

4.1.2. Geographic Dispersion

A unique aspect to our team was the diversity in both nationality and geographic location. Darmstadt,
Germany to Corvallis, Oregon spans a nine-hour time difference, which made communication and
coordination a constant challenge. The team made extensive use of web-based project tools including a
Redmine issue tracker and wiki for collaborative sharing of information, and Git-based shared code
repository. Weekly teleconferences were held via Skype, but the lack of face-to-face time led to
integration issues with some sub-systems.

Travel costs and extensive time away from family limited the amount of testing for colleagues in
Germany. While our planned development and test sprints worked well in the fall, the constant hardware
issues negatively affected test schedules in spring 2015 as travel plans needed to be changed. Some
planned tests could not be run during time on-site due to recurrent hardware issues, and could not be
adequately tested in simulation due to the simulator fidelity issues discussed above.

4.1.3. Simulation

The simulator fidelity was a significant disappointment; from our perspective, the issues were primarily

due to the lack of coordination between OSRF and BDI. The simulation did not perform well after the

VRC, as BDI required a proprietary library that they did not update. We did not have our own simulation

environment (c.f. IHMC), and our geographically dispersed team required the simulation for system

checkout.

Several significant issues made it especially difficult for our team. The updated system models could not

walk in simulation until spring 2015; this required use to maintain different setups to test basic step

controllers and manipulation. The system swayed in MANIPULATE mode to the point that we could not

test grasping and manipulation without “pinning the hip.” These issues prevented testing of integrated

behaviors such as “walk to the table and pick up cutting tool” during crucial phases of the project. The

inconsistencies between the robot and simulation API’s (e.g. number of joints, naming conventions)

likewise caused difficulties and required developer resources.

4.1.4. Hardware

Compared to the relatively reliable hardware used in the DRC Trials, the Atlas Unplugged version had
numerous hardware issues during 2015 as discussed in Section 2.3.3.3. The initial delivery was delayed
by six weeks, and then had recurrent hardware issues as it was being beta tested in the field. While other
teams had similar hardware problems, the delays significantly affected our team due to the geographic
dispersion.

The final hardware issue occurred on Day 2 of the competition in what we surmise to be a failure initiated
by a problem in the custom hand electronics and compounded by overheating due to the delay. As
discussed in Section 2.3.3.6, the robot had an initial arm failure that delayed our start while the robot sat
in the California sun. An unexplained communication issue caused issued during the driving task. After
additional delays due to resets, the robot experienced an unexplained communications error that induced a
pump shutdown. The robot interface continued to update prior to the shutdown, which indicates the

Approved for Public Release; Distribution Unlimited.

55

software was operating; one possible explanation is an overheating issue. Other teams reported issues
with their switch when overheated. Unfortunately, our onboard logging was not operational during this
phase, and we cannot reconstruct a definitive cause.

4.1.5. Developer Resources

Team ViGIR was fortunate to have our core group of developers with us throughout the project; however,

this small group required significant assistance from a larger group of student volunteer developers and

some limited part time software developers. The complex system, both the actual robot software and the

ROS catkin build system, had a steep learning curve and required very capable developers. Integration of

new team members was made more difficult by evolving software and rules, and the struggle to maintain

online reference documentation under the schedule pressures. In several cases, new developers were

unable to grasp the system, and therefore consumed more resources than they contributed. Some

developers made good progress on some novel aspects, but were unable to get their software integrated

independently, and required too many resources from the core team. In other cases, the students made

significant contributions, but were only with the project for a short time.

The allocation of scarce developer resources was made more difficult due to changes in the hardware or

simulation system design and to changes in the rules. For example, the team invested in developing a

compliant whole body planning and control framework based on the expectation that the robot would

need to egress and get up from a fall without a reset. After investing resources to get these researchers up

to speed and integrated with the team, and make software modifications to support their efforts, the delays

to the robot hardware delivery and limitations of the hardware performance prevented the development of

the compliant controller in time for the competition. Furthermore, changes to the rules rendered this effort

unnecessary. Thus, while the controller team made good progress as detailed in Sections 3.2.1.3, 4.2.1,

and Appendix D, the investment did not pay off at the competition because of external issues.

4.1.6. Build and Test Infrastructure

Team ViGIR lacked a dedicated developer to handle infrastructure and testing. This led to shared

responsibility across the core developer team. Early on, Team ViGIR recognized the need for an

automated build and test environment, but lacked the in-house expertise in both the testing tool chain and

ROS build system. The team attempted setting up such a system twice. The first automated build system

was based on the existing infrastructure at TU Darmstadt, but did not include automated testing and was

only accessible to certain people on the team. The team abandoned the second effort to set up a common

build and test infrastructure due to personnel changes and resource restrictions in the lead up to the DRC

Finals.

Lacking such a system, it was up to individual developers to test their changes prior to merging into the

main code branch; unfortunately, changes that worked in one part of the system, could negatively affect

another sub-system. Lacking a robust high-fidelity simulation as discussed above, the team did not have

an automated way of testing behaviors and integrated system capabilities. Without automatic simulation-

based validation, these errors could go undetected outside the full system integration. Thus, the team

faced a constant struggle to balance keeping an up to date integrated system for testing with the operators,

with premature introduction of bugs into the system that would negatively impact other developers

productivity. The geographic dispersion of our team magnified this issue.

Approved for Public Release; Distribution Unlimited.

56

The large integrated build environment could take a significant amount of compile time for relatively

minor changes to base messages or headers. Thus, a simple change to one package might result in a

significant delay for the developer of an unrelated package just due to build time. There are tools to

manage this complexity within the ROS catkin ecosystem, but lacking a developer dedicated to

infrastructure, the team was unaware of some of these, and did not get them integrated into our system

prior to the competition.

4.1.7. Communications

After working well during the DARPA VRC and DRC Trials, the CommsBridge development
represented a significant challenge during spring 2015. As discussed in Section 3.3, issues discovered at
the DRC Test Bed in South Carolina necessitated a change in our design relatively late in the
development cycle. This, combined with delays in system development caused the hardware delays and
changes in developer availability, led to delays in getting a fully functional CommsBridge until the team
was on site in Pomona, CA. Beyond taxing the developers, this affected the full system testing the team
was able to do during network checkout in the lead up to the Finals. In spite of these issues, the system
worked well during the dress rehearsal on June 4, 2015.

During the competition, the team experienced unexpected communications issues between the field
computer and the onboard computers. Team ViGIR had arranged its behaviors software running on the
field computer with the communications bridge software; this decision was a legacy of using the
behaviors to do automatic logging on the field computer for certain tests. Under this arrangement, our
normal bandwidth across the network between onboard and field was well below the 300 Mb/s rate, and
appeared to give ample headroom for wireless packet loss. At the competition, as the robot approached
the grand stands we began to experience a communication backlog that prevented our autonomous
behaviors some working reliably. While we were not monitoring the network bandwidth directly, we
heard from the WPI/CMU team that they saw their monitored bandwidth drop to less than 50 Mb/s, which
was above our average through put, and likely contributed to a network backlog. In spite of this loss of
autonomous behaviors, our operators were able to adapt and score three points and nearly scored a fourth
point.

In the evening after the Day 1 competition, Team ViGIR worked to rearrange their software to reduce the
expected communications across the wireless channel. During testing that night, and in checkout prior to
our Day 2 run, the changes appeared to be working well. Unfortunately, the aforementioned hardware
problems impacted our run on Day 2.

While the autonomy worked as expected during our run on Day 2, we did have another delay evident
from our video of the operators console during our driving task. At one point the operator can be seen
giving commands, but the vehicle does not immediately respond. The vehicle then begins to respond to
the commands, but does not stop when commanded and contacts a barrier. As our logs were not enabled
during this run, we are unsure if this was caused by our CommsBridge or the wireless communications.

Overall, the communications with the robot cause significantly more unexpected issues at the DRC Finals
than in the earlier stages. In the future, we will work to improve our CommsBridge and incorporate
monitoring of the bandwidth across all channels, along with automatic logging that does not require the
operator to start the logging process.

Approved for Public Release; Distribution Unlimited.

57

4.2. Experimental Results

4.2.1. Robot Modeling and Control

Model based compensations like dynamics and gravitation compensation need exact knowledge of the
model parameters. Experiments with the joint impedance controller using the given CAD based
parameters provided by BDI showed that further identification was necessary to execute trajectories
without jerky motions and to achieve gravity compensation where the arms are backdriveable with
moderate force and hold in position without interaction.

For the identification, a base parameter regressor formulation of the robot arm dynamics is needed, which
cannot be provided by a numerical library such as the RBDL, which was used for the trials [1]. All
kinematic and dynamic equations had to be computed analytically using computer algebra systems, and
parameter regrouping algorithms had to be applied. Appendix D explains the explicit algorithm based on
IRT expertise and design tools.

We iteratively ran dynamic trajectories optimized for parameter excitation and identified the dynamic
parameters. By using the latest identified parameters in the model, we could execute the trajectories
smoother and faster in order to iteratively improve the next identification results.

Appendix D presents our experimental results that show a better velocity and similar position tracking
performance for arbitrary trajectories than with the existing PD position controller. The especially good
velocity tracking leads to smoother movement compared to the sometimes shaky movements with our
current PD gainset. See Appendix D for figures and characteristic values used for the controller
comparison.

Another advantage of the model based control approach is the ability to observe disturbance forces. We
implemented a joint torque disturbance observer, which is able to detect collisions only from regarding
the measured joint torques without the need of the force-torque sensors, which suffered drift and
calibration issues. In our experiments shown in Appendix D, we demonstrate the ability to switch to a safe
gravity compensation-only mode after a collision with an obstacle. See Appendix D for the
implementation of the disturbance observer and explicit results.

4.2.2. Manipulation

To evaluate the Object Template manipulation approach we present both, the results obtained during the
manipulation tasks in the DRC and also individual laboratory experiments. Detailed results of the DRC
Trials can be found in [3] included in Appendix E. These experiments show how a human operator using
OT can interact with the remote robot in a high-level task command manner. Appendix H shows
experiments of how Team ViGIR used the OT in a higher level autonomy.

During the DRC Trials, the hose task was the most challenging task for manipulation. It required picking
up the fire-hose, align it and attach it to a wye turning the nozzle which have 1cm2 knobs around it. Even
though there was no Atlas team that successfully attached the fire-hose to the wye, the time analysis
presented in [3] shows that using the Object Template approach Team ViGIR was the fastest team to pick

Approved for Public Release; Distribution Unlimited.

58

up the hose and bring it in a position near the wye. Team ViGIR ran out of time just shy of attaching the
fire-hose, having the nozzle turned but no threads engaged (see Figure 36 and video41).

Another task in the DRC that required constrained paths for manipulation was the Valve task. Because of
simplicity, the lever valve was turned using Cartesian teleoperation. The other two circular valves were
turned using the Circular Markers developed for the Trials. While the main operator was in charge of
placing the end effector inside the valve, the auxiliary operator placed the axis of rotation of the Circular
Marker matching the axis of rotation of the valve. After the alignment was complete, the robot was
commanded to perform the circular motions required to turn the valve (see Figure 37).

For the DRC Finals, we improved our approach as described in Section 3.2.4 and we were prepared to
perform all manipulation tasks using affordance based manipulation (see Figure 38). Object Templates
were created for the door, the valve and the drill describing the required motions that the robot needs to
perform to achieve the manipulation task. We tested manipulation of these objects using the approach and
preliminary results can be seen in Appendix E.

Unfortunately, due to communication issues during the first day of the Finals and hardware issues during
the second day, we were only able to show our approach applied to the door and valve tasks. Nonetheless,
after the DRC Finals, Team ViGIR continued performing experimental evaluation of the approach.

41 https://www.youtube.com/watch?v=qHYGPMgysXI

Figure 36. Team ViGIR during the Hose Task in the DRC Trials.

Approved for Public Release; Distribution Unlimited.

https://www.youtube.com/watch?v=qHYGPMgysXI

59

During our Post-DRC experiment season, we tested the Object Template approach in manipulation tasks
such as opening the door, turning the valve, and the surprise task of the cord plug. We performed these
tests in two different ways: an operator commanded all the actions of the robot (pre-grasp, grasp, and

Figure 37. Team ViGIR during the Valve Task in the DRC Trials.

Figure 38. Opening door using affordances defined in the Door Object Template.
Upper Left: Final grasp pose. Upper right: Final grasp posture. Lower left: Using counterclockwise turn affordance with 60
degree. Lower right: Using push affordance with 0.05m.

Approved for Public Release; Distribution Unlimited.

60

affordance execution) as shown in Appendix E, and letting a behavior control all the actions of the robot
(with the exception of object recognition and Object Template alignment) as shown in Appendix H.

An additional advantage of the Object Template approach presented here is that the operator has the
ability to use objects in a different way than how they were designed. As described in [5] included in
Appendix E, improvisation is an ability that can increase robustness while attempting manipulation tasks
in post-disaster environments.

For more information, see Appendix E and our video playlist42 that includes all manipulation
experiments:

4.2.3. Footstep Planning

This section provides a brief overview of experiments using our footstep planning framework during
DCR Trials and Finals. Detailed results of the DRC Trials can be found in [1] and [4] included in
Appendices A and F.

Section 3.2.5 presented an integrated footstep planner which has been evaluated successfully during the
DRC Trials. The only falls were due to operator error or hardware issues; but the footstep planner
performed as expected. The novel ground contact estimation allows overhanging steps which significantly
improves planning performance for the terrain task; therefore, it took only a few minutes and very few
interaction steps by the operator to cross the pitch ramp43 and the chevron hurdle44 during our terrain task
run at the DRC Trials.

Although the planner has worked very well for us, it took a lot of time to tune all parameters for a good
performance. Many experiments were required to determine the limits of the walking controller and even
more experiments to discover all special cases. This motivates further investigation how to simplify this
process.

As discussed in Section 3.2.5 the footstep planner is also required to solve navigation problems like
walking through narrow doorways. Unfortunately, operator error caused a fall during this task at the DRC
Trials, but a video45 of the robot walking autonomously through a very narrow doorway without any
collisions using our footstep planner is available.

These examples show that planner is capable of solving navigation problems as well as generating
feasible plans within seconds. Unfortunately, it is still too slow for online replanning when the robot is
already walking; here, we need a result in less than a second to be able to inform the walking controller
about the new step sequence in time. For this reason a walking monitor was implemented which can
trigger a soft stop if it detects any issues during step plan execution. The problem of replanning efficiency
will be a topic for future work.

42 https://www.youtube.com/playlist?list=PL7v9EfkjLswJQn2yZE3qv5sECx-qZbeXO
43https://www.youtube.com/watch?v=7Qv__bLa3j4
44 https://www.youtube.com/watch?v=vAtqVKGWvFM
45https://www.youtube.com/watch?v=BlUfl5iSAkU

Approved for Public Release; Distribution Unlimited.

https://www.youtube.com/playlist?list=PL7v9EfkjLswJQn2yZE3qv5sECx-qZbeXO
https://www.youtube.com/watch?v=7Qv__bLa3j4
https://www.youtube.com/watch?v=vAtqVKGWvFM
https://www.youtube.com/watch?v=BlUfl5iSAkU

61

Summarizing, the planner is capable of utilizing existing black box walking controllers and generating
feasible step plans in rough terrain scenarios in short time. But it is still not working flawlessly. Especially
in rough terrain scenarios the quality of the generated plan highly depends on the quality of the perceived
environment. If the perceived data is too noisy or even incomplete due to obstruction, information needed
by the planner is too inaccurate. In case of noisy data, foot placement cannot be determined correctly; if
the world model is incomplete, the planner cannot take into account unseen obstacles that may lead to
colliding foot placements. As it cannot be guaranteed that the world model is correct and complete, we
have never used the planner in a fully autonomous manner even though this would be possible through
behaviors. Therefore, the operator is responsible for validating the footstep plan (e.g. through camera
images) before permitting execution.

For the convenience of the operator the footstep planning system has been integrated into the OCS with
different layers of abstraction. At the highest level of abstraction, the operator is supposed to trigger
planning using a template or dragging a goal pose using an interactive marker (see Figure 39). The only
needed interaction with the planning system consist of a dropdown selection box where the operator can
switch between different planner parameter sets e.g. 2D vs. 3D planning (see Figure 40). Advanced
features are hidden in the settings menu where you can change basic footstep planner parameters e.g. time
budget and the behavior of footstep editing mode (see Figure 41). If the operator decides to manually
adjust step placement, he can simply activate the edit mode by double clicking on the desired step.
Afterwards an interactive marker appears which the operator can use to move and freely change the step
placement (see Figure 28 in Section 3.2.5). Depending on the selected edit step mode in the settings menu,
the planner will automatically adjust the moved step according to the underlying terrain. In any mode the
planner indicates with a colormap from green to red how feasible the new step placement is for the
walking controller, where red warns about violated constraints. If the entire planning system is failing for
some reason, the operator has access to all advanced footstep planning features as well as detailed
parameters (see Appendix F) through special widgets. In such worse case scenarios, the operator is even
able to generate manually patterns of foot placements using the pattern based generation mode (see Figure
29 in Section 3.2.5).

Figure 39. Interactive marker to define goal of the step plan request.

Approved for Public Release; Distribution Unlimited.

62

Figure 40. Drop down box to select a predefined parameter set.

Figure 41. Menu granting access to the most important planner parameters.

At the DRC Trials the operator had to request and refresh manually the terrain model when the robot has
to travel across rough terrain. A goal for the finals was to disburden the operator from all low-level tasks
like this one. For this reason we have enhanced the terrain generator by the capability to create and update
automatically the terrain model on-line which is demonstrated in the Appendix F.

Our efforts of refactoring the footstep planner to a footstep planning framework has already showed
results, but it is still an ongoing work. We have been able to provide the footstep planning framework to
Team Hector and Team VALOR. After implementing the mandatory hardware interface and defining the
correct parameters, the entire footstep planning framework presented in Section 3.2.5 became available
for them. Therefore, the robots ESCHER and THOR-Mang used our footstep planning approach and the
OCS with their own walking controllers. Unfortunately, hardware issues at the DRC Finals kept them
from showing their full locomotion planning potential during DRC Finals.

The entire footstep planning framework is already available as open-source code under GitHub:

● https://github.com/team-vigir/vigir_footstep_planning_msgs
● https://github.com/team-vigir/vigir_footstep_planning_basics
● https://github.com/team-vigir/vigir_footstep_planning_core
● https://github.com/team-vigir/vigir_terrain_classifier
● https://github.com/team-vigir/vigir_pluginlib
● https://github.com/team-vigir/vigir_generic_params

Approved for Public Release; Distribution Unlimited.

https://github.com/team-vigir/vigir_footstep_planning_msgs
https://github.com/team-vigir/vigir_footstep_planning_basics
https://github.com/team-vigir/vigir_footstep_planning_core
https://github.com/team-vigir/vigir_terrain_classifier
https://github.com/team-vigir/vigir_pluginlib
https://github.com/team-vigir/vigir_generic_params

63

4.2.4. Behavior Control

Team ViGIR created behaviors for some of the tasks in the DRC Finals. Specifically, we had “Open
Door,” “Turn Valve,” and “Cut hole in Wall” behaviors46. For the driving task, we had a behavior for
positioning the robot for car entry and then for driving (“ATLAS Vehicle Checkout”). We did not attempt
the vehicle egress task, therefore we did not create a behavior for it. Moreover, we did not create
behaviors for the uneven terrain and stairs, since those tasks did not involve complex sequences of
locomotion and object manipulation.

In addition to the task-specific behaviors,
we had behaviors for performing the initial
ATLAS checkout upon startup as well as
for calibrating the hydraulic joint offsets.
For example, the latter (“Praying Mantis
Calibration”) was employed when ATLAS
was placed outside the door area (as part of
the requested reset) after the driving task
(see Figure 42). This behavior drives the
hydraulic joints to their limits in order to
measure the encoder offsets and properly
calibrate those joints. Performing this
calibration was crucial for accurate
manipulation; using a pre-defined behavior
speeded up the checkout, and reduced
errors.

DRC Finals

On Day 1 of the DRC Finals, due to the unexpected communication issues mentioned in Section 2.3.3.5,
action requests originating from the Behavior Engine (deployed on the field computer) were not being
serviced by the corresponding action
servers (deployed on one of the onboard
computers). Examples include footstep
execution and motion planning for the arms
(Figure 43). Even the “Praying Mantis
Calibration” (Figure 42) did not work as
expected and thus the hydraulic joints were
not calibrated. To conclude our summary of
Day 1, the contribution of behaviors to our
performance was negligible.

Between our two runs, we moved the Behavior Engine deployment to an onboard computer, in an effort
to circumvent the unexpected communication issues. Thus, on Day 2 of the DRC Finals, behavior
execution was working as expected (Figure 44 and Figure 45). Based on our experience with opening the

46 The state machines corresponding to behaviors mentioned in this section can be found in Appendix H.

Figure 42. ATLAS executing the “Praying Mantis Calibration” behavior

Figure 43. Behaviors errors on DRC Finals Day 1

Approved for Public Release; Distribution Unlimited.

64

door using the “Open Door” behavior, we hypothesize that the “Turn Valve” and “Cut Hole in Wall”
behaviors would also have executed as expected.

Figure 44. The “Open Door” behavior successfully guiding ATLAS towards the closed door on Day 2

Approved for Public Release; Distribution Unlimited.

65

Post-Finals Lab Experiments

In order to validate the efficacy of the task-level behaviors, we carried out the three DRC tasks, door,
valve, and wall cutting, in the lab. However, a hardware issue with our ATLAS’ left hip prevented it from
walking or stepping. Therefore, we skipped the locomotion part of those tasks. This was the only
difference in terms of behavior design between the lab experiments and the DRC Finals. In addition, we
created a variation of the “Open Door” behavior in order to compare two strategies for turning the handle;
pushing it from below with the fingers in the “fist” configuration (i.e., completely closed) vs grasping and
turning it in a more human-like manner.

From our lab experiments, we have included a total of four demos in this report; two for the “Open Door”
behavior (one for each turning strategy), one for the “Turn Valve” behavior, and one for the “Cut Hole in
Wall” behavior. These demos are presented in detail in Appendix H.

4.2.5. Behavior Synthesis

Team ViGIR concluded early on that the DRC Finals rules encouraged, if not mandated, increased robot
autonomy as well as interaction with the robot at a higher level of abstraction compared to the previous
phases of the competition. To this end, we developed FlexBE (Section 3.2.6), which extends the SMACH
Executive framework. It also adds a graphical user interface (GUI) (Section 3.1.3.4) for facilitating the
creation of behaviors, i.e., hierarchical state machines, for our Boston Dynamics ATLAS humanoid robot.

Figure 45. The “Open Door” behavior in process of turning the door handle on Day 2

Approved for Public Release; Distribution Unlimited.

66

Use of FlexBE’s graphical editor resulted in significant productivity boosts in terms of development time
and also provided basic syntactic verification capabilities. However, the development process was still
manual, relatively slow, required an expert user, and provided no guarantee that the resulting behavior
satisfied the implicit user specification. This motivated the use of techniques from the nascent field of
formal methods in robotics. Specifically, we set out to automatically generate (synthesize) correct-by-
construction state machines from an explicit user specification.

First, we create a formal mission specification, expressed in Linear Temporal Logic (LTL), by
augmenting the high-level specification provided by the user (e.g. the final objective) with robot and
context specific constraints (e.g., action preconditions) as well as initial conditions. We then synthesize a
provably correct automaton from the LTL formulas using a freely available, off-the-shelf synthesizer.
Finally, from the synthesized automaton, we generate instructions that FlexBE uses to instantiate the state
machine, i.e., generate Python code. Figure 46 depicts the corresponding ROS packages and the nominal
workflow.

As shown in Figure 46, the synthesis action server (vigir_synthesis_manager) receives a synthesis request
from the user via FlexBE’s GUI. Given the user’s high-level specification, the server first requests a full
set of LTL formulas from the LTL Compilation service (vigir_ltl_specification). The LTL Synthesis
service (vigir_ltl_synthesizer) acts as a wrapper for an external LTL synthesizer. Upon request, it returns
an automaton that is guaranteed to satisfy the LTL specification, if one exists. Finally, the server requests
a state instantiation message from the State Machine Generation service (vigir_sm_generation). The
resulting message contains instructions that FlexBE can use to generate Python code: an executable state
machine that instantiates the synthesized automaton. The corresponding action, services, and messages
are defined in the vigir_synthesis_msgs package.

Figure 46. Behavior Synthesis ROS packages (vigir_behavior_synthesis) and nominal workflow.

Approved for Public Release; Distribution Unlimited.

67

The main theoretical contribution behind the Behavior Synthesis functionality is the modeling of actions
with multiple possible outcomes (e.g. “completed”, “failed”, “preempted”, etc.) in Linear Temporal
Logic. We dub this the “Activation-Outcomes” reactive LTL specification paradigm. Its software
implementation is part of the vigir_ltl_specification ROS package (see Figure 46). The theory behind
Behavior Synthesis is presented in detail in Appendix I for the case of our ATLAS humanoid robot.

Behavior Synthesis has been integrated with FlexBE, which serves as a front-end to synthesis manager
action server (see Figure 46). Developers do not have to start with an empty state machine when starting
to create a new behavior or new parts of an existing behavior. Instead, they can provide a set of initial
conditions as well as high-level goals to be achieved by this part of the behavior. Behavior synthesis will
then draft a state machine that achieves these goals in a correct-by-construction manner. Developers can
then further extend or modify the synthesized state machine, if desired, and also connect it to other parts
of the behavior.

Synthesis works seamlessly with the process of runtime modifications to behaviors, resulting in powerful
synergy effects. For example, it makes it much easier and faster for users to specify runtime changes since
they only have to give high-level commands to the synthesizer instead of completely modeling the
changes themselves. In addition, it could enable incorporation of even more powerful autonomous
adaptation. In scenarios where the environment can be much better perceived by the robot, and the
consequences of failure are considerably low, using a combination of behavior synthesis and runtime
modifications will allow the robot to change its own behavior during execution depending on how the
world changes. It will also achieve that in a provably correct manner, thanks to the strong guarantees of
synthesis. This is a topic of future work.

Behavior Synthesis was not used during the DRC Finals for a number of reasons. First of all, the main
developer of this functionality was also involved with the (manual) development of behaviors and states,
which was deemed to be of higher priority. In addition, it was decided that this individual would be one of
the four robot operators during the Finals, which imposed additional constraints on development time.
Finally, there was a major technical reason for not employing Behavior Synthesis; the severe restrictions
on communications during the Finals, which became apparent during the testing in South Carolina.
Specifically, synthesizing a behavior on the operator’s side and sending it to the robot for execution
would result in prohibitively large packet sizes, which would be completely rejected by the network.
Performing synthesis onboard could have circumvented this, because only small messages encoding the
high-level objectives would travel over the degraded network. However, this would have been a major
paradigm shift in terms of software architecture, since the FlexBE Editor (GUI), which performs the final
step of Python code generation, is designed to run on the operator’s side. This is another topic of future
work in terms of development.

However, after the DRC Finals, we completed development of the Behavior Synthesis packages and
performed a series of experiments in the lab. Appendix I describes these experiments in detail; Figures
Figure 47 through Figure 49 depict one of the experiments.

In Figure 47, the user is in the process of specifying the initial conditions (STAND_PREP control mode)
and goals (“look down”, “pickup object”) of the state machine to be synthesized. Clicking on the
“Synthesize” button sends the Behavior Synthesis request to the corresponding action server (see Figure
46). Figure 48 shows the synthesized state machine.

Approved for Public Release; Distribution Unlimited.

68

Figure 47. The FlexBE Editor’s synthesis menu.

Figure 48. The synthesized state machine for pickup object.

Approved for Public Release; Distribution Unlimited.

69

In addition, the LTL Compilation process added additional constraints, such as the preconditions of
executing the “pickup object” action: being in the MANIPULATE control mode and having an object
template. In addition, since the initial condition was STAND_PREP and ATLAS needed to be in
MANIPULATE, the synthesis process automatically added a state for transitioning from STAND_PREP
to STAND in between as well.

Figure 49 shows the execution of the resulting state machine on the Atlas robot without modification. The
user did have to manually choose which arm/hand side (left or right) Atlas should use to pick the object
up. This is an artifact of the design of the state primitive (in this case, an embedded behavior), which
could be changed to allow the user to set the arm/hand side as part of the specification (e.g. by inputting
“pickup_object_right” in the “Goal” field; see Figure 48).

Figure 49. The synthesized state machine executed on Atlas.

Approved for Public Release; Distribution Unlimited.

70

This page intentionally blank.

Approved for Public Release; Distribution Unlimited.

71

5. CONCLUSIONS
This section discusses particular lessons learned, and presents our immediate plans for future research that
builds upon the infrastructure that is now in place.

5.1. Lessons Learned

There are a number of lessons learned and improvements that can be made to individual components;
these are left to the individual sections and appendices. In this section, we focus on team-level lessons
learned that could have improved our performance, and on particular issues that we saw that DARPA may
want to consider for future competitions.

5.1.1. Maintain Adaptability

With these types of competitions, especially ones under such tight schedules, the rules will change.
Likewise, hardware delivery schedules will slip. It is important to plan for these changes, and to maintain
adaptability in the system design. In spite of the challenges of functioning as a distributed team, this was a
strength of Team ViGIR. While some resources were misspent in retrospect, overall the team defined a
flexible architecture and adapted to changes in resources and schedule.

One lesson is the need to prune unproductive research branches quicker, and to avoid spending developer
resources unnecessarily. This is complicated when operating with volunteer student resources, who have
their own semester projects to complete.

5.1.2. Prioritize Infrastructure

Proper infrastructure is required.

The fidelity and completeness of the OSRF Gazebo-based drcsim was lacking, especially during Phase 2.
This was driven both by development time pressures and a (perceived) lack of cooperation and
transparency between BDI and OSRF. The issues, which were discussed in Section 4.1.3, severely
impacted our team. While these issues were raised numerous times with both vendors and DARPA during
Phase 1, we should have escalated them more; by Phase 2, the lack of progress became expected given the
hardware development issues. In retrospect, we failed to escalate this issue sufficiently during the summer
of 2014 when there was time to address the issue.

The second issue was with our internal software infrastructure for automated builds and testing. We used
the Catkin build system from ROS, but lacked an integrated system for automated builds and simulation-
based testing, which would have been helpful for ensuring overall software quality and ensuring a
functional build for all parties. We tried a couple of times to set this up with part time student help, but
this requires a significant level of expertise and focus to do correctly. Finding the right person for this job
is critical, and something we failed to do with our resources.

Approved for Public Release; Distribution Unlimited.

72

Ideally, designing and developing this infrastructure should come before any development in a test-driven
development framework. Adding such a system to a large complex system after the fact became a time
consuming challenge, when developer time was at a premium. It is our position that having improved
open source support for build and automated testing of these integrated systems would be greatly desired;
this necessarily entails better simulation.

5.1.3. Separate Development and Testing

Our team struggled with having the same core group of developers working in design, software
development, system testing, and operations. This resulted in overcommitted developers, and insufficient
testing. Ideally, we would have had the designers testing the software that other people implement based
on specifications; unfortunately, limited developer resources and the level of expertise required to develop
the software prevented us from correcting this issue.

5.1.4. Force Early Integration

A continual challenge was the need to balance development and testing. This was made worse by the
distributed nature of our team, and the split between OCS and onboard software development. In many
cases the interfaces to the onboard software were evolving, which made integration with the OCS
difficult; this caused developers to fall back into using simplified setups and engineering widgets to test
their sub-system components. This led to stove-piping and last minute integration efforts after the
interfaces were sufficiently mature.

For any given onboard module, the components needed to interface with our OCS and behaviors systems.
Due to the distribution of expertise, we ended up with multiple streams of development that were coming
together at the same time. Our intent was that module developers would be responsible for integration
with behaviors; unfortunately, delays in development, delays in hardware availability for testing, and the
distributed nature of our team conspired to push much of the integration onto our behaviors team. This led
to rushed integration, duplication of effort, and insufficient testing of the integrated system.

The obvious answer is to maintain better accountability for deliverables, and strictly enforce test dates.
This is challenging in any instances, and particularly so with a distributed team that depended on student
developers using an imperfect simulation environment.

5.1.5. Require more openness from GFE Vendors

This is more of a DARPA program level lesson. As discussed above, the collaboration between BDI and
OSRF was lacking, and insufficient resources were devoted to maintaining the simulation environment
and releasing updates in a timely fashion. A more open and collaborative development arrangement was
required.

5.1.6. Task difficulty

Overall, we felt the tasks were at an appropriate level of difficulty; however, in our opinion, the debris
task missed the mark. The winning team and several other lightweight teams were able to push their way
through the lightweight debris pile. As this was intended to be a manipulation challenge, it seems the task
needed more interlocking parts to require manipulation and removal piece by piece.

Approved for Public Release; Distribution Unlimited.

73

5.2. Future Work

The work started under this DRC effort is continuing across our different sub-teams, both individually
and in collaboration.

5.2.1. TU Darmstadt

Research in both humanoid and more conventional wheeled and tracked rescue robot systems will
continue at TU Darmstadt. While teams at the DRC demonstrated impressive performance, there are
significant research challenges that need to be solved before rescue robot systems are robust and mature
enough to perform tasks of similar complexity to those in the DRC in a real disaster. The following
research topics thus will be pursued:

� Perception and state estimation
o Rich environment representations for supporting situational awareness/decision making of

human operators facing previously unknown situations
o Terrain classification (non-rigid, slippery terrain etc.)
o Drift-free state estimation using internal and external sensing

� Human Robot Interaction
o Tight integration between robot capabilities (planning), automated behavior synthesis and

user interface tools for specifying tasks in complex and challenging environments
� Integration of heterogeneous robot platforms (such as bipeds, ground vehicles and/or UAVs) into

a cooperating team
� Footstep Planning

o Extend to adaptive level-of-detail planning to decrease planning time
o Investigations in adaptive planner policies providing more safe plans and easier migration

of new robots
o Expand the footstep planning framework

5.2.2. Hanover

As long as the real robot platform Atlas is unavailable for us, we will use our existing control framework
for a simulation based student lab, where students will understand the necessary steps of robot modeling
and control design. We will extend our analytical robot model to complete upper body dynamics and
finally full-body dynamics and try to implement full body (joint) impedance control and simple balancing
control schemes. This will also be part of the student lab if it works in the gazebo simulation despite the
aforementioned drawbacks.

If a humanoid robot platform would be available again, we will try to implement the control schemes
mentioned above and would try to implement control for bimanual manipulation and cartesian impedance
control.

5.2.3. Cornell University (Verifiable Robotics Research Group)

We want to improve our Linear Temporal Logic (LTL) -based Behavior Synthesis in a few ways. First,
we want to allow the user to input richer high-level specifications in the behavior synthesis request; for
example, to specify the robot's reaction to a dynamic, or even adversarial environment. This is already

Approved for Public Release; Distribution Unlimited.

74

supported by the “back-end”, i.e., the reactive LTL synthesis algorithm. It is a matter of facilitating the
specification of such complex requirements by the user on a higher level, without having to write LTL
formulas by hand. Furthermore, the more complex the specifications get, the more important it becomes
to provide the user with feedback in cases of unsynthesizable specifications, ideally in natural or
structured English. Our research group has already demonstrated this concept in different settings and we
would like to apply such user-feedback techniques to behavior synthesis and integrate them tightly with
the ROS-based behavior synthesis subsystem.

An aspect of Behavior Synthesis that we did not explore in depth in the context of the DRC is online
synthesis and even re-synthesis on-the-fly. A simple version of the former concept, online synthesis, was
demonstrated in Appendix J.2.4. However, we believe that a system could automatically invoke behavior
synthesis during execution, by treating it as a state primitive, no different than footstep planning or
closing the fingers. Only this state primitive would have the power to alter the structure of the active
behavior itself, in accordance with some formal specification.

While our approach to behavior synthesis is, in principle, robot-agnostic, we have only demonstrated it on
Team ViGIR’s ATLAS humanoid robot. We want to facilitate the integration of other popular robotic
platforms, such as the KUKA youBot mobile manipulator, by providing state primitives that will serve as
building blocks for behavior synthesis.

Finally, a new, but related, research direction we plan to pursue in conjunction with Dr. David Conner,
who has moved from TORC Robotics to Christopher Newport University, is “Capability Specification”.
Behavior synthesis relies on a developer mapping abstract symbols (used in LTL formulas) to the
system’s atomic capabilities (implemented in software). Currently, this requires system level expertise.
We believe that annotating the software components, that is the ROS packages, with formal specifications
of their capabilities, would allow behavior synthesis to automatically generate this mapping and any
associated constraints (such as the pre-conditions and post-conditions of various actions). The team
intends to explore ways to formalize these capabilities in a formal yet generic manner that is amenable to
automatic generation of system level behaviors based on the capabilities of the deployed sub-systems.

Approved for Public Release; Distribution Unlimited.

75

6. REFERENCES
This bibliography includes documents written by the team during the course of this project; these
documents are included in the appendices. General references are cited in the individual papers.

[1] S. Kohlbrecher, A. Romay, A. Stumpf, A. Gupta, O. von Stryk, F. Bacim, D. A. Bowman, R.
Balasubramanian and D. C. Conner, "Human-Robot Teaming for Rescue Missions: Team ViGIR's
Approach to the 2013 DARPA Robotics Challenge Trials," Journal of Field Robotics, Special Issue:

Special issue on DARPA Robotics Challenge (DRC), vol. 32, no. 3, pp. 352-377, May 2015.
[2] S. Kohlbrecher, D. C. Conner, A. Romay, F. Bacim, D. A. Bowman and O. von Stryk, "Overview of

Team ViGIR's approach to the Virtual Robotics Challenge," in 2013 IEEE International Symposium

on Safety, Security, and Rescue Robotics (SSRR), Linköping, Sweden, 2013.
[3] A. Romay, S. Kohlbrecher, D. C. Conner, A. Stumpf and O. von Stryk, "Template-based Manipulation

in Unstructured Environments for Supervised Semi-Autonomous Humanoid Robots," in 2014 IEEE-

RAS International Conference on Humanoid Robots, Madrid, Spain, 2014.
[4] A. Stumpf, S. Kohlbrecher, D. C. Conner and O. von Stryk, "Supervised Footstep Planning for

Humanoid Robots in Rough Terrain Tasks Using a Black Box Walking Controller," vol. 32, no. 3,
November 2014.

[5] A. Romay, S. Kohlbrecher, D. C. Conner and O. von Stryk, "Achieving Versatile Manipulation Tasks
with Unknown Objects by Supervised Humanoid Robots based on Object Templates," in submitted to

2015 IEEE-RAS International Conference on Humanoid Robots, Seoul, South Korea, 2015.
[6] M. Schappler, J. Vorndamme, A. T¨odtheide, D. C. Conner, O. von Stryk and S. Haddadin,

"Modeling, Identification and Impedance Control of the Atlas Arms," in submitted to 2015 IEEE-RAS

International Conference on Humanoid Robots, Seoul, South Korea, November 2015.
[7] P. Schillinger, "An Approach for Runtime-Modifiable Behavior Control of Humanoid Rescue

Robots," Darmstadt, Germany, 2015.

Approved for Public Release; Distribution Unlimited.

76

A. VRC AND TRIALS SYSTEM PAPERS
This section embeds [2] and [1] for easy reference.

Reference [2] provides a brief overview of the system and Team ViGIR’s results in the 2013 VRC.

Reference [1] provides a system overview and details Team ViGIR’s performance in each task at the 2013
DRC Trials.

Approved for Public Release; Distribution Unlimited.

77

Approved for Public Release; Distribution Unlimited.

78

Approved for Public Release; Distribution Unlimited.

79

Approved for Public Release; Distribution Unlimited.

80

Approved for Public Release; Distribution Unlimited.

81

Approved for Public Release; Distribution Unlimited.

82

Approved for Public Release; Distribution Unlimited.

83

Approved for Public Release; Distribution Unlimited.

84

Approved for Public Release; Distribution Unlimited.

85

Approved for Public Release; Distribution Unlimited.

86

Approved for Public Release; Distribution Unlimited.

87

Approved for Public Release; Distribution Unlimited.

88

Approved for Public Release; Distribution Unlimited.

89

Approved for Public Release; Distribution Unlimited.

90

Approved for Public Release; Distribution Unlimited.

91

Approved for Public Release; Distribution Unlimited.

92

Approved for Public Release; Distribution Unlimited.

93

Approved for Public Release; Distribution Unlimited.

94

Approved for Public Release; Distribution Unlimited.

95

Approved for Public Release; Distribution Unlimited.

96

Approved for Public Release; Distribution Unlimited.

97

Approved for Public Release; Distribution Unlimited.

98

Approved for Public Release; Distribution Unlimited.

99

Approved for Public Release; Distribution Unlimited.

100

Approved for Public Release; Distribution Unlimited.

101

Approved for Public Release; Distribution Unlimited.

102

Approved for Public Release; Distribution Unlimited.

103

Approved for Public Release; Distribution Unlimited.

104

Approved for Public Release; Distribution Unlimited.

105

Approved for Public Release; Distribution Unlimited.

106

Approved for Public Release; Distribution Unlimited.

107

Approved for Public Release; Distribution Unlimited.

108

Approved for Public Release; Distribution Unlimited.

109

Approved for Public Release; Distribution Unlimited.

110

Approved for Public Release; Distribution Unlimited.

111

Approved for Public Release; Distribution Unlimited.

112

Approved for Public Release; Distribution Unlimited.

113

B. SYSTEM HARDWARE MODIFICATIONS
Hand Hardware and Robotiq Modifications

In an attempt to gain better vantage points for the various manipulation tasks, we affixed one small, low-
resolution camera to the palm of each Robotiq hand facing outward from the middle of the paired fingers.
The cameras offered views that proved useful for object contact verification, driving obstacle avoidance,
and other task confirmations, but they, and the devices that supported them, were not as robust as was
necessary for the robot’s stature or for the tasks attempted. As the DRC finals drew close, hardware
maintenance issues and low part availability rendered these cameras all but useless; they can be seen in
the above pictures of the DRC Finals, but they are inoperable at this point.

In addition to palm cameras, we attempted to outfit the Robotiq hands with sets of tactile sensors to
predict executed grasp quality and to provide operators with colored contact information in the OCS.
Initially, we had planned to implement a machine learning algorithm that might predict, in real-time, the
robustness of a grasp based on the number of finger contacts and the strength of each contact. The result
could then be displayed to an operator or passed along to a behavior, which may decide to continue the
task at hand or to replan and re-execute. Although much effort was put into these sensors and the
machine-learning processing, the tactile hardware proved even less robust than the camera apparatus and
necessitated removal prior to the DRC Finals.

The last duty attempted by the hand electronics was determining whether or not the team had successfully
engaged the cutting apparatus for the Drill Task. For this, we made use of small USB microphones
planted on the side of each hand and monitored their average volume levels after initiating the Drill Task.
During testing we found that the cutting tool produced a loud enough response when activated that we
could readily detect it via the microphone. The microphone system was fully implemented by the time of
the DRC Finals, but was also not used.

All of the aforementioned electronics were powered by a 24V line split off of each of Florian’s arms and
relied on Ethernet for communication. The 24V line was run through a variable step-down DC-DC
voltage converter and fed into a Raspberry Pi 1 B+ and a small three-port Ethernet switch. Custom cases
were designed and printed for each component (camera, raspberry pi, Ethernet switch, and DC-DC
converter) to safeguard them from physical shock and electrical conductors. The raspberry pi ran the
Debian-based Raspbian operating system and was outfit with ROS indigo.

The raspberry pi functioned as a command and control center and information relay, handling
camera/tactile control/resetting and transmitting the captured information through the ROS framework to
the proper listeners. The microphone and takktile sensors made use of the raspberry pi’s built-in USB
ports while the camera was attached to an onboard ribbon connector.

Relevant Faults

Much of the programming behind the components behaved as expected, but weak links in the chain of
devices often caused failures. For the palm cameras, the ribbon cable connecting the camera in the palm
to the raspberry pi mounted on the side of the hand was often sharply bent or punctured during operation.
Initially, we had planned to encase the sensitive electronics in a guard around the hand, but this approach
became cumbersome and was eventually discarded near the DRC Finals. As such, we could not produce a

Approved for Public Release; Distribution Unlimited.

114

viable replacement protection and the camera cables became fragile equipment on a particularly heavy
robot.

The tactile sensors suffered the interesting fault of having their communication wires ripped from their
sockets regardless of their attached orientation. This caused communication issues on the sensors’ I2C
buses often accompanied by a loss of data and a stalled state for each sensor. Efforts were made to
programmatically reset the boards and continue on with the lost sensor, but our approaches were not
robust enough for use in the DRC Finals.

Approved for Public Release; Distribution Unlimited.

115

C. OPERATOR STATION COMPONENTS
In addition to the UI components discussed in Section3.1.3, the OCS included a number of components
that coordinated communications between the different operators and the onboard software. These non-UI
components include:

� vigir_ocs_footstep_manager

o Stores a stack of step plans (so we can undo/redo as needed)

o Talks to the ocs footstep planner to plan footsteps based on local information only

o Talks to the onboard footstep planner

 Can talk directly to the planner to re-calculate ocs footstep plan based on data

available onboard

 Can use the onboard footstep manager to send minimal information onboard for

planning in constrained communications

o Receives information from the ocs/onboard planner, then creates and publishes

visualizations

� vigir_ocs_template_nodelet (should have its name changed to manager)

o Talks to the grasp widget and all the grasp components

o Stores and publishes current templates

o Handles template-related actions (add/remove/update)

o Stores template/grasp information, affordances, template manipulation, etc (Alberto?)

� vigir_ocs_behavior_manager

o Communication with behaviors

o Handles requests, sends operator responses

o Can handle multiple requests at the same time

o “complexactionserver” (threaded action server)

o from python to c++ and back to use python pickle for serialization

� vigir_ocs_global_hotkey

o handles global (OS level) keyboard events and sends messages to the OCS views

� vigir_ocs_interactive_marker_server_nodelet

o handles interactive markers added to the views

o makes sure they are added correctly to all views

� vigir_ocs_robot_state_manager

o singleton containing the robot state manager instances for the robot and ghost robot

These packages can be found in the vigir_ocs_common repository47.

47 http://github.com/team-vigir/vigir_ocs_common

Approved for Public Release; Distribution Unlimited.

http://github.com/team-vigir/vigir_ocs_common

116

This page intentionally blank.

Approved for Public Release; Distribution Unlimited.

117

D. ROBOT MODELING AND CONTROL
This appendix gives details about the different aspects of robot modeling, identification, and our
impedance-based control approach. We start with a summary of the paper submission included at the end
of Appendix D, continue with details about the integral torque controller in Appendix D.2, the friction
identification experiments (Appendix D.3) and the examined friction compensation mechanisms (D.4),
further experiments for arm dynamics parameter identification in Appendix D.5 and an evaluation of the
compliance of the different controllers in Appendix D.6.

D.1. Summary of theoretical basics and basic experiments

A detailed summary of the theoretical approach and the experimental results of the joint impedance
controller, the identification process and the disturbance observer can be seen in our submitted paper for
the 2015 IEEE-RAS International Conference on Humanoid Robots, which is attached at then end of this
appendix.

In Section I of the paper, we summarize the current state of the art of compliant control and impedance
control for humanoid and hydraulic actuated robots. We come to the conclusion, that compliant control is
absolutely necessary for humanoid robots in typical usage scenarios and that some promising approaches
have already been researched in this field, which we combine in our control scheme for the Atlas robot.

In Section II.A of the paper, we give an overview of our kinematic, dynamic and friction model to
describe the robot and the linear regressor formulation needed for feasible parameter identification.
Section II.B continues with a description of our excitation trajectories for the identification based on
Fourier series and polynomial functions. The parameter identification is done with a least squares
approach weighted by sensor noise covariance. Section II.C explains the joint impedance controller
approach and Section II.D. gives details about the formulation of the disturbance observer used for
collision detection and model error compensation.

We begin our results in Section III.A of the paper with a description of the performance of our
identification algorithm by comparing measured joint torques to the torques calculated from the identified
model. This model accuracy was also experimentally validated by moving the arm in gravitation free
mode, where a typical position teaching could be performed with only little drift in some poses. The high
joint friction however helps to keep a position, if joint torque errors from model inaccuracies stay below
the static friction.

This influence of the dynamic model is also shown in the first part of Section III.B. We show the abilities
of the impedance controller compared to the existing tuned PD position controller: Our controller
achieves a comparable position tracking and an improved velocity tracking.

Further we show the ability of the disturbance observer to qualitatively estimate the disturbance joint
torque from model errors correctly. The ability to tune the impedance controller with different stiffness
and damping coefficients is shown with a set of step response experiments.

Approved for Public Release; Distribution Unlimited.

118

D.2. Inner joint torque loop with integral feedback

In Section 3.2.1.3 Figure 19, it was pointed out that an integral controller is needed for the inner joint
torque loop due to high steady-state-error of the proportional controller. Figure 50 shows the joint torque
and position errors of the second arm joint for a complex trajectory with moderate velocity. With an
increased integral gain, we could decrease the joint effort error about 90 % and decrease the joint position
error for the hydraulic joints about 20 % in some movements and poses. The mean position error for this
kind of trajectory could be reduced about 5% and for faster trajectories about 30%.

D.3. Friction identification

As already discussed in [1] and pointed out by other teams, the friction in the hydraulic valves has a
strong influence on the quality of the arm control. Since the friction effects are located in the seals
between the hydraulic pressure measurement and the actuated link, the measured torque always contains
the friction. This especially influences the concept of joint impedance control, which normally assumes
real joint torque measurements between gear friction of commonly used electric drives and the actuated
link.

To identify joint friction, we executed trajectories with different constant velocities. Only with the model
based controller and iteratively improved feedforward of dynamics and friction, we were able to run the
trajectories smoothly without stick-slip-effect, which is shown in Figure 51 in comparison to the same
experiment with the PD-position controller.

Time [s]
22 23 24 25 26

po
si

tio
n

er
ro

r s
hx

 [r
ad

]

-0.02

0

0.02

0.04

Time [s]
22 23 24 25 26

ef
fo

rt
er

ro
r s

hx
 [N

m
]

-2

0

2

4
KI=0
KI=2.5
KI=5.0
KI=10

Figure 50. Torque and position error for different settings of integral inner torque loop

Higher 𝐾I
Higher 𝐾I

Approved for Public Release; Distribution Unlimited.

119

The resulting friction curves with our viscous and Coulomb friction model are shown in Figure 52. The
line marked as “mean” is calculated from a linear regression of the mean joint torque and velocity of the
single experiments marked “exp.”. The line marked as “raw” is calculated with a linear regression of all
measured velocity and torque data points, which biases the friction identification, since trajectories with
slow velocity take more time, produce more data points and are therefore weighted higher.

D.4. Friction compensation and friction feedforward

We examined two different approaches for the friction compensation: Model based friction compensation
with feedback of the measured velocity with

τ̂f,comp = diag(d̂v) q̇ + diag(μ̂C)sgn(q̇)

and friction feedforward only as in

τ̂f,ff = diag(d̂v) q̇d + diag(μ̂C)sgn(q̇d).

Figure 51. Velocity and joint torque plots for constant velocity trajectory tracking

q

-0.4

-0.2

0

-1

-0.5

0

-2

-1

0

PD ImpCtrl desired

t

0 2 4 6 8

-10

-5

0

t

0 1 2 3

-20

-10

0

t

0 0.5 1 1.5 2 2.5

-20

-10

0

Figure 52. Joint friction diagrams from constant velocity experiments

q

-2 0 2

-5

0

5

mean

raw

exp.

q

-2 0 2

25

30

35

40

45

q

-2 0 2

-30

-20

-10

0

q

-2 0 2

-10

0

10

q

-2 0 2

-4

-2

0

2

4

q

-2 0 2

-0.5

0

0.5

q

-2 0 2

-0.5

0

0.5

Approved for Public Release; Distribution Unlimited.

120

These terms are placed in the term τ̂f in Equ. (2) in D.7 included in this appendix.

Figure 53 shows the results of these two approaches compared to the impedance controller without
compensation and the tuned PD position controller. An interval in a complex dynamic trajectory with
moderate velocity is regarded with position, velocity, and effort of the third arm joint of the left arm.

With the friction feedforward control, the position tracking in intervals with low velocity is improved due
to a better overcoming of the static friction. The position error decreased according to Table D-1 and is
lower than with the PD position controller

Table D-1: Comparison of Cartesian errors with different friction handling modes

Mode Mean Cartesian
error [mm]

End Cartesian
error [mm]

Only Impedance Controller 9.3 9.5
ImpCtrl. and friction feedforward 4.4 1.6
ImpCtrl. and friction
compensation

7.9 4.9

Tuned PD position controller 13.1 3.7
The friction feedforward does not provide compliance in absence of a commanded velocity, since the arm
friction is not compensated and the reaction force for low contact forces is the static friction. These low
contact forces are not visible by the pressure sensors and therefore cannot be taken into account by the
impedance controller. Since the main use-case of the impedance controller is to avoid falls after heavy
collisions, we decided to use the friction feedforward with this drawback to compliance.

Po
si

tio
n

[r
ad

]

2.64

2.66

2.68

2.7

V
el

oc
ity

 [r
ad

/s
]

-0.3

-0.2

-0.1

0

0.1

Time [s]
25.8 26 26.2 26.4 26.6 26.8 27

Ef
fo

rt
[N

m
]

-15

-10

-5

0

5
only ImpCtrl
ImpCtrl+Feedforward
ImpCtrl+Comp.
PD

Figure 53. Comparison of mechanisms to cope with joint friction

Break-free from
Static friction

Coulomb friction compensation switching condition

Approved for Public Release; Distribution Unlimited.

121

Also, our current implementation of the friction compensation cannot be set to the fully identified friction
values from Figure 52 without having position oscillations with visibly high amplitude and low
frequency. Therefore, the friction compensation compared above only uses friction coefficients reduced
by ca. 50%. The oscillations probably result from the time delay and the switching between static and
dynamic friction compensation.

D.5. Dynamic Arm identification

In addition to the identification results presented in [6], previously identified friction from Figure 7 in [6]
was included to the robot regressor model. The aim was to reduce the parameter space from 59 to 45
unknowns and to improve the identification results by the implementation of more model based
knowledge into the identification model. Assuming a robot arm model of

𝝉m = 𝚽𝜷 − 𝝉ext

from Eq. (7) of [6] (with 𝝉ext = 0), the influence of a parametrized friction model with parameters 𝒅v, 𝝁c
can be incorporated by subtracting 𝝉f = 𝚽f (𝒅v 𝝁c)

T from both sides of Eq. (7). This effects the loss of
friction related columns within the regressor formulation 𝚽 = 𝚽b, which is represented by rigid body
parameter only. The influence of friction to the motor torque 𝝉m can be written as 𝝉m,f = 𝝉m −

 𝚽f (𝒅v 𝝁c)
T. The following procedure of the identification algorithm is kept equal as described in [6].

A comparison between the base parameter vector 𝜷hum15 from [6], where friction was identified within
the least squares optimization, and the base parameter vector 𝜷frct, using single joint friction values, can
be seen in Figure 54. The figure shows the model prediction to an unknown trajectory which should
exclude the problem of self-fitting.

Similar performance in the torque prediction can be observed for the parameter vectors 𝜷hum15 and 𝜷frct
for the joints shz, shx, ely and elx. In shz improved results can be noticed by 𝜷frct. However, both
methods provide larger errors for this joint.

The following table shows the mean square errors between measured and modeled torques for the used
parameter vectors 𝜷hum15 and 𝜷frct for the hydraulic joints. Shz and shx show lower errors for parameter
vector 𝜷frct. Whereas, superior results are obtained in ely and and elx by 𝜷hum15.

Table 2: Mean square errors at arm identification using different base parameter vectors

 Mean square error 𝜷hum15[Nm²] Mean square error 𝜷frct [Nm²]
shz 101.98 47.56
shx 29.63 25.62
ely 12.69 27.53
elx 14.18 31.22

As already mentioned in [6], the wrist joints do not seem to be identifiable by such global methods in case
of this robot. Although friction was identified in single axis experiments, the predicted torques have no
correlation with the measured torques for wry, wrx and wry2. The reasons can probably be found in small
masses and inertias of the wrist elements, which effect a weak excitation of rigid body parameters, and in

Approved for Public Release; Distribution Unlimited.

122

the use of current based torque measurement on actuator side, which are inferior to joint side torque
measurements. The joint wry2 is not shown for illustration reasons because similar results to wrx and wry
were achieved in which the model showed large errors.

The influence of Coulomb friction can be noticed within the plots by a clear step within the torque
measurement which can only be explained by the signum function of the Coulomb term. Looking at shx
these effects are described by the single axis identification of Fig. (7). In ely the peak of the Coulomb
friction in 𝜷frct seems to be too high but the magnitude of the step height between modeled and measured
torque matches. In this case the step is shifted by the terms of the rigid body model. Looking at elx a
match as described in the previous example cannot be noticed, but different magnitudes in step height can
be seen. Consequently, a single axis identification does provide correct Coulomb parameters in every case
which is probably effected by time depending effects of the friction. For the remaining joints a statement
cannot be made because no clear steps can be noticed.

As mentioned above, we discovered an inferior correlation between measured and modeled torques of shz
in contrast to joints ely, elx. That is why we concluded a weak excitation of dynamic parameters which
are related to potential energies of the arm in tilted poses. A cancelation of the related columns within the
regressor formulation 𝚽 was not considered since a totally upright robot pose cannot be guaranteed
completely for a humanoid robot. Therefore, we also executed the dynamic trajectories in two additional
tilted poses shown in Figure 55 and implemented those results to the identification. The first identification
results did not lead to an improved model correlation for shz. The reasons are subject of our ongoing
research.

T
o
rq

u
e
 [
N

m
]

-15

-10

-5

0

5

10

15

mes M PV frct M PV hum15

10

20

30

40

50

-30

-20

-10

0

10

Time [s]

10 15 20

T
o
rq

u
e
 [
N

m
]

-20

-10

0

10

20

Time [s]

10 15 20

-5

0

5

10

15

Time [s]

10 15 20

-4

-2

0

2

4

6

Figure 54. Measured and modeled torque for the left arm of ATLAS

shz ely

elx wry wrx

shx

Approved for Public Release; Distribution Unlimited.

123

Finally, it can be concluded that the single axis identification of friction are a valid alternative method in
contrast to a full identification of rigid body and friction parameters, but significant improvements could
not be observed for the overall modeling accuracy by this approach. Possible explanations are probably
time depending influences of friction within the robot joints.

The tilted orientation of the robot has not shown promising results yet. The identification of a robot arm
does not seem to be an issue of covering arbitrary arm positions and robot orientations, but more a
problem of finding those orientations which optimally excite all parameters. That is why the robot
orientation should be taken into account for further trajectory optimizations within the identification
procedure.

D.6. Compliance demonstration

In addition to the experiments mentioned in [6], we tested the compliance by placing an obstacle in the
way of a typical grasping motion as depicted in Figure 56 and comparing the behavior in different
manipulation modes: PD position controlled, impedance controlled with low stiffness and impedance
controlled with high stiffness with and without collision detection.

Figure 55. Different settings for the Robot with fixed upper body for arm identification

(a) (b) (c)

Figure 56. Experimental setup: High stiffness (a), low stiffness (b) and collision detection (c)

(a) (b) (c)

Approved for Public Release; Distribution Unlimited.

124

Figure 57 shows the measured values of force-torque-sensor, observed disturbance torque and joint
position during a collision of the end-effector with a standing cinderblock using a Styrofoam protection.

With the PD position controller and the impedance controller set to a high joint stiffness of 300 Nm/rad,
the end effector pushes the cinderblock out of the way and the collision forces reach about 70 N during
the impact. If the robot was standing during this experiment and the collision force would be bigger, the
robot would fall, as for example experienced in our tests before the finals. However both PD-position and
stiff joint impedance controller achieve high position accuracies without the obstacle of respectively
6 mm and 4 mm at the end of the grasp motion. Figure 56-a depicts this result.

One mechanism to achieve compliant behavior is setting a low joint stiffness of 100 Nm/rad to the
impedance controller. In our collision experiment the end effector pushes into the obstacle, but the
collision force does not get high enough to push it away, so the arm gets stuck at the obstacle (see Figure
56-b). The position accuracy with low stiffness at the end of the grasping motion is about 9 mm and
therefore only useful for safe transition motions, not for grasping motions (since this error increases
significantly with attached hands and grasped objects).

Another mechanism to ensure a safe behavior after the collision is using the stiff impedance controller
with collision detection based on the estimated disturbance joint torque. This approach currently allows a
threshold for collision detection of about 10 Nm joint effort. After detecting the collision, the arm can be
set into gravity-free mode, which is pointed out in the joint position plot in Figure 57 and can be seen in
Figure 56-c.

The joint friction torque and our remaining dynamic identification model error is currently the limit for
the collision detection threshold, since a wrongly estimated friction state in the disturbance observer could
otherwise lead to a false collision alert.

Improving the identification of the dynamics model would allow decreasing the collision threshold further
and detecting also minor collisions. With the current setting of the disturbance observer, it took about
300 ms to detect the collision with the cinderblock. With a higher observer Gain in Eqn. (22) of [6], a
faster convergence of the disturbance observer can be achieved with the risk of overshoot in the observed
disturbance torque exceeding the detection threshold.

Approved for Public Release; Distribution Unlimited.

125

E
xt

e
rn

a
l

fo
rc

e
 F

y
[N

]

-100

-50

0
O

b
se

rv
e
d
 d

is
tu

rb
a
n
ce

to
rq

u
e
 s

h
z

[N
m

]

-20

-10

0

K=100, CollDet=0

K=300, CollDet=1

K=300, CollDet=0

PD

Time [s]

7.5 8 8.5 9 9.5 10

Jo
in

t

p
o
si

tio
n
 (

sh
z)

 [
ra

d
]

-1

-0.5

0

Figure 57. Typical measured forces, observed disturbance torque, and joint position

After collision detection:
Zero-gravity, drifts away

Contact force

Obstacle pushed away

K=100: Hanging at obstacle
Arm moved away.
No more contact

K=100: Hanging at obstacle

Following original trajectory
through obstacle

Threshold for Collision

Approved for Public Release; Distribution Unlimited.

126

This page intentionally blank.

Approved for Public Release; Distribution Unlimited.

127

D.7. Humanoids 2015 Paper On Modeling and Control [6]

Approved for Public Release; Distribution Unlimited.

1298219308C
Rectangle

128

Approved for Public Release; Distribution Unlimited.

1298219308C
Rectangle

129

Approved for Public Release; Distribution Unlimited.

1298219308C
Rectangle

130

Approved for Public Release; Distribution Unlimited.

1298219308C
Rectangle

131

Approved for Public Release; Distribution Unlimited.

1298219308C
Rectangle

132

Approved for Public Release; Distribution Unlimited.

1298219308C
Rectangle

133

Approved for Public Release; Distribution Unlimited.

1298219308C
Rectangle

134

Approved for Public Release; Distribution Unlimited.

1298219308C
Rectangle

135

E. MANIPULATION PLANNING SYSTEM
This appendix provides details on the implementation of the manipulation system. This appendix includes
two sections that cover information in more detail, and describe experiments conducted after the DRC
Finals. Appendix G-3 includes a technical paper [3] that covers our design through the DRC Trials, and
G-4 includes another recent paper [5] submitted to the Humanoids 2015 conference that extends our
concept of “usability”.

E.1. Object Template and Usability-based Manipulation

The initial version of the Object Template approach used during the VRC considered only the 3D mesh of
the object and potential grasp pose information. With these capabilities we were able to score the “lift
fire-hose from the table” point in all of the five runs. However, the lack of manipulation capability in an
affordance level such as “turn” required the operator to perform the rotation motions to attach the fire-
hose manually, which in a cartesian-space teleoperated approach have high complexity. The results of the
VRC can be shown in [2].

After the development phase between the VRC and the DRC Trials, we incorporated additional
capabilities to our OT approach. These capabilities included physical information of the object of interest,
such as mass and center of mass, which were used for control while manipulating objects (e.g. the drill).
Also, we implemented Cartesian and Circular Markers to generate constrained paths for the robot’s end-
effectors. These markers are visualized as floating independent frame of references that were manipulated
by the human operator and located in a desired pose. Cartesian plans are calculated using the initial end-
effectors pose and the origin of the marker as target pose. Circular motions were calculated using
individual Cartesian paths around the “X” vector of the marker as rotation axis (see [1] Appendix A).

After the DRC Trials, we evolved our OT to provide the functionality that the Cartesian and Circular
markers were providing. With the new OT implementation it was now possible to assign multiple motion
constraints into one single frame of reference plus all the previous functionality of the OTs. This brought
the concept of affordances to the OT because now we are able to define motions that the object offered
[3].

Additionally we developed the concept of “usability.” Usabilities allow the operator to select points of
interest in a grasped object so that this point can be used while planning motions. Instead of having one
“tool tip” per object, the OTL can describe multiple points in the reference frame of an Object Template.
For example, the Drill Template will have at least three usabilities: the origin of the template, the
ON/OFF switch, and the bit (see Figure 59). These usabilities allow objects that are grasped by the robot
to be considered as online-augmented end-effectors. With this information, affordances can then be
executed using these points as reference for motion planning. As shown in Figure 59, the Drill Template
(left) has three usabilities: Origin, Trigger, and Bit. The Paint Roller Template (right) has three usabilities:
Origin, Base, and Roller. The “bit” in the drill is located around 10 cm above the origin of the reference
frame of the Drill Template, for this reason special planning has to be done to achieve the desired cut
pattern in the wall (see Figure 58).

As shown in Figure 58, normal planning with respect to the robot hand creates a smaller (dark green)
circle about the center axis of rotation of the wall template based on the relative position of the hand (left).

Approved for Public Release; Distribution Unlimited.

136

Using the drill bit usability as the reference point results in the correct hand motion pattern to cut the
wall, since the drill bit is the one rotating around the axis of the Wall Template (right).

As described in Section 3.2.4, the Object Template Library is divided in three main groups of
information. Here we present example XML flies of each group. The Grasp Template Library, shown in
Figure 60, is used to store pre-calculated potential grasp poses for the robot’s end-effectors. It also defines
the finger postures required for a particular grasp, before closing the fingers and after closing the fingers.
The final-grasp is the pose that the end-effector needs to reach before closing the fingers.

Figure 59. Object usabilities for the drill and paint roller

Figure 58. Cut circle in wall with the drill tool.

Approved for Public Release; Distribution Unlimited.

137

An approaching_vector is defined in a way that the end-effector can safely reach a pose near the object.

After reaching this “pre-grasp” pose, the end-effector only needs to move in the direction of the
approaching_vector to reach the final-pose. Each grasp has its own ID and they are linked to one single
template_type.

Figure 60. Grasp Template Library XML file

Approved for Public Release; Distribution Unlimited.

138

Another issue to be tackled was the determination of suitable stand poses for manipulation relative to a
given object. An inverse reachability approach, available as open source as part of the Simox library48 was
integrated with Team ViGIR's software for this purpose. Prior knowledge about DRC tasks made the use
of this automated inverse reachability system and the added complexity introduced by it unnecessary. To
simplify usage, Team ViGIR used the Stand Template Library, shown in Figure 61, to store pre-
calculated stance poses for the robot pelvis that will allow the robot to properly reach the object. It is a six
degree of freedom pose of the robot’s pelvis with respect to the OT frame of reference. Each stand pose
has its own ID and they are linked to one single template_type. For use within real disaster environments,
a fully integrated inverse reachability approach that considers possible collisions with the environment,
biped balance constraints, and of sensor visibility is desireable.

48 Vahrenkamp, Nikolaus, Tamim Asfour, and Rudiger Dillmann. "Robot placement based on reachability inversion." Robotics and
Automation (ICRA), 2013 IEEE International Conference on 6 May. 2013: 1970-1975.

Figure 61. Stand Template Library XML file

Approved for Public Release; Distribution Unlimited.

139

The Object Template Library, shown in Figure 62, contains the physical information of the real object it
represents. It has also 3D mesh information of the shape that can be linked with a path to a PLY mesh file.
The OTL also contains the semantic information of the object in the way of affordances and usabilities.
The template_type is used to relate information of a template to the Grasp Library and the Stand Library.

Figure 62. Object Template Library XML file

Approved for Public Release; Distribution Unlimited.

140

E.1.1. Manipulation Control Widget

The user interface used to interact with the remote robots consist of a manipulation widget for each hand
(see Figure 63). This widget is access from the Main UI window presented in Section 3.1.3.1. This widget
is responsible of providing to the human operator all the functionalities that the OT approach has.

Once an OT is inserted in the environment, the operator can double click that OT to let know the

Manipulation Widget that that is the OT of interest. The Manipulation Widget then displays all the
information available for this OT (see. Figure 64). The pre-grasp and final grasp poses for a specific
Grasp Template can be shown. The fingers can be Opened, Closed, set to the specific joint configuration
defined for that Grasp, and there is the possibility to select the percentage of closure if the fingers are
going to be manually controlled. If the object is going to be moved around the environment, the operator
can “Attach” the OT to the robot, allowing the motion planner to consider the real object for collision
avoidance, in the same way the OT can be detached from the robot. The Usability combo box allows the
operator to select the frame of reference in the end-effector that the motion planning is going to be done
with respect to (e.g. Palm, Poke Stick, the origin of the template, or any point of interest included as a
usability in the OTL). Affordances can be executed with different parameters. Once the affordance is
selected from the combo box, the default values for that affordance are automatically loaded, afterwards
the operator can change this parameters. The displacement parameters use degrees for rotational motions
and meters for translational motions. The operator can also select if the motion is going to be performed
keeping the end-effector orientation or not. In case the affordance is rotational, the operator can give a
pitch to that affordance to convert the circular motion into a “spiral” motion. Finally, the speed of the
motion execution can also be set.

Figure 63. Manipulation Control Widgets for each Hand.

Approved for Public Release; Distribution Unlimited.

141

E.1.2. Transfer of Manipulation Skills between Objects

During some practice tests, we found ourselves using a different OT than the one that was designed for
that task. For example, while turning the steering wheel of the Polaris vehicle, we initially used the Valve
Template before creating the Steering Wheel template. This is possible given that motions required to
perform a manipulation task do not depend on how and where the robot has grasped the object. In a
recently submitted to paper [5], we present an approach that shows how the operator can use an OT to
perform versatile manipulation tasks. This is demonstrated during an experiment where the robot is not
able to reach a valve because the stand position required is blocked by debris. A combination of two DRC
tasks was created and the use of OT allows the operator, for example, to pick up a piece of debris and
utilize it to reach and turn the valve [Appendix Experiments].

E.1.3. Object Template Alignment

It is a known disadvantage, as shown during experiments with behaviors in Blacksburg, that manual
alignment of OT consumes most of the time during a manipulation task. Initially Team ViGIR during the
VRC, and later on in collaboration with Team VALOR during the DRC Finals, attempted to develop
automatic OT matching algorithms to match the 3D mesh to the perceived sensor data to determine the
6D pose of the object. Test results of automatic OT alignment to the sensor data corresponding to the real
object were not robust enough, and had too many corner cases. During the competition and the
experiments, auxiliary operator manually aided in performing object identification and alignment of the
OT to the sensor data.

Figure 64. Description of Manipulation Widget functions that interact with Object Templates (OT).

Approved for Public Release; Distribution Unlimited.

142

E.2. Manipulation Experiments

To validate the theoretical concepts described in Section 3.2.4, we performed some experiments that
demonstrate how manipulation tasks can be efficiently performed by the human operator using the Object
Template approach. Appendix H contains experiments that show how the same usabilities and affordances
can be incorporated into autonomous behaviors. A playlist with all experiment videos can be found here:
https://www.youtube.com/playlist?list=PL7v9EfkjLswJQn2yZE3qv5sECx-qZbeXO .

E.2.1. Wall Task

The wall task is considered the most challenging manipulation task in the DRC. It requires object
manipulation, interacting with small object parts such as the ON/OFF switch, and planning with
environmental constraints such as the wall plane and the region that needs to be cut.

This experiment shows how the human operator using the Manipulation Widget commands the robot to
pick up the drill and draw a circle in the wall. In this case, the task requires to perform motion planning in
two different frame of references at the same time: the wall and the drill. On one side, the Cut-Circle
affordance of the wall needs to be used to generate a circular motion around the frame of reference of the
wall. On the other side, the robot needs to calculate the path to follow, not with respect to the hand, but
with respect to the drill bit. This is a perfect example where the operator can use the affordances of the
wall while selecting and planning with respect to the drill bit usability. In Figure 65 and the associated
video49, we used a marker in place of the drill bit to demonstrate the path.

49 https://www.google.com/url?q=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D4aIpvpqwvJY

Figure 65. Drawing a circle using affordances defined in the Wall and Drill Object Templates.
Upper left: Picking up drill. Upper right: Using “Insert” affordance of the drill. Lower left: Using “Cut-Circle” affordance of
the wall. Lower right: Circle completed.

Approved for Public Release; Distribution Unlimited.

https://www.youtube.com/playlist?list=PL7v9EfkjLswJQn2yZE3qv5sECx-qZbeXO
https://www.google.com/url?q=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D4aIpvpqwvJY

143

E.2.2. Cord Plug Surprise Task

From the 3 surprise tasks, the Cord Plug task was the most challenging because of the accuracy required
to introduce the cord plug into the socket. While we did not get to attempt the Cord Plug Task on Day 2 of
the DRC Finals due to hardware issues, we demonstrated this task in experiments.

During this experiment, we performed the Cord Plug task in around 3 minutes. Using the Manipulation
Widget, the operator can easily send the robot’s hand to pre-grasp and final grasp positions for both
sockets, the operator only needs requiring only to use afterwards the “extract” and “insert” affordances of
the socket. Given inaccuracies while grasping the cord plug, the pre-calculated insert positions of the
socket are not aligned. However, after minimal alignment from the operator, the “insert” affordance of the
socket can be used. Since this affordance only describes the the motion of the hand needs to be parallel to
the axis of insertion of the socket, the orientation of the hand is not relevant to perform the manipulation
motion of insertion (see Figure 66 and video50).

E.2.3. Robustness Experiments

After the DRC, Team ViGIR continued performing experiments with the Atlas robot. While some of the
experiments were a repetition of the DRC tasks, we tested the robustness of our approach for cases where
the robot is not able to reach the objects of interest (situation that can easily happen in a post-disaster
scenario).

As described in Section 3.2.4, the manipulation skills that the affordances provide are grasp-agnostic.
That said, we envisioned a disaster scenario similar to a combination of the Valve Task and the Debris
Task in the DRC. In this scenario, access to the valve is blocked by debris. Normally, the robot would
have first to remove all debris until it gains access to the valve, and then perform the turning motion.

50 https://www.google.com/url?q=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DtduZBtkuDWM

Figure 66. Cord Plug Surprise Task Demonstration
From top-left to bottom-right: Pre-grasp, grasp, extract, pre-insert, insert, release.

Approved for Public Release; Distribution Unlimited.

https://www.google.com/url?q=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DtduZBtkuDWM

144

However, if the case is that the debris cannot be removed completely (e.g., it is heavy or big), then the
task would be impossible complete. To demonstrate how the OT approach can allow the operator to
improvise, provide the following experiment.

The operator identifies a piece of debris that can be used to reach and turn the valve. The operator
performs the required manipulation motions to pick up a stick from the debris (just like in the Debris
Task) but it then uses this stick to turn the valve by inserting the edge within the crossbars of the valve.
Once the stick is in place, without any modification to the approach, the operator can then execute the turn
affordance of the valve, and the required circular motions to turn the valve will be done using the stick
(see Figure 67 and the associated video51).

In another experiment, Atlas is unable to turn a valve because it is in a higher place than it can reach. The
human operator identifies a long L-shaped stick (e.g. paint roller) which can be grasped and used to reach
the valve. This experiment is different from the previous one, because in this case, the point that needs to
follow a circular path around the valve is not located in the end-effector, but in the “roller” part of the
object. To plan with respect to a point of interests in the grasped object, the operator can select the
“usability” that belongs to that point (in this case is the “roller” usability). With this online-augmented
end-effector, the turning affordance of the valve can then be used in the same way as when turning the
valve with the hands (see Figure 68 and associated video52).

51 https://www.youtube.com/watch?v=HN8PEf4ftmU (accessed August 19, 2015)
52 https://www.youtube.com/watch?v=4km_aaatA0M (accessed August 19, 2015)

Figure 67. Atlas using a stick to turn the valve
Atlas is unable to reach a valve because of debris blocking the stand pose needed to grasp the valve with the hands (left). The

human operator identifies a stick among the debris and uses it to reach the valve (right). The turning affordance of the valve is
used in the same way when grasping the valve with the hands as when having a stick inserted within the cross bar of the valve.

Approved for Public Release; Distribution Unlimited.

https://www.youtube.com/watch?v=HN8PEf4ftmU
https://www.youtube.com/watch?v=4km_aaatA0M

145

Figure 68. Atlas turning a high non-reachable valve using a paint roller

Approved for Public Release; Distribution Unlimited.

146

This page intentionally blank.

Approved for Public Release; Distribution Unlimited.

147

E.3. Humanoids 2014 Paper on Manipulation [3]

Approved for Public Release; Distribution Unlimited.

148

Approved for Public Release; Distribution Unlimited.

149

Approved for Public Release; Distribution Unlimited.

150

Approved for Public Release; Distribution Unlimited.

151

Approved for Public Release; Distribution Unlimited.

152

Approved for Public Release; Distribution Unlimited.

153

Approved for Public Release; Distribution Unlimited.

154

Approved for Public Release; Distribution Unlimited.

155

Humanoids 2015 Paper on Manipulation [5]

Approved for Public Release; Distribution Unlimited.

156

Approved for Public Release; Distribution Unlimited.

157

Approved for Public Release; Distribution Unlimited.

158

Approved for Public Release; Distribution Unlimited.

159

Approved for Public Release; Distribution Unlimited.

160

Approved for Public Release; Distribution Unlimited.

161

Approved for Public Release; Distribution Unlimited.

162

This page intentionally blank.

Approved for Public Release; Distribution Unlimited.

163

F. FOOTSTEP PLANNING SYSTEM
In this section we present more details about the developed footstep planning system and framework.

F.1. Footstep Planning System

The basic footstep planning approach is already described in Section 3.2.5 and [4]. This approach tackles
multiple challenges to enable full-size humanoid robots to cross difficult terrain in real world application.
Even with no details of the underlying walking controller available, the planner is able to utilize the
versatile locomotion capabilities of a full-size humanoid robot. It is capable of generating full 6 DoF
footstep sequences that allows safe execution by walking controllers. A terrain model generator allows
generating a quickly accessible 3D world model from all perceived 3D laser scans. Hence, we have
presented an integrated footstep planner as it comes with full perception and planning pipeline. For further
details we would like to refer to the mentioned sources.

This approach has been evaluated successfully with the Atlas robot in real world experiments. During the
DRC Trials the integrated footstep planner allowed traversing the pitch ramp and chevron hurdles within
eight minutes. The operator only had to command the desired goal position behind the obstacle. During
the competition the footstep planner has already worked well, but there were still issues which had to be
addressed until DRC Finals.

During the DRC Trials a major issue encountered was limited operator ability to correct planning. If the
planning system failed to deliver a feasible solution for some reason e.g. a bad world model due to
obstructed obstacles, the operator could not assist the planner effectively. The operator could only define
simple step pattern commands using a dedicated widget. But back then the pattern mode was not able to
assist the operator in terms of 3D planning or step validation.

For this reason the footstep planner was extended to provide better services for interaction via graphical
user interfaces (in our particular case Team ViGIR’s OCS). These services provide the following features:

● Stitch multiple plans
● Revalidation of the entire step plan
● Modify single steps of a plan
● Operator assistance (e.g. automatic 3D foot placement adjustment)
● Planning preemption
● Goal pose to feet poses transformation
● Waypoint mode (in preparation)

While depending on the implementation of the graphical user interface, all these features enable
interactive footstep planning with the human in the loop. The operator can request a footstep plan and in
case of bad steps just modify them instead of triggering replanning or manual pattern generation. An
example how the interactive planning mode looks like is illustrated by Figure 28 in Section 3.2.5. In
addition to the usage by graphical user interfaces these services provide a wide range of helper tools for
any high-level software (e.g. behavior control), granting easier access to the comprehensive footstep
planning interface.

Approved for Public Release; Distribution Unlimited.

164

Since the DRC Trials we have been able to improve the overall planning performance of the planner.
Especially the planning runtime has been improved which allows to planner to optimize plans faster and
deliver better results. The 3D terrain generator has been improved as well, providing the ability to
generate terrain models for the footstep planning system online. This new terrain model generator has
already been applied and validated for real world scenarios as shown in the results section.

F.2. Footstep Planning Framework

After the DRC Trials many opportunities arose to show that our approach supports a wide range of
walking controllers for biped humanoid robots. First, IHMC announced to make their controller software
available for all Atlas teams. Afterwards, Team VALOR adapted the Team ViGIR software infrastructure
for use with their robot ESCHER. Lastly, Team Hector qualified their THOR-Mang robot for the DRC
Finals. The planning system has been integrated with these three different biped humanoid robots, with
each of these coming with their own walking controller. This provided the opportunity to show that the
footstep planning approach can successfully be deployed on other full-size humanoids besides ATLAS.
But variations of different available robot systems raised the question how to do this correctly.

This motivated the development of a footstep planning framework based on our prior work. The main
objective is to provide an integrated footstep planning framework which may be deployed easily into an
existing ROS setup. As a framework the planner has to be expandable for new features but closed for
modifications. Any user of the framework should only have to implement and extend robot specific
elements to get the advanced planning system running instead of developing a modified version of an
existing planner or even starting from scratch each time. All already implemented and thus proven
algorithms are kept untouched which decreases the likelihood of errors and saves a lot of implementation
effort. Although, the framework must generalize well, it is able to solve difficult terrain task problems and
utilize the versatile locomotion capabilities of the given walking controller.

In order to meet this objective the plugin management system vigir_pluginlib
53 has been implemented. It

provides the capability to manage versatile plugins which can be also used outside of the footstep
planning domain. Our package is based on pluginlib

54 which already allows for dynamically loading
plugins using the ROS build infrastructure. We have extended the package into a semantic plugin
management system. The practical implementation consists of two parts: The plugin base class and the
plugin manager.

F.2.1. Plugins

Plugins are used to efficiently inject user specific code into the planning pipeline. The user is able to
execute robot specific code during the footstep planning process without any modifications to the
framework.

The plugin base class contains the basic maintenance variables and methods which are needed by the
plugin manager. Each plugin can be identified by its unique name and contains semantic hints about the

53 https://github.com/team-vigir/vigir_pluginlib
54 http://wiki.ros.org/pluginlib

Approved for Public Release; Distribution Unlimited.

https://github.com/team-vigir/vigir_pluginlib
http://wiki.ros.org/pluginlib

165

plugin’s semantic base class in order to efficiently identify the plugin type and its capabilities. The
semantic base class is not to be confused with the plugin base class, but rather is a specialized plugin base
class which defines the functionality and content of all derived plugins. Figure 69 illustrates an example
inheritance hierarchy for plugins which also shows that it is possible that semantic plugins are derived
from other semantic plugins. In this case all derived plugins will give only semantic hints to the latest
semantic base class in the hierarchy.

Figure 69. Example for a plugin inheritance hierarchy.

In some cases a plugin type may cause concurrency issues due to their intended purpose, when multiple
instances of the same semantic base class exist. For this reason each semantic base class is able to declare
itself to be a unique type. This declaration will disallow the plugin manager to maintain more than one
instance of this plugin type at the same time. Once this uniqueness has been defined by any inherited
semantic base class, each derived class must not remove this classification. Despite of a clear sign of a
class hierarchy design flaw this could cause unexpected side effects.

Each (custom) package is able to export their own semantic base classes as well as concrete plugins using
the ROS toolchain. Therefore, all generic tools like a user interface and even the plugin manager are
getting automatically aware of every new plugin.

F.2.2. Plugin Manager

The plugin manager is responsible for maintaining and providing simple access to all plugins. Currently,
the plugin loading sequence has to be hardcoded in the initialization of the footstep planner node. The
option to load dynamically plugins is in preparation. In the meantime the plugin manager already supports

Hereby, it is illustrated to which base class the semantic hint will point to.

Approved for Public Release; Distribution Unlimited.

166

adding, replacing and removal of plugins during runtime. It is possible to retrieve specific plugins in
multiple ways: By name, by semantic hints, and by inheritance hierarchy.

Every plugin has to be named uniquely in the entire system and thus can be uniquely identified by its
name. Therefore, the first and most straight-forward way to obtain a plugin from the plugin manager is by
name (see Figure 70). Retrieving plugins by semantic hints will only deliver the ones which exactly match
the given semantic hints. The inheritance hierarchy will be ignored as illustrated in Figure 71. This mode
is less important and should only be used if an efficient lookup of a specific plugin type is needed, but the
name is not known. In general, the most flexible and dynamic mode is lookup by inheritance hierarchy
which should be preferred. In this mode the manager will check if a plugin inherits from the requested
semantic base class. The manager is able to return all plugins that fulfill the requirements defined by the
semantic base class independent of any semantic hints or plugin names (see Figure 72). This concept
assumes that all plugins as well as the inheritance hierarchy are designed cleanly, thus all defined
functionality of the inherited semantic base classes must be implemented properly by the plugin.

Figure 70. Example for obtaining plugins by their name.
Here, the plugin named Car have been requested.

Approved for Public Release; Distribution Unlimited.

167

Figure 71. Example for obtaining plugins by their semantic hint.

Figure 72. Example for obtaining plugins by their inheritance hierarchy.

Here, all plugins having the semantic hint of Drawable have been requested.

Here, all plugins derived from Drawable have been requested.

Approved for Public Release; Distribution Unlimited.

168

The plugin manager itself is automatically instantiated for the entire system as a singleton. This design
decision was made to prevent issues due to multiple plugin manager instances and allows providing
global and simplified access. It automatically sets up all ROS services and action servers which provides
generic access to the plugin management capabilities (e.g. dynamically loading plugins).

F.2.3. Parameter Management System

In real world application different terrain scenarios need to be tackled (e.g. flat surface, stairs or sloped
terrain). The footstep planner can perform best if a dedicated set of parameters has been defined for each
kind of terrain scenario. This also allows the operator to switch easily between different planning
behaviors. Furthermore, it is desirable to be able to modify a parameter set if the situation requires it. In
general these requirements can be solved using the available ROS message infrastructure. Plugins
however, are supposed to extend the footstep planner with new features. The structure of parameter sets
may vary which is in conflict to ROS messages as they require a static structure. A simple solution would
be separate configuration files and well as user interfaces for each plugin which is undesirable due to high
maintenance effort.

This motivated the development of a new parameter management system. The XML-RPC library already
used by ROS system is used, as it already provides a suitable data structure for our purpose. Each
parameter set can thus be modeled as nested XML-RPC values. This data representation allows easily
applying a marshalling algorithm converting the data into a byte stream. The resulting byte stream can be
packed into a regular ROS message as a vector of characters. This overcomes the basic conflict of static
ROS message structures for interprocess communication and the need of flexible content due to user
defined parameter sets. Although the approach is introduced here in the context of footstep planning, it
can be used for any software system.

With the new parameter management system it is now very easy to manage multiple parameter set
configuration files. If a new parameter set is needed, the new configuration file only has to be placed in a
preconfigured folder. The parameter manager is able to locally load and store all parameter sets found in
this folder. The OCS makes use of this feature and automatically updates the user interface to show all
given parameter sets which can be selected by the operator afterwards (see Figure 40 in Section 4.2.3).

The parameter manager has been designed in a similar way like the plugin manager. It is automatically
instantiated as a singleton, able to maintain multiple parameter sets and provides services for adding,
removing and editing parameter sets which can be accessed via ROS service and action servers. In Figure
73 generic graphical user interface using these services is shown. It allows modifying parameter sets of
any parameter set structure on-line.

Approved for Public Release; Distribution Unlimited.

169

Figure 73. Parameter Editor Widget

F.2.4. The Footstep Planning Framework

The new plugin and parameter management systems form the infrastructure base of the footstep planning
framework. The footstep planner pipeline has been checked for places where a user might want to affect
the behavior of the planner. For each found place a semantic base class has been introduced:

● CollisionCheckPlugin: Basic collision check of a given state or transition
● CollisionCheckGridMapPlugin: Specialized CollisionCheckPlugin for occupancy grid maps
● HeuristicPlugin: Computes heuristic value from current state to goal state
● PostProcessPlugin: Allows performing additional computation after each step or step plan has

been computed.
● ReachabilityPlugin: Check if transition between two states is valid
● StepCostEstimatorPlugin: Estimates cost and risk for given transition
● StepPlanMsgPlugin (unique): Marshalling interface for robot specific data
● TerrainModelPlugin (unique): Provides 3D model of environment

The last two semantic base classes are defined to be unique which means there can be only one running
instance at once. Figure 27 in Section 3.2.5 shows when which plugin takes effect on the planner pipeline.
For a quick deployment of the framework concrete plugin implementations for common cases do already
exist for all these semantic base classes.

One of our main goals is keeping the footstep planner efficiency high as possible. Therefore, the
computational overhead of the plugin system must be kept to a minimum. It obviously is inefficient to

Approved for Public Release; Distribution Unlimited.

170

retrieve needed plugins for each single call during the planning process. For this reason the planner
retrieves all plugins only once and pushes the given parameters into them before starting planning.
Additionally, a mutex locks all critical callback functions of the planning system. The footstep planner is
thus protected against any changes of the plugin as well as parameter manager during the planning
process.

The deployment into an existing ROS setup requires multiple steps, but many of them are optional. The
first step is to create a ROS node which initializes custom plugins and adds them to the plugin manager.
This step is going to become obsolete in the next version as the plugin manager will be able to instantiate
default as well as customized plugins using configuration files. The most important integration part is the
mandatory hardware interface. There currently is no explicit hardware interface provided by the footstep
planning framework. In general each new robot or walking controller requires implementation effort for
an appropriate hardware adapter which is can translate the generated footstep plan so it can be used by the
walking controller.

Advanced walking controllers usually need very specific data to perform complex locomotion. For
instance, this data could be intermediate trajectory points of the foot or the convex hull of expected
ground contact. The framework has been designed to be able to provide this capability. The presented
plugin system allows perform any kind of additional computing needed by the walking controller.
Analogously to the parameter management system, all custom data can be carried as byte stream within
the regular step plan messages. Marshalling algorithms already available for basic data types can be
applied here as well. Marshalling for complex data types has to be implemented as customized
StepPlanMsgPlugin. The framework is thus able to pack all custom data into the generic step plan
message and send it to the hardware adapter, where it gets unpacked and forwarded to the walking
controller. This illustrates how our framework supports any kind of walking controller without any
modifications.

F.3. Results & Conclusions

For detailed results of our integrated footstep planner we refer to one of our publications. Thus, the
following section we will focus on the new framework.

Although the novel footstep planning framework is still under development, it has already been evaluated.
Thanks to the framework we could provide our footstep planning system to the three completely different
humanoid robots: Atlas, ESCHER and THOR-Mang. Team VALOR (ESCHER) and Team Hector
(THOR-Mang) have utilized the footstep planner for their own robots during the DRC Finals. They could
perform locomotion tasks using exactly the same high level software as Team ViGIR. Thus far, in total
five walking controllers have been interfaced successfully with the framework. The use with Atlas
showed the benefit of the expandability, as BDI’s step mode needs additional data for each step to
perform 3D walking. This data is be provided by dedicated plugins.

As already mentioned above, the 3D terrain generator has been enhanced to generate terrain models for
the footstep planning system online. Figure 74 shows an example of a real world experiment. The terrain
generator is able to accumulate all data while walking. The data stays consistent; the robot is thus able to
step on the cinder block.

Approved for Public Release; Distribution Unlimited.

171

Figure 74. Example how the terrain model is extended while walking during a real robot experiment.

The DRC Finals showed that our objective of a versatile footstep planning framework was achieved. The
three mentioned robots are using different walking controllers, but the footstep planner core can be
maintained easily across all robot platforms. Although the framework does already work well, there are
still some issues and missing features which will be delivered in future versions.

The entire footstep planning has been already open-sourced at GitHub:

● https://github.com/team-vigir/vigir_footstep_planning_msgs
● https://github.com/team-vigir/vigir_footstep_planning_basics
● https://github.com/team-vigir/vigir_footstep_planning_core
● https://github.com/team-vigir/vigir_terrain_classifier
● https://github.com/team-vigir/vigir_pluginlib
● https://github.com/team-vigir/vigir_generic_params

By open sourcing our software we want to reduce re-invention of the wheel in the community and enable
others to quickly get a footstep planning system working on their robots.

F.4. Future Work

Based on remaining issues and ideas there still are many options for improvement of the footstep planning
framework. Many of them are already in preparation and will be available freely at GitHub. We are
generally focused currently on improving performance and efficiency of the planner.

The upper row shows the 3D data and estimated normals (red lines). The lower row shows a visualization of
the generated height map.

Approved for Public Release; Distribution Unlimited.

https://github.com/team-vigir/vigir_footstep_planning_msgs
https://github.com/team-vigir/vigir_footstep_planning_basics
https://github.com/team-vigir/vigir_footstep_planning_core
https://github.com/team-vigir/vigir_terrain_classifier
https://github.com/team-vigir/vigir_pluginlib
https://github.com/team-vigir/vigir_generic_params

172

The basic footstep planner provides further opportunity for improvement. In future work we would like to
see the ability of adaptive level-of-detail planning similar to what is described by Hornung et. al. in their
paper55. This approach enables the planner to automatically switch the level of planning detail depending
on the perceived environment. In our case the planner may use pattern generation on flat surfaces in the
absence of any obstacles and then switch over to 3D planning when difficult terrain has to be traversed.
This promises more efficient planning and should take away switching parameter sets from the operator.

It is desirable to improve the world modeling continuously as the performance of the footstep planner
highly depends on world model quality. In general, methods should be investigated in order to increases
robustness against noisy sensor data and obstructed perception. In certain cases it is also desirable to
detect new features like grip of the surface. This ability can prevent the planner to plan over slippery
terrain or at least consider it for feasible foot placements and therefore reduces errors in execution and
possibility of falls. This challenge has been already encouraged by the VRC but not in any following
competition.

Independent of any slippery terrain, placement errors can occur anytime during footstep execution. In this
case the planner should be able to quickly deliver an adjusted sequence of footsteps in order to
compensate for drift with respect to the underlying surface. This also leads to the question if it is possible
to use the placement error as feedback for the footstep planning system in order to adapt the planning
policy. We already investigated the option of using Gaussian Process Regression learning but it was
shown to be unsuitable for our purposes [4]. Therefore, it is still an open topic how to adapt planning
policies efficiently and how to automatically identify the constraints of the walking controller.

It took a lot of time to tune all parameters for good planning performance. Many experiments were
required to determine the limits of the walking controller and even more experiments to discover all
special cases. This motivates the investigation of intelligent approaches for identification and adaption of
parameters for a given walking controller.

The development of the footstep planning framework is ongoing. As mentioned in one of the previous
paragraphs, plugins must be instantiated hard-coded by a customized footstep planning node. This flaw
will be removed in the upcoming version of the plugin manager. After this update, plugins can be
instantiated just by using configuration files and additionally can be managed using a graphical user
interface. Afterwards the next development milestone will be the support of collections of plugins. This
allows the operator to replace multiple plugins at once and ensures that a predefined set of plugins is
active. The behavior of the planner can thus be changed dynamically, allowing higher flexibility than a
parameter system.

Currently there is no hardware interface provided by the framework. In future work the interfaces of
walking controllers may be compared and a common interface extracted. Based on this evaluation it might
be possible to provide at least a hardware interface skeleton which should support the migration of the
footstep planning framework.

55 Hornung, A. "Adaptive Level-of-Detail Planning for Efficient Humanoid ..." 2012.

<http://ieeexplore.ieee.org/iel5/6215071/6224548/06224898.pdf?arnumber=6224898>

Approved for Public Release; Distribution Unlimited.

http://ieeexplore.ieee.org/iel5/6215071/6224548/06224898.pdf?arnumber=6224898

173

F.5. Humanoids 2014 Paper on Locomotion Planning [4]

Approved for Public Release; Distribution Unlimited.

174

Approved for Public Release; Distribution Unlimited.

175

Approved for Public Release; Distribution Unlimited.

176

Approved for Public Release; Distribution Unlimited.

177

Approved for Public Release; Distribution Unlimited.

178

Approved for Public Release; Distribution Unlimited.

179

Approved for Public Release; Distribution Unlimited.

180

Approved for Public Release; Distribution Unlimited.

181

G. BEHAVIOR EXECUTIVE SYSTEM
This appendix presents the details of FlexBE, Team ViGIR’s behavior engine and high-level executive. In
addition to the behavior engine, which acts as a “back-end”, the appendix presents FlexBE’s graphical
user interface (GUI), which serves as a “front-end” to the Behaviors subsystem. The text is from
Chapters 3 through 5 of [7], which is available online in its entirety56.

Chapter 3 focuses on the underlying concepts and discusses the theoretical background in an abstract
manner. After summarizing the available basis provided by previous work in a uniform way, concepts
regarding operator interaction and runtime modifications are added on top. Finally, consequences for
behavior development are discussed. Chapters 4 and 5, presents various aspects of the implemented
software based on the developed concepts.

Chapter 4 targets the onboard behavior engine and shows how execution of behaviors is solved by
FlexBE and how the process of behavior switching during runtime is integrated. Subsequently, after an
initial discussion regarding the detailed approach specific to the user interface, chapter 5 presents the
behavior control system, including code generation of behaviors and controlling their execution.

56 http://www.sim.informatik.tu-darmstadt.de/publ/da/2015_Schillinger_MA.pdf (accessed August 11, 2015)

Approved for Public Release; Distribution Unlimited.

http://www.sim.informatik.tu-darmstadt.de/publ/da/2015_Schillinger_MA.pdf

182

This page intentionally blank.

Approved for Public Release; Distribution Unlimited.

183

H. BEHAVIOR EXAMPLES
This appendix presents details of the construction of states used in the behaviors presented in
Section 4.2.4.

H.1. State Details

In the following section we will enumerate all states that were included in a behavior that was used during
the DRC Finals or the experimental demonstrations in the lab. Since the list will not include any details,
we will first present the inner working of one state, PlanFootstepsState, which is representative of a large
class of states that interface with a ROS action server. Figure 75 shows the python constructor for the
state’s class definition.

Figure 76 shows the python code for the state’s on_enter method that is responsible for initializing the
state before each execution.

Figure 75. The PlanFootstepsState’s constructor.

This is where the outcomes, input keys, and output keys are defined for all states. In this example, the constructor handles the
initialization of an action client that will later send footstep plan requests to the onboard footstep manager (which will in turn
contact the onboard footstep planner). As with all states, the attributes (done, failed) that correspond to the two outcomes are
initialized.

Approved for Public Release; Distribution Unlimited.

184

Figure 77 shows the python code for the states’ execute method that is called every update cycle for
which the state is active.

Figure 76. The PlanFootstepsState’s on_enter method.

The two aforementioned attributes, done and failed, are reset (since a state can be entered many times during behavior
execution). The main purpose of this state’s on_enter method is to create and send a footstep plan request. The request is
populated with information provided to this state via its input key, “step_goal”, as well as the constructor’s input argument,
“mode”.

Approved for Public Release; Distribution Unlimited.

185

H.2. List of States

All states that were included in a behavior that was used during the DRC Finals or the experimental
demonstrations in the lab are enumerated below, in groups of related functionality:

� Footstep Planning and Execution states
o CreateStepGoalState
o PlanFootstepsState
o FootstepPlanRelativeState
o ExecuteStepPlanActionState

� Object Templates -related states
o GetTemplateAffordanceState
o GetTemplateFingerConfigState
o GetTemplateGraspState
o GetTemplatePoseState
o GetTemplatePregraspState
o GetTemplateStandPoseState
o GetTemplateUsabilityState
o AttachObjectState
o DetachObjectState

� Motion Planning and Execution states

Figure 77. The PlanFootstepsState’s execute method.

The PlanFoostepsState’s execute method is executed until the onboard footstep manager has responded with a result. If
planning was successful, it writes the result to its output key, “plan_header”, and returns the outcome “planned”. If planning
was unsuccessful, it notifies the operator and returns the outcome “failed”.

Approved for Public Release; Distribution Unlimited.

186

o PlanAffordanceState
o PlanEndeffectorCartesianWaypointsState
o PlanEndeffectorPoseState
o ExecuteTrajectoryMsgState
o MoveitPredefinedPoseState
o FingerConfigurationState
o HandTrajectoryState
o TiltHeadState

� ATLAS-specific states
o ChangeControlModeActionState
o CheckControlModeActionState
o RobotStateCommandState

� Various helper states
o GetPoseInFrameState
o GetWristPoseState
o CurrentJointPositionsState
o UpdateJointCalibrationState

� Generic States
o CalculationState
o FlexibleCalculationState
o CheckConditionState
o DecisionState
o OperatorDecisionState
o InputState
o LogState
o WaitState

H.3. List of Behaviors

We briefly present all behaviors that were used in the DRC Finals or the experimental demonstrations in
the lab. In many behaviors, groups of states are placed together in a state machine (gray blocks) in a
hierarchical fashion. We do not show the contents of those state machines here, in the interest of space.

Calibration and Startup Behaviors

These behaviors were used during the initial robot start for checkout and to calibrate joint position
sensors.

Approved for Public Release; Distribution Unlimited.

187

Figure 79. “Praying Mantis Calibration” Behavior.

Figure 78. “Atlas Checkout” Behavior.

Approved for Public Release; Distribution Unlimited.

188

Helper Behaviors

Helper behaviors are behaviors that are developed to be embedded into larger task-level behaviors. In
other words, these are lower-level states within the hierarchical state machine.

Figure 80. “Atlas Vehicle Checkout” Behavior (used before Driving Task)

Approved for Public Release; Distribution Unlimited.

189

Figure 81. “Walk to Template” Helper Behavior

Figure 82. “Grasp Object” Helper Behavior

Approved for Public Release; Distribution Unlimited.

190

Figure 83. “Pickup Object” Helper Behavior

Figure 84. “Open Door” Helper Behavior (DRC Task #3)

Approved for Public Release; Distribution Unlimited.

191

Figure 85. “Turn Valve” Helper Behavior (DRC Task #4)

Figure 86. “Cut Hole in Wall” Helper Behavior (DRC Task #6)

Approved for Public Release; Distribution Unlimited.

192

H.4. Experimental Demonstration of Behaviors

The lab setup for the task-specific behaviors demonstrations was as follows. ATLAS was positioned in
front of the object of interest (e.g. door, valve, wall), since a hardware issue with our ATLAS’ left hip
prevented any demo that involved walking or stepping. Calibration of the electric and hydraulic joints was
performed in advance (using the “ATLAS Checkout” behavior above). Moreover, two operators were
performing the behavior execution and perception tasks on a single OCS computer.

H.4.1. Demo #1: “Open Door” (by pushing the handle from below)

Figure 87. Requesting Door Object Template from Operator

Figure 88. Behavior positions Atlas relative to template
With the template identifier available, the behavior can position ATLAS and guide its right arm to the template’s “pre-grasp
pose”, which it obtained by querying the template server.

Approved for Public Release; Distribution Unlimited.

193

Figure 89. Atlas pushing the door handle from below

In this demo, we employed the tactic of pushing the door handle from below, with the fingers closed in a “fist”. This tactic was
more robust to inaccuracies in end effector position.

Approved for Public Release; Distribution Unlimited.

194

Figure 90. Atlas unlatching the door using “turnCCW” affordance

With the end effector in position, the behavior executes the “turnCCW” affordance of the door template, which results in a
counterclockwise circular arc. It then executes the “push” affordance, which results in motion perpendicular to the door. As a
result, the door is unlatched.

Approved for Public Release; Distribution Unlimited.

195

The next steps of this behavior would have been to bring the arms to the sides, center the torso, and then
request a footstep plan in order to “strafe” (step sideways) through the doorway.

Figure 91. With the door unlatched, the behavior pushes the door completely open.

Approved for Public Release; Distribution Unlimited.

196

H.4.2. Demo #2: “Open Door” (by grasping and turning the handle)

This demo differs from Demo #1 only in the tactic employed for unlatching the door.

Figure 92. Different behavior used to grasp the door handle with fingers
In this demo, the behavior requests different “pre-grasp” and “grasp” poses. In between, it opens the fingers (top). The result is
the fingers around the door handle (bottom).

Approved for Public Release; Distribution Unlimited.

197

Figure 93. The behavior closes the fingers around the door handle.
But not in a “fist”-like manner like in Demo #1. Rather, it requests a specific grasp posture from the template server.

Figure 94. The behavior executes the “turn CW” affordance to unlatch the door.
With a firm grasp of the door handle, the behavior turns the handle in a clockwise circular arc. It then pushes the
door as in Demo #1.

Approved for Public Release; Distribution Unlimited.

198

H.4.3. Demo #3: “Turn Valve”

This behavior is employing the strategy of turning the valve by inserting a “poke stick” attached to
ATLAS’ left wrist (see Figure 98). We used this strategy during Day 1 of the DRC Finals.

Figure 95. Atlas releases the door handle after unlatching.
This tactic requires that ATLAS releases its grasp on the door handle in between unlatching the door and pushing it wide open
with its arm.Once the behavior starts, it requests a door object template from the operator (right). The operator places and
aligns the door template, then sends its identifier to the behavior (left).

Approved for Public Release; Distribution Unlimited.

199

Figure 96. First, request an object template (purple valve) from the operator

Figure 97. Operator verifies relative position of “poke stick” and valve.

Once the end effector, the “poke stick” in this case, is in front of the valve, the behavior asks the operator to check whether it is
clear for insertion. If not, the operator has a chance to manually adjust the end-effector’s position and then let the behavior
proceed (the transition is “blocked”).

Figure 98. The behavior then executes the “insert” affordance of the valve template.

Approved for Public Release; Distribution Unlimited.

200

Figure 99. the behavior executes the “open” valve affordance

With the end effector inserted, the behavior executes the “open” valve affordance, which results in counter-clockwise rotation
around the valve’s axis (top). If the desired amount of rotation is not achieved by one execution of the affordance, the behavior
gives the option of repeating the turning step (bottom right). Due to the end effector (“poke stick”) configuration, valve
turning can be repeated ad infinitum. The kinematics do not impose any limits on rotation.

Approved for Public Release; Distribution Unlimited.

201

H.4.4. Demo #4: “Cut Hole in Wall” (emulated by drawing circle with marker)

We chose to emulate the “cut hole in wall” task by drawing a circle on a whiteboard by attaching a dry
erase marker at the tip of the cutting tool; however, the behavior did not have to be modified in any way
to account for this new task setup. This task is similar to the one presented in Appendix E but using the
advantages of the behavior engine.

Figure 100. Once the valve is open, the behavior returns the arm to ATLAS’ side.

Figure 101. Executing the behavior and failure recovery.

When the behavior tries to move the right hand to the template’s “pre-grasp” pose, planning fails (top right). The template had
been misplaced, so the behavior allows the operator to properly align the template (bottom left) and then repeat the planning
step with the same (or different) “pre-grasp” pose (bottom right).

Approved for Public Release; Distribution Unlimited.

202

Figure 102. Atlas grasping tool after operator intervention.
Once ATLAS’ hand moves to the “grasp” pose, the operator notices that the template’s height is incorrect (top). Again, the
behavior allows the operator to make adjustments to the template’s position (middle left) and then repeat the previous step
(middle right). As a result, the hand has a proper grasp around the cutting tool (bottom).

Approved for Public Release; Distribution Unlimited.

203

Figure 103. After grasping, the behavior “attaches” the object to the robot model in MoveIt!.

After grasping, the behavior “attaches” the object to the robot model in the MoveIt! Planning scene. It can then request a
motion plan for lifting the object that accounts for the object in terms of collisions.

Figure 104. Inputting the wall cutting template.

This task involves two objects (cutting tool and wall with circular pattern), therefore the behavior is now asking the operator to
provide the wall template.

Approved for Public Release; Distribution Unlimited.

204

Figure 105. The behavior then moves the cutting tool to a pose in front of the wall

The behavior then moves the cutting tool to a pose in front of the wall, specifically at the top of the
circular pattern. It then executes the wall template’s “insert” affordance. (Normally, the drill would
now penetrate the wall; the dry erase marker has to make contact with the whiteboard, but not push
against it too hard. This was not taken into account by the behavior.)

Approved for Public Release; Distribution Unlimited.

205

Figure 106. The behavior is executing the “cut_circle” affordance of the wall template.

Approved for Public Release; Distribution Unlimited.

206

Figure 107. After “cutting”, the behavior executes the negative “insert” affordance.

Once the hole has been cut (circle has been drawn), the behavior executes the “insert” affordance (but with a negative
displacement value) in order to retract the cutting tool (top right). The dry erase marker was pushed too hard against the
whiteboard and got misaligned (bottom). This contributed to the drawing of only an incomplete circle (top left).

Approved for Public Release; Distribution Unlimited.

207

I. BEHAVIOR SYNTHESIS SYSTEM
I.1. Behavior Synthesis from High-level User Specifications

The attached technical report elaborates on the application of our “activation-outcomes” LTL
specification paradigm to our ATLAS robot.

Approved for Public Release; Distribution Unlimited.

208

I.1.1. Technical Report

Approved for Public Release; Distribution Unlimited.

209

Approved for Public Release; Distribution Unlimited.

210

Approved for Public Release; Distribution Unlimited.

211

I.2. Experimental Demonstration of Behavior Synthesis

We first provide an overview of the lab setup and software configuration for the Behavior Synthesis
experiments. Then, we present three experimental demos. Two demonstrate synthesis “starting from
scratch”, whereas the third demonstrates the use of synthesis to modify an existing behavior “on-the-fly”,
i.e., while the initial behavior is being executed on ATLAS.

I.2.1. Experimental Setup

The lab setup for the Behavior Synthesis demonstration was as follows. ATLAS was positioned in front
of a table and a cutting tool was placed on the table. Calibration of the electric and hydraulic joints had
been performed in advance. A hardware issue with our ATLAS’ left hip prevented any demo that
involved walking or stepping, so all of the demos below only involve manipulation. Moreover, a single
operator was performing the synthesis, behavior execution, and perception tasks on a single OCS
computer.

Approved for Public Release; Distribution Unlimited.

212

In addition to the partial specification provided by the user (initial conditions and goals), the LTL
Compilation service takes into account the BDI control mode transition system as well as the
preconditions of the various actions. For the purposes of these demos, these are specified in configuration
files (see Figures Figure 108 and Figure 109). The configuration files were written a priori and did not
have to change in between runs or demos. The user does have to use the same keywords as the
configuration files when inputting the high-level specification (e.g. “stand”, “grasp_object”). Finally, a
separate configuration file served as a mapping between these keywords (the atomic propositions) and the
state primitives (see Appendix H). An excerpt is depicted in Figure 110.

Figure 108. BDI control mode constraints encoded as a transition system.

For each control mode (depicted in purple), the allowed control mode transitions are listed below (yellow).

Approved for Public Release; Distribution Unlimited.

213

Figure 109. Action preconditions.

The actions are depicted in purple and their preconditions are listed in yellow. The empty brackets (“[]”) denote that these
actions do not have any preconditions. Alternatively, they could have been omitted from this configuration file altogether.

Approved for Public Release; Distribution Unlimited.

214

Figure 110. Excerpt from the mapping between atomic propositions and FlexBE state primitives.

Approved for Public Release; Distribution Unlimited.

215

I.2.2. Demo #1: Behavior Synthesis with a single goal

Parameters:

● Initial control mode: STAND
● Goals: “grasp object”

Figure 111. The user is specifying the initial condition (STAND) and final goal (“grasp object”).

Approved for Public Release; Distribution Unlimited.

216

Figure 112. The resulting synthesized state machine includes the preconditions of grasping.

Figure 113. The synthesized state machine is ready to be executed.

Approved for Public Release; Distribution Unlimited.

217

I.2.3. Demo #2: Behavior Synthesis with multiple goals

Parameters:

● Initial control mode: STAND
● Goals: “look down”, “grasp object”

Figure 114. The final goal (“grasp object”) has been accomplished.

Figure 115. The user is specifying two goals (“look down” and “grasp object”).

Approved for Public Release; Distribution Unlimited.

218

Figure 116. The resulting state machine starts with “look down”, then proceeds as in Demo #1.

Figure 117. Atlas executing the “look down” behavior.

ATLAS’ neck was tilted upwards before behavior execution (top). As specified by the user (“look_down”), the synthesized
behavior first tilted the neck down, which brought the object of interest within the camera’s field of view (bottom).

Approved for Public Release; Distribution Unlimited.

219

I.2.4. Demo #3: Behavior Synthesis “on-the-fly” via Runtime Modification

Parameters:

● Initial behavior: “Pick up Tool”
● Initial control mode (when locked): MANIPULATE
● Goals: “footstep_execution”

Figure 118. Execution of the synthesized state machine proceeds as in Demo #1.

Approved for Public Release; Distribution Unlimited.

220

Figure 119. Changing behavior during execution
The initially executed behavior (top) involves picking up the cutting tool. Once execution reaches the transition to
MANIPULATE, the behavior is “locked” (middle and bottom).

Approved for Public Release; Distribution Unlimited.

221

Figure 120. With behavior execution locked, the user switches to the Editor window

With behavior execution locked, the user switches to the Editor window and specifies the initial condition (MANIPULATE)
and goal (“footstep execution”) of a new state machine.

Figure 121. The new, synthesized state machine (top) is connected to the initial behavior (bottom).

Specifically, the transition leading from MANIPULATE (the “pivot” state, depicted in orange) to “pick up object” now leads to
“back up”, the synthesized state machine.

Approved for Public Release; Distribution Unlimited.

222

Figure 122. The modified behavior is saved and the user resumes execution.
The user resumes execution by clicking on the “Go for it!” button. Note how the transition that originally led to “pick up
object” (top) now leads to “back up” (bottom).

Figure 123. Execution has resumed and the synthesized state machine (blue) is executed.

Approved for Public Release; Distribution Unlimited.

223

J. OPEN SOURCE SOFTWARE GUIDE

J.1. Installation

Team ViGIR's open source software is provided with a focus on accessibility for interested developers.
The complexity of comprehensive robot software can lead to deterrence of otherwise interested
researchers if the usage instructions are very complex and/or error prone. For this reason, we provide a
install and usage scripts that allow installing and running all software with few terminal commands. The
most recent installation instructions can always be found in the vigir_rosinstall package.

J.2. Components

In the following, we provide a brief overview of important ROS packages and the provided capabilities.

J.2.1. Infrastructure

vigir_rosinstall: Provides the installation scripts that allow a quick and convenient install of all Team
ViGIR software.

vigir_scripts: Provides helper scripts that support managing the Team ViGIR workspace

vigir_atlas_common: Provides the ATLAS robot model and related model data such as for hands and
Multisense sensor head.

J.2.2. Robot Control

vigir_ros_control: Provides generic interfaces and tools for humanoid robot control. The packages in this
repository are robot-agnostic and can be used as a toolbox to create controllers for humanoid robots.
Examples of provided capabilities are inverse dynamics (gravity compensating) controllers, friction
compensating controllers and trajectory smooting functionality.

vigir_atlas_ros_control: Provides ATLAS-specific robot control software. This repository contains the
main ATLAS controller as used by Team ViGIR and controllers for impedance control of ATLAS, as
well as tools related to low level control. This package is NOT opensourced due to proprietary BDI
information.

J.2.3. Hardware Drivers

The hardware driver for the Multisense SL sensor head is used as provided by Carnegie Robotics, thus no
dedicated repository is used for it.

Approved for Public Release; Distribution Unlimited.

224

vigir_pgr_camera: Provides a driver for the Blackfly cameras used as SA cameras on ATLAS. The
driver provides a region of interest of the wide angle lens rotated to be upright and without black borders.

vigir_grasp_control: Provides an interface to allow trajectories and actions to be sent to the various hand
types the robot supports.

vigir_manipulation_controller: Provides a controller for handling and interacting with various object
templates. This package also manages the various types of hands themselves.

J.2.4. Perception

vigir_wide_angle_image_proc: Provides a ROS nodelet for rectifying high distortion fisheye camera
images such as those provided by the ATLAS SA cameras.

vigir_perception: Provides major perception components. This includes tools for scan compression and
transmission over constrained connections, generation of meshes from depth image and point cloud data
as well as the main worldmodel server node.

J.2.5. Motion Planning

vigir_manipulation_planning: Provides main motion planning capabilities. this includes custom
move_group components, the LIDAR octomap updater plugin and the affordance template system
described in [Section Manipulation]

J.2.6. Behavior Control

flexbe_behvaior_engine: Contains the Flexbe Behavior Engine (FlexBE) ROS Packages.

flexbe_chrome_app: HTML/CCS/Javascript source code of the FlexBE GUI, a Google Chrome app.

Approved for Public Release; Distribution Unlimited.

225

vigir_behaviors: Team and robot specific part of FlexBE such as additional states for interfacing with
Team ViGIR software. It also contains all of the implemented behaviors.

vigir_behavior_synthesis: ROS packages that enable the automatic synthesis of executable state
machines.

ReSpeC: Reactive (LTL) Specification Construction kit. A ROS-independent Python framework used by
vigir_behavior_synthesis.

J.2.7. Operator Control Station

vigir_ocs_common: Provides main operator control station capabilities. The three main widgets are
contained in this repository, along with the various specialized task-specific user interface elements.

vigir_rviz: Provides a fork of the rviz visualization tool commonly used with ROS. The intention is to
merge modifications by Team ViGIR upstream into the ROS version and remove the vigir_rviz repository
afterwards.

Approved for Public Release; Distribution Unlimited.

226

This page intentionally blank.

Approved for Public Release; Distribution Unlimited.

227

K. LIST OF SYMBOLS, ABBREVIATIONS, AND
ACRONYMS

Application Programming Interface (API).. 6
Boston Dynamics, Inc (BDI) .. 1
Center for Human-Computer Interaction (CHCI) ... 4
DARPA Robotics Challenge (DRC). .. 1
Defense Advanced Research Projects Agency (DARPA) .. 1
Flexible Behavior Engine (FlexBE) .. 29
Flexible Behavioral Executive (FlexBE) .. 22
Government Furnished equipment (GFE) ... 3
Institute for Automatic Control (IRT) ... 5
Open Source Robotics Foundation (OSRF) .. 6
Operator Control Station (OCS).. 1, 19
Point Cloud Library (PCL).. 6
Robot Operating System (ROS) .. 6
User Interface (UI) .. 20
Virtual Robotics Challenge (VRC) ... 1

Approved for Public Release; Distribution Unlimited.

