Comparison of a Structured-LES and an Unstructured-DES Code for Predicting Combustion Instabilities in a Longitudinal Mode Rocket

Matt Harvazinski, Doug Talley, Venke Sankaran

Air Force Research Laboratory (AFMC)
AFRL/RQRC
10 E. Saturn Blvd.
Edwards AFB, CA 93524-7680

Air Force Research Laboratory (AFMC)
AFRL/RQR
5 Pollux Drive.
Edwards AFB CA 93524-7048

Distribution A: Approved for Public Release; Distribution Unlimited

10. SPONSOR/MONITOR'S ACRONYM(S)
AFRL-RQ-ED-VG-2014-376

11. SPONSOR/MONITOR'S REPORT NUMBER(S)
AFRL-RQ-ED-VG-2014-376

12. DISTRIBUTION / AVAILABILITY STATEMENT
Briefing Charts presented at AIAA 2015 SciTech, Kissimmee, FL, 8 Jan 2015. PA#15023

14. ABSTRACT
N/A

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
a. REPORT Unclassified
b. ABSTRACT Unclassified
c. THIS PAGE Unclassified

17. LIMITATION OF ABSTRACT SAR

18. NUMBER OF PAGES 28

19a. NAME OF RESPONSIBLE PERSON Doug Talley

19b. TELEPHONE NO (include area code) 661-275-6174
Comparison of a Structured-LES and an Unstructured-DES Code for Predicting Combustion Instabilities in a Longitudinal Mode Rocket

Matt Harvazinski, Doug Tally, & Venke Sankaran
Air Force Research Laboratory
Edwards AFB, CA

Distribution A: approved for public release; distribution unlimited.
Outline

• Introduction
• Results – Unstable operating point
• Results – Stable operating point
• Summary and Conclusions
Combustion instability is an organized, oscillatory motion in a combustion chamber sustained by combustion.

Irreparable damage can occur in less than 1 second.

Cl caused a four year delay in the development of the F-1 engine used in the Apollo program
> 2000 full scale tests
> $400 million for propellants alone (2010 prices)

“Combustion instabilities have been observed in almost every engine development effort, including even the most recent development programs”
Longitudinal Experiment

Continuously Varying Resonance Chamber

Oxidizer: decomposed hydrogen peroxide
Fuel: gaseous methane

Yu et al. 2013

Distribution A: approved for public release; distribution unlimited.
Experimental Results

Unsteady pressure for a translating test

PSD power for the first mode

Unstable Marginally Stable

Harvazinski et al. 2013

Distribution A: approved for public release; distribution unlimited.
Instability Mechanism

Flow Disruption

Heat Release Moves Downstream

High Pressure Wave

Unburnt Accumulated Fuel

Combustion Reinitiated from Returning Post Wave

Unstable: Cyclic Fuel Disruption and Heat Release

Marginally Stable: Continuous Heat Release

Distribution A: approved for public release; distribution unlimited.
Complementary Codes

Exercised Code Options:

<table>
<thead>
<tr>
<th>LESLIE</th>
<th>GEMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structured</td>
<td>Unstructured</td>
</tr>
<tr>
<td>Explicit MacCormack</td>
<td>Implicit Dual-Time</td>
</tr>
<tr>
<td>LES</td>
<td>DES</td>
</tr>
</tbody>
</table>

Laminar Combustion Closure

Second Order Accurate in Time & Space

- Choked inlet slots have been ignored
- 2-Step reduced mechanism
- LES: 7.3/7.6M
- DES: 3.6/4M

![Diagram showing Mass Flow BC and Adiabatic Walls](image)

Supersonic Outflow

Distribution A: approved for public release; distribution unlimited.
Modified Wilcox k-ω

\[
\frac{\partial \rho k}{\partial t} + \frac{\partial \rho \tilde{u}_j k}{\partial x_j} = \tilde{\tau}_{ij} \frac{\partial \tilde{u}_i}{\partial x_j} - \beta^* \rho \omega k + \frac{\partial}{\partial x_j} \left[\left(\mu + \sigma_k \rho k \right) \frac{\partial k}{\partial x_j} \right]
\]

\[
\frac{\partial \rho \omega}{\partial t} + \frac{\partial \rho \tilde{u}_j \omega}{\partial x_j} = \frac{\gamma \omega}{k} \tilde{\tau}_{ij} \frac{\partial \tilde{u}_j}{\partial x_j} - \beta \rho \omega^2 + \frac{\partial}{\partial x_j} \left[\left(\mu + \sigma_\omega \rho k \right) \frac{\partial \omega}{\partial x_j} \right]
\]

The eddy viscosity is reduced by modifying the turbulent length scale

\[
L_T = \frac{\sqrt{k}}{\beta^* \omega}
\]

\[
\beta^* k \omega = \frac{k^{3/2}}{L_T^*}
\]

\[
L_T^* = \min (L_T, C_{\text{DES}} \Delta)
\]
LES Turbulence Model

Solve a transport equation of the sub-grid kinetic energy

\[
\frac{\partial \rho k^{\text{sgs}}}{\partial t} + \frac{\partial \rho \tilde{u}_i k^{\text{sgs}}}{\partial x_i} = -\tau_{ij}^{\text{sgs}} \frac{\partial \tilde{u}_i}{\partial x_j} - C_{eP} \left(\frac{(k^{\text{sgs}})^{3/2}}{\Delta} \right) + \frac{\partial}{\partial x_i} \left[\left(\frac{\bar{\rho} \nu T}{\sigma_k} + \mu \right) \frac{\partial k^{\text{sgs}}}{\partial x_i} + \frac{\bar{\rho} \nu T R}{Pr_T} \frac{\partial \tilde{T}}{\partial x_i} \right]
\]

Eddy viscosity is found using a constant model

\[
\nu_T = C_\nu \Delta \sqrt{k^{\text{sgs}}}
\]

Standard gradient diffusion hypothesis closures

\[
\tau_{ij}^{\text{sgs}} = \bar{\rho} \nu_T \left(\frac{\partial \tilde{u}_i}{\partial x_j} + \frac{\partial \tilde{u}_j}{\partial x_i} - \frac{2}{3} \frac{\partial \tilde{u}_k}{\partial x_k} \right) + \frac{2}{3} k^{\text{sgs}} \delta_{ij}
\]

Distribution A: approved for public release; distribution unlimited.
Unstable Operating Point

DES

Mean Pressure – 1.5 MPa

LES

Mean Pressure – 1.7 MPa

Distribution A: approved for public release; distribution unlimited.
Fluctuating Pressure

Comparable amplitude and frequency

DES reaches a limit cycle faster

Distribution A: approved for public release; distribution unlimited.
The phase difference between the head end and the downstream end is captured.
Integrated PSD Data

<table>
<thead>
<tr>
<th>Mode</th>
<th>Experiment</th>
<th>DES</th>
<th>LES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1324 Hz</td>
<td>387.15 kPa</td>
<td>1500 Hz</td>
</tr>
<tr>
<td>2</td>
<td>2655 Hz</td>
<td>89.29 kPa</td>
<td>3050 Hz</td>
</tr>
<tr>
<td>3</td>
<td>3979 Hz</td>
<td>46.37 kPa</td>
<td>4550 Hz</td>
</tr>
<tr>
<td>4</td>
<td>7940 Hz</td>
<td>41.97 kPa</td>
<td>5700 Hz</td>
</tr>
<tr>
<td>Σ</td>
<td>564.78 kPa</td>
<td>471.533 kPa</td>
<td>589.154 kPa</td>
</tr>
</tbody>
</table>

Similar frequency predictions, both high relative to the experiment.

Mode 4 is under predicted for both codes.

Higher amplitude for LES for modes 1-3.

Distribution A: approved for public release; distribution unlimited.
Unsteady Flowfield – High Pressure

Distribution A: approved for public release; distribution unlimited.
Unsteady Flowfield – Low Pressure

DES

LES

Distribution A: approved for public release; distribution unlimited.
Heat Release Cycle – Part II

Distribution A: approved for public release; distribution unlimited.
Fuel Cut Off Event

Distribution A: approved for public release; distribution unlimited.
Reignition Event

Qualitative agreement with reignition behavior

Accumulated methane in the shear layer in both cases

Distribution A: approved for public release; distribution unlimited.
Marginally Stable Operating Point

DES

LES

Mean Pressure – 1.5 MPa

Mean Pressure – 1.7 MPa

Distribution A: approved for public release; distribution unlimited.
Fluctuating Pressure

Comparable amplitude and frequency

LES shows more variability

Distribution A: approved for public release; distribution unlimited.
Integrated PSD Data

<table>
<thead>
<tr>
<th>Mode</th>
<th>Experiment</th>
<th>DES</th>
<th>LES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>f, Hz</td>
<td>p'_{ptp}, kPa</td>
<td>f, Hz</td>
</tr>
<tr>
<td>1</td>
<td>1379</td>
<td>121.17</td>
<td>1600</td>
</tr>
<tr>
<td>2</td>
<td>3881</td>
<td>5.86</td>
<td>3250</td>
</tr>
<tr>
<td>3</td>
<td>6475</td>
<td>16.03</td>
<td>4050</td>
</tr>
<tr>
<td>Σ</td>
<td></td>
<td>143.06</td>
<td></td>
</tr>
</tbody>
</table>

- **LES Over predicts total amplitude**
- **Both cases severely over predict the second mode amplitude**
- **Frequency differences**

Distribution A: approved for public release; distribution unlimited.
Unsteady Flowfield – High Pressure

Distribution A: approved for public release; distribution unlimited.
Unsteady Flowfield – Low Pressure

Distribution A: approved for public release; distribution unlimited.
Both LES and DES are capable of simulating self-excited combustion instability.

Agreement between the simulations and experiments for the unstable case was good.

Cyclic heat release was captured.

LES had a delayed reignition, likely responsible for the higher amplitudes.

Cyclic heat release was captured along with reignition event.

Some differences in predictions are due to differences in the grids.

The marginally stable case proved more difficult.

No apparent winner, both approaches have strengths and weaknesses.