1. REPORT DATE (DD-MM-YYYY)	2. REPORT TYPE	3. DATES COVERED (From - To)
New Reprint | - | -

4. TITLE AND SUBTITLE
Synthesizing aluminum particles towards controlling electrostatic discharge ignition sensitivity

5a. CONTRACT NUMBER
W911NF-11-1-0439
5b. GRANT NUMBER
-
5c. PROGRAM ELEMENT NUMBER
611102
5d. PROJECT NUMBER
-
5e. TASK NUMBER
-
5f. WORK UNIT NUMBER
-

6. AUTHORS
Eric S. Collins, Jeffery P. Gesner, Michelle L. Pantoya, Michael A. Daniels

7. PERFORMING ORGANIZATION NAMES AND ADDRESSES
Texas Technical University
Box 41035
349 Admin Bldg
Lubbock, TX 79409-1035

8. PERFORMING ORGANIZATION REPORT NUMBER
-

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS (ES)
U.S. Army Research Office
P.O. Box 12211
Research Triangle Park, NC 27709-2211

10. SPONSOR/MONITOR’S ACRONYM(S)
ARO
58857-EG.43

11. SPONSOR/MONITOR’S REPORT NUMBER(S)
-

12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES
The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision, unless so designated by other documentation.

14. ABSTRACT
Aluminum particles were synthesized with shell thicknesses ranging from 2.7 to 8.3 nm and a constant diameter of 95 nm. These fuel particles were combined with molybdenum trioxide particles and the electrostatic discharge (ESD) sensitivity of the mixture was measured. Results show ignition delay increased as the alumina shell thickness increased. These results correlated with electrical resistivity measurements of the mixture which increased with alumina concentration. A model was developed using COMSOL for ignition of a single Al particle. The ignition delay in the model was consistent with the experimental results suggesting that the primary ESD ignition

15. SUBJECT TERMS
ignition, electrostatic discharge, aluminum, aluminum ignition, ESD safety

16. SECURITY CLASSIFICATION OF:
a. REPORT | b. ABSTRACT | c. THIS PAGE
UU | UU | UU

17. LIMITATION OF ABSTRACT
UU

18. NUMBER OF PAGES
15

19a. NAME OF RESPONSIBLE PERSON
Michelle Pantoya
19b. TELEPHONE NUMBER
806-742-3563

Standard Form 298 (Rev 8/98)
Prescribed by ANSI Std. Z39.18
Synthesizing aluminum particles towards controlling electrostatic discharge ignition sensitivity

ABSTRACT
Aluminum particles were synthesized with shell thicknesses ranging from 2.7 to 8.3nm and a constant diameter of 95nm. These fuel particles were combined with molybdenum trioxide particles and the electrostatic discharge (ESD) sensitivity of the mixture was measured. Results show ignition delay increased as the alumina shell thickness increased. These results correlated with electrical resistivity measurements of the mixture which increased with alumina concentration. A model was developed using COMSOL for ignition of a single Al particle. The ignition delay in the model was consistent with the experimental results suggesting that the primary ESD ignition mechanism is joule heating.
Synthesizing aluminum particles towards contro...

Block 13: Supplementary Note
© 2014. Published in Journal of Electrostatics, Vol. Ed. 0 72, (1) (2014), (, (1). DoD Components reserve a royalty-free, nonexclusive and irrevocable right to reproduce, publish, or otherwise use the work for Federal purposes, and to authorize others to do so (DODGARS §32.36). The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision, unless so designated by other documentation.

Approved for public release; distribution is unlimited.
Synthesizing aluminum particles towards controlling electrostatic discharge ignition sensitivity

Eric S. Collins a, Jeffery P. Gesner a, Michelle L. Pantoya a,*, Michael A. Daniels b

aDepartment of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409, USA
bIdaho National Laboratory, PO Box 1625, Idaho Falls, ID 83415, USA

ABSTRACT

Aluminum particles were synthesized with shell thicknesses ranging from 2.7 to 8.3 nm and a constant diameter of 95 nm. These fuel particles were combined with molybdenum trioxide particles and the electrostatic discharge (ESD) sensitivity of the mixture was measured. Results show ignition delay increased as the alumina shell thickness increased. These results correlated with electrical resistivity measurements of the mixture which increased with alumina concentration. A model was developed using COMSOL for ignition of a single Al particle. The ignition delay in the model was consistent with the experimental results suggesting that the primary ESD ignition mechanism is joule heating.

1. Introduction

Composite energetic materials (CEM) are defined here as mixtures of aluminum (Al) fuel and metal oxide particles, that ignite to produce exothermic chemical energy. With the advent of nanotechnology, nano Al fuel particles have shown heightened reactivity compared to their micron scale counterparts [1–3]. Safely handling these powder mixtures requires a thorough understanding of their electrostatic ignition sensitivity yet very few studies on electrostatic discharge (ESD) ignition have been reported in the literature [4–6].

As a first step, we examined electrostatic discharge (ESD) ignition sensitivity of nine different CEM formulations, limiting the study to only micron Al inclusion [6]. The results showed that as materials with a decreased conductivity are more readily ignited by ESD [7]. In contrast, Foley et al.’s [8] study on Al–CuO showed that increasing electrical conductivity using additives actually decreased the minimum ignition energy of the mixture. A striking difference in these two studies is the way in which the electrical stimuli were introduced to the sample. For Glor [7] electrostatic charge accumulated within the sample, while in Foley et al. [8] the electrostatic charge was discharged into the sample. This paradox poses new research questions that have potential for impactful development in this field.

As a first step, we examined electrostatic discharge (ESD) ignition sensitivity of nine different CEM formulations, limiting the study to only micron Al inclusion [6]. The results showed that as the highest setting on the ESD apparatus (i.e., which corresponded to 100 mJ), only Al–CuO ignited and its corresponding electrical conductivity was measured to be two orders of magnitude above the next mixture, Al–MoO3 which did not ignite (i.e., 1246 compared with 40 nS/m, respectively). This was the first study to correlate electrical conductivity to ESD ignition sensitivity in energetic materials [6].

The influence of alumina in ESD ignition sensitivity was further studied in Ref. [9]. Specifically, Weir et al. [9] examined the electrical conductance and ESD ignition sensitivity of aluminum and molybdenum trioxide (Al + MoO3) with varying Al particle size ranging from nano to micron scales. The results showed that as
particle diameter decreased (and alumina concentration increased) the electrical conductance increased by 7 orders of magnitude and minimum ignition energy required for ESD ignition reduced accordingly. On the other hand, discretely added alumina particles significantly reduce the mixtures electrical conductivity, desensitizing the mixture to ESD ignition. This study revealed that the alumina shell may play a significant role in spurring ignition in Al + MoO₃ by accumulating charge and acting as a capacitive network, in contrast to discretely added alumina particles.

The objective of this work is to understand how the electrical conductivity and ESD ignition sensitivity of Al + MoO₃ varies as a function of the thickness of the alumina passivation shell sur rounding the Al particles. To accomplish this objective, nano scale Al particles were synthesized with varying shell thicknesses and combined with nano scale MoO₃ particles. The mixture was further studied for electrical conductivity measurements and ESD ignition sensitivity quantified in terms of ignition delay time.

2. Experimental

The Al particles were supplied by Sigma Aldrich and had an average particle diameter of 95 nm. The MoO₃ particles were purchased from Nanostructured and Amorphous Materials Inc. and had an average platelet size of 380 nm. The Al particles were oxidized in an isothermal oven to increase the thickness of the Al₂O₃ shell; thereby synthesizing particles with controlled shell thicknesses. It is noted that the overall particle diameter does not change, such that the shell thickness grows at the interface of aluminum and alumina and as alumina concentration increases, aluminum correspondingly decreases.

2.1. Material synthesis and preparation

A thermogravimetric analyzer (TGA), model STA 409 PC by Netzsch, was used to observe the weight gain of Al particles as the Al oxidized to Al₂O₃. During oxidation in the TGA, 11.48 mg of Al powder was held in a platinum crucible while the temperature increased at a rate of 40 °C per minute in a controlled environment of ultra high purity oxygen. The oven continued to heat until 480 °C, a temperature that provided reasonable reaction rates where oxidation and shell growth was observed. The Al sample remained in the isothermal environment for 180 min as the mass was monitored. The precision of the change in mass of the sample in the TGA had a variance of 0.001 mg. This data was used to control oxide shell growth on larger quantities of aluminum powder.

A Neytech Qex oven was used to oxidize Al particles in an isothermal oxygen environment. Ultra high purity oxygen was purged in the oven chamber at a flow rate of 180 cm³/min for 10 min. This procedure ensured that the volume was flushed five times and had a statistical purity of 99% of oxygen in the oven chamber. The Qex oven was set to have a temperature ramp rate of 200 °C/min and a temperature of 480 °C. The settings were programmed in the oven for automated control and repeatability between oxidation procedures. Six samples of 0.9 g of Al powder were prepared for each oxidation cycle. Once the chamber was purged and the temperature of 480 °C was reached, the Al powder remained in the oven for various durations ranging from 8 to 150 min. This variable oxidation time provided different alumina shell thicknesses.

A transmission electron microscope (TEM), model Jeol JEM 2100, was used to examine the Al particles and measure the thickness of the alumina shell with Gatan image analysis software to measure the thickness of the alumina shell. Thickness measurements were taken from at least three different locations on several Al particles. Fig. 1 shows three representative images of the Al particles taken from the TEM.

The percent of active Al by weight (Y) was calculated using Eq. (1).

$$\frac{R^3}{Y} = \frac{\rho_m}{\rho_{mo}} \left(\frac{1}{Y} \right) + 1 \quad (1)$$

where R is the average particle radius, δ is the Al₂O₃ shell thickness, and ρ is the density of the metal (m) and metal oxide (mo). The average shell thickness and the percent of active Al content are listed in Table 1 for all treated Al powders.

The Al + MoO₃ mixtures were prepared to an equivalence ratio of 1.0, corresponding to stoichiometric conditions. Details of this mixing procedure are reported in Ref. [10].

2.2. Experimental setup

An acrylic channel was loaded with 58 mg of the powder, which was pressed into a pellet within the channel. The pellet occupied a volume of 31 mm² and had a bulk density of 1.89 g/cm³. The bulk density of the pellet was calculated to be 50% of the theoretical maximum density (TMD). Two copper electrodes were positioned to cover the openings in the channel such that the tips of the electrodes were in contact with the surface of the pellet as shown in Fig. 2. A voltage potential was applied to the electrodes and when greater than the dielectric strength of the pellet material, a spark was generated which ignited the pellet. The voltage source used in these experiments was an electrostatic discharge (ESD) tester that is a human body model developed by Franklin Applied Physics [6]. A human body model transfers charge from a capacitor (human) to another object. The range of voltage output is 1–10 kV which is stored in a 0.002 μF capacitor producing up to 100 mJ of energy.

A current monitor, model 2878 from Pearson Electronics, was used to measure the electric charge released by the ESD tester. A

Table 1

<table>
<thead>
<tr>
<th>Oxidation time (min)</th>
<th>Al₂O₃ thickness (nm)</th>
<th>Wt % active Al</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.7</td>
<td>78.1</td>
</tr>
<tr>
<td>8</td>
<td>3.3</td>
<td>73.9</td>
</tr>
<tr>
<td>15</td>
<td>4.5</td>
<td>66.3</td>
</tr>
<tr>
<td>30</td>
<td>4.6</td>
<td>65.7</td>
</tr>
<tr>
<td>60</td>
<td>5.7</td>
<td>59.4</td>
</tr>
<tr>
<td>90</td>
<td>6.7</td>
<td>54.2</td>
</tr>
<tr>
<td>150</td>
<td>8.3</td>
<td>46.7</td>
</tr>
</tbody>
</table>
high voltage probe, model P6015A from Tektronix, reduced the voltage 1000 times, enabling the use of oscilloscopes to record the voltage output. Ignition delay time was measured as the length of time between the spark and the instant that luminosity produced a slope of ten, which was the maximum slope observed for all the tests, and detected using a photo detector; model DET210 from Thorlabs (see Fig. 3). The ignition energy was determined from the simultaneous current and voltage measurements.

3. Results

3.1. Ignition delay

As the voltage potential between the two electrodes increased beyond the electric field strength of the medium, a spark bridged the electrode gap and ignited the CEM. Fig. 4 is a good representation of the voltage, current, and luminosity for all tests. As the spark bridged the electrode gap, the voltage decreased and the current increased as shown in Fig. 4a. The length of time between the spark and the instant that luminosity produced a slope of ten (Fig. 4b) (i.e., corresponding to the maximum slope observed for all the tests) was recorded as the ignition delay for the reaction.

The ignition time delay tests were conducted for CEM mixtures containing each batch of oxidized Al powder identified in Table 1 combined with MoO3. Three samples were tested for each Al powder with varied shell thickness and the ignition time delay is shown in Fig. 5.

All CEMs were deemed ESD ignition sensitive because all ignited below the maximum energy threshold of 100 mJ supplied by the ESD apparatus. The thinner sheled Al powders experienced the fastest ignition. Ignition delay increased as the Al2O3 shell thickness increased. The voltage required to ignite the powders also increased as the Al2O3 shell thickness increased (Fig. 6).

3.2. Joule heating of an aluminum particle

The joule heating of a single Al particle was modeled using COMSOL Multiphysics. The equation used for calculating Joule heating is the time dependent energy equation for incompressible flow as shown in Eq. (2).

\[\rho C_p \frac{\partial T}{\partial t} + \rho C_p u \cdot \nabla T = \nabla \cdot (k \nabla T) + J \cdot E \quad (2) \]

In Eq. (2), \(\rho \) is the density, \(C_p \) is the specific heat, \(T \) is temperature, \(t \) is time, \(u \) is a velocity vector, \(J \) is the current density, and \(E \) is the electric field strength. A single Al particle was modeled and assumed to have a contact point with another particle on its top, bottom, front, back, left, and right surfaces. A current of 1 Amp entered the Al particle at one contact point while the rest of the contact points were held at ground potential. In the model, the initial temperature of the Al particle was 20°C and an initial electric potential was 0 V. Because convective cooling was neglected in the model due to the fast ignition of the particle, the boundary was insulated thermally. The spherical Al particle was assumed to have a solid Al core with an axisymmetric temperature distribution. The model also assumes homogeneous metals within the particle when in reality, the metals are not homogeneous and contain impurities and cracks.

The model results for transient heating of an Al particle with an \(\text{Al}_2\text{O}_3 \) shell thickness of 2.7 nm are shown in Fig. 7. As current travels through a single particle, temperature quickly increased with time. Since the melting temperatures of the fuel and oxide are similar, 933 and 1068 K respectively, ignition of the particle was assumed to occur at the melting temperature of Al [11] and the model predicts ignition times for these conditions to range from 3.0 to 5.0 ns (Fig. 7). Note that the modeled ignition time is significantly less than the experimentally measured ignition time (Fig. 5). The main reason for this difference is that the model predicts ignition delay for a single particle whereas in the experiments, the delay is measured for a macroscopic collection of particles. The heat transfer among neighboring particles within the random media of the reactant sample is not accounted for in this model and beyond the scope of this study. But it is noted, that for considering thermal diffusion only through a single aluminum particle, the characteristic evaporation time assuming a continuum droplet evaporation model was calculated to be on the order of \(4.6 \times 10^5 \) s where \(d \) is the aluminum particle diameter [12]. In this model applied to the particles studied here, the characteristic thermal evaporation time is approximately 50 ns, and greater than the joule heating times determined here. Instead, the trend in behavior as shell thickness is varied is of interest and can be correlated to ignition delay times. Fig. 8 shows the ignition delay of the Al particles for all the \(\text{Al}_2\text{O}_3 \) shell thicknesses predicted by the COMSOL model.

The model shows that the ignition delay increases as the shell thickness increases. This result is consistent with the measured delay (Fig. 5) and implies that the increase in shell thickness retards thermal energy build-up within a single particle such that ignition delay times are extended. This result implies that joule heating is an Al ignition mechanism for electric stimuli. The electrical conductivity was also measured using a high resistance low conductance meter and a two point probe method [6]. Fig. 9 shows that electrical conductivity decreases as shell thickness increases.

As the percent of \(\text{Al}_2\text{O}_3 \) increases, the electrical conductivity decreases. Also, as the percent of \(\text{Al}_2\text{O}_3 \) content increases, the electrical resistance increases and the current decreases, with a constant voltage. With more resistance impeding the flow of electric energy, joule heating of the aluminum core may be delayed thereby requiring more time to reach Al melting temperature and ignition.

4. Discussion

These results show that all Al + \(\text{MoO}_3 \) samples were ESD ignition sensitive (Fig. 5) but their sensitivity is controlled by the shell thickness surrounding the Al particle. Increasing shell thickness from 2.7 to 8.3 nm increases the ignition delay time up to 4 ms and requires up to 1000 V more electric input to achieve ignition (Figs. 5 and 6). Modeling the heat transfer through a single Al particle subjected to similar electric input conditions reveals a comparable
trend observed experimentally: increasing shell thickness leads to increasing ignition delay time and decreasing electrical conductivity (Figs. 8 and 9). Alumina retards energy propagation in the core–shell structure of the aluminum–alumina particle and this is represented by the COMSOL model (Figs. 7 and 8). This finding also suggests that joule heating is the primary mechanism of ignition for ESD stimuli.

5. Conclusion

Aluminum particles were synthesized with varying oxide shell thicknesses that ranged between 2.7 nm and 8.3 nm. Electrostatic discharge was used to ignite Al + MoO₃ and the ignition delay time was measured. The physics were also modeled using COMSOL Multiphysics software to approximate the temperature increase of an Al particle due to joule heating. The measured and modeled results both show similar trends in that the ignition delay increased as the Al₂O₃ shell thickness increased. The increase in ignition delay time suggests that the ESD ignition mechanism is joule heating because the model calculates transient temperatures based on transforming electrical stimuli into thermal energy. Alumina retards energy buildup within the particle such that thicker alumina shells result in longer ignition delay times. The results reveal that the current flow through the particle is a controlling parameter for ignition and a thicker shell increases resistance and therefore lowers the amount of current flowing through the aluminum core.

Acknowledgments

The authors M. Pantoya and E. Collins are grateful for support from the Army Research Office contract number W911NF 11 1 0439 and encouragement from our program manager, Dr. Ralph Anthenien. Idaho National Laboratory is also gratefully acknowledged for supporting this collaborative work with internal funds via the LDRD program.

References