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ABSTRACT 

We report on the characterization of a composite material to mimic the mechanical response of 
human cranial bones.  Mimicry of the mechanical response of bone requires a material that can be 
formed into complex architectures while possessing physical and mechanical characteristics similar to 
that of bone.   We are utilizing additive manufacturing, more generally known as 3-D printing, as a 
suitable process to reproduce the curvature, variation in thickness, and gradient in porosity characteristic 
of the human cranial bone.  The simulant material consists of a photocurable polymer with a high loading 
of ceramic particulate reinforcement that is compatible with stereolithographic (SLA) additive 
manufacturing.  Specimens produced by SLA printing were characterized under conditions of quasi-
static tensile loading and demonstrated properties that fell within the experimental range of values 
measured for the human cranial cortical bone as previously reported in the literature.  The simulant 
material demonstrated a tensile modulus of elasticity of 10.3±0.5 GPa compared to the cranial cortical 
bone property of 12.8±1.6 GPa, while the tensile strength was 78.0±9.7 GPa compared to 72.0±13.8 
GPa.  Tissue surrogates such as this enable bio-fidelic experimentation and evaluation of protection 
schemes without the variability and difficulties typically associated with using real human tissue.  

  
 
1 INTRODUCTION 

Prevention of head injury is receiving growing attention in the sporting arena as well as the battlefield 
due to an increase in the frequency of diagnosed concussion and traumatic brain injury (TBI) events.  
The United States Department of Defence reports that between 2000 and 2014 there were over 313,000 
Service members diagnosed with TBI, of those 83% were diagnosed as concussions, or mild TBI events 
[1].  Helmets and head protection devices are under development to reduce the frequency and severity 
of TBI injury.  Bio-fidelic representation of the human head is important for assessment of these 
protective measures.  Anthropomorphic test devices (ATDs), such as those used in the automotive 
industry for assessment of vehicle crashworthiness, provide a representative shape and mass of the 
human head on which devices can be tested.  However, ATD headforms are typically constructed of 
metal covered in an elastomer skin for durability and as a result they do not flex, fracture or transmit 
stress waves the same as a human cranium.  Alternatively, Post Mortem Human Surrogates (PMHS) 
may be used to assess protective devices, although the tissue frequently comes from older donors and 
may not represent the mechanical characteristics of the general population, particularly that of the 
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soldier.  Moreover there can be large variations in the mechanical response of the tissue depending on 
the age and health of the donor.   Testing with PMHS also requires careful handling and preservation 
techniques after extensive planning to ensure availability at the time of testing. 

     
Developing a synthetic material to mimic the mechanical response of the human cranial bone 

alleviates a number of these concerns.  The response of the surrogate material can be tailored to represent 
a particular age population and the geometry of the surrogate can further be tailored to a specific 
anthropometry.  Developments in medical imaging technology allow us to obtain detailed, three-
dimensional renderings of the human cranium specific to individuals which may be used for 
representation of a general population.  These file formats can be sent directly to additive manufacturing 
machines, generically referred to as 3-D printers, to replicate a human skull.  In this work we utilize 
additive manufacturing to process a photocurable polymer and report on the tensile properties of the 
material and correlation to human cranial bone.  
 
2 HUMAN CRANIAL BONE 

Human bone is a complex hierarchical composite material with variable mechanical properties 
throughout the different regions of the body.  The basic constituents of human bone remain the same 
however: collagen fibers, hydroxyapatite mineral, and water.  Each of these constituents are present in 
the hard outer cortical layer as well as the porous inner trabecular region of the bones.  Long bones such 
as the femur exhibit increased strength and stiffness along the primary loading direction, whereas cranial 
bones are less stiff and exhibit transverse isotropy in directions tangent to the outer layer due to the 
absence of a predominant loading direction on the cranium [2].     

 
The body of literature characterizing cranial bone properties is much smaller compared to that of 

long bones and properties can vary significantly for reasons mentioned previously.   An extensive  study 
of the tensile properties of the parietal, temporal and frontal bones was performed by Wood [3, 4].  The 
study utilized specimens from the craniums of 30 subjects ranging from age 25 to 95 years with an 
average age of 54 years.  The study characterized the mechanical response of the outer cortical regions 
(tables) independent of the inner trabecular (diploë) regions at strain rates ranging from 0.005 to 150 
sec-1.  The cortical cranial bone data from Wood serves as a basis for comparison to the surrogate 
material under evaluation in this work.   
 

2 EXPERIMENTAL 

 
2.1 Materials and Fabrication 

Stereolithography (SLA) was chosen as a means to manufacture the specimen due to its ability to 
create high resolution parts.  A schematic representation of the SLA process is given in Figure 1.  A 
typical SLA machine cyclically raises and lowers a platform on which the parts are fabricated in a bath 
of photo-sensitive liquid resin.  With each cycle, a blade is passed across the platform to create a uniform 
layer of resin.  The resin layer is exposed to a ultra-violet laser that traces a cross-section of the desired 
geometry, thereby selectively curing the resin into a specific pattern.  The process is repeated as the 
platform is lowered into the resin and the next layer is cured on top of the previous layer.  A support 
structure, visible in Figure 2, is typically first built on the platform and serves as the foundation from 
which the part is built.   
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Figure 1.  Illustration of the SLA additive manufacturing process. 

 
The SLA machine used in this study to manufacture specimens was a Viper Si (3D Systems, Rock Hill, 
South Carolina).  In ongoing work, we are evaluating the ability of additive manufacturing such as SLA 
to reproduce the curvature, variation in layer thickness, and gradient in porosity characteristic of bone 
[5].   
 

        
 

Figure 2.  Example parts fabricated by the SLA machine. 
 

A photocurable polymer with a high loading of ceramic particulate reinforcement was chosen for 
its similar density and anticipated mechanical properties relative to the human cranial cortical bone [5].  
Furthermore it was chosen for its compatibility with the SLA manufacturing process.   Tensile testing 
specimens were printed in a dumbbell geometry in accordance with ASTM D638-10, Type I, with a 
nominal thickness of 3 mm [6].   The planar, non-porous specimens were manufactured in two 
orientations: flat type specimens were made such that layer-by-layer deposition coincided with the 
smallest dimension of the dumbbell tensile geometry (thickness), and edge type specimens in which the 
deposition occurred across the face of the geometry, as illustrated in Figure 3.  
 

 
Figure 3.  Orientation of SLA layer deposition relative to tensile testing direction for edge and flat 

specimens.  
 

Upon removal from the SLA machine, the support scaffold on which the parts were built was 
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removed from the specimen.  A post process wash in isopropyl alcohol was performed to remove any 
excess material and the samples were abraded with 600 grit sandpaper to remove any residual scaffold 
that remained on the surface.  The parts were then post cured at 160º C for two hours with a two hour 
heating ramp and two hour cooling ramp to room temperature.  Upon removal from the oven it was 
noted that curvature had been induced in some of the flat printed samples.   
 

 
2.2 Testing 

Tensile testing was performed in accordance with ASTM D638-10, Standard Test Method for Tensile 
Properties of Plastics [6].  A servo-hydraulic universal testing machine (model 1331, Instron Inc.) 
equipped with 50 kN load cell was used to perform testing.  Pneumatic grips were used to hold the ends 
of the specimen and No. 80 grit sandpaper was placed between the grip and specimen to reduce slippage 
and the likelihood of grip failure. Tensile testing was carried out under displacement control at strain 
rates of 0.0007 sec-1 and 0.007 sec-1.  Six samples of flat and six samples of edge printed specimens were 
prepared for testing at each strain rate, however excessive curvature induced into two of the flat printed 
samples caused them to break during installation into the grips and thus were excluded. 

  
For the purpose of measuring strain by digital image correlation (DIC), a speckle pattern was applied 

to each specimen.  The speckling process consisted first of applying a continuous layer of white acrylic 
spray paint, followed by a mist of larger droplets of black paint to create a pattern, as shown in Figure 
4.  A digital camera (Grasshopper model, Point Grey Inc.) was used to acquire images every 0.12 
seconds during testing, and strain was calculated by digital image correlation (VIC 2-D Version 6, 
Correlated Solutions).   

 

 
 

Figure 4.  Tensile specimen undergoing fracture during testing. 
 
 
 
3 RESULTS AND DISCUSSION 

The tensile elongation curves for the edge printed samples and flat printed samples tested at  
0.0007 sec-1 and 0.007 sec-1 are shown in Figure 5.   Young’s modulus was calculated below 0.2% 
strain and Poisson ratio was calculated based on analysis of the DIC images between 0.1 and 0.4% 
strain.  The average values for tensile strength, modulus and Poisson ratio are reported in Table 1 
along with the cranial cortical bone values from the literature.  
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Figure 5.  Stress vs. strain response of edge (denoted E) and flat (denoted F) printed samples at strain 
rate 0.0007 sec-1(left) and 0.007 sec-1 (right). 

 

   
 

Figure 6.  Young’s modulus (left) and tensile strength (right) for edge and flat printed specimens at 
0.0007 sec-1 and 0.007 sec-1. 

 
 

Specimen 
Type 

Strain 
rate 

Tensile 
strength 

Strain to 
 failure 

Tensile 
modulus 

Poisson 
ratio 

  
  

[sec-1] 
nominal 

[MPa] [%] [GPa] N/A 
Avg ± Avg ± Avg ± Avg ± 

Edge  10‐2  78.1  9.6  0.98  0.22  10.3  0.5  0.26  0.02 

Flat  10‐2  64.0  5.1  0.72  0.07  10.1  0.7  0.27  0.02 

Edge  10‐3  78.1  8.8  1.11  0.27  10.5  0.2  0.30  0.03 

Flat  10‐3  60.4  13.2  0.73  0.21  9.5  0.1  0.24  0.03 

Cranial cortical 
bone [4] 

10‐2  72.3  14.4  0.69  0.11  12.8  1.6  0.19‐0.48  [7] 

 
Table 1.  Properties measured for edge and flat print orientations of cranial simulant material. 

 
The edge and flat printed samples show a similar tensile modulus at the two relatively low strain 

rates reported here.  The edge samples exhibit a higher tensile strength and strain to failure compared to 
the flat samples.  This difference may be a result of thickness and reinforcement content variations in 
the initial two or three layers deposited, as revealed by inspection under a microscope.  In the flat 
samples the deposition of sequential layers occurs in the thickness dimension of the sample.  Asymmetry 
between the upper and lower surfaces in the flat printed specimens likely created internal stresses, as 
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evidenced by the curvature observed after the post-cure thermal treatment, and resulted in premature 
failure during tensile loading.  In the edge samples however, this asymmetry occurs on the sides of the 
specimen geometry and had a much smaller negative effect on tensile properties.   
 

Considering the edge printed samples alone, the simulant material demonstrated a tensile strength of 
78.0±9.7 GPa compared to 72.0±13.8 GPa for the cranial bones as measured in the study by Wood [4].  
While the mean strength value of the simulant is approximately 8% higher, it is well within the standard 
deviation of the bone property and represents a significant improvement in correlation compared to a 
cranial cortical simulant material reported previously in the literature (tensile strength 53±4.88 MPa) 
[8].  The tensile modulus of elasticity of the edge printed simulant was 10.3±0.5 GPa compared to the 
cranial cortical bone property of 12.8±1.6 GPa.  The simulant material modulus is within approximately 
20% and exhibits over 50% reduction in coefficient of variation compared to cranial cortical bone.  
Overall the variability of the simulant material is lower than that of the bone property and we expect to 
reduce variability further through refinement of the SLA processing parameters.     

 
 

9 CONCLUSIONS 

We have evaluated a composite material consisting of a highly filled photocurable polymer to serve 
as a surrogate material for human cranial cortical bone.  Tensile specimens were produced by SLA 
additive manufacturing and characterized under conditions of quasi-static tensile loading.  Specimens 
manufactured such that the layer-by-layer deposition coincided with the thinnest dimension of the 
dumbbell tensile geometry (flat type) exhibited noticeable warping after post cure compared to 
specimens where deposition occurred across the face of the geometry (edge type). As such, the 
variability in tensile properties of the edge type specimens was lower and provided a closer correlation 
to the experimental range of values measured for the human cranial cortical bone.    Studies are currently 
underway to evaluate the dynamic fracture response of the material in comparison to human tissue.  
Additive manufacturing coupled with medical imaging is also being utilized to fabricate specimens that 
include curvature, porosity and variation in layer thickness mimicking the human skull. 
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