Award Number: W81XWH-12-2-0001

PRINCIPAL INVESTIGATOR: Dr. Pamela Andreatta

CONTRACTING ORGANIZATION: University of Minnesota
MINNEAPOLIS, MN 55455

REPORT DATE: February 2015

TYPE OF REPORT: Final

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
Critical Analyses and Development of Training Mechanisms: Cholinergic Crisis and Pediatric/Neonatal Intubation

Abstract

Validation data were collected for the assessment instruments we developed, as informed by comprehensive task analyses, to evaluate competency in the management of cholinergic crisis and pediatric and neonatal intubation. All assessment instruments were reviewed by experts, and statistical calculations (ANOVA) to evaluate the construct validity for each of the assessment instruments indicated that each were able to differentiate between all provider experience levels at p < .05 significance. The assessment instruments demonstrated excellent reliability, with Chronbach’s alpha ranging from .70 to .96. Test-retest correlations (Pearson’s r) ranged from .96 to .99. 294 subjects completed a training intervention and pre- and post-training assessments in pediatric/neonatal intubation. Subject distribution was Animal (N=127) and Simulator (N=167). In Q1 2014 retention data collection was completed. 171 subjects completed retention assessments, with a distribution of Animal (N=88) and Simulator (N=83). 204 subjects completed a training intervention and pre- and post-training assessment in cholinergic crisis management. Subject distribution was Animal (N=107) and Simulator (N=97). 162 subjects completed a retention assessment in cholinergic crisis management. All subjects significantly improved with both interventions (p=.000). There were no significant differences between the post-training outcomes for the two types of training in either pediatric/neonatal intubation or cholinergic crisis clinical management. There were significant (p < .01) retention differences for pediatric and neonatal intubation knowledge and performance skills favoring simulation-based training at 18 weeks and 52 weeks post-training, likely due to the opportunity for repeated practice. There were no differences between training groups for knowledge or performance retention in cholinergic crisis clinical management.

Subject Terms

Simulation training, Animal training, Intubation, Pediatric, Neonatal, Cholinergic Crisis, Nerve Agents, Multimedia training, Clinical training
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>4</td>
</tr>
<tr>
<td>Body</td>
<td>4</td>
</tr>
<tr>
<td>Key Research Accomplishments</td>
<td>8</td>
</tr>
<tr>
<td>Reportable Outcomes</td>
<td>9</td>
</tr>
<tr>
<td>Conclusion</td>
<td>9</td>
</tr>
<tr>
<td>References</td>
<td>9</td>
</tr>
<tr>
<td>Appendices</td>
<td>10</td>
</tr>
</tbody>
</table>
Introduction

The purpose of this research is to evaluate the relative benefits of two forms of clinical training: live animal and simulation based methods. There are two arms of the study: 1) recognition and clinical management of a cholinergic event and 2) recognition and clinical management related to the need for pediatric or neonatal intubation (secure airway). The cholinergic crisis arm will consider the relative value of African Green Monkeys and mannequin simulators for 220 subjects gaining short and long term clinical knowledge, skills and affective capabilities. The pediatric/neonatal intubation arm will consider the relative value of domestic cats and mannequin simulators for up to 220 subjects gaining short and long term clinical knowledge, skills and affective capabilities. The results of the study will be used to create evidence-based curricula for the clinical management of cholinergic events and the need for pediatric and neonatal intubation.

Body

Progress towards the completion of each task related to each objective is indicated in the table below. Retention data collection for the pediatric and neonatal arm concluded in Q1 2014. SOW and project administration changes required schedule modification for the cholinergic crisis arm of the study. Data collection for the cholinergic crisis arm began in Q3 2013. The project team established a connection with Plymouth Fire Station to use available facilities for data collection. The relatively large facility allowed the project team to utilize resources most efficiently and provided an excellent training environment. Retention data collection for the cholinergic crisis arm of the study was completed in Q3 2014. Four manuscripts showcasing the results of study objectives have been published in peer-reviewed journals. Two manuscripts are currently in press. We are currently in process of submitting additional manuscripts based on the results of analysis of retention data from the cholinergic crisis arm of the study. We are also in process of finalizing the curriculum for both the cholinergic crisis and pediatric and neonatal study arms. Due to the delay in the schedule for the cholinergic crisis arm and resignation of the research coordinator, the project team has submitted an eight-month no-cost award extension request. The extension will allow us to complete data analysis and reporting for the project.

Table 1: Objective 1 Task Completion Progress

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>Progress</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hire Program Support Personnel. (Months 1-3).</td>
<td>Hire and train program support personnel, including research coordinators, training evaluators, and administrative personnel.</td>
<td>Complete.</td>
</tr>
<tr>
<td>Procurement Equipment (Months 4-6)</td>
<td>Identify and procure equipment to support simulation-based training and data collection; mannequin simulators and tablet.</td>
<td>Complete.</td>
</tr>
</tbody>
</table>

Task 1.

Complete Objective 1 (Months 1-10). We will conduct a systematic review of the literature and professional practice guidelines to identify the critical competencies, associated performance standards (metrics), methods of assessment, and current training pedagogies in order to create a defensible framework for determining and evaluating competency in managing a cholinergic crisis and performing pediatric and neonatal intubation.

Task 1a. Seek and obtain Institutional Review Board Approval

Complete for All Phases. University of Minnesota IRB#: HSC1308E41582 UMIRBMED # HUM00056754

Task 1b. Conduct systematic review of the literature, professional practice guidelines, and training pedagogies for managing cholinergic crisis and pediatric/neonatal intubation (PRISMA protocol).

Complete. Appendix 1 for pediatric/neonatal results. See Appendix 2 for cholinergic crisis results.

Task 1c. Assemble complete task analyses for managing cholinergic crisis and pediatric/neonatal intubation.

Complete. See Appendix 3 for pediatric/neonatal results. See Appendix 4 for cholinergic crisis results.

Task 1d. Identify critical steps for managing cholinergic

Complete. See Appendix 5 for
<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>Progress</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task 1e.</td>
<td>Identify potential sources of error for managing cholinergic crisis and pediatric/neonatal intubation.</td>
<td>Complete. See Appendix 5 for results.</td>
</tr>
<tr>
<td>Task 1g.</td>
<td>Determine instructional needs for managing cholinergic crisis and pediatric/neonatal intubation from the results of Tasks 1a-f.</td>
<td>Complete. See Appendix 6 for results.</td>
</tr>
<tr>
<td>Task 1h.</td>
<td>Determine if the instructional needs for managing cholinergic crisis and pediatric/neonatal intubation identified in Task 1g correlate with existing curricula.</td>
<td>Complete. See Appendix 6 for results.</td>
</tr>
<tr>
<td>Task 1i.</td>
<td>Select, design or develop performance assessment instruments and methods for assessing competency in managing cholinergic crisis and pediatric/neonatal intubation</td>
<td>Complete. See Appendix 7 for results.</td>
</tr>
<tr>
<td>Task 1j.</td>
<td>Collect validity evidence for assessment instruments and methods determined through Task 1i.</td>
<td>Complete. See Appendix 10 for results.</td>
</tr>
<tr>
<td>Task 1k.</td>
<td>Modify current instructional pedagogies for managing cholinergic crisis and pediatric/neonatal intubation to bridge gaps identified in Task 1h.</td>
<td>Complete. See Appendix 8 for results.</td>
</tr>
<tr>
<td>Task 1l.</td>
<td>Prepare training materials for managing cholinergic crisis and pediatric/neonatal intubation based on the results of Task 1k.</td>
<td>Complete. See Appendix 8 for results.</td>
</tr>
<tr>
<td>Task 1m.</td>
<td>Verify assessment instruments and methods based on the results of Task 1j. Modify as required.</td>
<td>Complete. See Appendix 10 for results.</td>
</tr>
<tr>
<td>Task 1n.</td>
<td>Prepare assessment materials based on the results of Task 1m, including proposed performance standards.</td>
<td>Complete. See Appendix 7 for results.</td>
</tr>
<tr>
<td>Task 1o.</td>
<td>Assemble data-driven, defensible competency assessment program for managing cholinergic crisis and pediatric/neonatal intubation to be evaluated during Objective 2.</td>
<td>Complete. See Appendixes 7 &10 for results.</td>
</tr>
<tr>
<td>Task 1p.</td>
<td>Assemble data-driven, defensible training program for managing cholinergic crisis and pediatric/neonatal intubation to be evaluated during Objective 2. No anticipated delays in schedule.</td>
<td>Complete. See Appendixes 8 &10 for results.</td>
</tr>
<tr>
<td>Task 1q.</td>
<td>Prepare preliminary project report documenting the results of Objective 1.</td>
<td>Complete. Submitted 03 Dec 2012</td>
</tr>
<tr>
<td>Task 1r.</td>
<td>Identify multimedia producer for cholinergic crisis application.</td>
<td>Complete.</td>
</tr>
</tbody>
</table>

Task 2.

Complete Objective 2 (Months 12-33). We will examine the relative benefits of using live animal and simulator models for training subjects to clinically respond to a cholinergic crisis and perform pediatric/neonatal intubation using competency assessment for cognitive, psychomotor, and affective performance dimensions.
<p>| Task 2b | Script multimedia application. | Complete. See Appendix 8 for results. |
| Task 2c | Identify Interactive steps in multimedia application. | Complete. See Appendix 8 for results. |
| Task 2d | Script video production for animal portion of multimedia application. | Complete. See Appendix 8 for results. |
| Task 2e | Secure animation for simulation portion of multimedia application. | Complete. See Appendix 8 for results. |
| Task 2f | Shoot and produce video of animal interaction. | Complete. See Appendix 8 for results. |
| Task 2g | Integrate videos into multimedia application. | Complete. See Appendix 8 for results. |
| Task 2h | Test multimedia application. | Complete. |
| Task 2i | Program SimMan3G for cholinergic crisis events – mild and moderate exposure for vapor and liquid nerve agents. | Complete. See Appendix 8 for results. |
| Task 2j | Hire standardized patients. | Complete. |
| Task 2k | Train standardized patients. | Complete. |
| Task 2l | Complete pre-assessment of subjects to determine baseline abilities managing cholinergic crisis. | Complete. See Appendix 11 for results. |
| Task 2m | Conduct cholinergic crisis training using either live animal or simulator models. | Complete. See Appendix 11 for results. |
| Task 2n | Complete 1st post-assessment of subjects to assess their learning of how to manage cholinergic crisis immediately after training. | Complete. See Appendix 11 for results. |
| Task 2o | Complete 2nd post-assessment of subjects to assess their retention of how to manage cholinergic crisis at three time intervals after training (6, 18, or 52 weeks). | Complete. See Appendix 11 for results. |
| Task 2q | Complete pre-assessment of subjects to determine baseline abilities managing pediatric/neonatal intubation. | Complete. See Appendix 11 for results. |
| Task 2r | Conduct pediatric/neonatal intubation training using either live animal or simulator models. | Complete. See Appendix 11 for results. |
| Task 2s | Complete 1st post-assessment of subjects to assess their learning of how to manage pediatric/neonatal intubation immediately after training. | Complete. See Appendix 11 for results. |
| Task 2t | Complete 2nd post-assessment of subjects to assess their retention of how to manage pediatric/neonatal intubation at three time intervals after training (6, 18, or 52 weeks). | Complete. See Appendix 11 for results. |
| Task 2u | Complete data analyses to assess performance differences between live animal and simulator training for managing pediatric/neonatal intubation. | Complete. See Appendix 11 for results. |</p>
<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>Progress</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task 2v.</td>
<td>Prepare secondary project report documenting the results of Objective 2.</td>
<td>Complete. Submitted 03 Dec 2013</td>
</tr>
<tr>
<td>Task 2w.</td>
<td>Participate in Program Review 2.</td>
<td>Complete. 13 May 2013</td>
</tr>
<tr>
<td>Task 3.</td>
<td>Complete Objective 3 (Months 10-36). Using the ADDIE model of curriculum design, we will develop comprehensive evidence-based curricula for the management of cholinergic crisis and pediatric/neonatal intubation, inclusive of all curricular components and formal evaluation and transition plans.</td>
<td></td>
</tr>
<tr>
<td>Task 3a.</td>
<td>Write training objectives for cholinergic crisis training</td>
<td>In-process. Estimated Q1 2015 completion.</td>
</tr>
<tr>
<td>Task 3b.</td>
<td>Document standards of performance for managing cholinergic crisis for multiple provider levels (novice to expert; medic to physician)</td>
<td>In-process. Estimated Q1 2015 completion.</td>
</tr>
<tr>
<td>Task 3d.</td>
<td>Specify optimal material and human resources requirements for cholinergic crisis training</td>
<td>In-process. Estimated Q1 2015 completion.</td>
</tr>
<tr>
<td>Task 3f.</td>
<td>Prepare a formal evaluation plan for the evidence-based cholinergic crisis curriculum using Kirkpatrick’s 4-level Model.</td>
<td>In-process. Estimated Q1 2015 completion.</td>
</tr>
<tr>
<td>Task 3g.</td>
<td>Write training objectives for pediatric and neonatal intubation training</td>
<td>In-process. Estimated Q1 2015 completion.</td>
</tr>
<tr>
<td>Task 3h.</td>
<td>Document standards of performance for managing pediatric and neonatal intubation for multiple provider levels (novice to expert; medic to physician)</td>
<td>In-process. Estimated Q1 2015 completion.</td>
</tr>
<tr>
<td>Task 3i.</td>
<td>Define instructional methods for best facilitation and delivery of pediatric and neonatal intubation training</td>
<td>In-process. Estimated Q1 2015 completion.</td>
</tr>
<tr>
<td>Task 3j.</td>
<td>Specify optimal material and human resources requirements for pediatric and neonatal intubation training</td>
<td>In-process. Estimated Q1 2015 completion.</td>
</tr>
<tr>
<td>Task 3k.</td>
<td>Authenticate competency assessment methods in pediatric and neonatal intubation training using data-derived reliability and validity evidence collected through Objectives 1 and 2.</td>
<td>In-process. Estimated Q1 2015 completion.</td>
</tr>
<tr>
<td>Task 3l.</td>
<td>Prepare a formal evaluation plan for the evidence-based pediatric and neonatal intubation curriculum using Kirkpatrick’s 4-level Model.</td>
<td>In-process. Estimated Q1 2015 completion.</td>
</tr>
<tr>
<td>Task 3m.</td>
<td>Prepare final project report documenting the results of Objective 3.</td>
<td>In-process. Estimated Q2 2015 completion.</td>
</tr>
<tr>
<td>Task 3n.</td>
<td>Prepare a formal transition plan for implementing the next steps for transferring project-related outcomes to other identified areas of interest</td>
<td>In-process. Estimated Q2 2015 completion.</td>
</tr>
<tr>
<td>Task 3o.</td>
<td>Participate in Program Review 3</td>
<td>Complete. 24 June 2014.</td>
</tr>
</tbody>
</table>
Key Research Accomplishments

Year 1

- Comprehensive literature review and meta-analyses for Pediatric/Neonatal Intubation and Cholinergic Crisis.
 - Identified training gaps:
 - Poor assessment metrics
 - Weak or absent performance standards
 - No statistically validated assessment instruments
 - Identified technology gaps:
 - SimMan3G
 - SimBaby
 - SimNewB
- Derived assessment instruments for Pediatric/Neonatal Intubation
 - Established performance standards
 - Excellent validity
 - Excellent reliability
- Derived instruction materials for Pediatric/Neonatal Intubation
 - Improved performance in both animal and simulation contexts
 - Elevated heart rates (stress induction) in both animal and simulation contexts

Year 2

- Derived assessment instruments for Cholinergic Crisis Recognition and Response
 - Established performance standards
 - Excellent validity
 - Excellent reliability
- Derived instruction materials for Cholinergic Crisis Recognition and Response
 - Improved performance in both animal and simulation contexts
 - Elevated heart rates (stress induction) in both animal and simulation contexts

Year 3

- Evaluated retention of performance abilities for Pediatric/Neonatal Intubation
 - Significant difference in post-training pediatric performance, and 18- and 52-week retention differences, favoring simulation model over animal model. Likely due to the opportunity for repetitive practice.
 - No other significant post-training differences between effectiveness of live animal or simulation training model
 - Experience level correlated to performance, regardless of training model
- Initiated preparation of curriculum for Cholinergic Crisis Recognition and Response and Pediatric/Neonatal Intubation
Reportable Outcomes
See Appendix 12 for a list of publications and presentations resulting from study outcomes.

Conclusion
Clinical education has historically relied on intangible measures of clinical performance, which to date has made it difficult to unequivocally assert effectiveness of any form of training, be that live animal training or simulation-based training. One of the primary obstacles to conducting direct methodological comparisons is a lack of accepted standards of performance and measurement for most clinical processes and procedures. Through comprehensive analyses, we have identified performance standards, critical steps, and potential sources for error for the clinical management of cholinergic crisis and performing pediatric and neonatal intubation. We have used this information to derive assessment instruments to measure applied performance in each clinical area, and assembled validity and reliability evidence for those instruments in the area of pediatric and neonatal. Valid data are critical for any substantive scientific inquiry and mandatory for the accurate assessment and evaluation of clinical proficiency. Without valid metrics, any examination of live animal or simulation-based training effectiveness would simply be qualitative conjecture. The validated metrics we have derived for performing pediatric and neonatal intubation will provide a significant contribution to this and other performance evaluations in pediatric and neonatal intubation. This information is critical for determining optimal, evidence-based training practices that serve to reduce or eliminate the uses of live animals without diminishing the quality of training. These metrics may be used to assess clinical competence of those trained using data-driven scientific methods, rather than subjective assessment.

There were several delays related to the moratorium placed on the use of the non-human primate colony at USAMRICD post-award, however we have been able to establish an alternate approach using multimedia that includes animal or simulation elements through videotape and animation, respectively. The multimedia application was completed during Q3 2013. All performance standards, critical steps, and potential sources for error for the clinical management of cholinergic crisis have been integrated into assessment instruments. Retention data collection for the cholinergic crisis arm was completed in Q3 2014. The results of data-analysis to date has found no significant differences between the training modalities for the recognition and management of cholinergic crisis and pediatric and neonatal intubation. These results will be used to create evidence-based curricula for the clinical management of cholinergic events and the need for pediatric and neonatal intubation, eliminating the uses of live animals whenever possible.

References
Comprehensive references are presented in Appendixes 1 and 2.
Appendixes
Appendix 1: Pediatric and Neonatal Intubation Literature Review
Appendix 2: Cholinergic Crisis Literature Review
Appendix 3: Pediatric and Neonatal Intubation Task Analyses
Appendix 4: Cholinergic Crisis Task Analyses
Appendix 5: Critical Steps and Sources of Error
Appendix 6: Instructional Gaps
Appendix 7: Assessment Instruments
Appendix 8: Instructional Components
Appendix 9: Training Event Images
Appendix 10: Preliminary Data
Appendix 11: Publication and Presentation Lists
Appendix 12: Program Review/Summary Report
Appendix 1: Pediatric and Neonatal Intubation Literature Review
PRISMA Pediatric/Neonatal Intubation Training Literature Review Flow Diagram

- **Identification**
 - Records identified through database searching (n = 475)
 - Additional records identified through other sources (n = 0)

- **Screening**
 - Records after duplicates removed (n = 301)

- **Eligibility**
 - Records screened (n = 301)
 - Full-text articles assessed for eligibility (n = 30)
 - Full-text articles excluded, with reasons (n = 0)

- **Included**
 - Studies included in qualitative synthesis (n = 4)
 - Studies included in quantitative synthesis (meta-analysis) (n = 26)
Terms searched:

Pediatric OR Neonatal
AND
Intubation OR Resuscitation OR Airway
AND
Assessment OR Training/teaching OR Education OR Evaluation

Limited to: English language

Databases searched and number of references located:

- PreMedline – 1
- Medline – 110 + 109 + 77
- Embase – 15 + 8
- Web of Science – 62 + 78
- Scopus - 2
- ERIC - 0
- Education Abstracts - 0
- Government Printing Office Monthly Catalog - 0
- Index to Military Periodicals - 0
- CINAHL - 12
- ProQuest Dissertations & Theses - 0
- Health and Psychosocial Instruments – 1

Total = 475 references
Duplicates Removed = 301 references

Manual Review (Criteria for Elimination):

- Guidelines and review articles (not original research)
- Overall resuscitation evaluated and not independent skill of intubation
- Not correct intubation procedure evaluated (video-assisted, LMA, GlideScope, BVM, etc.)
- Commentaries/letters (i.e.- on ethics of use of cadavers for training)
- No assessment tool or method used (or described)
- Studies not comparing or evaluating methods of or models for training and/or assessment

Articles Relevant: 30

Additional Procedural and Clinical Text References

Table Heading Descriptions

Citation: Study reference.

Sample Size and Description: Number of subjects trained and/or assessed. Who was trained and/or assessed?

Study Methods: Randomized control trial, case control, observational, etc.

Assessment Mechanism(s): What model was used for assessment? Conditions/context of assessment; live, simulation, written?
Assessment Instrument(s): Describe instrument; Checklist vs. global rating scale, etc.

Assessment Domain(s): Cognitive, Psychomotor, Affective,

Training Method(s): Live animal; Clinical setting; Mannequin/simulation; Computer-based, Cadaver (human, animal); Self-study (written, video).
<table>
<thead>
<tr>
<th>Citation</th>
<th>Sample Size & Description</th>
<th>Study Methods</th>
<th>Assessment Mechanism(s)</th>
<th>Assessment Instrument(s)</th>
<th>Assessment Domain(s)</th>
<th>Training Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1] Adams</td>
<td>- 132 intubations - EM and peds PGY2s or 3s (trained in kitten lab, NICU and PICU rotations) - Respiratory care practitioners (RCPs) (trained on mannequins, OR, 3.5yrs avg job experience) - All got NRP and PALS training</td>
<td>-Prospective, observational of prehospital intubations on pediatric transport team</td>
<td>- Live</td>
<td>- Number of attempts to pass ETT through oropharynx</td>
<td>-PM</td>
<td>- Varied – not controlled - Authors concluded number of attempts might be more important than method of training.</td>
</tr>
<tr>
<td>[2] Airman</td>
<td>- 231 intubations - Respiratory therapists and nurses in NICU</td>
<td>-Prospective (?) vs. chart/records review</td>
<td>-Live</td>
<td>-Number of attempts</td>
<td>-PM</td>
<td>-All used same methods – NRP, cats</td>
</tr>
<tr>
<td>Study</td>
<td>Participants</td>
<td>Methods</td>
<td>Outcomes</td>
<td>Findings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--------------</td>
<td>---------</td>
<td>----------</td>
<td>----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[5] Calderwood</td>
<td>Medical students, anesthetized cats</td>
<td>Duration and # of attempts, checklist and GRS scores</td>
<td>Success</td>
<td>-PM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[6] Falck</td>
<td>449 intubation attempts, pediatric residents</td>
<td>Prospective, observational</td>
<td>Live intubations in NICU or L&D</td>
<td>5 point scale – 4=1 try, 3=2 attempts, 2=3 attempts, 1=4 attempts, 0= no success, competency = 3 or 4 on 80% or more of attempts</td>
<td>-PM -Affective (confidence assessed with retrospective self-report) -NRP, intubation (animal) lab</td>
<td></td>
</tr>
<tr>
<td>[7] Forbes</td>
<td>27 anesthesia faculty, fellows and residents</td>
<td>Assessment of model for teaching fiber optic intubation – realism and effectiveness</td>
<td>Pig, Mannequin</td>
<td>-Secretions -Anatomy -Appearance Technique -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[8] Hall</td>
<td>36 paramedic students, 540 test intubations (15 each)</td>
<td>Prospective, RCT</td>
<td>Tested on human in OR</td>
<td>Time to intubation -Number of attempts -Complications</td>
<td>-PM -HPS (10 hours) vs. human (15 live) in OR after didactics</td>
<td></td>
</tr>
<tr>
<td>[10] Duran</td>
<td>42 pediatric residents – 3 groups based on length of time since NRP training</td>
<td>Prospective, not randomized</td>
<td>Written -Neonatal sim</td>
<td>Time to intubation <20sec = success -# of attempts -Written test (>85%)</td>
<td>-Cognitive -PM -NRP</td>
<td></td>
</tr>
<tr>
<td>[11] Powell</td>
<td>Peds and EM residents, vet techs, med</td>
<td>-</td>
<td>-</td>
<td>-Ferrets used as part of PALS training – evaluated trauma to</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[12] Thompson</td>
<td>-10 FP residents - 1st years intubated ketamine anesthetized kittens</td>
<td>- Residents rated usefulness of content 8.1 and style 8.5 (on 0-9 scale)</td>
<td>-30 minute didactic -90 minutes hands-on time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[13] Gaushe-Hill</td>
<td>-Paramedics and paramedics in training</td>
<td>-Pre- and post-self efficacy questionnaire -Written evaluation of course -Follow up self efficacy and skill performance (retention study)</td>
<td>-6 hour Pediatric Airway Management Course</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[14] Henderson</td>
<td>-Paramedics</td>
<td>-None -Self-instruction -Video -Lecture-demo -No discussion of models or assessment methods</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[15] Jennings</td>
<td></td>
<td>-Describes kitten model -No objective evaluation of model</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[16] Kircher</td>
<td></td>
<td>-Looks at trauma to model (ferret) not efficacy of training</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[17] Kisling</td>
<td>->100 doctors, RTs, nurses</td>
<td>-Valuable learning experience</td>
<td>-Description of kitten model</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[18] Youngquist</td>
<td>Convenience sampling 245 paramedics</td>
<td>Convenience sample with controls</td>
<td>-Self-efficacy questionnaire -List of skill components -Self-efficacy -Psychomotor skills</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-No training -Video presentation -Self-directed learning -Instructor-facilitated lecture and demonstration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[19] Terndrup</td>
<td>36 paramedics</td>
<td>RCT</td>
<td>Live, cat</td>
<td>Checklist</td>
<td>-Cognitive PM skills</td>
<td>Didactic training</td>
</tr>
<tr>
<td>-------------</td>
<td>---------------</td>
<td>-----</td>
<td>-----------</td>
<td>-----------</td>
<td>----------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>[20] Sukys</td>
<td>Prospective, observational, cross-section</td>
<td></td>
<td></td>
<td>Checklist</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[21] Sudikoff</td>
<td>16 PGY II Pediatric Residents</td>
<td>Randomized Crossover</td>
<td>Simulation</td>
<td>-Global competency score -Critical action checklists, -Harmful actions lists, -Behaviorally Anchored Rating Scale.</td>
<td>PM skills</td>
<td>Simulation enhanced session on pediatric airway management and teamwork</td>
</tr>
<tr>
<td>[22] Stewart</td>
<td>146 paramedics</td>
<td>RCT</td>
<td>-Simulation -Live</td>
<td>-Checklist -Multiple-choice exam -Oral exam</td>
<td>-Cognitive PM skills</td>
<td>Didactic presentation vs. didactic w/sim vs. didactic w/ sim and live</td>
</tr>
<tr>
<td>[23] Petrack</td>
<td>-9 PEM faculty -4 PEM fellows</td>
<td>Written</td>
<td>Questionnaire</td>
<td>Cognitive</td>
<td></td>
<td>PALS course</td>
</tr>
<tr>
<td>[24] Overly</td>
<td>16 pediatric residents</td>
<td>Prospective Observational</td>
<td>Simulation</td>
<td>Checklist</td>
<td>PM skills</td>
<td></td>
</tr>
<tr>
<td>[25] O'Donnell</td>
<td>122 video recording of delivery room resuscitations, residents, fellows, consultants</td>
<td>Retrospective Review</td>
<td>Live</td>
<td>Checklist</td>
<td>PM skills</td>
<td></td>
</tr>
<tr>
<td>[26] Nishisaki</td>
<td>Pediatric or EM resident in PICU</td>
<td>Prospective</td>
<td>Live</td>
<td>Checklist</td>
<td>PM skills</td>
<td>20-min multidisciplinary session and 10-min resident skill refresher</td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td>Type</td>
<td>Setting and Approach</td>
<td>Evaluation Details</td>
<td>Outcome and Points</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>------------</td>
<td>--------------------</td>
<td>----------------------</td>
<td>---</td>
<td>--------------------</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Mazzi</td>
<td>PGY 1 HO</td>
<td>- Simulator</td>
<td>Live kitten</td>
<td>Lecture practice on simulation or kittens</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Live kitten</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Leone</td>
<td>Pediatric Residents</td>
<td></td>
<td>Observation: success and # of attempts</td>
<td>Live PM skills</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Lane</td>
<td>Retrospective</td>
<td></td>
<td>Video time to completion of task</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Kendirli</td>
<td>16 Pediatric Residents</td>
<td>Prospective</td>
<td>Live</td>
<td>Success and # of attempts PM Skills PALS course</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Complete Reference List: Pediatric and Neonatal Intubation Training

204. Paterson A. The case for the role of advanced simulators in trauma management training was not made. *Anesthesia & Analgesia*. 2005;101(5):1564-1565.

218. Reich AJ. Good intubators do it more often. the frequency of training, more than total hours spent, seems to correlate with higher ETI success rates. *EMS magazine*. 2009;38(9):58-60.

234. Shulman GB, Nordin NG, Connelly NR. Teaching with a video system improves the training period but not subsequent success of tracheal intubation with the bullard laryngoscope. *Anesthesiology*. 2003;98(3):615-620.

263. Tiah L, Wong E, Chen MF, Sadarangani SP. Should there be a change in the teaching of airway management in the medical school curriculum?. *Resuscitation*. 2005;64(1):87-91.

Appendix 2: Cholinergic Crisis Literature Review
PRISMA Cholinergic Crisis Management Training Literature Review

Flow Diagram

Identification

- Records identified through database searching (n = 1023)
 - Additional records identified through other sources (n = 171)
 - Records after duplicates removed (n = 1014)

Screening

- Records screened (n = 1014)
 - Records excluded (n = 925)
 - Full-text articles assessed for eligibility (n = 89)
 - Full-text articles excluded, with reasons (n = 64)

Eligibility

- Studies included in qualitative synthesis (n = 0)

Included

- Studies included in quantitative synthesis (meta-analysis) (n = 0)
Terms searched:

exp Organophosphorus Compounds/ OR exp Cholinesterase Inhibitors/ OR exp Cholinesterases/ OR cholinergic crisis.mp/ OR nerve gas.mp/ OR exp Chemical Warfare/ = 165474 results
AND
training.mp/ OR exp Teaching/exp Education/ = 700731 results
combined = 853 results
AND
management.mp/ OR exp Therapeutics/ = 3559026 results
combined = 274 results
exp Mass Casualty Incidents/ =710 results
AND
training.mp/ OR exp Teaching/exp Education/ =700731 results
combined = 179 results

Specific search terms:
casualty
chemical
chemical warfare
cholinergic
cholinergic crisis
cholinesterase
cholinesterase inhibitors
cholinesterases
compounds
crisis
education
gas
incidents
inhibitors
management
mass
mass casualty incidents
nerve
nerve gas
organophosphorus
organophosphorus compounds
sar
 teaching
therapeutics
training
warfare

Limited to: English language

Databases searched:
PreMedline
Medline
Embase
Web of Science
Scopus
ERIC
Education Abstracts
Government Printing Office Monthly Catalog
Index to Military Periodicals
Manual Review (Criteria for Elimination):

Duplicates
Guidelines and review articles (not original research)
Commentaries/letters (not original research)
Bisphosphonates
Studies not comparing or evaluating methods of or models for training and/or assessment

Articles Relevant: 25

Additional Procedural and Clinical Text References

Table Heading Descriptions

Citation: Study reference.

Sample Size and Description: Number of subjects trained and/or assessed. Who was trained and/or assessed?

Study Methods: Randomized control trial, case control, observational, etc.

Assessment Mechanism(s): What model was used for assessment? Conditions/context of assessment; live, simulation, written?

Assessment Instrument(s): Describe instrument; Checklist vs. global rating scale, etc.

Assessment Domain(s): Cognitive, Psychomotor, Affective,

Training Method(s): Live animal; Clinical setting; Mannequin/simulation; Computer-based, Cadaver (human, animal); Self-study (written, vi).
<table>
<thead>
<tr>
<th>Citation</th>
<th>Sample Size and Description</th>
<th>Study Methods</th>
<th>Assessment Mechanism(s)</th>
<th>Assessment Instrument(s)</th>
<th>Assessment Domain(s)</th>
<th>Training Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1]</td>
<td>-3 paramedics</td>
<td>- descriptive</td>
<td></td>
<td></td>
<td></td>
<td>development of virtual reality simulation game to teach triage skills</td>
</tr>
<tr>
<td>[2]</td>
<td>- Medical and nursing students (?#)</td>
<td>- observational</td>
<td>-live (observation)</td>
<td>-correct triage categorization -participation satisfaction scale</td>
<td>-cognitive - affective</td>
<td>- Combined didactics and procedure workshops – 10 day course -no comparison</td>
</tr>
<tr>
<td>[4]</td>
<td>-10 physicians -12 nurses</td>
<td>-written (Likert scale)</td>
<td></td>
<td>-subjective measurement of “immersion”, level of confidence</td>
<td></td>
<td>online virtual reality simulation -no comparison</td>
</tr>
<tr>
<td>[5]</td>
<td>-17 medical responders</td>
<td>-observational</td>
<td>-live (observation of mock disaster)</td>
<td>-triage -clinical procedures -radio usage</td>
<td>-cognitive -PM</td>
<td>-assessment only – mock disaster exercise</td>
</tr>
<tr>
<td>[6]</td>
<td>-68 medical students</td>
<td>-written pre-/post-</td>
<td></td>
<td>-confidence, perceptions -knowledge of disaster medicine</td>
<td>-cognitive</td>
<td>-didactic and simulation -no comparison</td>
</tr>
<tr>
<td>[9]</td>
<td>-21 medical</td>
<td>-observational</td>
<td>-written</td>
<td>-triage score</td>
<td>-cognitive</td>
<td>-podcasts and</td>
</tr>
<tr>
<td>Citation</td>
<td>Sample Size and Description</td>
<td>Study Methods</td>
<td>Assessment Mechanism(s)</td>
<td>Assessment Instrument(s)</td>
<td>Assessment Domain(s)</td>
<td>Training Method</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------------------</td>
<td>---------------</td>
<td>-------------------------</td>
<td>--------------------------</td>
<td>----------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>[10]</td>
<td>12 paramedics</td>
<td>-observational</td>
<td>-checklist</td>
<td>-triage decisions</td>
<td>-cognitive</td>
<td>mannequin-based</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-timing</td>
<td>-actions taken</td>
<td>PM</td>
<td>simulation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>affective</td>
<td>(no comparison)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(compares 3 different simulated scenarios)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-written</td>
<td>-satisfaction with model</td>
<td>PM</td>
<td>-no comparison</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>affective</td>
<td></td>
</tr>
<tr>
<td>[12]</td>
<td>24 medical students</td>
<td>-observational</td>
<td>-written</td>
<td>-triage score</td>
<td>-cognitive</td>
<td>-simulation vs live actors</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-checklist</td>
<td>-intervention score</td>
<td>PM</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-timing</td>
<td>-speed</td>
<td>affective</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[13]</td>
<td>34 pediatric residents - 15 EM residents</td>
<td>-prospective</td>
<td>-written pre-/post-</td>
<td>-medical management</td>
<td>-cognitive</td>
<td>-lecture only</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-only compared those who attended lecture and those who didn’t</td>
</tr>
<tr>
<td>[14]</td>
<td>315 first year medical students</td>
<td>-observational</td>
<td>-written</td>
<td>-triage decisions</td>
<td>-cognitive</td>
<td>-START training (didactic)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-no comparison</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[15]</td>
<td>11 physicians - 40 nurses - 23 administrators - 10 other hospital personnel</td>
<td>-prospective</td>
<td>-written</td>
<td>-knowledge of disaster management</td>
<td>-cognitive</td>
<td>-multi-modal -</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>lectures, skills</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>sessions, tabletop</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>sessions, and disaster</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>exercises</td>
</tr>
<tr>
<td>[16]</td>
<td>54 first responders</td>
<td>-prospective</td>
<td>-written</td>
<td>-recognition, triage and decontamination</td>
<td>-cognitive</td>
<td>-mannequin-based</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>simulation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-video clinical</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>vignettes</td>
</tr>
<tr>
<td>[17]</td>
<td>EMS personnel</td>
<td>-descriptive</td>
<td></td>
<td></td>
<td></td>
<td>-describes development and implementation of mass casualty drill</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(live patients)</td>
</tr>
<tr>
<td>Citation</td>
<td>Sample Size and Description</td>
<td>Study Methods</td>
<td>Assessment Mechanism(s)</td>
<td>Assessment Instrument(s)</td>
<td>Assessment Domain(s)</td>
<td>Training Method</td>
</tr>
<tr>
<td>----------</td>
<td>----------------------------</td>
<td>---------------</td>
<td>------------------------</td>
<td>-------------------------</td>
<td>----------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[18]</td>
<td>-military medical personnel</td>
<td>-descriptive</td>
<td></td>
<td></td>
<td></td>
<td>-no testing or comparison</td>
</tr>
<tr>
<td>[20]</td>
<td>- 8 anesthesiologists – 8 nurses</td>
<td>-observation</td>
<td>-written</td>
<td>-time</td>
<td>-quality of intubation rating</td>
<td>-simulation of intubating while wearing protective equipment</td>
</tr>
<tr>
<td>[21]</td>
<td>-182 military personnel</td>
<td>-descriptive</td>
<td>-written biological responses</td>
<td></td>
<td>-affective</td>
<td>-describes reactions to simulated scenarios -prior training not controlled for -tested with simulation</td>
</tr>
<tr>
<td>[22]</td>
<td></td>
<td>-descriptive</td>
<td></td>
<td></td>
<td></td>
<td>-describes development of multi-modality training curriculum -no testing or comparison</td>
</tr>
<tr>
<td>[23]</td>
<td>-92 military reserve nurses</td>
<td>-prospective experimental</td>
<td>-score on management of chemical warfare patients performance instrument (observation, 105 elements/actions)</td>
<td>-management of chemical exposure</td>
<td>-cognitive</td>
<td>-high fidelity simulation vs CD-ROM vs control (no teaching)</td>
</tr>
<tr>
<td>Citation</td>
<td>Sample Size and Description</td>
<td>Study Methods</td>
<td>Assessment Mechanism(s)</td>
<td>Assessment Instrument(s)</td>
<td>Assessment Domain(s)</td>
<td>Training Method</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------------------</td>
<td>---------------</td>
<td>-------------------------</td>
<td>--------------------------</td>
<td>----------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>[24]</td>
<td>-descriptive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>describes 2 day multimodality “train the trainer” course development and implementation -no testing or comparison</td>
</tr>
<tr>
<td>[25]</td>
<td>-descriptive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>describes development of model for computer-based simulation of nerve gas exposure. -no testing or comparison</td>
</tr>
</tbody>
</table>
Appendix 3: Pediatric and Neonatal Intubation Task Analyses
Task Analyses: Recognition Of Need And Clinical Management Of Pediatric & Neonatal Endotracheal Intubation

References List

<table>
<thead>
<tr>
<th>Level</th>
<th>Knowledge</th>
<th>Assessment</th>
<th>Standard</th>
<th>Skill</th>
<th>Assessment</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factual</td>
<td>Anatomy</td>
<td>Anatomy</td>
<td>Anatomy</td>
<td>Anatomy</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>1. Understand the functions of the</td>
<td>1. Identify the functions of</td>
<td>1. Correctly identifies the</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level</td>
<td>Knowledge</td>
<td>Assessment</td>
<td>Standard</td>
<td>Skill</td>
<td>Assessment</td>
<td>Standard</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>------------</td>
<td>----------</td>
<td>-------</td>
<td>------------</td>
<td>----------</td>
</tr>
</tbody>
</table>
| | following organ systems:
• Respiratory
• Cardiovascular
• Neurological
• Musculoskeletal
• Endocrine
• Gastrointestinal
2. Understand the differences between adult and pediatric and neonatal airway anatomy:
• Epiglottis (floppier, u-shaped)
• Tongue (relatively larger)
• Hyoid bone
• Airway (more anterior, higher)
• Vocal cords (less narrow)
• Thyroid cartilage
• Cricoid ring (narrowest)
• Trachea (more flexible)
• Funnel shaped vs. cylindrical | the listed organ systems on a written test.
2. Identify the differences between adult and pediatric and neonatal airway anatomy on a written test. | functions of the listed organ systems.
2. Correctly identifies the differences between adult and pediatric and neonatal airway anatomy. | | | |
| Factual | Physiology | 1. The normal action of respiration in pediatric and neonatal patients.
2. The effect of altered, obstructed, inadequate, and cessation | Physiology | 1. Identify the normal function of respiration in pediatric and neonatal patients in a written test. | Physiology | N/A | Physiology | N/A | Physiology | N/A |
<p>| | Factual | | Physiology | N/A | | | Physiology | N/A | Physiology | N/A | Physiology | N/A |</p>
<table>
<thead>
<tr>
<th>Level</th>
<th>Knowledge</th>
<th>Assessment</th>
<th>Standard</th>
<th>Skill</th>
<th>Assessment</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>respiration on the cardiovascular and nervous systems in pediatric and neonatal patients. The parts of the human body affected by altered, obstructed, inadequate, and cessation of respiration: Decreased Oxygenation: • Results in tissue ischemia. • Leads to anaerobic metabolism • Leads to acidosis • End result is damage to every organ system. • Organs with highest energy requirements/O2 usage are affected first: Brain - mental status changes/coma Kidneys - renal failure Heart - myocardial damage Liver - hypoxic liver damage Gut - ischemic gut Decreased Ventilation (not clearing CO2): • Leads to hypercarbia • Results in altered</td>
<td>2. Describe how altered, obstructed, inadequate, and cessation of respiration affects the cardiovascular and nervous systems in pediatric and neonatal patients in a written test.</td>
<td>2. Correctly explain how altered, obstructed, inadequate, and cessation of respiration affects the cardiovascular and nervous systems in pediatric and neonatal patients</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Level: Knowledge

- **Assessment:**
 - Mental status/confusion/coma (CNS effects)
 - Results in acidosis
 - Leads to damage to every organ system:
 - Brain - mental status changes/coma
 - Kidneys - renal failure
 - Heart - myocardial damage
 - Liver - hypoxic liver damage
 - Gut - ischemic gut

 Mechanical airway protection, due to decreased mental status or other cause of inability to protect airway:
 - Leads to aspiration of stomach contents/ acids, blood, tissue, etc.
 - Leads to pneumonitis (inflammation/damage to lungs)
 - Leads to possibly infection (aspiration pneumonia)
 - Aspiration can also lead to airway occlusion
 - Leads to effects of decreased oxygenation and decrease ventilation.

- **Standard:**

- **Skill:**

- **Assessment:**

- **Standard:**
<table>
<thead>
<tr>
<th>Level</th>
<th>Knowledge</th>
<th>Assessment</th>
<th>Standard</th>
<th>Skill</th>
<th>Assessment</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factual</td>
<td>1. Know how to assess the primary physical and physiological signs to look for during patient assessment to identify the need for airway management: • Mouth • Nose; Nasal Flaring • Respiratory effort • Retractions • Apnea • Cyanosis • Pulse</td>
<td>1. Describe the physical and physiological signs to look for during patient assessment in written test. 2. Indicate on a written test how to determine if intubation is necessary in a pediatric and neonatal patient.</td>
<td>1. Be able to examine pediatric and neonatal patients to assess indicators of need for airway management: • Mouth • Nose; Nasal Flaring • Respiratory effort • Retractions • Apnea • Cyanosis • Pulse</td>
<td>1. Demonstrate the ability to examine pediatric and neonatal patients to assess the need for airway management in a simulated context with pediatric and neonatal mannequin simulators. 2. Demonstrate the ability to examine pediatric and neonatal patients to assess indicators of need for intubation in a simulated context with pediatric and neonatal mannequin simulators.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level</td>
<td>Knowledge</td>
<td>Assessment</td>
<td>Standard</td>
<td>Skill</td>
<td>Assessment</td>
<td>Standard</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>------------</td>
<td>----------</td>
<td>-------</td>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td>blood</td>
<td></td>
<td></td>
<td>disease</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Significant hemodynamic instability.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Operative needs.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Factual</td>
<td>Medication</td>
<td>Medication</td>
<td>Medication</td>
<td>Medication</td>
<td>Medication</td>
<td>Medication</td>
</tr>
</tbody>
</table>
| | 1. Knows the drugs, dosages, reasons for use, administration routes and time sequences for intubating a neonatal and pediatric patient: *Sedative.*
• Etomidate (0.3-0.6 mg/kg); IV
• Versed (0.05-0.1 mg/kg); IV
• Ketamine (1-2 mg/kg); IV
Paralytic.
• Succinylcholine (1-2 mg/kg); IV
Manage Bradycardia.
• Atropine (0.2 mg/kg) | 1. On a written test, identify the drugs, dosages, reasons for use, administration routes and time sequences for intubating a neonatal and pediatric patient.
2. Describes how to determine the correct dosages and drugs | 1. Correctly identifies the drugs, dosages, reasons for use, administration routes and time sequences for intubating a neonatal and pediatric patient.
2. Correctly describes how to determine the correct dosages and drugs | 1. Be able to place an IV catheter.
2. Be able to identify and secure the following medications:
• Etomidate
• Versed
• Ketamine
• Succinylcholine
• Atropine | 1. Demonstrate the ability to place an IV catheter in a simulated context with pediatric and neonatal mannequin simulators.
2. Be able to identify and secure the appropriate medications in a simulated context.
3. Correctly administers the appropriate dosages and drugs through IV catheter in a simulated context. |

W81XWH-12-2-0001
<table>
<thead>
<tr>
<th>Level</th>
<th>Knowledge</th>
<th>Assessment</th>
<th>Standard</th>
<th>Skill</th>
<th>Assessment</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mg/kg); IV</td>
<td>correct drug dose used for intubating a neonatal and pediatric patient on a written test.</td>
<td>drug dose used for intubating a neonatal and pediatric patient on a written test.</td>
<td>drugs through IV catheter.</td>
<td>3. Be able to administer the appropriate dosages and drugs through IV catheter in a simulated context with pediatric and neonatal mannequin simulators.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Knows how to determine the correct drug dose used for intubating a neonatal and pediatric patients:</td>
<td>• Broselow Tape</td>
<td>• Monitor clinical effect</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Calculate using dose/weight.</td>
<td>• Adjust dose as needed for clinical effect.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Knows ketamine is the best sedative for patients with asthma.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Identify ketamine as the best sedative for patients with asthma on a written test.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Correctly identifies ketamine as the best sedative for patients with asthma on a written test.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Be able to administer the appropriate dosages and drugs through IV catheter in a simulated context with pediatric and neonatal mannequin simulators.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Factual</td>
<td>Health Metrics</td>
<td>Indicate on a written test which health metrics to assess for a neonatal and pediatric patient who requires intubation.</td>
<td>Correctly indicates the health metrics to assess for a neonatal and pediatric patient who requires intubation.</td>
<td></td>
<td>Health Metrics N/A</td>
<td>Health Metrics N/A</td>
</tr>
<tr>
<td></td>
<td>Understand relevant health metrics for assessing pediatric and neonatal patient’s physical and physiological status:</td>
<td>• Respiratory status</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Integrity of Airway</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Factual</td>
<td>Procedural</td>
<td>1. Describe the patient management strategy for pediatric and neonatal patient who require intubation:</td>
<td>1. Correctly describe the patient management strategy for pediatric and neonatal patient who require intubation on</td>
<td>1. Be able to assess the need for intubation in pediatric and neonatal patients.</td>
<td>1. Be able to assess the need for intubation in pediatric and neonatal patients in a simulated context.</td>
<td>2. Correctly administers</td>
</tr>
<tr>
<td></td>
<td>1. Describe the patient management strategy for pediatric and neonatal patient who require intubation:</td>
<td>• Drugs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Airway</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Breathing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level</td>
<td>Knowledge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Monitoring</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stabilizing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Patient positioning.
- Sniffing position with towel under head & neck
- Mild extension further opens / aligns airway
- Overextension will hinder

Apply suction.
- Bag-valve-mask.
 - Mask selection
 - Mask position
 - Use C-E hand configuration
 - Can use jaw thrust
 - Have firm seal
 - Do not block anterior neck

Insert Laryngoscope Blade.

Place Endotracheal Tube.
Determine how deep to insert the tube:
- Use Broselow tape

Assessment
- a written test.

2. Describe the step-by-step sequence for intubating a pediatric and neonatal patient on a written test.

3. Describe how to determine if a pediatric and neonatal patient is clinically stable on a written test.

4. Correctly describes how to determine if a pediatric and neonatal patient is clinically stable on a written test.

Standard
- intubation on a written test.

2. Correctly describe the step-by-step sequence for intubating a pediatric and neonatal patient on a written test.

3. Correctly describes how to ventilate a pediatric and neonatal patient on a written test.

4. Correctly describes how to ventilate a pediatric and neonatal patient on a written test.

Skill
- appropriate dosages of drugs:
 - Sedative
 - Paralytic
 - Cardiovascular

3. Be able to administer appropriate dosages of drugs to a pediatric and neonatal patient mannequin simulator:
 - Sedative
 - Paralytic
 - Cardiovascular

3. Be able to perform each step of intubating a neonatal and pediatric patient: Administer medications.

Patient positioning.
- Sniffing position with towel under head & neck
- Mild extension further opens / aligns airway
- Overextension will hinder

Apply suction.
- Bag-valve-mask.
 - Mask selection
 - Mask position
 - Use C-E hand configuration
 - Can use jaw thrust
 - Have firm seal
 - Do not block anterior neck

Assessment
- a written test.

2. Be able to administer appropriate dosages of drugs to a pediatric and neonatal patient mannequin simulator:
 - Sedative
 - Paralytic
 - Cardiovascular

3. Be able to perform each step of intubating a neonatal and pediatric patient in a simulated context using the correct method on a pediatric and neonatal patient mannequin simulator.

4. Correctly ventilates a pediatric and neonatal patient mannequin simulator.

5. Correctly assesses clinical stability in pediatric and neonatal patient mannequin simulators.
<table>
<thead>
<tr>
<th>Level</th>
<th>Knowledge</th>
<th>Assessment</th>
<th>Standard</th>
<th>Skill</th>
<th>Assessment</th>
<th>Standard</th>
</tr>
</thead>
</table>
| | • 3X Tube size
• On end of ETT lines, insert to just past cords
• If ETT balloon, balloon just past cords
Confirm ETT placement.
• Verbalize “see tube pass through cords.”
• Auscultation of breath sounds.
• CO2 detector.
• Post intubation chest x-ray.
Recognize Misplacement of ETT.
• Identify Esophageal Intubation
• Identify Right Main Stem Intubation
Manage Esophageal Intubation.
• Recognize
• Remove ETT ≤ 10 sec
• Re-start ETT ≤ 15 sec Placement
Manage Right Main Stem Intubation.
• Recognize ≤ 10 sec
• Pull back ETT ≤ 15 sec
3. Understands how | Insert
Laryngoscope Blade.
Place
Endotracheal Tube.
Determine how deep to insert the tube:
• Use Broselow tape
• 3X Tube size
• On end of ETT lines, insert to just past cords
• If ETT balloon, balloon just past cords
Confirm ETT placement.
• Verbalize “see tube pass through cords.”
• Auscultation of breath sounds.
• CO2 detector.
• Post intubation chest x-ray.
Recognize Misplacement of ETT.
• Identify Esophageal Intubation
• Identify Right Main Stem | mannequin simulators. |
<table>
<thead>
<tr>
<th>Level</th>
<th>Knowledge</th>
</tr>
</thead>
</table>
| | to ventilate a pediatric and neonatal patient.
 • Rate
 • Volume

4. Knows how to determine if a pediatric and neonatal patient is clinically stable:
 • Normal vital signs for neonatal patients
 • Normal vital signs for pediatric patient by age |

<table>
<thead>
<tr>
<th></th>
<th>Assessment</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Intubation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Manage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Esophageal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intubation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Recognize</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Remove ETT ≤ 10 sec</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Re-start ETT ≤ 15 sec</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Placement</td>
<td></td>
</tr>
</tbody>
</table>

4. Be able to ventilate to support a pediatric and neonatal patient’s breathing. |

5. Be able to assess clinical stability in pediatric and neonatal patients. |

<table>
<thead>
<tr>
<th></th>
<th>Assessment</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Factual | Instruments & Supplies
1. Identify and describe the function the following medical instruments & supplies: |
|---------|---|

| | Instruments & Supplies
1. Identify and describe the function the listed medical |
|------------------|---|

| | Instruments & Supplies
1. Correctly identify and describe the function the |
|------------------|---|

| | Instruments & Supplies
1. Be able to identify the location of and select the |
|------------------|---|

| | Instruments & Supplies
1. Demonstrate the ability to locate and select the listed instruments & |

W81XWH-12-2-0001 53
<table>
<thead>
<tr>
<th>Level</th>
<th>Knowledge</th>
<th>Assessment</th>
<th>Standard</th>
<th>Skill</th>
<th>Assessment</th>
<th>Standard</th>
</tr>
</thead>
</table>
| | • Endotracheal Tube
• Stylette
• Laryngoscope
• Suction
• Ambu bag-valve-mask
• IV Catheter
• IV Fluids
• Broselow Tape
• pCO2 Detector (litmus paper)
• Tape
• 10cc syringe | instruments & supplies on a written test.
2. Determine the size of Endotracheal tube given information in a case study on a written test.
3. Determine size of laryngoscope blade given information in a case study on a written test.
4. Indicate the best mask for pediatric and neonatal patients on a written test. | listed medical instruments & supplies on a written test.
2. Correctly determines the size of Endotracheal tube given information in a case study on a written test.
3. Correctly determines size of laryngoscope blade given information in a case study on a written test.
4. Correctly indicates the best mask for pediatric and neonatal patients on a written test. | following instruments & supplies:
• Endotracheal Tube
• Stylette
• Laryngoscope
• Suction
• Ambu bag-valve-mask
• IV Catheter
• IV Fluids
• Broselow Tape
• pCO2 Detector (litmus paper)
• Tape
• 10cc syringe | instruments & supplies in a simulated context.
2. Demonstrates ability to appropriately implement the listed medical instruments & supplies in a simulated context. | |
<table>
<thead>
<tr>
<th>Level</th>
<th>Knowledge</th>
<th>Assessment</th>
<th>Standard</th>
<th>Skill</th>
<th>Assessment</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Equipment</td>
<td>Equipment</td>
<td>Equipment</td>
<td>Equipment</td>
<td>Equipment</td>
<td>Equipment</td>
</tr>
<tr>
<td></td>
<td>2. Know how to use ventilator.</td>
<td>2. Describe how to use ventilator on a written test.</td>
<td>2. Correctly describes how to use ventilator on a written test.</td>
<td>2. Be able to use ventilator.</td>
<td>2. Correctly uses ventilator in a simulated context with pediatric and neonatal patient mannequin simulators.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Know how to use vitals monitor to assess heart rate, respiration rate and SpO2 levels.</td>
<td>3. Describe how to use vitals monitor to assess heart rate, respiration rate and SpO2 levels on a written test.</td>
<td>3. Describes how to use vitals monitor to assess heart rate, respiration rate and SpO2 levels on a written test.</td>
<td>3. Be able to use vitals monitor to assess heart rate, respiration rate and SpO2 levels.</td>
<td>3. Correctly uses vitals monitor to assess heart rate, respiration rate and SpO2 levels in a simulated context with pediatric and neonatal patient mannequin simulators.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Conceptual</td>
<td>Physiological</td>
<td>Physiological</td>
<td>Physiological N/A</td>
<td>Physiological N/A</td>
<td>Physiological N/A</td>
</tr>
<tr>
<td></td>
<td>1. Distinguish between the primary conditions indicating the need for pediatric and neonatal intubation:</td>
<td>1. Distinguish between the primary conditions indicating the need for</td>
<td>1. Correctly identify the primary conditions indicating the need for</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level</td>
<td>Knowledge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Conceptual | • Decreased Oxygenation.
• Decreased ventilation (not clearing CO2).
• Decreased mental status causes inability to protect airway.
• Other cause of inability to protect airway. |

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>pediatric and neonatal intubation on a written test.</td>
<td>pediatric and neonatal intubation on a written test.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Skill</th>
<th>Assessment</th>
<th>Standard</th>
</tr>
</thead>
</table>
| Clinical 1. Understand the relevant symptomology for performing a differential diagnosis (DDx) for pediatric and neonatal patients experiencing signs that they require intubation:
• Identify need for intubation over other airway management interventions.
• Identify need for intubation over other respiratory management.
2. Distinguish the primary conditions indicating the need for pediatric and neonatal intubation:
• Decreased Oxygenation.
• Decreased ventilation (not | Clinical 1. Demonstrate the ability to examine a pediatric and neonatal patient and performs DDx in a simulated context with pediatric and neonatal mannequin simulators. |
| Clinical 1. Perform Differential Diagnosis (DDx) from case-based information on a written test.
2. Identify primary conditions indicating the need for pediatric and neonatal intubation on a written test.
3. Distinguish between the clinical indicators for esophageal intubation from case-based information on a written test. | Clinical 1. Correctly identify the need for intubation in pediatric and neonatal patients given clinical conditions from case-based information on a written test.
2. Correctly identify primary conditions indicating the need for pediatric and neonatal intubation on a written test.
3. Correctly distinguish between the clinical indicators for esophageal intubation from case-based information on a written test. | Clinical 1. Be able to examine a pediatric and neonatal patient to perform DDx:
• Identify need for intubation over other airway management interventions.
• Identify need for intubation over other respiratory management.
2. Be able to examine a pediatric and neonatal patient to confirm endotracheal intubation in a simulated context with pediatric and neonatal mannequin simulators.
3. Be able to examine a pediatric and neonatal patient to assess esophageal intubation in a simulated context with pediatric and neonatal mannequin simulators. |
| Clinical 1. Correctly identify the need for intubation in pediatric and neonatal patients given clinical conditions from case-based information on a written test.
2. Identify need for intubation over other airway management interventions.
3. Identify need for intubation over other respiratory management.
2. Be able to examine a pediatric and neonatal patient to confirm endotracheal intubation in a simulated context with pediatric and neonatal mannequin simulators.
3. Correctly examines a pediatric and neonatal patient to assess endotracheal intubation in a simulated context with pediatric and neonatal mannequin simulators. | |
<table>
<thead>
<tr>
<th>Level</th>
<th>Knowledge</th>
<th>Assessment</th>
<th>Standard</th>
<th>Skill</th>
<th>Assessment</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>clearing CO2).</td>
<td>4. Distinguish between the clinical indicators for esophageal intubation.</td>
<td>clinical indicators for esophageal intubation from case-based information on a written test.</td>
<td>3. Be able to examine a pediatric and neonatal patient to assess esophageal intubation.</td>
<td>4. Correctly distinguishes between the clinical indicators for right main stem intubation from case-based information on a written test.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Decreased mental status causes inability to protect airway.</td>
<td>5. Evaluates clinical stability in pediatric and neonatal patients from information given in a case study on a written test.</td>
<td>4. Be able to examine a pediatric and neonatal patient to assess right main stem intubation.</td>
<td>5. Be able to evaluate clinical stability in pediatric and neonatal patients.</td>
<td>5. Correctly evaluates clinical stability in a simulated context with pediatric and neonatal mannequin simulators.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Other cause of inability to protect airway.</td>
<td>5. Correctly evaluates clinical stability in pediatric and neonatal patients from information given in a case study on a written test.</td>
<td>5. Be able to examine a pediatric and neonatal patient to assess right main stem intubation in a simulated context with pediatric and neonatal mannequin simulators.</td>
<td>5. Correctly evaluates clinical stability in a simulated context with pediatric and neonatal mannequin simulators.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conceptual</td>
<td>Medication 1. Differentiate dose</td>
<td>Medication 1. Indicate the dose</td>
<td>Medication 1. Correctly adjusts the dose</td>
<td>Medication Be able to adjust the dose</td>
<td>Medication Be able to evaluate clinical stability in a simulated context with pediatric and neonatal mannequin simulators.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

W81XWH-12-2-0001
57
<table>
<thead>
<tr>
<th>Level</th>
<th>Knowledge</th>
<th>Assessment</th>
<th>Standard</th>
<th>Skill</th>
<th>Assessment</th>
<th>Standard</th>
</tr>
</thead>
</table>
| | requirements by weight for the medications used in pediatric and neonatal intubation:
 • Etomidate (0.3-0.6 mg/kg)
 • Versed (0.05-0.1 mg/kg)
 • Ketamine (1-2 mg/kg)
 • Succinylcholine (1-2 mg/kg)
 • Atropine (0.2 mg/kg)
 2. Understand the effects of dosing for optimal clinical effect for each medication type. | dose requirements by weight for the medications used in pediatric and neonatal intubation on a written test.
 2. Indicate how to adjust dosages of medications given information about clinical effects in a case study on a written test. | indicate the dose requirements for the medications used in pediatric and neonatal intubation on a written test.
 2. Correctly indicates how to adjust dosages of medications given information about clinical effects in a case study on a written test. | medication dosages for optimal clinical effect in a pediatric and neonatal patient requiring intubation. | adjust medication dosages for optimal clinical effect in a pediatric and neonatal intubation. | medication dosages for optimal clinical effect in a simulated context with pediatric and neonatal mannequin simulators. |
| Practical | Clinical N/A | Clinical N/A | Clinical N/A | Clinical 1. Be able to examine pediatric and neonatal patients to assess indicators of need for airway management:
 • Mouth
 • Nose; Nasal Flaring
 • Respiratory effort
 • Retractions
 • Apnea
 • Cyanosis
 • Pulse | Clinical 1. Examine a patient to assess indicators of need for airway management in a simulated context with pediatric and neonatal mannequin simulators.
 2. Examine a patient to assess indicators of need for intubation in a simulated context with pediatric and neonatal simulators. | Clinical 1. Correctly examines a patient to assess indicators of need for airway management in a simulated context with pediatric and neonatal mannequin simulators.
 2. Correctly examines a patient to assess indicators of need for intubation in a simulated context with pediatric and neonatal simulators. |
<table>
<thead>
<tr>
<th>Level</th>
<th>Knowledge</th>
<th>Assessment</th>
<th>Standard</th>
<th>Skill</th>
<th>Assessment</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2. Be able to examine pediatric and neonatal patients to assess indicators of need for intubation: • Failure to Ventilate. • Failure to Oxygenate. • Failure to protect airway. • Failure to maintain patent airway. • Significant hemodynamic instability. • Operative needs.</td>
<td>need for intubation in a simulated context with pediatric and neonatal mannequin simulators.</td>
<td>mannequin simulators.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3. Be able to examine a pediatric and neonatal patient to perform DDx: • Identify need for intubation over other airway management interventions. • Identify need for intubation over other respiratory management.</td>
<td>3. Examine a patient to perform DDx and determine airway management strategy in a simulated context with pediatric and neonatal mannequin simulators.</td>
<td>3. Correctly examines a patient to perform DDx and determine airway management strategy in a simulated context with pediatric and neonatal mannequin simulators.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4. Correctly intubates patients in a simulated context with pediatric and neonatal mannequin simulators.</td>
<td>4. Intubate patients in a simulated context with pediatric and neonatal mannequin simulators.</td>
<td>4. Correctly intubates patients in a simulated context with pediatric and neonatal mannequin simulators.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5. Correctly examines a patient to confirm endotracheal intubation in a simulated context with pediatric and neonatal mannequin simulators.</td>
<td>5. Examine a patient to confirm endotracheal intubation in a simulated context with pediatric and neonatal mannequin simulators.</td>
<td>5. Correctly examines a patient to confirm endotracheal intubation in a simulated context with pediatric and neonatal mannequin simulators.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6. Correctly examines a patient to assess esophageal intubation in a simulated context with pediatric and neonatal mannequin simulators.</td>
<td>6. Correctly examines a patient to assess esophageal intubation in a simulated context with pediatric and neonatal mannequin simulators.</td>
<td>6. Correctly examines a patient to assess esophageal intubation in a simulated context with pediatric and neonatal mannequin simulators.</td>
</tr>
<tr>
<td>Level</td>
<td>Knowledge</td>
<td>Assessment</td>
<td>Standard</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>------------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| | | 4. Be able to intubate pediatric and neonatal patients:
| | | • Uses appropriate instruments, supplies, equipment
| | | • Completes all steps in appropriate sequence |
| | | 5. Be able to examine a pediatric and neonatal patient to confirm endotracheal intubation. |
| | | 6. Be able to examine a pediatric and neonatal patient to assess esophageal intubation. |
| | | 7. Be able to examine a pediatric and neonatal patient to assess right main stem intubation. |
| | 8. Be able to assess clinical | neonatal mannequin simulators. |
| | | 6. Examine a patient to assess esophageal intubation in a simulated context with pediatric and neonatal mannequin simulators. |
| | | 7. Examine a patient to assess right main stem intubation in a simulated context with pediatric and neonatal mannequin simulators. |
| | | 8. Correctly assesses clinical stability in a patient in a simulated context with pediatric and neonatal mannequin simulators. |
| | 8. Correctly | 7. Correctly examines a patient to assess right main stem intubation in a simulated context with pediatric and neonatal mannequin simulators. |
| | | 8. Correctly assesses clinical stability in a patient in a simulated context with pediatric and neonatal mannequin simulators. |
| | | 8. Assess clinical stability in a patient in a simulated context with pediatric and neonatal mannequin simulators. |

<table>
<thead>
<tr>
<th>Level</th>
<th>Knowledge</th>
<th>Assessment</th>
<th>Standard</th>
<th>Skill</th>
<th>Assessment</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>stability in a pediatric and neonatal patient.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Practical</td>
<td>Medication</td>
<td>Medication</td>
<td>Medication</td>
<td>1. Be able to identify and secure the following medications: • Etomidate • Versed • Ketamine • Succinylcholine • Atropine</td>
<td>Medication</td>
<td>1. Administer drugs through IV catheter in a simulated context with pediatric and neonatal mannequin simulators.</td>
</tr>
<tr>
<td></td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>2. Be able to administer the appropriate dosages and drugs through IV catheter in pediatric and neonatal patients.</td>
<td></td>
<td>2. Administer adjustments to medication doses to gain clinical effect in a simulated context with pediatric and neonatal mannequin simulators.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3. Be able to select the appropriate drugs, dosages, administration routes and time sequences for pediatric and neonatal patients.</td>
<td></td>
<td>3. Select the appropriate drugs, dosages, administration routes and time sequences for pediatric and neonatal intubation in a simulated context with pediatric and neonatal mannequin simulators.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4. Be able to evaluate the clinical effects of selected drugs</td>
<td></td>
<td>4. Correctly evaluates the clinical effects of selected drugs and dosages</td>
</tr>
</tbody>
</table>

1. Correctly administers drugs through IV catheter in a simulated context with pediatric and neonatal mannequin simulators.
2. Correctly administers adjustments to medication doses to gain clinical effect in a simulated context with pediatric and neonatal mannequin simulators.
3. Correctly selects the appropriate drugs, dosages, administration routes and time sequences for pediatric and neonatal intubation in a simulated context with pediatric and neonatal mannequin simulators.
4. Correctly evaluates the clinical effects of selected drugs and dosages.
<table>
<thead>
<tr>
<th>Level</th>
<th>Knowledge</th>
<th>Assessment</th>
<th>Standard</th>
<th>Skill</th>
<th>Assessment</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>and dosages in pediatric and neonatal patients.</td>
<td>simulators.</td>
<td>in a simulated context with pediatric and neonatal mannequin simulators.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5. Be able to adjust medication doses and apply appropriate time sequences to gain optimal clinical effect in pediatric and neonatal patients.</td>
<td>4. Evaluate the clinical effects of selected drugs and dosages in a simulated context with pediatric and neonatal mannequin simulators.</td>
<td>5. Correctly adjusts medication doses and apply appropriate time sequences to gain optimal clinical effect in a simulated context with pediatric and neonatal mannequin simulators.</td>
</tr>
<tr>
<td>Practical</td>
<td>Health Metrics</td>
<td>Knows how to evaluate relevant health metrics for assessing the patient’s physical and physiological status: • Respiratory status • Integrity of Airway</td>
<td>Health Metrics</td>
<td>Correctly evaluates appropriate health metrics to assess respiratory and/or airway compromise in neonatal and pediatric patients in a simulated context with pediatric and neonatal mannequin simulators.</td>
<td>Health Metrics</td>
<td>Correctly examines and indicates pediatric and neonatal patients’ physical and physiological status in a simulated context with pediatric and neonatal mannequin simulators.</td>
</tr>
<tr>
<td></td>
<td>Health Metrics</td>
<td>Evaluate appropriate health metrics to assess respiratory and/or airway compromise in neonatal and pediatric patients in a simulated context with pediatric and neonatal mannequin simulators.</td>
<td>Health Metrics</td>
<td>Knows how to examine and indicate patient’s physical and physiological status: • Respiratory status • Integrity of Airway</td>
<td>Health Metrics</td>
<td>Examine and indicate pediatric and neonatal patients’ physical and physiological status in a simulated context with pediatric and neonatal mannequin simulators.</td>
</tr>
<tr>
<td>Level</td>
<td>Knowledge</td>
<td>Assessment</td>
<td>Standard</td>
<td>Skill</td>
<td>Assessment</td>
<td>Standard</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>------------</td>
<td>----------</td>
<td>-------</td>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>simulated</td>
<td>patients in a simulated context with pediatric and neonatal mannequin simulators.</td>
<td>pediatric and neonatal mannequin simulators.</td>
<td>simulators.</td>
<td></td>
</tr>
</tbody>
</table>

Analytical

| | N/A | N/A | N/A | Clinical | 1. Identify treatment effects:
• Decreased retractions
• Decreased cyanosis
• Decreased respiratory effort
• Decreased nasal flaring
• Reduced Apnea
• Improved respiration
2. Identify effects of clinical mismanagement:
• Absent positive treatment effects |

| | N/A | N/A | N/A | Clinical | 1. Identify treatment effects in a simulated context with pediatric and neonatal mannequin simulators.
2. Identify effects of clinical mismanagement in a simulated context with pediatric and neonatal mannequin simulators. |

| | N/A | N/A | N/A | Procedural | 1. Identify challenges of airway management for pediatric and neonatal patients. |

| | | N/A | N/A | Procedural | 1. Respond to the challenges of airway management for pediatric and neonatal patients in a simulated context with pediatric and neonatal mannequin simulators. |

<p>| | | N/A | N/A | Procedural | 1. Respond to the challenges of airway management for pediatric and neonatal patients in a simulated context with pediatric and neonatal mannequin simulators. |</p>
<table>
<thead>
<tr>
<th>Level</th>
<th>Knowledge</th>
<th>Assessment</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2. Understand the correct administration of medications.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Know the correct ventilation requirements for pediatric and neonatal patients.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. Understand the stabilization course for intubated pediatric and neonatal patients.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Skill</th>
<th>Assessment</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Correctly administers medications as needed for airway management (intubation) in pediatric and neonatal patients in a simulated context with pediatric and neonatal mannequin simulators.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Correctly intubates as needed for airway management in pediatric and neonatal patients in a simulated context with pediatric and neonatal mannequin simulators.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Correctly ventilates intubated pediatric and neonatal patients in a simulated context with pediatric and neonatal mannequin simulators.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Adequately stabilizes intubated pediatric and neonatal patients in a simulated context with pediatric and</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level</td>
<td>Knowledge</td>
<td>Assessment</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix 4: Cholinergic Crisis Task Analysis
TASK STEPS: RECOGNITION AND CLINICAL MANAGEMENT OF CHOLINERGIC CRISIS

Nerve Agent Exposure: Tabun(GA); GB(Sarin); GD(Soman); GF; VX – liquid/gas

REFERENCES LIST

<table>
<thead>
<tr>
<th>Level</th>
<th>Knowledge</th>
<th>Assessment</th>
<th>Standard</th>
<th>Skill</th>
<th>Assessment</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factual</td>
<td>Anatomy</td>
<td>Understand the functions of the Gastrointestinal, Respiratory, Neurological, Endocrine, Ophthalmological, and Musculoskeletal Systems.</td>
<td>Identify the functions of the Gastrointestinal, Respiratory, Neurological, Endocrine, Ophthalmological, and Musculoskeletal Systems on a written test.</td>
<td>Correctly identifies the functions of the Gastrointestinal, Respiratory, Neurological, Endocrine, Ophthalmological, and Musculoskeletal Systems.</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Physioogy</td>
<td>1. The normal action of the enzyme acetylcholinesterase (AChE) to control the transmission of acetylcholine across the synaptic cleft.</td>
<td>1. Identify the normal function of the enzyme acetylcholinesterase is to breakdown (hydrolyze) the chemical messenger (neurotransmitter) acetylcholine (ACh) in the post-synaptic membranes, thereby</td>
<td>1. Correctly explains the normal function of the enzyme acetylcholinesterase in controlling the neuron signal processing of the nervous system.</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Knowledge Assessment

Anatomy

- Understand the functions of the Gastrointestinal, Respiratory, Neurological, Endocrine, Ophthalmological, and Musculoskeletal Systems.

Physiology

1. The normal action of the enzyme acetylcholinesterase (AChE) to control the transmission of acetylcholine across the synaptic cleft.
2. The effect of blocking AChE on the nervous system.
<table>
<thead>
<tr>
<th>Level</th>
<th>Knowledge</th>
<th>Assessment</th>
<th>Standard</th>
<th>Skill</th>
<th>Assessment</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The parts of the human body affected by excessive acetylcholine accumulation: Eye, nose (glands), mouth (glands), respiratory tract, gastrointestinal tract, cardiac muscle, sweat glands, skeletal muscle, central nervous system.</td>
<td>controlling the neuron signal processing of the nervous system in a written test. 2. Describe how nerve agents block the enzyme AChE in a written test.</td>
<td>interfere with AChE leading to cholinergic crisis.</td>
<td></td>
<td>Clinical Knowledge 1. Correctly describe the primary physical and physiological signs to look for during patient assessment to identify nerve agent exposure: • Miosis • Copious secretions • Generalized muscular fasciculations • Respiratory distress • Cyanosis • Convulsions 2. Correctly indicates the following information to request from a conscious patient: • Eyes • Mouth • Nose • Respiratory effort • Muscle control • Pulse</td>
<td>Clinical Skills 1. Demonstrate the ability to examine the patient and assess indicators of cholinergic crisis in a simulated context with a mannequin simulator or a standardized patient: • Eyes • Mouth • Nose • Respiratory effort • Muscle control • Pulse</td>
</tr>
<tr>
<td>Level</td>
<td>Knowledge</td>
<td>Assessment</td>
<td>Standard</td>
<td>Skill</td>
<td>Assessment</td>
<td>Standard</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>------------</td>
<td>----------</td>
<td>-------</td>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td>Factual</td>
<td>Medication Knowledge</td>
<td>1. Know the drugs, dosages, administration routes and time sequences for the management of cholinergic crisis.</td>
<td>1. On a written test, identify the drugs, dosages, administration routes and time sequences for the management of cholinergic crisis.</td>
<td>1. Correctly identifies the drugs, dosages, administration routes and time sequences for the management of cholinergic crisis: Pre-treatment • Pyridostigmine Bromide (30mg tablet orally q 8 hours) (pre-treatment) Treatment • Mark1 Kit Auto Injector</td>
<td>1. Be able to use the following: • Mark1 Kit Auto Injector • ATNNA Auto Injector • CANA Auto Injector</td>
<td>1. Demonstrate the ability to use the following in a simulated context: • Mark1 Kit Auto Injector • ATNNA Auto Injector • CANA Auto Injector</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>during clinical assessment: • Pain • GI/Urinary distress • Difficulty breathing • Fatigue • Muscle control • Other concerns</td>
<td></td>
<td></td>
<td>• Pulse</td>
</tr>
<tr>
<td></td>
<td>Medication Knowledge</td>
<td>2. Understand the purpose of each drug used in the management of cholinergic crisis and their respective expected clinical effects.</td>
<td>2. Describe the purpose of each drug used in the management of cholinergic crisis and their respective expected clinical effects.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Medication Knowledge</td>
<td>3. Correctly indicates the areas where physical examination will provide indicators of cholinergic crisis: • Eyes • Mouth • Nose • Respiratory effort • Muscle control • Pulse</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Medication Skills</td>
<td>1. Be able to place an IV catheter.</td>
<td>2. Be able to administer drugs through IV catheter.</td>
<td>3. Be able to</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Medication Skills</td>
<td>1. Correctly uses each of the following in a simulated context: • Mark1 Kit Auto Injector • ATNNA Auto Injector • CANA Auto Injector</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level</td>
<td>Knowledge</td>
<td>Assessment</td>
<td>Standard</td>
<td>Skill</td>
<td>Assessment</td>
<td>Standard</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>------------</td>
<td>----------</td>
<td>-------</td>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>effects on a written test.</td>
<td>(Atropine, 2mg / 2PAMCL, 300mg) IM 1<sup>st</sup> injector 2<sup>nd</sup> injector 10-15 min after 1<sup>st</sup> injector 3<sup>rd</sup> injector in rapid succession, 1q 5min as needed, not to exceed 3 in 1 hour • ATNAA Auto Injector (Atropine, 2.1mg / 2PAMCL, 600mg) IM 1<sup>st</sup> injector 2<sup>nd</sup> injector 10-15 min after 1<sup>st</sup> injector 3<sup>rd</sup> injector in rapid succession, 1q 5min as needed, not to exceed 3 in 1 hour • CANA) Auto Injector (Diazepam, 10mg) IM 1<sup>st</sup> injector if patient receives 3 ATNAA/ Mark1 Kits Auto Injectors 2<sup>nd</sup>/3<sup>rd</sup> injectors as needed for seizing patient • Atropine Ophthalmic Ointment (topical); 0.5” strip in pocket of lower eyelid of a patient mannequin simulator.</td>
<td>4. Be able to administer atropine ophthalmic ointment.</td>
<td>administer drugs through IV catheter in a simulated context. 4. Be able to administer atropine ophthalmic ointment (topical); 0.5” strip in pocket of lower eyelid of a patient mannequin simulator.</td>
<td>Injector 2. Correctly places an IV catheter in a simulated context. 3. Correctly administers drugs through IV catheter in a simulated context. 4. Correctly administers atropine ophthalmic ointment (topical); 0.5” strip in pocket of lower eyelid of a patient mannequin simulator.</td>
</tr>
<tr>
<td>Level</td>
<td>Knowledge</td>
<td>Assessment</td>
<td>Standard</td>
<td>Skill</td>
<td>Assessment</td>
<td>Standard</td>
</tr>
<tr>
<td>----------</td>
<td>--------------</td>
<td>----------------</td>
<td>--------------</td>
<td>-----------</td>
<td>---------------</td>
<td>--------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>eyelid at Level 2 treatment location</td>
<td>2. Correctly describe the purpose of each drug used in the management of cholinergic crisis and their respective expected clinical effects on a written test: • Pyridostigmine Bromide – Shields AChE enzyme from full effects of GD to enhance the effectiveness of treatment after GD exposure. • Atropine – Dry secretions, reduce bronchoconstriction, decrease gastrointestinal motility • 2PAMCL – Remove the nerve agent (except GD) from the enzyme acetylcholinesterase. • Diazepam – Control convulsions. • Atropine ophthalmological ointment – Relieve eye symptoms.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level</td>
<td>Knowledge</td>
<td>Assessment</td>
<td>Standard</td>
<td>Skill</td>
<td>Assessment</td>
<td>Standard</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>------------</td>
<td>----------</td>
<td>-------</td>
<td>------------</td>
<td>----------</td>
</tr>
</tbody>
</table>
| Factual | Health Metrics
Understand relevant health metrics for assessing the patient’s physical and physiological status.
Understand relevant time sequence for exposure in assessing the patient’s physical and physiological status during cholinergic crisis. | Health Metrics
Indicate on a written test which health metrics to assess for a patient who may be experiencing cholinergic crisis.
Indicate on a written test relevant time sequence for exposure in assessing the patient’s physical and physiological status during cholinergic crisis. | Health Metrics
Indicate the following health metrics:
• Pupil Size
• Respiratory status
• Muscle control
• Neurological status
• Volume of secretions
• Heart rate | Health Metrics
N/A | Health Metrics
N/A | Health Metrics
N/A |
| Factual | Situational Knowledge
1. Identify exposure agent by using detection device(s) and situational cues.
2. Identify exposure agent by using situational cues.
3. Knows the transfer of care sequence for responding to a cholinergic crisis. | Situational Knowledge
1. Indicate the meaning of detection results for each of the detection device(s) to assess exposure agent on a written test.
2. Identifies other situational cues for assessing exposure agent on a written test.
3. Describes the transfer of care sequence for responding to a cholinergic crisis on a written test. | Situational Knowledge
1. Correctly indicates the meaning of the detection result for each detection device(s) to identify the exposure agent.
2. Identifies other situational cues for assessing exposure agent including: mass casualties, patient symptomology such as the onset of symptoms, localized or general reactions, initial symptoms, and time progression of symptoms. | Situational Skills
N/A | Situational Skills
N/A | Situational Skills
N/A |
<table>
<thead>
<tr>
<th>Level</th>
<th>Knowledge</th>
<th>Assessment</th>
<th>Standard</th>
<th>Skill</th>
<th>Assessment</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factual</td>
<td>Procedural Knowledge 1. Describe the patient management strategy for cholinergic crisis: • Self-protection • Antidote • Airway • Breathing • Circulation • Drugs • Decontamination 2. Describe the decontamination protocol for managing a cholinergic crisis: • Remove contaminated clothing and gear • Decontaminate exposed skin</td>
<td>Procedural Knowledge 1. Describe patient management strategy for cholinergic crisis: • Self-protection • Pre-treatment w/ Pyridostigmine Bromide • Don Mission-Oriented Protective Posture (MOPP) Level IV Antidote Treatment • Mark 1 Kit (atropine and pralidoxime chloride auto-injector) • ATNAA (antidote treatment nerve agent auto-injector) • ATNAA (antidote treatment nerve agent auto-injector) • CANA (convulsant antidote for nerve)</td>
<td>Procedural Knowledge 1. Correctly describe patient management strategy for cholinergic crisis: • Self-protection • Pre-treatment w/ Pyridostigmine Bromide • Don Mission-Oriented Protective Posture (MOPP) Level IV Antidote Treatment • Mark 1 Kit (atropine and pralidoxime chloride auto-injector) • ATNAA (antidote treatment nerve agent auto-injector) • ATNAA (antidote treatment nerve agent auto-injector) • CANA (convulsant antidote for nerve)</td>
<td>Procedural Skills 1. Be able to don Mission-Oriented Protective Posture (MOPP) Level IV in a simulated context 2. Be able to administer • Mark 1 Kit • ATNAA • CANA 3. Be able to secure the patient’s airway by performing: • Suction • Patient positioning • Bag-valve-mask • Intubation 4. Be able to ventilate and implement RDIC to support the patient’s breathing</td>
<td>Procedural Skills 1. Be able to don Mission-Oriented Protective Posture (MOPP) Level IV in a simulated context 2. Be able to administer each of the following to a patient mannequin simulator • Mark 1 Kit • ATNAA • CANA 3. Be able to perform each of the following skills on a patient mannequin simulator: • Suction • Patient positioning • Bag-valve-mask • Intubation</td>
<td>Procedural Skills 1. Correctly dons Mission-Oriented Protective Posture (MOPP) Level IV in a simulated context 2. Correctly administers each of the following to a patient mannequin simulator • Mark 1 Kit • ATNAA • CANA 3. Correctly performs</td>
</tr>
<tr>
<td>Level</td>
<td>Knowledge</td>
<td>Assessment</td>
<td>Standard</td>
<td>Skill</td>
<td>Assessment</td>
<td>Standard</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>agent; diazepam auto-injector)</td>
<td>agent; diazepam auto-injector)</td>
<td>5. Be able to perform each step of the decontamination protocol:</td>
<td>4. Be able to ventilate and implement RDIC using a patient mannequin simulator</td>
<td>5. Be able to perform each step of the decontamination protocol in a simulated context using the correct method on a patient mannequin simulator or standardized patient:</td>
<td>each of the following skills on a patient mannequin simulator:</td>
</tr>
<tr>
<td></td>
<td>Airway</td>
<td>Airway</td>
<td>• Remove contaminated clothing and gear.</td>
<td>• Suction</td>
<td>• Remove and disposition contaminated clothing and gear.</td>
<td>• Suction</td>
</tr>
<tr>
<td></td>
<td>• Suction</td>
<td>• Suction</td>
<td>• Decontaminate exposed skin</td>
<td>• Patient positioning</td>
<td>• Decontaminate exposed skin in the following order:</td>
<td>• Patient positioning</td>
</tr>
<tr>
<td></td>
<td>• Position patient</td>
<td>• Position patient</td>
<td>• Apply reactive skin decontamination lotion (RSDL)</td>
<td>• Bag-valve-mask mask</td>
<td>- Face</td>
<td>• Bag-valve-mask</td>
</tr>
<tr>
<td></td>
<td>• Bag-valve-mask airway</td>
<td>• Bag-valve-mask airway</td>
<td>• Irrigate with large amounts of water</td>
<td>• Intubation</td>
<td>- Neck area</td>
<td>• Intubation</td>
</tr>
<tr>
<td></td>
<td>• Intubation</td>
<td>• Intubation</td>
<td>• Apply M291 SDK</td>
<td>• Assessment</td>
<td>- Chest area</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Breathing</td>
<td>Breathing</td>
<td>• Clean w/ soap & water</td>
<td>• Ventilation</td>
<td>- Abdomen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Assessment</td>
<td>Assessment</td>
<td>• Apply M295</td>
<td>• RDIC</td>
<td>- Arms and hands</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Ventilation</td>
<td>• Ventilation</td>
<td>• Apply 0.5% hypochlorite solution</td>
<td>• Assessment</td>
<td>- Other exposed skin areas</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• RDIC</td>
<td>• RDIC</td>
<td></td>
<td>• Drugs</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Circulation</td>
<td>Circulation</td>
<td></td>
<td>• Pyridostigmine Bromide (30mg tablet) (pre-treatment)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Assessment</td>
<td>• Assessment</td>
<td></td>
<td>• Mark1 Kit Auto Injector (Atropine, 2mg / 2PAMCL, 300mg) IM 1st injector</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Drugs</td>
<td>Drugs</td>
<td></td>
<td>2nd injector 10-15 min after 1st injector 3rd injector in rapid succession, 1q 5min as needed, not to exceed 3 in 1 hour</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pyridostigmine Bromide (30mg tablet) (pre-treatment)</td>
<td>Pyridostigmine Bromide (30mg tablet) (pre-treatment)</td>
<td></td>
<td>3rd injector in rapid succession, 1q 5min as needed, not to exceed 3 in 1 hour</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Mark1 Kit Auto Injector (Atropine, 2mg / 2PAMCL, 300mg) IM 1st injector</td>
<td>Mark1 Kit Auto Injector (Atropine, 2mg / 2PAMCL, 300mg) IM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2nd injector 10-15 min after 1st injector</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3rd injector in rapid succession, 1q 5min as needed, not to exceed 3 in 1 hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level</td>
<td>Knowledge</td>
<td>Assessment</td>
<td>Standard</td>
<td>Skill</td>
<td>Assessment</td>
<td>Standard</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>------------</td>
<td>----------</td>
<td>-------</td>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2nd injector 10-15 min after 1st injector 3rd injector in rapid succession, 1q 5min as needed, not to exceed 3 in 1 hour • CANA Auto Injector (Diazepam,10mg) IM 1st injector if patient receives 3 ATNAA/Mark1 Kits Auto Injectors 2nd/3rd injectors as needed for seizing patient • Atropine Ophthalmic Ointment (topical); 0.5” strip in pocket of lower eyelid at Level 2 treatment location Decontamination Describe decontamination protocol: • Remove contaminated clothing and gear (order of removal, how to remove, how to dispose) • Decontaminate exposed skin in the following order: - Face - Neck area - Chest area</td>
<td>2nd injector 10-15 min after 1st injector 3rd injector in rapid succession, 1q 5min as needed, not to exceed 3 in 1 hour • CANA Auto Injector (Diazepam,10mg) IM 1st injector if patient receives 3 ATNAA/Mark1 Kits Auto Injectors 2nd/3rd injectors as needed for seizing patient • Atropine Ophthalmic Ointment (topical); 0.5” strip in pocket of lower eyelid at Level 2 treatment location Decontamination Describe decontamination protocol: • Remove contaminated clothing and gear (order of removal, how to remove, how to dispose) • Decontaminate exposed skin in the following order: - Face - Neck area - Chest area</td>
<td>water • Apply M295 • Apply 0.5% hypochlorite solution</td>
<td>standardize d patient: • Remove and disposition contaminated clothing and gear. • Decontaminate exposed skin in the following order: - Face - Neck area - Chest area - Abdomen - Arms and hands - Other exposed skin areas • Apply reactive skin decontamination lotion (RSDL) • Irrigate with large amounts of water • Apply M291 SDK • Clean w/</td>
<td></td>
</tr>
<tr>
<td>Level</td>
<td>Knowledge</td>
<td>Assessment</td>
<td>Standard</td>
<td>Skill</td>
<td>Assessment</td>
<td>Standard</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>------------</td>
<td>----------</td>
<td>-------</td>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Abdomen</td>
<td>- Abdomen</td>
<td></td>
<td>soap &</td>
<td>soap & water</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Arms and hands</td>
<td>- Arms and hands</td>
<td></td>
<td>water</td>
<td>Apply M295</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Other exposed skin areas</td>
<td>- Other exposed skin areas</td>
<td></td>
<td></td>
<td>Apply 0.5% hypochlorite solution</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Apply reactive skin decontamination lotion (RSDL) (how much, how applied, sequence)</td>
<td>• Apply reactive skin decontamination lotion (RSDL) (how much, how applied, sequence)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Irrigate with large amounts of water (how applied, drainage, sequence)</td>
<td>• Irrigate with large amounts of water (how applied, drainage, sequence)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• M291 SDK (how much, how applied, sequence)</td>
<td>• M291 SDK (how much, how applied, sequence)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Soap & water</td>
<td>• Soap & water</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• M295 (how much, how applied, sequence)</td>
<td>• M295 (how much, how applied, sequence)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 0.5% hypochlorite solution (how much, how applied, sequence)</td>
<td>• 0.5% hypochlorite solution (how much, how applied, sequence)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Factual

- **Instruments & Supplies**
 - Identify and describe the function the following medical instruments & supplies:
 - Resuscitation Device, Individual, Chemical (RDIC)
 - Endotracheal Tube
 - Stylette
 - Laryngoscope
 - Suction

- **Instruments & Supplies**
 - Identify and describe the function the following medical instruments & supplies in a written test:
 - Resuscitation Device, Individual, Chemical (RDIC)
 - Endotracheal Tube
 - Stylette
 - Laryngoscope
 - Suction

- **Instruments & Supplies**
 - Correctly identify and describe the function the following medical instruments & supplies:
 - Resuscitation Device, Individual, Chemical (RDIC)
 - Endotracheal Tube
 - Stylette
 - Laryngoscope
 - Suction

- **Instruments & Supplies**
 - 1. Be able to identify the location of instruments & supplies.
 - 2. Be able to appropriately select and implement the following medical instruments & supplies:
 - Resuscitation

- **Instruments & Supplies**
 - 1. Demonstrate the ability to locate instruments & supplies.
 - 2. Demonstrates ability to appropriately select and implement the following medical instruments & supplies in a

- **Instruments & Supplies**
 - 2. Correctly demonstrates ability to
<table>
<thead>
<tr>
<th>Level</th>
<th>Knowledge</th>
<th>Assessment</th>
<th>Standard</th>
<th>Skill</th>
<th>Assessment</th>
<th>Standard</th>
</tr>
</thead>
</table>
| | • Bag-valve-mask
• IV Catheter
• IV Fluids
• Tape | • Suction
• Bag-valve-mask
• IV Catheter
• IV Fluids
• Tape | • Bag-valve-mask
• IV Catheter
• IV Fluids
• Tape | Device, Individual, Chemical (RDIC)
• Endotracheal Tube
• Stylette
• Laryngoscope
• Suction
• Bag-valve-mask
• IV Catheter
• IV Fluids
• Tape | simulated context:
• Resuscitation Device, Individual, Chemical (RDIC)
• Endotracheal Tube
• Stylette
• Laryngoscope
• Suction
• Bag-valve-mask
• IV Catheter
• IV Fluids
• Tape | appropriately select and implement the following medical instruments & supplies in a simulated context:
• Resuscitation Device, Individual, Chemical (RDIC)
• Endotracheal Tube
• Stylette
• Laryngoscope
• Suction
• Bag-valve-mask
• IV Catheter
• IV Fluids
• Tape |

Factual
1. Discriminate between positive detection
1. Indicate what the alarm indicators or color indicators for
1. Correctly indicate what the alarm indicators or
1. Be able to use the following detection devices:
1. Correctly uses the following detection devices in a
1. Correctly uses the following
<table>
<thead>
<tr>
<th>Level</th>
<th>Knowledge</th>
<th>Assessment</th>
<th>Standard</th>
<th>Skill</th>
<th>Assessment</th>
<th>Standard</th>
</tr>
</thead>
</table>
| | alarm indicators or color indicators for the following detection devices:
• M256A1 Chemical Agent Detector Kit
• M18A2 Chemical Agent Detector Kit
• ICAM (Improved Chemical Agent Alarm)
• M8 Chemical Agent Detector Paper
• M9 Chemical Agent Detector Paper
• M22 (ACADA) Automatic Chemical Agents Detection Alarm
• M93A1 FOX NBC RECONNAISSANCE System
• M21 (RSCAAL) Remote Sensing Chemical Agent Alarm
• M90 Chemical Agent Detector
• M272 (in water)
2. Know to select and don Mission-Oriented Protective Posture (MOPP) Level IV. | the following detection devices signify:
• M256A1 Chemical Agent Detector Kit
• M18A2 Chemical Agent Detector Kit
• ICAM (Improved Chemical Agent Alarm)
• M8 Chemical Agent Detector Paper
• M9 Chemical Agent Detector Paper
• M22 (ACADA) Automatic Chemical Agents Detection Alarm
• M93A1 FOX NBC RECONNAISSANCE System
• M21 (RSCAAL) Remote Sensing Chemical Agent Alarm
• M90 Chemical Agent Detector
• M272 (in water) | color indicators for the following detection devices signify:
• M256A1 Chemical Agent Detector Kit
• M18A2 Chemical Agent Detector Kit
• ICAM (Improved Chemical Agent Alarm)
• M8 Chemical Agent Detector Paper
• M9 Chemical Agent Detector Paper
• M22 (ACADA) Automatic Chemical Agents Detection Alarm
• M93A1 FOX NBC RECONNAISSANCE System
• M21 (RSCAAL) Remote Sensing Chemical Agent Alarm
• M90 Chemical Agent Detector
• M272 (in water) | • M256A1 Chemical Agent Detector Kit
• M18A2 Chemical Agent Detector Kit
• ICAM (Improved Chemical Agent Alarm)
• M93A1 FOX NBC RECONNAISSANCE System
• M21 (RSCAAL) Remote Sensing Chemical Agent Alarm
• M90 Chemical Agent Detector
• M272 (in water) | classroom, lab, or field exercise:
• M256A1 Chemical Agent Detector Kit
• M18A2 Chemical Agent Detector Kit
• ICAM (Improved Chemical Agent Alarm)
• M93A1 FOX NBC RECONNAISSANCE System
• M21 (RSCAAL) Remote Sensing Chemical Agent Alarm
• M90 Chemical Agent Detector
• M272 (in water) | detection devices in a classroom, lab, or field exercise:
• M256A1 Chemical Agent Detector Kit
• M18A2 Chemical Agent Detector Kit
• ICAM (Improved Chemical Agent Alarm)
• M93A1 FOX NBC RECONNAISSANCE System |
<table>
<thead>
<tr>
<th>Level</th>
<th>Knowledge</th>
<th>Assessment</th>
<th>Standard</th>
<th>Skill</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conceptual</td>
<td>Physiological</td>
<td>Physiology</td>
<td></td>
<td></td>
<td>Physiology</td>
</tr>
<tr>
<td></td>
<td>1. Distinguish other possible exposures leading to similar patient symptomology.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Distinguish other possible medical conditions leading to similar patient</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Physiology</td>
<td></td>
<td></td>
<td></td>
<td>Physiology</td>
</tr>
<tr>
<td></td>
<td>1. Indicate other possible exposures leading to similar patient symptomology on a written test:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Indicate other possible medical conditions leading to</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Physiology</td>
<td></td>
<td></td>
<td></td>
<td>Physiology</td>
</tr>
<tr>
<td></td>
<td>1. Correctly identify other possible exposures:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Vesicants: cough, erythema, blisters, conjunctivitis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Pulmonary Agents: airway irritation, shortness of breath (delayed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Physiology</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Physiology</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Physiology</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Physiology</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Physiology</td>
</tr>
</tbody>
</table>

Standard

RECONNAISSANCE System
- M21 (RSCAAL) Remote Sensing Chemical Agent Alarm
- M90 Chemical Agent Detector
- M272 (in water)

2. Correctly dons Mission-Oriented Protective Posture (MOPP) Level IV.
<table>
<thead>
<tr>
<th>Level</th>
<th>Knowledge</th>
<th>Assessment</th>
<th>Standard</th>
<th>Skill</th>
<th>Assessment</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>symptomology.</td>
<td>similar patient symptomology in a written test.</td>
<td>onset), eye irritation, chest tightness • Cyanide: pulmonary edema (secretions, cough difficulty breathing), seizures, respiratory arrest, cardiac arrest • Riot: respiratory discomfort (coughing, difficulty breathing, shortness of breath), burning pain on mucous membranes, skin and eyes • Respiratory Irritants: respiratory discomfort (coughing, wheezing, shortness of breath, chest tightness), irritation to eyes, nose, upper airway.</td>
<td>2. Correctly identify other possible medical conditions leading to similar patient symptomology: • Upper respiratory infections • Viral infection (GI) • Medication toxicities - opiates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level</td>
<td>Knowledge</td>
<td>Assessment</td>
<td>Standard</td>
<td>Skill</td>
<td>Assessment</td>
<td>Standard</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>--</td>
<td>---</td>
<td>--</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Conceptual</td>
<td>Clinical Knowledge 1. Understand the relevant symptomology for performing a differential diagnosis (DDx) for patient experiencing signs of a cholinergic crisis. • Identify other possible exposures. • Identify other possible medical conditions 2. Distinguish the primary combination of nerve agent exposure indicators. 3. Distinguish between the clinical indicators for vapor or liquid exposure. 4. Distinguish between the clinical indicators for the extent of poisoning</td>
<td>Clinical Knowledge 1. Perform Differential Diagnosis (DDx) from case-based information on a written test. • Identify other possible exposures. • Identify other possible medical conditions 2. Identify primary combination of nerve agent exposure indicators on a written test. 3. Distinguish between the clinical indicators for vapor or liquid exposure from case-based information on a written test. 4. Distinguish between the clinical indicators for the extent of poisoning from case-based information on a written test.</td>
<td>Clinical Knowledge 1. Correctly identify the following clinical conditions from case-based information on a written test: • Nerve agent • Vesicant • Pulmonary Agents • Riot • Cyanide • Respiratory Irritant • Upper respiratory infections • Viral infection (GI) • Medication toxicities - opiates 2. Correctly identify primary combination of nerve agent exposure indicators: • Miosis • Copious secretions • Generalized muscular fasciculations • Respiratory distress • Cyanosis • Convulsions 3. Correctly determines vapor or liquid exposure: Vapor –</td>
<td>Clinical Skills 1. Be able to examine the patient to perform DDx: • Eyes • Mouth • Nose • Respiratory effort • Muscle control • Pulse • Skin • Pain level/location • Fever</td>
<td>Clinical Skills 1. Demonstrate the ability to examine the patient and perform DDx in a simulated context with a mannequin simulator or a standardized patient: • Eyes • Mouth • Nose • Respiratory effort • Muscle control • Pulse • Skin • Pain level/location • Fever</td>
<td>Clinical Skills 1. Correctly examines the patient to assess indicators of cholinergic crisis in a simulated context with a mannequin simulator or a standardized patient: • Eyes • Mouth • Nose • Respiratory effort • Muscle control • Pulse • Skin • Pain level/location • Fever</td>
</tr>
<tr>
<td>Level</td>
<td>Knowledge</td>
<td>Assessment</td>
<td>Standard</td>
<td>Skill</td>
<td>Assessment</td>
<td>Standard</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>------------</td>
<td>----------</td>
<td>-------</td>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Symptomatic onset within seconds to minutes; Eye, Respiratory, Secretory, Neuromuscular, Gastrointestinal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Liquid – Symptomatic onset within 10 minutes to 18 hours; Muscle twitching and sweating at site of exposure, Nausea/Vomiting, Weakness, Respiratory, Gastrointestinal, Neurological</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Both – Convulsions, Apnea</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4. Correctly determines the extent of poisoning</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Mild – Miosis, Headache, Rhinorrhea, Salivation, Dyspnea, Bronchoconstriction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Severe – Symptoms progress to more than one organ system. Respiratory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level</td>
<td>Knowledge</td>
<td>Assessment</td>
<td>Standard</td>
<td>Skill</td>
<td>Assessment</td>
<td>Standard</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>--</td>
<td>--</td>
<td>-------</td>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td>Medication Knowledge 1. Differentiate dose requirements by age for the medications used in the management of cholinergic crisis.</td>
<td>Medication Knowledge 1. Indicate the dose requirements by age for the medications used in the management of cholinergic crisis on a written test.</td>
<td>Cessation, Neuromuscular Symptoms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Medication Knowledge 1. Correctly indicate the dose requirements by age for the medications used in the management of cholinergic crisis on a written test.</td>
<td></td>
<td>Medication Knowledge N/A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Medication Knowledge N/A</td>
<td></td>
<td>Medication Knowledge N/A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conceptual</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level</td>
<td>Knowledge</td>
<td>Assessment</td>
<td>Standard</td>
<td>Skill</td>
<td>Assessment</td>
<td>Standard</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Practical</td>
<td>Clinical Knowledge
1. Know how to examine and assess the patient’s physical and physiological status.
2. Perform a differential diagnosis (DDx) for patient experiencing signs of a cholinergic crisis in a simulated context with a mannequin simulator or a standardized patient.
 • Identify other possible exposures.
 • Identify other possible medical conditions.
3. Distinguish the primary combination of nerve agent exposure indicators.
4. Distinguish between the clinical indicators for vapor or liquid exposure.
5. Distinguish between the clinical indicators for the extent of poisoning.</td>
<td>Clinical Knowledge
1. Request information from a conscious patient, and assess the physical and physiological signs of a patient in a simulated context with a mannequin simulator or a standardized patient.
2. Perform Differential Diagnosis (DDx) for a patient in a simulated context with a mannequin simulator or a standardized patient.
 • Identify other possible exposures.
 • Identify other possible medical conditions.
3. Identify primary combination of nerve agent exposure indicators in a simulated context with a mannequin simulator or a standardized patient.
4. Distinguish</td>
<td>Clinical Knowledge
1. Correctly examines and assesses physical and physiological signs to identify nerve agent exposure of a patient in a simulated context with a mannequin simulator or a standardized patient.
 • Miosis
 • Copious secretions
 • Generalized muscular fasciculations
 • Respiratory distress
 • Cyanosis
 • Convulsions
 • Pain
 • GI/Urinary distress
 • Difficulty breathing
 • Fatigue
 • Muscle control
2. Correctly performs Differential Diagnosis (DDx) for a patient in a simulated context with a mannequin simulator or a standardized patient.
 • Nerve agent</td>
<td>Clinical Skills
1. Be able to examine the patient to assess indicators of cholinergic crisis:
 • Eyes
 • Mouth
 • Nose
 • Respiratory effort
 • Muscle control
 • Pulse</td>
<td>Clinical Skills
1. Demonstrate the ability to examine the patient and assess indicators of cholinergic crisis in a simulated context with a mannequin simulator or a standardized patient:
 • Eyes
 • Mouth
 • Nose
 • Respiratory effort
 • Muscle control
 • Pulse</td>
<td>Clinical Skills
1. Correctly examines the patient to assess indicators of cholinergic crisis in a simulated context with a mannequin simulator or a standardized patient:
 • Eyes
 • Mouth
 • Nose
 • Respiratory effort
 • Muscle control
 • Pulse</td>
</tr>
<tr>
<td>Level</td>
<td>Knowledge</td>
<td>Assessment</td>
<td>Standard</td>
<td>Skill</td>
<td>Assessment</td>
<td>Standard</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>------------</td>
<td>----------</td>
<td>-------</td>
<td>------------</td>
<td>----------</td>
</tr>
</tbody>
</table>
| | | between the clinical indicators for vapor or liquid exposure in a simulated context with a mannequin simulator or a standardized patient. | • Vesicant
• Pulmonary Agents
• Riot
• Cyanide
• Respiratory Irritant
• Upper respiratory infections
• Viral infection (GI)
• Medication toxicities - opiates | | | |
| 5. | Distinguish between the clinical indicators for the extent of poisoning in a simulated context with a mannequin simulator or a standardized patient. | 3. Correctly identify primary combination of nerve agent exposure indicators in a simulated context with a mannequin simulator or a standardized patient:
• Miosis
• Copious secretions
• Generalized muscular fasciculations
• Respiratory distress
• Cyanosis
• Convulsions | | | |
<p>| | | 4. Correctly determines vapor or liquid exposure in a simulated context with a mannequin simulator or a standardized patient: | | | |</p>
<table>
<thead>
<tr>
<th>Level</th>
<th>Knowledge</th>
<th>Assessment</th>
<th>Standard</th>
<th>Skill</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vapor – Symptomatic onset within seconds to minutes; Eye, Respiratory, Secretory, Neuromuscular, Gastrointestinal</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Liquid – Symptomatic onset within 10 minutes to 18 hours; Muscle twitching and sweating at site of exposure, Nausea/Vomiting, Weakness, Respiratory, Gastrointestinal, Neurological</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Both – Convulsions, Apnea</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4. Correctly determines the extent of poisoning in a simulated context with a mannequin simulator or a standardized patient. Mild – Miosis, Headache, Rhinorrhea, Salivation, Dyspnea,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level</td>
<td>Knowledge</td>
<td>Assessment</td>
<td>Standard</td>
<td>Skill</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>------------</td>
<td>----------</td>
<td>-------</td>
</tr>
<tr>
<td>Practical</td>
<td>Medication Knowledge</td>
<td>1. Know the drugs, dosages, administration routes and time sequences for the management of cholinergic crisis.</td>
<td>1. Select the drugs, dosages, administration routes and time sequences for the management of cholinergic crisis in a simulated context with a mannequin simulator or a standardized patient.</td>
<td>Medication Knowledge</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Understand the purpose of each drug used in the management of cholinergic crisis and their respective expected clinical effects.</td>
<td>2. Evaluate the clinical effects of the drugs in a simulated context with a mannequin simulator or a standardized patient.</td>
<td>Medication Knowledge</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Medication Knowledge</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1. Correctly selects the drugs, dosages, administration routes and time sequences for the management of cholinergic crisis in a simulated context with a mannequin simulator or a standardized patient:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pre-treatment</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pyridostigmine Bromide (30mg tablet orally q 8 hours)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(pre-treatment)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Treatment</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Atropine (2mg / 2PAMCL, 300mg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IM 1st injector</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2nd injector 10-15 min after 1st injector</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3rd injector in rapid</td>
</tr>
<tr>
<td>Level</td>
<td>Knowledge</td>
<td>Assessment</td>
<td>Standard</td>
<td>Skill</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>------------</td>
<td>----------</td>
<td>-------</td>
</tr>
</tbody>
</table>
| | | | succession, 1q 5min as needed, not to exceed 3 in 1 hour
• ATNAA Auto Injector
(Atropine, 2.1mg / 2PAMCL, 600mg)
IM
1st injector
2nd injector 10-15 min after 1st injector
3rd injector in rapid succession, 1q 5min as needed, not to exceed 3 in 1 hour
• CANA) Auto Injector
(Diazepam, 10mg)
IM
1st injector if patient receives 3 ATNAA/Mark1 Kits Auto Injectors
2nd/3rd injectors as needed for seizing patient
• Atropine Ophthalmic Ointment (topical); 0.5” strip in pocket of lower eyelid at Level 2 treatment location
2. Correctly evaluates the clinical effects of the drugs in a simulated context. | success, 1q 5min as needed, not to exceed 3 in 1 hour
• ATNAA Auto Injector
(Atropine, 2.1mg / 2PAMCL, 600mg)
IM
1st injector
2nd injector 10-15 min after 1st injector
3rd injector in rapid succession, 1q 5min as needed, not to exceed 3 in 1 hour
• CANA) Auto Injector
(Diazepam, 10mg)
IM
1st injector if patient receives 3 ATNAA/Mark1 Kits Auto Injectors
2nd/3rd injectors as needed for seizing patient
• Atropine Ophthalmic Ointment (topical); 0.5” strip in pocket of lower eyelid at Level 2 treatment location | simulator. | through IV catheter in a simulated context.
4. Correctly administers atropine ophthalmic ointment (topical); 0.5” strip in pocket of lower eyelid of a patient mannequin simulator. |
<table>
<thead>
<tr>
<th>Level</th>
<th>Knowledge</th>
<th>Assessment</th>
<th>Standard</th>
<th>Skill</th>
<th>Assessment</th>
<th>Standard</th>
</tr>
</thead>
</table>
| | | | context with a mannequin simulator or a standardized patient:
• Pyridostigmine Bromide – Shields AChE enzyme from full effects of GD to enhance the effectiveness of treatment after GD exposure.
• Atropine – Dry secretions, reduce bronchoconstriction, decrease gastrointestinal motility
• 2PAMCL – Remove the nerve agent (except GD) from the enzyme acetylcholinesterase.
• Diazepam – Control convulsions.
• Atropine ophthalmological ointment – Relieve eye symptoms. | | | |

Health Metrics
1. Understand relevant health metrics for assessing the patient’s physical and physiological status.
2. Evaluates appropriate health metrics to assess a patient who may be experiencing cholinergic crisis in a simulated context
3. Assesses the following health metrics in a simulated context with a mannequin simulator or a standardized patient: | | | |
<table>
<thead>
<tr>
<th>Level</th>
<th>Knowledge</th>
<th>Assessment</th>
<th>Standard</th>
<th>Skill</th>
<th>Assessment</th>
<th>Standard</th>
</tr>
</thead>
</table>
| | 2. Understand relevant time sequence for exposure in assessing the patient's physical and physiological status during cholinergic crisis. | with a mannequin simulator or a standardized patient. | • Pupil Size
• Respiratory status
• Muscle control
• Neurological status
• Volume of secretions
• Heart rate | 2. Correctly evaluates the time sequences in a simulated context with a mannequin simulator or a standardized patient for:
• Vapor
• Liquid | | |
| | 2. Evaluate the relevant time sequence for exposure in assessing the patient's physical and physiological status during cholinergic crisis in a simulated context with a mannequin simulator or a standardized patient. | | | | | |
| Situational Knowledge | Identify exposure agent by using detection device(s) and situational cues. | Situational Knowledge 1. Assess exposure agent in a simulated context with a mannequin simulator or a standardized patient.
2. Identify other situational cues for assessing exposure agent in a simulated context with a mannequin simulator or a standardized patient. | Situational Knowledge 1. Correctly assesses the exposure agent in a simulated context with a mannequin simulator or a standardized patient.
2. Correctly identifies other situational cues for assessing exposure agent in a simulated context with a mannequin simulator or a standardized patient. | Situational Skills N/A | Situational Skills N/A | Situational Skills N/A |
<table>
<thead>
<tr>
<th>Level</th>
<th>Knowledge</th>
<th>Assessment</th>
<th>Standard</th>
<th>Skill</th>
<th>Assessment</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>symptomology such as the onset of symptoms, localized or general reactions, initial symptoms, and time progression of symptoms.</td>
<td>Procedural Knowledge 1. Implements the patient management strategy for cholinergic crisis: • Self-protection • Antidote • Airway • Breathing • Circulation • Drugs • Decontamination 2. Implements the de-contamination protocol for managing a cholinergic crisis: • Remove contaminated clothing and gear • Decontaminate exposed skin</td>
<td>Procedural Knowledge 1. Implements patient management strategy for cholinergic crisis in a simulated context with a mannequin simulator or a standardized patient: Self-protection Antidote Treatment Airway Breathing Circulation Drugs Decontamination</td>
<td>Procedural Skills 1. Be able to don Mission-Oriented Protective Posture (MOPP) Level IV 2. Be able to administer • Mark 1 Kit • ATNAA • CANA 3. Be able to secure the patient's airway by performing: • Suction • Patient positioning • Bag-valve-mask • Intubation 4. Be able to ventilate and implement RDIC to support the patient's breathing 5. Be able to perform each step of the decontamination protocol:</td>
<td>Procedural Skills 1. Correctly dons Mission-Oriented Protective Posture (MOPP) Level IV in a simulated context 2. Correctly administers each of the following to a patient mannequin simulator: • Mark 1 Kit • ATNAA • CANA 3. Correctly performs each of the following skills on a patient mannequin simulator: • Suction • Patient positioning • Bag-valve-mask • Intubation 4. Be able to ventilate and implement RDIC using a patient</td>
<td></td>
</tr>
<tr>
<td>Level</td>
<td>Knowledge</td>
<td>Assessment</td>
<td>Standard</td>
<td>Skill</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>------------</td>
<td>----------</td>
<td>-------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• CANA (convulsant antidote for nerve agent; diazepam auto-injector)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Airway</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Suction</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Position patient</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Bag-valve-mask airway</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Intubation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Breathing</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Assessment</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Ventilation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• RDIC</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Circulation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Assessment</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Drugs</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Pyridostigmine Bromide (30mg tablet) (pre-treatment)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Mark1 Kit Auto Injector (Atropine, 2mg / 2PAMCL, 300mg)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1<sup>st</sup> injector</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2<sup>nd</sup> injector 10-15 min after 1<sup>st</sup> injector</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3<sup>rd</sup> injector in rapid succession, 1q 5min as needed, not to exceed 3 in 1 hour</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Remove contaminated clothing and gear</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Decontaminate exposed skin</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Apply reactive skin decontamination lotion (RSDL)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Irrigate with large amounts of water</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Apply M291 SDK</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Clean w/ soap & water</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Apply M295</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Apply 0.5% hypochlorite solution</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Assessment</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mannequin simulator</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5. Be able to perform each step of the decontamination protocol in a simulated context using the correct method on a patient mannequin simulator or standardized patient:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Remove and disposition contaminated clothing and gear.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Decontaminate exposed skin in the following order:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Face</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Neck area</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Chest area</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Abdomen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Arms and hands</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Other exposed skin areas</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Apply reactive skin decontamination lotion (RSDL)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Irrigate with large amounts of water</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Apply M291 SDK</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Clean w/ soap & water</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Apply M295</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Apply 0.5% hypochlorite solution</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. Correctly ventilates and implements RDIC using a patient mannequin simulator |

5. Be able to perform each step of the decontamination protocol in a simulated context using the correct method on a patient mannequin simulator or standardized patient: |

- Remove and disposition contaminated clothing and gear. |
- Decontaminate exposed skin in the following order: |
- Face |
- Neck area |
- Chest area |
- Abdomen |
- Arms and hands |
- Other exposed skin areas |
- Apply reactive skin decontamination lotion (RSDL) |
- Irrigate with large amounts of water |
- Apply M291 SDK |
- Clean w/ soap & water |
- Apply M295 |
- Apply 0.5% hypochlorite solution |
<table>
<thead>
<tr>
<th>Level</th>
<th>Knowledge</th>
<th>Assessment</th>
<th>Standard</th>
<th>Skill</th>
<th>Assessment</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>• ATNAA Auto Injector (Atropine, 2.1mg / 2PAMCL, 600mg) IM
1<sup>st</sup> injector
2<sup>nd</sup> injector 10-15 min after 1<sup>st</sup> injector
3<sup>rd</sup> injector in rapid succession, 1q 5min as needed, not to exceed 3 in 1 hour
• CANA Auto Injector (Diazepam, 10mg) IM
1<sup>st</sup> injector if patient receives 3 ATNAA/Mark1 Kits Auto Injectors
2<sup>nd</sup>/3<sup>rd</sup> injectors as needed for seizing patient
• Atropine Ophthalmic Ointment (topical); 0.5" strip in pocket of lower eyelid at Level 2 treatment location

Decontamination
Performs decontamination protocol:
• Removes contaminated clothing and gear
• Decontaminates exposed skin in the</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level</td>
<td>Knowledge</td>
<td>Assessment</td>
<td>Standard</td>
<td>Skill</td>
<td>Assessment</td>
<td>Standard</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>------------</td>
<td>----------</td>
<td>-------</td>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>following order: - Face - Neck area - Chest area - Abdomen - Arms and hands - Other exposed skin areas • Applies reactive skin decontamination lotion (RSDL) • Irrigates with large amounts of water • Applies M291 SDK • Soap & water • Applies M295 • Applies 0.5% hypochlorite solution</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instruments & Supplies</td>
<td>1. Be able to identify the location of instruments & supplies.</td>
<td>Instruments & Supplies</td>
<td>1. Demonstrate the ability to locate instruments & supplies in a simulated context: • Resuscitation Device, Individual, Chemical (RDIC) • Endotracheal Tube • Stylette • Laryngoscope • Suction • Bag-valve-mask • IV Catheter • IV Fluids • Tape</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instruments & Supplies</td>
<td>1. Correctly demonstrates the ability to locate instruments & supplies in a simulated context: • Resuscitation Device, Individual, Chemical (RDIC) • Endotracheal Tube • Stylette • Laryngoscope • Suction • Bag-valve-mask • IV Catheter • IV Fluids • Tape</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instruments & Supplies</td>
<td>1. Be able to appropriately select and implement the following medical instruments & supplies: • Resuscitation Device, Individual, Chemical (RDIC) • Endotracheal Tube • Stylette • Laryngoscope • Suction • Bag-valve-mask • IV Catheter • IV Fluids • Tape</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instruments & Supplies</td>
<td>1. Demonstrates ability to appropriately select and implement the following medical instruments & supplies in a simulated context: • Resuscitation Device, Individual, Chemical (RDIC) • Endotracheal Tube • Stylette • Laryngoscope • Suction • Bag-valve-mask • IV Catheter • IV Fluids</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instruments & Supplies</td>
<td>1. Correctly demonstrates ability to appropriately select and implement the following medical instruments & supplies in a simulated context: • Resuscitation Device, Individual, Chemical (RDIC) • Endotracheal Tube • Stylette • Laryngoscope • Suction • Bag-valve-mask • IV Catheter • IV Fluids</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Instruments & Supplies
1. Be able to identify the location of instruments & supplies.

Instruments & Supplies
1. Demonstrate the ability to locate instruments & supplies in a simulated context:
 • Resuscitation Device, Individual, Chemical (RDIC)
 • Endotracheal Tube
 • Stylette
 • Laryngoscope
 • Suction
 • Bag-valve-mask
 • IV Catheter
 • IV Fluids
 • Tape

Instruments & Supplies
1. Correctly demonstrates the ability to locate instruments & supplies in a simulated context:
 • Resuscitation Device, Individual, Chemical (RDIC)
 • Endotracheal Tube
 • Stylette
 • Laryngoscope
 • Suction
 • Bag-valve-mask
 • IV Catheter
 • IV Fluids
 • Tape

Instruments & Supplies
1. Be able to appropriately select and implement the following medical instruments & supplies:
 • Resuscitation Device, Individual, Chemical (RDIC)
 • Endotracheal Tube
 • Stylette
 • Laryngoscope
 • Suction
 • Bag-valve-mask
 • IV Catheter
 • IV Fluids
 • Tape

Instruments & Supplies
1. Demonstrates ability to appropriately select and implement the following medical instruments & supplies in a simulated context:
 • Resuscitation Device, Individual, Chemical (RDIC)
 • Endotracheal Tube
 • Stylette
 • Laryngoscope
 • Suction
 • Bag-valve-mask
 • IV Catheter
 • IV Fluids

Instruments & Supplies
1. Correctly demonstrates ability to appropriately select and implement the following medical instruments & supplies in a simulated context:
 • Resuscitation Device, Individual, Chemical (RDIC)
 • Endotracheal Tube
 • Stylette
 • Laryngoscope
 • Suction
 • Bag-valve-mask
 • IV Catheter
 • IV Fluids

Instruments & Supplies
1. Demonstrates ability to appropriately select and implement the following medical instruments & supplies in a simulated context:
 • Resuscitation Device,
<table>
<thead>
<tr>
<th>Level</th>
<th>Knowledge</th>
<th>Assessment</th>
<th>Standard</th>
<th>Skill</th>
<th>Assessment</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Tape</td>
<td>Individual, Chemical (RDIC)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Endotracheal Tube</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Stylette</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Laryngoscope</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Suction</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Bag-valve-mask</td>
</tr>
<tr>
<td>Equipment</td>
<td>1. Discriminate</td>
<td>1. Indicate what the alarm indicators or color indicators for the following detection devices signify in a simulated context:</td>
<td>1. Correctly indicate what the alarm indicators or color indicators for the following detection devices signify in a simulated context:</td>
<td>1. Be able to use the following detection devices:</td>
<td>1. Correctly uses the following detection devices in a classroom, lab, or field exercise:</td>
<td>1. Correctly uses the following detection devices in a classroom, lab, or field exercise:</td>
</tr>
<tr>
<td>1. Discern between positive detection alarm indicators or color indicators for the following detection devices:</td>
<td>• M256A1 Chemical Agent Detector Kit</td>
<td></td>
</tr>
<tr>
<td>• M256A1 Chemical Agent Detector Kit</td>
<td>• M18A2 Chemical Agent Detector Kit</td>
<td>• M18A2 Chemical Agent Detector Kit</td>
<td>• ICAM (Improved Chemical Agent Alarm)</td>
<td>• M18A2 Chemical Agent Detector Kit</td>
<td>• ICAM (Improved Chemical Agent Alarm)</td>
<td></td>
</tr>
<tr>
<td>• ICAM (Improved Chemical Agent Alarm)</td>
<td>• M8 Chemical Agent Detector Paper</td>
<td></td>
</tr>
<tr>
<td>• M8 Chemical Agent Detector Paper</td>
<td>• M9 Chemical Agent Detector Paper</td>
<td>• M22 (ACADA) Automatic Chemical Agents Detection</td>
<td>• M9 Chemical Agent Detector Paper</td>
<td>• M22 (ACADA) Automatic Chemical Agents Detection</td>
<td>• M22 (ACADA) Automatic Chemical Agents Detection</td>
<td></td>
</tr>
<tr>
<td>• M9 Chemical Agent Detector Paper</td>
<td>• M9 Chemical Agent Detector Paper</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Equipment</td>
<td></td>
<td></td>
<td>Equipment</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Equipment</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Equipment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W81XWH-12-2-0001</td>
<td>95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level</td>
<td>Knowledge</td>
<td>Assessment</td>
<td>Standard</td>
<td>Skill</td>
<td>Assessment</td>
<td>Standard</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>--</td>
<td>---</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Detector Paper</td>
<td>Detector Paper</td>
<td>• M9 Chemical Agent Detector Paper</td>
<td>Alarm</td>
<td>Automatic Chemical Agents Detection Alarm</td>
<td>(Improved Chemical Agent Alarm)</td>
</tr>
<tr>
<td></td>
<td>• M22 (ACADA) Automatic Chemical Agents Detection Alarm</td>
<td>• M22 (ACADA) Automatic Chemical Agents Detection Alarm</td>
<td>• M22 (ACADA) Automatic Chemical Agents Detection Alarm</td>
<td>• M93A1 FOX NBC RECONNAISSANCE System</td>
<td>• M93A1 FOX NBC RECONNAISSANCE System</td>
<td>• M8 Chemical Agent Detector Paper</td>
</tr>
<tr>
<td></td>
<td>• M93A1 FOX NBC RECONNAISSANCE System</td>
<td>• M93A1 FOX NBC RECONNAISSANCE System</td>
<td>• M21 (RSCAAL) Remote Sensing Chemical Agent Alarm</td>
<td>• M90 Chemical Agent Detector</td>
<td>• M21 (RSCAAL) Remote Sensing Chemical Agent Alarm</td>
<td>• M9 Chemical Agent Detector Paper</td>
</tr>
<tr>
<td></td>
<td>• M21 (RSCAAL) Remote Sensing Chemical Agent Alarm</td>
<td>• M21 (RSCAAL) Remote Sensing Chemical Agent Alarm</td>
<td>• M90 Chemical Agent Detector</td>
<td>M272 (in water)</td>
<td>• M90 Chemical Agent Detector</td>
<td>• M93A1 FOX NBC RECONNAISSANCE System</td>
</tr>
<tr>
<td></td>
<td>• M90 Chemical Agent Detector</td>
<td>• M90 Chemical Agent Detector</td>
<td>M272 (in water)</td>
<td>2. Be able to don Mission-Oriented Protective Posture (MOPP) Level IV.</td>
<td>• M93A1 FOX NBC RECONNAISSANCE System</td>
<td>• M90 Chemical Agent Detector</td>
</tr>
<tr>
<td></td>
<td>• M272 (in water)</td>
<td>• M272 (in water)</td>
<td>2. Identify protection as Mission-Oriented Protective Posture (MOPP) Level IV in a simulated context.</td>
<td>2. Correctly identify protection as Mission-Oriented Protective Posture (MOPP) Level IV in a simulated context.</td>
<td>• M272 (in water)</td>
<td>2. Demonstrates ability to don Mission-Oriented Protective Posture (MOPP) Level IV in a simulated context.</td>
</tr>
<tr>
<td>Level</td>
<td>Knowledge</td>
<td>Assessment</td>
<td>Standard</td>
<td>Skill</td>
<td>Assessment</td>
<td>Standard</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Analytical</td>
<td>Clinical Knowledge 1. Identify treatment effects.</td>
<td>Clinical Knowledge 1. Identify treatment effects in a simulated context.</td>
<td>Clinical Knowledge 1. Identify treatment effects in a simulated context:</td>
<td>Clinical Knowledge 1. Identify treatment effects in a simulated context:</td>
<td>Clinical Knowledge 1. Identify treatment effects in a simulated context:</td>
<td>• M272 (in water)</td>
</tr>
<tr>
<td></td>
<td>2. Identify effects of clinical mismanagement.</td>
<td>2. Identify effects of clinical mismanagement in a simulated context.</td>
<td>• Decreased secretions</td>
<td>• Improved respiration</td>
<td>• Improved muscle control</td>
<td>2. Correctly dons Mission-Oriented Protective Posture (MOPP) Level IV in a simulated context.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Reduced GI symptoms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Identify effects of clinical mismanagement in a simulated context:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Absent positive treatment effects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level</td>
<td>Knowledge</td>
<td>Assessment</td>
<td>Standard</td>
<td>Skill</td>
<td>Assessment</td>
<td>Standard</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>------------</td>
<td>----------</td>
<td>-------</td>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td>management for a patient during a cholinergic crisis</td>
<td>management for a patient during a cholinergic crisis in a simulated context.</td>
<td>management for a patient during a cholinergic crisis in a simulated context: • Initial ventilation is difficult due to high airway resistance (50-70 cm of water). • Resistance decreases after atropine administration. • Requires frequent suctioning. • Ventilate 0.5-3 hours.</td>
<td>Instruments, supplies and equipment as needed.</td>
<td>and adjust Instruments, supplies and equipment as needed in a simulated context.</td>
<td>e the ability to evaluate and adjust Instruments, supplies and equipment as needed in a simulated context.</td>
</tr>
<tr>
<td></td>
<td>2. Understands the administration of Diazepam.</td>
<td>2. Administers Diazepam as needed for severe effects in a simulated context.</td>
<td>2. Correctly administers Diazepam as needed for severe effects in a simulated context.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Evaluates and provides supportive treatment to patient as needed.</td>
<td>3. Evaluates and provides supportive treatment to patient as needed in a simulated context.</td>
<td>3. Provides supportive treatment to patient in a simulated context: • Intravenous fluids • Respiratory support</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Determines stabilization course for patient.</td>
<td>4. Determines stabilization course for patient in a simulated context.</td>
<td>4. Stabilizes patient in a simulated context: • Continue atropine, pralidoxime chloride, diazepam as needed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level</td>
<td>Knowledge</td>
<td>Assessment</td>
<td>Standard</td>
<td>Skill</td>
<td>Assessment</td>
<td>Standard</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>------------</td>
<td>----------</td>
<td>-------</td>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Situational Knowledge</td>
<td>for persistent severe symptoms</td>
<td></td>
<td>for persistent severe symptoms</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1. Implement field-based care protocol.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Assess Level 1 Care options.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Assess transport to Level 2 Care facilities.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Situational Knowledge</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1. Follow field-based care protocol in a simulated context.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Assess Level 1 Care options in a simulated context.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Assess transport to Level 2 Care facilities in a simulated context.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Situational Knowledge</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1. Correctly follows field-based care protocol in a simulated context:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Self-care</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Buddy care</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Correctly assesses Level 1 Care options in a simulated context:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Medic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Combat Lifesaver</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Correctly assesses transport to Level 2 Care facilities in a simulated context:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Immediate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Delayed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix 5: Critical Steps and Error Sources
Pediatric and Neonatal Intubation

Critical Step: Examine patient to assess indicators of need for airway management.
Potential Sources of Error:
- Incorrect examination
- Incorrect assessment

Critical Step: Perform DDx to determine airway management strategy.
Potential Sources of Error:
- Incorrect DDx
- Incorrect airway management strategy
- Incomplete knowledge/skills to perform strategy

Critical Step: Adjust medication doses by weight and apply appropriate time sequences to gain optimal clinical effect in pediatric and neonatal patients.
Potential Sources of Error:
- Incorrect medication
- Incorrect dosage
- Incorrect time sequence
- Incorrect weight estimation
- Incorrect administration route
- Incorrect evaluation of clinical/treatment effects

Critical Step: Intubate patient.
Potential Sources of Error:
- Incorrect equipment
- Incorrect medications
- Incomplete procedural knowledge/skills
- Incorrect strategy
- Incorrect confirmation of endotracheal intubation
- Esophageal intubation
- Right main stem intubation

Critical Step: Ventilate intubated patient.
Potential Sources of Error:
- Incorrect equipment
- Incorrect pressure
- Incorrect rate
- Incorrect connection to O2 source

Critical Step: Assesses clinical stability of patient.
Potential Sources of Error:
- Incorrect examination
- Incorrect assessment
- Failure to identify effects of clinical mismanagement
Cholinergic Crisis

Critical Step: Examine patient to assess indicators of cholinergic crisis.
Potential Sources of Error:
- Incorrect examination
- Incorrect assessment
- Incorrect DDx
- Incorrect exposure level
- Incorrect exposure type

Critical Step: Don Mission-Oriented Protective Posture (MOPP) Level IV.
Potential Sources of Error:
- Incorrect treatment strategy
- Omits self-protection
- Misjudges time constraints of exposure
- Incomplete MOPP Level IV
- Incorrect equipment, supplies, resources.

Critical Step: Administers the following for treatment: Mark1 Kit Auto Injector, ATNNA Auto Injector, CANA Auto Injector.
Potential Sources of Error:
- Incorrect medication
- Incorrect dosage
- Incorrect time sequence
- Incorrect administration route
- Incorrect evaluation of clinical/treatment effects

Critical Step: Provide suction support for patient:
Potential Sources of Error:
- Incorrect equipment
- Incorrect pressure
- Incorrect rate
- Incorrect patient positioning
- Equipment failure

Critical Step: Provide breathing support for patient:
Potential Sources of Error:
- Incorrect equipment
- Incorrect strategy selection
- Incomplete procedural knowledge/skills

Critical Step: Be able to intubate patient.
Potential Sources of Error:
- Incorrect equipment
- Incorrect medications
- Incomplete procedural knowledge/skills
- Incorrect strategy
- Incorrect confirmation of endotracheal intubation
- Esophageal intubation
- Right main stem intubation

Critical Step: Ventilate and implement RDIC.
Potential Sources of Error:
- Incorrect equipment
- Incorrect pressure
- Incorrect rate
- Incorrect connection to O2 source

Critical Step: Perform each step of the decontamination protocol.

Potential Sources of Error:
- Incorrect sequence
- Incorrect disposition
- Incorrect materials (e.g. M291 SDK, M295, etc.)
- Incomplete sequence
Esophageal intubation
 • Right main stem intubation

Critical Step: Ventilate and implement RDIC.

Potential Sources of Error:
 • Incorrect equipment
 • Incorrect pressure
 • Incorrect rate
 • Incorrect connection to O2 source

Critical Step: Perform each step of the decontamination protocol.

Potential Sources of Error:
 • Incorrect sequence
 • Incorrect disposition
 • Incorrect materials (e.g. M291 SDK, M295, etc.)
 • Incomplete sequence
Appendix 6: Instructional Gaps
SUMMARY RESULTS FROM PRISMA ANALYSES
Clinical Training Mechanisms, Outcomes, Curricula and Technological Alternatives.

Pediatric & Neonatal Intubation Training – Curriculum Gaps

Literature review confirms the need for definition of performance standards, assessment metrics, and formalization of training methods.

- Training Gaps
- Imprecise assessment mechanisms
- Absent specific and measurable performance standards
- Absent evidence-based training methods

Pediatric & Neonatal Intubation Training – Technology Gaps

We evaluated the most advanced computer programmable infant and neonatal simulators with real time monitoring of vital signs available through commercial vendors. The following advanced technology simulators were evaluated for adequacy of training conditions identified in the task analyses for pediatric (infant) and neonatal intubation:

Gaumard: PremieHAL, Newborn HAL,
METI: BabySIM
Laerdal: SimBaby, SimNewB

Technology review confirms gaps in necessary clinical manifestations for adequate training conditions.

- Simulator Technology Gaps
- More copious secretions including saliva (frothy, bubbles, slobber), runny nose, tears, vomit
- Improved muscle fasciculation, twitching, seizures
- Airway variability – Mallampati variability, Pierre Robin airway (short mandible)
- Lung auscultation – more realistic and localized breath sounds
- Unrealistic, can hear breath sounds from one side all over chest wall, pump noise often drown out lung sounds.
- Changes in airway: Airway material is easily punctured at vallecula and should be modified.
- More anterior airway
- Fat tongue, better tongue tissue fidelity (slippery, wet)
- More redundant airway tissues, slippery tissues, friable/bleeding,
- Large and floppy epiglottis
- True preemie (28-30 weeks, <3kg)
- Nasal flaring
- True perioral cyanosis (1cm around the mouth turning blue)
Cholinergic Crisis Training – Curriculum Gaps

Literature review confirms the need for definition of performance standards and assessment metrics.

- Training Gaps
- Imprecise assessment mechanisms
- Absent specific and measurable performance standards
- Absent evidence-based training methods

Cholinergic Crisis Training – Technology Gaps

We evaluated the most advanced computer programmable adult and pediatric simulators with real time monitoring of vital signs available through commercial vendors. The following advanced technology simulators were evaluated for adequacy of training conditions identified in the task analyses for the identification and management of a cholinergic crisis:

Gaumard: PremieHAL, Newborn HAL, NOELLE, HAL
METI: BabySIM, iStan, HPS, METIMan
Laerdal: SimBaby, SimNewB, SimMan, SimMan3G, SimMom

Technology review confirms gaps in necessary clinical manifestations for adequate training conditions.

- Simulator Technology Gaps
- More copious secretions including saliva (frothy, bubbles, slobber), sweat, runny nose, tears, vomit, urine. Frothing cannot occur simultaneously with other secretions.
- Vocalizations – garbled, confused, slurring, nonsensical
- Realistic progressive occurrence of rashes, erythemas, burns, other skin conditions associated with chemical, vesicant, etc. exposure.
- Improved muscle fasciculation, twitching, seizures (no fasciculation or lower limb options)
- Airway variability –Mallampati variability, Pierre Robin airway (short mandible)
- Lung auscultation – more realistic and localized breath sounds
- Unrealistic, can hear breath sounds from one side all over chest wall, pump noise often drown out lung sounds.
- Changes in airway: Airway material is easily punctured at vallecula and should be modified.
- For pediatric/neonatal Airways:
 - More anterior airway
 - Fat tongue, better tongue tissue fidelity (slippery, wet)
 - More redundant airway tissues, slippery tissues, friable/bleeding,
 - Large and floppy epiglottis
 - True preemie (28-30 weeks, <3kg)
 - Nasal flaring
 - True perioral cyanosis (1cm around the mouth turning blue
Appendix 8: Assessment Instruments
PEDIATRIC/NEONATAL INTUBATION

COGNITIVE ASSESSMENT

1. What methods can be used to determine endotracheal tube size? Circle all that apply. *(Count this as 5 questions – 1 for each possible answer.)*
 - Patient’s Age/4 + 4
 - Size (diameter) of the patient’s fifth finger
 - (Patient’s age + 4)/16
 - Broselow tape
 - (Patient’s Age + 16)/4

2. How does an infant’s airway differ from an adult’s? Circle all that apply. *(Count this as 5 questions – 1 for each possible answer.)*
 - An infant’s tongue is proportionally smaller than an adult’s.
 - An infant’s epiglottis is proportionally larger and floppier than an adult’s.
 - An infant’s airway is more anterior than an adult’s.
 - An infant’s head is proportionally larger than an adult’s.
 - The narrowest part of an infant’s airway is supraglottic while the narrowest part of an adult’s is subglottic.

3. What is an appropriate dose of succinylcholine for intubating a 7kg infant? *(2X weight)*
 - 1-2 mg/kg or 7-14 mg

4. What is the sedative of choice and an appropriate dose for intubating a 3-year-old child who is experiencing a severe asthma exacerbation? *(Count this as 2 questions, 1.5X weight)*
 - a. Ketamine, b. 1-2 mg/kg – we didn’t give them a weight or specify that we wanted a per kg dosing so accept any dose that would work for a 10-25kg child (or the per kg dose)

5. What medication could be used to prevent bradycardia (decreased heart rate) that may be associated with intubation in an infant? *(2X weight)*
 - Atropine

6. Describe how you would position an infant for intubation. *(1 point for each)*
 - Prone (on back)
 - Head-tilt chin lift (neck extended, head tipped backwards)
 - Towel roll under shoulders

7. Describe at least 3 methods for determining correct endotracheal tube placement. *(score 1 point for each)*
 - CO2 detector
 - Visualize tube pass through cords *(going in is ½ point)*
 - Chest x-ray
 - Fogging of tube
 - Auscultation

8. What size and type laryngoscope blade would you use to intubate a newborn (3-4kg infant)? *(Count this as 2 questions)*
 - Size 1
 - Miller (straight blade)

9. What is the dose of etomidate for intubating an infant? *(weighted 2x)*
 - 0.3-0.6 mg/kg

10. How do you determine appropriate depth of endotracheal tube placement? *(1 point each)*
 - Broselow tape
 - 3 X tube size
 - See double lines (or cuff) on tube go just beyond the vocal cords
PEDIATRIC INTUBATION COMPETENCY EVALUATION

Date: ____________________ Unique ID: ___________________ Level: (circle) None Novice Intermed Advanced
Evaluator: _________________________ Training: Animal _________ Simulator ________________
RSIs before today: Assisted________ Performed____________

Instructions:
Please mark the box that best corresponds to your assessment of the item

<table>
<thead>
<tr>
<th>Item</th>
<th>Rating Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREPARATION</td>
<td></td>
</tr>
<tr>
<td>☑ ET Tube w/ stylette</td>
<td>☑ Ambu bag w/ mask</td>
</tr>
<tr>
<td>☑ 10cc syringe</td>
<td>☑ Suction</td>
</tr>
<tr>
<td>PREOXYGENATION</td>
<td></td>
</tr>
<tr>
<td>Mask Selection/Application</td>
<td>Correct Selection</td>
</tr>
<tr>
<td>Bag to Maintain O2 Sat</td>
<td>< 90</td>
</tr>
<tr>
<td>SEDATION</td>
<td></td>
</tr>
<tr>
<td>Appropriate Med/Dose</td>
<td>Correct Med: Etomidate____ Versed_____ Ketamine____</td>
</tr>
<tr>
<td>PARALYSIS</td>
<td></td>
</tr>
<tr>
<td>Appropriate Med/Dose</td>
<td>Correct Med: Succinopholine____ Vecuronium____ Rocuronium____</td>
</tr>
<tr>
<td>INTUBATION</td>
<td></td>
</tr>
<tr>
<td>Time for placement from 1st approach</td>
<td>> 2 min</td>
</tr>
<tr>
<td>CONFIRMATION</td>
<td></td>
</tr>
<tr>
<td>Method Selected</td>
<td>None</td>
</tr>
<tr>
<td>**ESOPHAGEAL INTUBATION</td>
<td>N/A**</td>
</tr>
<tr>
<td>Recognition Time</td>
<td>> 60 sec</td>
</tr>
<tr>
<td>Identify Treatment: Remove/Start Over</td>
<td>> 60 sec</td>
</tr>
<tr>
<td>**RT MAIN STEM INTUBATION</td>
<td>N/A**</td>
</tr>
<tr>
<td>Recognition Time</td>
<td>> 60 sec</td>
</tr>
<tr>
<td>Identify Treatment: Pull Back Tube</td>
<td>> 60 sec</td>
</tr>
</tbody>
</table>

Comments:
NEONATAL INTUBATION COMPETENCY EVALUATION

Date: ____________________ Unique ID: ____________________ Level: (circle) None Novice Intermed Advanced
Evaluator: _________________________ Training: Animal _________ Simulator __________________

RSIs before today: Assisted _________ Performed__________

Instructions: Please mark the box that best corresponds to your assessment of the item

<table>
<thead>
<tr>
<th>Item</th>
<th>Rating Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREPARATION</td>
<td></td>
</tr>
<tr>
<td>☑ ET Tube w/ stylette</td>
<td>☑ Ambu bag w/ mask</td>
</tr>
<tr>
<td>☑ 10cc syringe</td>
<td>☑ Suction</td>
</tr>
<tr>
<td>PREOXYGENATION</td>
<td></td>
</tr>
<tr>
<td>Mask Selection/Application</td>
<td>Correct Selection</td>
</tr>
<tr>
<td>Bag to Maintain O2 Sat</td>
<td>< 90</td>
</tr>
<tr>
<td>SEDATION</td>
<td></td>
</tr>
<tr>
<td>Appropriate Med/Dose</td>
<td>Correct Med: Etomidate___</td>
</tr>
<tr>
<td></td>
<td>Versed_____</td>
</tr>
<tr>
<td></td>
<td>Ketamine_____</td>
</tr>
<tr>
<td>PARALYSIS</td>
<td></td>
</tr>
<tr>
<td>Appropriate Med/Dose</td>
<td>Correct Med: Succinocholine___</td>
</tr>
<tr>
<td></td>
<td>Vecuronium_____</td>
</tr>
<tr>
<td></td>
<td>Rocuronium____</td>
</tr>
<tr>
<td>INTUBATION</td>
<td></td>
</tr>
<tr>
<td>Time for placement from 1st approach</td>
<td>> 2 min</td>
</tr>
<tr>
<td>CONFIRMATION</td>
<td></td>
</tr>
<tr>
<td>Method Selected</td>
<td>None</td>
</tr>
<tr>
<td>ESOPHAGEAL INTUBATION</td>
<td>N/A</td>
</tr>
<tr>
<td>Recognition Time</td>
<td>> 60 sec</td>
</tr>
<tr>
<td>Identify Treatment: Remove/Start Over</td>
<td>> 60 sec</td>
</tr>
<tr>
<td>RT MAIN STEM INTUBATION</td>
<td>N/A</td>
</tr>
<tr>
<td>Recognition Time</td>
<td>> 60 sec</td>
</tr>
<tr>
<td>Identify Treatment: Pull Back Tube</td>
<td>> 60 sec</td>
</tr>
</tbody>
</table>

Comments:
SELF-EVALUATION QUESTIONNAIRE

Name ___________________________ Date __________________

Please use the scale associated with each item to indicate the degree to which you agree or disagree with the item. For example, if you strongly agree with the item, mark the scale corresponding to column for “strongly agree.” When you have completed the survey, please give it to one of the researchers before leaving the assessment area.

<table>
<thead>
<tr>
<th>Strongly Disagree</th>
<th>Disagree</th>
<th>Somewhat Disagree</th>
<th>Somewhat Agree</th>
<th>Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>I am familiar with the equipment used for pediatric/neonatal intubation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I am able to correctly use the tools associated with performing pediatric/neonatal intubation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I know the procedural steps required to perform pediatric/neonatal intubation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I am able to correctly identify the principal anatomy associated with intubation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I am able to accurately identify the need for pediatric/neonatal intubation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I am able to successfully perform pediatric/neonatal intubation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I feel calm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I feel secure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I am tense</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I feel at ease</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I feel upset</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I am presently worrying over possible mistakes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I feel rested</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I feel anxious</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I feel comfortable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I feel self-confident</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I feel nervous</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I am jittery</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I feel “high strung”</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I am relaxed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I feel content</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I am worried</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I feel over excited and “rattled”</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I feel joyful</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I feel pleasant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. Match names to the functions of the systems listed below (1 point each). For example, Urinary: C

<table>
<thead>
<tr>
<th>Organ System</th>
<th>Match Letter</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urinary:</td>
<td>C</td>
<td>A. Exchanges oxygen and carbon dioxide as a means of oxygenating blood.</td>
</tr>
<tr>
<td>Gastrointestinal:</td>
<td>B</td>
<td>B. Converts food into energy the body requires to survive and eliminates residue waste.</td>
</tr>
<tr>
<td>Respiratory:</td>
<td>A</td>
<td>C. Eliminates toxins and fluid waste excreted by the kidneys.</td>
</tr>
<tr>
<td>Cardiovascular:</td>
<td>H</td>
<td>D. Facilitates visual perception.</td>
</tr>
<tr>
<td>Neurological:</td>
<td>G</td>
<td>E. Supports the weight of the body, maintains body position and produces controlled, precise movements.</td>
</tr>
<tr>
<td>Endocrine:</td>
<td>F</td>
<td>F. Secretes different types of hormones that regulate bodily functions.</td>
</tr>
<tr>
<td>Ophthalmological:</td>
<td>D</td>
<td>G. Transmits signals between different parts of the body to coordinate voluntary and involuntary actions.</td>
</tr>
<tr>
<td>Musculoskeletal:</td>
<td>E</td>
<td>H. Transports blood bourn elements throughout the body, eliminates metabolic wastes, circulates lymph to counter microbes and toxins, and maintains homeostasis.</td>
</tr>
</tbody>
</table>

2. Explain the normal function of the enzyme acetylcholinesterase in controlling the neuron signal processing of the nervous system:
 A. Breaks down acetylcholine after transmission
 B. Acts as the receptor for transmitted acetylcholine
 C. Terminates the transfer of acetylcholine
 D. Initiates signal transmission via acetylcholine

3. Explain how nerve agents interfere with AChE leading to cholinergic crisis:
 A. Inhibits acetylcholinesterase production
 B. Inhibits acetylcholinesterase function
 C. Inhibits acetylcholine production
 D. Inhibits acetylcholine transmission

4. Describe the primary signs to look for during patient assessment to identify nerve agent exposure:
 A. Pain, GI/Urinary distress, Respiratory distress, Erythema, Muscular fasciculations, Convulsions
 B. Fever, Respiratory distress, Tachycardia, Convulsions, Diaphoresis, Peripheral Numbness
 C. Fever, Pain, GI distress, Respiratory distress, Rhinorrhea, Lacrimation, Diaphoresis
 D. **Copious secretions, Muscular fasciculations, Respiratory distress, Miosis, Convulsions**

5. Indicate the information to request from a conscious patient during clinical assessment:
 A. Pain, GI/Urinary distress, Difficulty breathing, Sight changes, Muscle control
 B. Pain, GI/Urinary distress, Difficulty breathing, Fatigue, Muscle control
 C. Pain, GI/Urinary distress, Difficulty breathing, Sight changes, Peripheral Numbness
 D. Pain, GI/Urinary distress, Difficulty breathing, Muscle control, Peripheral Numbness

6. Indicate the correct dosages, administration routes and time sequences (up to three doses in 1-hour) for ATNAA autoinjector treatment of cholinergic crisis in an adult:
 A. One ATNAA autoinjector, IM, dose1 @ 5-10 minutes, dose 2@10-15 minutes, dose 3@15-20 minutes.
 B. One ATNAA autoinjector, IM, dose1 @ 5-10 minutes, dose 2@15-20 minutes, dose 3@25-30 minutes.
 C. One ATNAA autoinjector, IM, dose1 @ 5-10 minutes, dose 2@15-20 minutes, dose 3@25-30 minutes.
 D. One ATNAA autoinjector, IM, dose1 @ 0 minutes, dose 2@10-15 minutes, dose 3@15-20 minutes.

7. From the list below, select three other possible medical conditions that lead to similar patient symptomology as a cholinergic crisis.
 Response options: **Vesicant Exposure** **Radiation Exposure** **Anaphylaxis**
8. Match the expected clinical effects to the drugs used in the management of cholinergic crisis:

<table>
<thead>
<tr>
<th>Drug</th>
<th>Match Letter</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>2PAMCL:</td>
<td>B</td>
<td>A. Control convulsions.</td>
</tr>
<tr>
<td>Atropine:</td>
<td>C</td>
<td>B. Remove the nerve agent from the enzyme acetylcholinesterase.</td>
</tr>
<tr>
<td>Diazepam:</td>
<td>A</td>
<td>C. Dry secretions, reduce bronchoconstriction, decrease gastrointestinal motility.</td>
</tr>
<tr>
<td>Pyridostigmine</td>
<td>E</td>
<td>D. Relieve eye symptoms.</td>
</tr>
<tr>
<td>Bromide:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atropine Ophthamological Ointment:</td>
<td>D</td>
<td>E. Shields AChE enzyme from full effects of GD nerve agent to enhance the effectiveness of treatment after GD exposure.</td>
</tr>
</tbody>
</table>

9. The ATNAA autoinjector includes which of the following:
 A. Atropine, 2mg / 2PAMCL, 600mg
 B. Atropine, 2mg / 2PAMCL, 300mg
 C. **Atropine, 2.1mg / 2PAMCL, 600mg**
 D. Atropine, 2.1mg / 2PAMCL, 300mg

10. Indicate the time sequences for vapor exposure to nerve agents:
 A. onset within seconds to minutes
 B. onset within minutes to hours
 C. onset within minutes to days
 D. onset within hours to days

11. Indicate the time sequences for liquid exposure to nerve agents:
 A. onset within seconds to minutes
 B. **onset within minutes to hours**
 C. onset within minutes to days
 D. onset within hours to days

12. A positive indicator for M9 Chemical Agent Detector Paper is:
 A. Orange
 B. Blue
 C. Green
 D. **Yellow**

13. Identify other situational cues used for assessing nerve agent exposure including:
 A. Multiple casualties
 B. Burn injuries
 C. Odor
 D. **All of the above**

14. Indicate the correct transfer of care sequence by placing a “1” for the first, “2” for the second, etc.:
 Level 1 Care ____3____ Buddy care ____2____ Self-care____1____ Level 2 Care _____4_____

15. If patient is symptomatic, describe the treatment sequence for managing cholinergic crisis:
 A. **Self-protection, ATNAA Injection, Airway Management, Respiratory Support, CANA injection**
 B. Self-protection, Airway Management, ATNAA Injection, Respiratory Support, CANA injection
 C. **Self-protection, Airway Management, Respiratory Support, ATNAA injection, CANA injection**
16. Which of the following is NOT part of the decontamination protocol for cholinergic crisis patient management:
A. Remove contaminated clothing and gear
B. Decontaminate exposed skin
C. Apply reactive skin decontamination lotion (RSDL)
D. Irrigate with large amounts of water
E. Apply M291 SDK
F. Clean w/ soap & water
G. Apply M295
H. Apply 0.5% hypochlorite solution
I. Incinerate contaminated clothing and gear

17. What Mission-Oriented Protective Posture (MOPP) level of protection is required for responding to a cholinergic event?
A. Level III
B. Level IV
C. Level V
D. Level VI

18. Match the likely cause (exposure) to the listed symptomology:
A. Vesicant
B. Pulmonary Agent
C. Cyanide
D. Riot Gas
E. Respiratory Irritant
F. Upper Respiratory Infection
G. Viral Infection (GI)
H. Medication Toxicity (Opiates)

18.1: Respiratory discomfort (coughing, wheezing, shortness of breath, chest tightness), irritation to eyes, nose, upper airway. Likely Cause/Exposure(s):________E__________

18.2: Pulmonary edema (secretions, cough difficulty breathing), seizures, respiratory arrest, cardiac arrest. Likely Cause/Exposure(s): __________C________________

18.3: Cough, erythema, blisters, conjunctivitis. Likely Cause/Exposure(s): __________A__________

18.4: Respiratory discomfort (coughing, difficulty breathing, shortness of breath), burning pain on mucous membranes, skin and eyes. Likely Cause/Exposure(s): __________D___________

18.5: Airway irritation, shortness of breath (delayed onset), eye irritation, chest tightness. Likely Cause/Exposure(s):________B___________

19. Given the following information, is the nerve agent exposure vapor or liquid?
Symptomatic onset within 10 minutes to 18 hours; Muscle twitching and sweating at site of exposure, Nausea/Vomiting, Weakness, Respiratory, Gastrointestinal, Neurological.
Vapor: ___________________________ Liquid: ___________________________

20. Given the following information, is the nerve agent exposure mild or severe?
Miosis, Headache, Rhinorrhea, Salivation, Dyspnea, Bronchoconstriction.
Mild: ___________________________ Severe: ___________________________

21. Indicate the ATNAA autoinjector time sequence for management of cholinergic crisis in an adult:
a. 1st dose after 5 minutes; 2nd – 6th doses at 5-minute intervals thereafter.
b. 1st dose after 5 minutes; 2nd dose 5 minutes after 1st dose, 3rd – 6th dose at 10-minute intervals after 2nd dose.
c. 1st dose immediately; 2nd dose 10 minutes after 1st dose, 3rd – 6th dose at 5-minute intervals after 2nd dose.
d. 1st dose immediately; 2nd – 6th doses at 10-minute intervals thereafter.

22. If seizure activity is present, indicate the CANA dose requirements for management of cholinergic crisis in an adult:
 a. 1st dose given immediately.
 b. 1st dose given after 1st ATNAA injection.
 c. 1st dose given after 2nd ATNAA injection.
 d. 1st dose given after 3rd ATNAA injection.
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Correctly dons Mission-Oriented Protective Posture (MOPP) Level IV.</td>
</tr>
<tr>
<td>2.0</td>
<td>Correctly assesses patient for signs of nerve agent exposure (verbalizes & examines).</td>
</tr>
<tr>
<td>2.1</td>
<td>Miosis</td>
</tr>
<tr>
<td>2.2</td>
<td>Copious secretions</td>
</tr>
<tr>
<td>2.3</td>
<td>Generalized muscular fasciculations</td>
</tr>
<tr>
<td>2.4</td>
<td>Difficulty breathing</td>
</tr>
<tr>
<td>2.5</td>
<td>Cyanosis</td>
</tr>
<tr>
<td>2.6</td>
<td>Convulsions</td>
</tr>
<tr>
<td>2.7</td>
<td>Pain</td>
</tr>
<tr>
<td>2.8</td>
<td>GI/Urinary distress</td>
</tr>
<tr>
<td>2.9</td>
<td>Respiratory distress</td>
</tr>
<tr>
<td>2.10</td>
<td>Fatigue</td>
</tr>
<tr>
<td>2.11</td>
<td>Muscle control</td>
</tr>
<tr>
<td>3.0</td>
<td>Correctly performs Differential Diagnosis (DDx).</td>
</tr>
<tr>
<td>3.1</td>
<td>Identifies alternate diagnoses (verbalizes 3 alternates).</td>
</tr>
<tr>
<td></td>
<td>Correct responses: Vesicant, Pulmonary Agents, Riot Gas, Cyanide, Respiratory Irritant, Upper respiratory infections, Viral infection (GI), Medication toxicities (Opiates).</td>
</tr>
<tr>
<td>3.2</td>
<td>Identifies distinguishing symptoms for nerve agent exposure (verbalizes).</td>
</tr>
<tr>
<td></td>
<td>Correct responses: Copious secretions, Generalized muscular fasciculations, Respiratory distress, Cyanosis, Convulsions.</td>
</tr>
<tr>
<td>4.0</td>
<td>Correctly uses the M9 Chemical Agent Detector Paper.</td>
</tr>
<tr>
<td>5.0</td>
<td>Correctly identifies other situational cues for assessing exposure agent (verbalizes at least 3).</td>
</tr>
<tr>
<td></td>
<td>Correct responses: mass casualties, onset of symptoms, localized or general reactions, initial symptoms, time progression of symptoms, M9 indicator.</td>
</tr>
<tr>
<td>6.0</td>
<td>Correctly determines vapor exposure.</td>
</tr>
<tr>
<td>7.0</td>
<td>Correctly determines moderate poisoning</td>
</tr>
<tr>
<td>8.0</td>
<td>Correctly locates instruments & supplies in supply kit.</td>
</tr>
<tr>
<td>9.0</td>
<td>Correctly implements ATNAA Auto Injector, dosages, administration routes, time sequences.</td>
</tr>
<tr>
<td>9.1</td>
<td>1 injector/dose</td>
</tr>
<tr>
<td>9.2</td>
<td>IM injection</td>
</tr>
<tr>
<td>9.3</td>
<td>0 min, +10-15min, +15-20 min, +20-25min, +25-30min</td>
</tr>
<tr>
<td>10.0</td>
<td>Correctly evaluates the clinical effects of ATNAA Auto Injector (verbalizes at least 2).</td>
</tr>
<tr>
<td></td>
<td>Correct responses: Remove the nerve agent, dry secretions, reduce bronchoconstriction, decrease gastrointestinal motility.</td>
</tr>
<tr>
<td>11.0</td>
<td>Correctly demonstrates ability to appropriately implement the following interventions:</td>
</tr>
<tr>
<td>11.1</td>
<td>Suction</td>
</tr>
<tr>
<td>11.2</td>
<td>Bag-valve-mask</td>
</tr>
<tr>
<td>11.3</td>
<td>IV Catheter</td>
</tr>
<tr>
<td>11.4</td>
<td>Resuscitation Device, Individual, Chemical (RDIC)</td>
</tr>
<tr>
<td>11.5</td>
<td>Endotracheal Intubation</td>
</tr>
<tr>
<td>12.0</td>
<td>Correctly implements CANA Auto Injector, dosages, administration routes, time sequences.</td>
</tr>
<tr>
<td>12.1</td>
<td>1 injector/dose</td>
</tr>
<tr>
<td>12.2</td>
<td>IM injection</td>
</tr>
<tr>
<td>12.3</td>
<td>After 3rd ATNAA injection, +5min, +10min</td>
</tr>
<tr>
<td>13.0</td>
<td>Correctly evaluates the clinical effects of Diazepam (verbalizes).</td>
</tr>
<tr>
<td></td>
<td>Correct response: Control convulsions.</td>
</tr>
<tr>
<td>14.0</td>
<td>Evaluates treatment effects during patient management:</td>
</tr>
<tr>
<td>14.1</td>
<td>Decreased secretions.</td>
</tr>
<tr>
<td>14.2</td>
<td>Improved respiration.</td>
</tr>
<tr>
<td>14.3</td>
<td>Improved muscle control.</td>
</tr>
<tr>
<td>14.4</td>
<td>Reduced GI symptoms.</td>
</tr>
<tr>
<td></td>
<td>Correctly provides supportive treatment to stabilize patient.</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>15.1</td>
<td>Correctly continues drug therapy as needed.</td>
</tr>
<tr>
<td>15.2</td>
<td>Correctly provides respiratory support as needed.</td>
</tr>
<tr>
<td>15.3</td>
<td>Correctly provides Intravenous fluids as needed.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Correctly identifies next steps (verbalizes).</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.0</td>
<td>Correct responses: Decontamination, Transport to Level 2 care facility.</td>
</tr>
</tbody>
</table>
CHOLINERGIC CRISIS RECOGNITION AND RESPONSE
SELF-ASSESSMENT SURVEY

Name ___________________________ Date _______________________

Please use the scale associated with each item to indicate the degree to which you agree or disagree with the item. For example, if you strongly agree with the item, mark the scale corresponding to column for “strongly agree.” When you have completed the survey, please give it to one of the researchers before leaving the assessment area.

<table>
<thead>
<tr>
<th>I am familiar with the equipment used for cholinergic crisis management.</th>
<th>Strongly Disagree</th>
<th>Disagree</th>
<th>Somewhat Disagree</th>
<th>Somewhat Agree</th>
<th>Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>I am able to correctly use the tools associated with cholinergic crisis management.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I know the procedural steps required for cholinergic crisis management.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I am able to correctly identify the principal anatomical and physiological reactions associated with cholinergic crisis management.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I am able to accurately identify the need for cholinergic crisis management.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I am able to successfully perform the procedures associated with cholinergic crisis management.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I believe the antidote for nerve agent exposure is effective in resolving cholinergic crisis.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I feel calm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I feel secure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I am tense</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I feel at ease</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I feel upset</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I am presently worrying over possible mistakes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I feel rested</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I feel anxious</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I feel comfortable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I feel self-confident</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I feel nervous</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I am jittery</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I feel “high strung”</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I am relaxed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I feel content</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I am worried</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I feel over-excited and “rattled”</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I feel joyful</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I feel pleasant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix 8: Instructional Components
PEDIATRIC AND NEONATAL INTUBATION INSTRUCTION

Training Sequence

- Didactic Instruction
- Introduction to feline models
- Introduction to laboratory facilities
- Cognitive assessment and feedback
- Clinical preparation
- Self-preparation
- Clinical assessment of patient – simulated context
- Patient preparation – simulated context
- Master procedural tasks – simulated context
 - Intubation practice
 - Performance assessment
 - Feedback
 - Repeat 9a-9c until standards of performance are achieved.

Didactic Presentation

Pediatric Intubation

Joseph B. House, MD
Suzanne Dooley-Hash, MD
Pamela Andreatta PhD
Objectives

- Reasons to Intubate
- Anatomy
 - Neonatal
 - Cat
- Medication
- The Procedure
 - Post-procedure confirmation

What is intubation

- Placing a plastic tube into the airway of your patient
Why to intubate

- Failure to Ventilate (remove carbon dioxide)
 - Neuromuscular weakness
 - Obstructive pulmonary disease
- Failure to Oxygenate
 - Pulmonary disease
- Failure to protect airway
 - Altered mental status – neurologic, toxic
- Failure to maintain patent airway
 - Obstruction, secretions, injury, blood
- Significant hemodynamic instability
- Operative needs
Signs of Distress

- Retractions
- Nasal Flaring
- Apnea
- Cyanosis
Figure 26: Pediatric Airway
Anatomy of pediatric airway

- Epiglottis (floppier, u-shaped)
- Airway (more anterior and higher)
- Trachea (more flexible)

Figure 27: Adult Airway
Anatomy of adult airway

- Tongue
- Epiglottis (shorter)
- Hyoid bone
- Vocal cords (Narrowest)
- Thyroid cartilage
- Cricoid ring (Narrowest)
- Trachea
- Cylinder

SUSAN GILBERT
EMERGENCY MEDICINE
Normal position with obstruction

Sniffing position with towel under helps with support of airway

Mild extension further opens/aligns airway. Overextension on will hinder

Figure 1 - View of the glottic area via direct laryngoscopy
Endotracheal Size

- Determining Size
 - \[(16 + \text{age}) / 4\]
 - \[(\text{age}/4) + 4\]
 - Broselow tape
 - Tape measure utilizing median weight for length
 - Size of pinky finger after 1y/0
How deep to insert tube

- Use Broslow Tape
- 3 x tube size
- On end of ETT lines, insert to just past cords, if using ett with balloon, balloon just past cords
Laryngoscope Blades

- Size:
- Broselow tape
- Measure from tragus to cricoid membrane
- Better too long vs too short

Other needed equipment

- Stylet: maintains firmness of ET Tube
- pCO2 detector:
 - Litmus paper: “yellow is a good
- Tape
- Suction
- Bag/mask
Masks

- Should fit from base of chin to mid-bridge of nose
- Cushion helps make better seal
- Use best fit
- Will need to adjust based on size

Correct positioning
Bag-mask Ventilation

- Use C-E hand configuration
- Can use jaw thrust
- Should have a firm seal
- Do not block anterior neck

Medication

- Sedative
 - Etomidate (0.3 - 0.6 mg/kg)
 - Versed (0.05 - 0.1 mg/kg)
 - Ketamine (1-2 mg/kg) [may choose for patient with asthma]

- Paralytic
 - Succinylcholine (1-2 mg/kg)

- Atropine: (0.2 mg/kg) [prevent bradycardia]

- Use Broselow Tape
How to Intubate

Figure 26: Pediatric Airway
Anatomy of pediatric airway
Confirmation

- Verbalize “see tube pass through cords”
- Auscultation of breath sounds
- CO2 detector
- Post intubation chest x-ray
Epiglottis

Can just barely See the dorsal arytenoids
Endotracheal Intubation Of The Cat – (in dorsal recumbency)

- Cat will have previously received injection of sedative combined with pain medication and have an intravenous catheter in place
- Cat will be induced with anesthetic drug
- Lidocaine will be dripped on arytenoid cartilage (1-2 drops per side)
- Cat will be placed in dorsal recumbency (on their back)
- Endotracheal tube (size 3.0-4.5mm) and laryngoscope with size 0-1 Miller blade will be made ready

NOTE- laryngoscope light must not be turned on prior to use to avoid burning mucosal tissue with hot bulb
- Laryngoscope is held upside down with non-dominant hand (shape of L) and endotracheal tube is held in dominant hand
- Tip of laryngoscope blade is advanced into mouth and placed rostral to epiglottis
- To help open arytenoids, upward pressure is applied to tongue base (lift handle of scope slightly toward ceiling and rotate wrist to bring top end of scope handle towards your body)
- It is extremely important to avoid touching the epiglottis or arytenoid cartilages since the cat larynx is very prone to spasm
- Once the arytenoid cartilages are visualized on both sides of larynx the endotracheal tube is positioned, in the mouth alongside the laryngoscope, ready to be placed
- If the arytenoid cartilages are closed, DO NOT attempt to push through them or bump up against them. The cartilages must be open before you attempt to pass the tube.
- Wait for the arytenoids to open and quickly (but gently) advance through the space in between. Sometimes many seconds will pass before the cat takes another breath.
- If spasms are occurring, additional drops of lidocaine can be applied (1 drop each side)
- Once the endotracheal tube has passed between the arytenoids, remove the laryngoscope (ensure endotracheal tube is not coughed out or pulled out while removing scope).
- Endotracheal tube is gently advanced further into the trachea so the inflatable cuff is positioned caudal to the larynx but rostral to the thoracic inlet.

Much better
Epiglottis easily seen, the arytenoid cartilages are abducted (have been given local anesthetic to stop laryngospasm
CHOLINERGIC CRISIS CLINICAL MANAGEMENT INSTRUCTION

Training Sequence

- Didactic Instruction
- Introduction to laboratory facilities
- Practice procedural tasks – simulated context (SimMan3G)
- Multimedia application – simulated context (animal video or physiological animation)
- Cognitive assessment and feedback
- Clinical preparation
- Self-preparation
- Clinical assessment of patient – simulated context
- Patient preparation – simulated context
- Master procedural tasks – simulated context
 - Clinical practice
 - Performance assessment
 - Feedback
 - Repeat 9a-9c until standards of performance are achieved.

Course Content & Materials.

Course materials were completed in 2013-Q3.

Didactic Presentation

Presentation materials from USAMRICD courses titled *Medical Management of Chemical and Biological Casualties* and *Field Management of Chemical and Biological Casualties* will be used for the following content areas:

- Introduction to Chemical Agents
- Nerve Agents
- Anatomy
- Physiology

Lecture and discussions will take place over 20-minutes.

CRITICAL COMPETENCY IN CHOLINERGIC CRISIS (C4)

Recognition & clinical management of cholinergic crisis

University of Minnesota Medical School
SimPORTAL/CREST
PI: Pamela Andreatta, EdD, PhD
IDENTIFY SIGNS OF POTENTIAL NERVE AGENT EXPOSURE

- LIQUID/GAS AGENTS: TABUN(GA); GB(SARIN); GD(SOMAN); GF; VX

- Identify situational cues for exposure to a chemical agent:
 - Mass casualties
 - Chemical residue
 - Odor (not all agents)
 - Initial patient symptoms
 - Onset of patient symptoms
 - Localized or general patient reactions
 - Time progression of symptoms.

IDENTIFY SIGNS OF POTENTIAL NERVE AGENT EXPOSURE

- LIQUID/GAS AGENTS: TABUN(GA); GB(SARIN); GD(SOMAN); GF; VX

- Identify situational cues for exposure to a chemical agent:
 - Mass casualties
 - Chemical residue
 - Odor (not all agents)
 - Initial patient symptoms
 - Onset of patient symptoms
 - Localized or general patient reactions
 - Time progression of symptoms.

TRANSFER OF CARE

1. Self-Care
2. Buddy Care
3. Level 1 Care (Medic, Combat Lifesaver)
4. Medical transport to appropriate Level 2 receiving facility if possible
5. Field stabilization and monitoring if transport not available
PHYSICAL SIGNS & SYMPTOMS OF CHOLINERGIC CRISIS

Eye Symptoms
- Miosis
- Vision changes (blurred, dim)
- Eye pain
- Dull ache in frontal part of head
- Conjunctival injection

Respiratory Symptoms
- Respiratory distress – mild to severe
- Increased secretions
- Dyspnea
- Chest tightness
- Bronchospasm
- Bronchocorstriction
- Apnea / Respiratory cessation

Gastrointestinal Symptoms
- Nausea
- Vomiting
- Abdominal Pain / Heartburn
- Diarrhea
- Involuntary Defecation/Urination

Neuro-muscular Symptoms
- Feeling of weakness
- Flacid Paralysis
- Muscle fasciculations / twitching
- Seizures
- Convulsions
- Loss of Consciousness
- Mental status changes

Secretory Symptoms
- Sweating – local or generalized
- Salivation – copious
- Rhinorrhea – copious
- Lacrimation – copious
- Bronchial – copious

Cardiovascular Symptoms
- Low, High or Normal Heart Rate
- Change in Heart Rate
- Bradyarrhythmias first (1st, 2nd, 3rd degree heart block)

PERFORM DIFFERENTIAL DIAGNOSIS (DDX)

Identify primary combination of nerve agent exposure indicators
- Miosis
- Copious secretions
- Generalized muscular fasciculations
- Respiratory distress
- Cyanosis
- Convulsions

Identify other possible medical conditions
- Upper respiratory infections
- Viral infection (GI)
- Medication toxicities - opiates
PERFORM DIFFERENTIAL DIAGNOSIS (DDX)

Identify other possible exposures

- **Vesicants**
 - Cough, erythema, blisters, conjunctivitis

- **Pulmonary Agents**
 - Airway irritation, shortness of breath (delayed onset), eye irritation, chest tightness

- **Cyanide**
 - Pulmonary edema (secretions, cough difficulty breathing), seizures, respiratory arrest, cardiac arrest

- **Riot Agent**
 - Respiratory discomfort (coughing, difficulty breathing, shortness of breath), burning pain on mucous membranes, skin and eyes

- **Respiratory Irritants**
 - Respiratory discomfort (coughing, wheezing, shortness of breath, chest tightness), irritation to eyes, nose, upper airway.

IDENTIFY EXPOSURE AGENT

Use available detection options

- **M9 Chemical Agent-Detector Paper**
 - Yellow-Brown for vapor; Pink, red, reddish brown, purple for liquid nerve agents or vesicants
 - Discriminate between positive detection indicators

Determine Vapor or Liquid Exposure

- **Vapor** – Symptomatic onset within seconds to minutes;
 - Eye, Respiratory, Secretory, Neuromuscular, Gastrointestinal

- **Liquid** – Symptomatic onset within 10 minutes to 18 hours
 - Muscle twitching and sweating at site of exposure, Nausea/Vomiting, Weakness, Respiratory, Gastrointestinal, Neurological

- **Both** – Convulsions, Apnea

Determine Extent of Poisoning

- **Mild** – Miosis, Headache, Rhinorrhea, Salivation, Dyspnea, Bronchoconstriction
- **Severe** – Symptoms progress to more than one organ system. Respiratory Cessation, Neuromuscular Symptoms

MANAGEMENT STRATEGY 1

Self Protection

- Pretreatment with **Pyridostigmine Bromide**: (one 30mg tablet orally q 8 hours pre-treatment). Shields AChE enzyme from full effects of GD to enhance the effectiveness of treatment after GD exposure.
- Don Mission-Oriented Protective Posture (MOPP) Level IV
- Protective mask
- Chemical protective over-garment
- Gloves
- Protective footwear/over-boots

Patient Management

Secure Patient

- Move patient as needed to safety
MANAGEMENT STRATEGY 2

Identify Location of Medical Supplies
- Suction
- Bag-valve/laryngeal mask
- Resuscitation Device, Individual, Chemical (RDIC)
- Endotracheal Tube / Stylette
- Laryngoscope
- Needles
- IV Catheter
- IV Fluids
- Tape
- Scalpels

MANAGEMENT STRATEGY 3

Perform Medical Management (ABCD Treatment)

1. **Airway** – Suction; Position patient; Secure airway; Resuscitation Device, Individual, Chemical (RDIC); Intubation if needed. Requires frequent suctioning.

2. **Breathing** – Assessment; drugs; bag-valve-mask ventilation - Initial ventilation is difficult due to high airway resistance (50-70 cm of water). Resistance decreases after atropine administration. Ventilate 0.5-3 hours.

3. **Circulation** – Assessment, drugs.

MANAGEMENT STRATEGY 4

Perform Medical Management (ABCD Treatment) - Continued

4. **Administer Drugs** – Antidote, Symptom Management

 Atropine: Dry secretions, reduce bronchoconstriction, decrease gastrointestinal motility.
 2mg/dose (>12 years); 1mg/dose (6-12 years); 0.5mg/dose (age 1-5 years); 0.25mg/dose (<1 years).

 ATNAA / Atropine Auto Injector
 - 1st injector (2.1mg) IM
 - 2nd injector (2.1mg) IM 10-15 min after 1st injector
 - 3rd injector (2.1mg) IM in rapid succession, 1q 5min as needed

 Praladoxime Chloride (2PAM CL): Remove the nerve agent (except GD) from the enzyme acetylcholinesterase. (25/50mg/kg; 2000mg max for all).

 ATNAA Auto Injector: 3 injectors (>12 years); 2 injectors (6-12 years); 1 injector (age 1-5 years); NA (<1 years)
 - 1st injector (600mg) IM
 - 2nd injector (600mg) IM 10-15 min after 1st injector
 - 3rd injector (600mg) IM in rapid succession, not to exceed 3 in 1 hour
MANAGEMENT STRATEGY 5

Perform Medical Management (ABCD Treatment) - Continued...

4. Administer Drugs – Antidote, Symptom Management Continued...

 Diazepam (CANA): Control convulsions.
 - CANA Auto Injector
 - 1 injector (10mg) IM IF patient receives 3 PAMCL or Atropine doses
 - 2-3 injectors (10-20mg) IM for seizing patient as needed

 Atropine Ophthalmological Ointment: At Battalion Aid Station (BAS) apply Atropine Ophthalmic Ointment (topical); 0.5” strip in pocket of lower eyelid. Relieve eye symptoms.

MANAGEMENT STRATEGY 6

Perform Medical Management (ABCD Treatment) Continued...

- Re-assess & Monitor Patient
 - Supportive Treatment – intravenous fluids, respiratory support.
 - Stabilize Patient – continue drug therapy as needed for persistent symptoms.
 - Identify Treatment Effects.
 - Identify Clinical Mismanagement Effects.

DECONTAMINATION

Decontamination
- Remove contaminated clothing and gear. Decontaminate exposed skin in the following order:
 - Face
 - Neck area
 - Chest area
 - Abdomen
 - Arms and hands
 - Other exposed skin areas
DECONTAMINATION

Decontamination
- Remove contaminated clothing and gear. Decontaminate exposed skin in the following order:
 - Face
 - Neck area
 - Chest area
 - Abdomen
 - Arms and hands
 - Other exposed skin areas

DISPOSITION PATIENT

Disposition Patient
- Medical transport to appropriate Level 2 receiving facility (if possible)
- Field stabilization and monitoring if transport not available.
Multimedia Exercises

Multimedia training about how chemical and nerve agents effect physiological functioning, and how the antidotes modify the physiological outcomes will include one of the following conditions:

- Live animal response and recovery from a cholinergic event
- Animated human response and recovery from a cholinergic event

Multimedia training will take place over 30-45 minutes. The full multimedia application can be downloaded and viewed on an iPad using Testflight (username: c4study@gmail.com; password: cholinergic). To download the application, navigate to testflightapp.com and log in using the information above. Click the “Install Apps” tab and tap the C4 app to install. The C4 application can be interchanged between animal and human, using the C4 “Application Mode” toggle in the “Settings” menu of the iPad. Animal mode is activated when the Monkey toggle is “On” in the C4 section of the “Settings” menu. Human/simulator mode is activated when the Monkey toggle is “Off” in the C4 section of the “Settings” menu.
Why we do it
Nerve agents can affect all members of a population. Training is essential to enable first-responders to correctly recognize and manage nerve agent exposure in affected individuals.

Who we do it for
Nerve agents have been used in terror attacks in major cities throughout the world. Large stockpiles of chemical nerve agents pose a significant risk if obtained by terrorist groups. Despite the serious threat, proper training of medical professionals can prevent serious complications and loss of life in exposed populations.

ANATOMY & SYMPTOMS
How nerve agents affect the **NEUROLOGICAL** system

Seizure Exposure to nerve agents can cause the exposed individual's body to shake rapidly and uncontrollably. The symptoms can also be identified as convulsions.

How nerve agents affect the **OPTICAL** system

Miosis Pupil constriction and **Lacrimation** excessive secretion of tears in the affected individual.

How nerve agents affect the **NASAL** secretions

Rhinorrhea Exposure to nerve agents can cause excessive discharge of nasal fluid in an exposed individual.
How nerve agents affect ORAL secretions

Salivation: Nerve agent exposure may cause profuse salivation.

Next: Muscular

How nerve agents affect the MUSCULAR system

Muscular Fasciculation: Nerve agent exposure can cause what is known as generalized muscular fasciculation. Muscular fasciculations are uncontrollable minor contractions or twitching of a muscle group.

Next: Respiratory

How nerve agents affect the RESPIRATORY system

Respiratory Distress: Exposure to nerve agents can cause bronchoconstriction, and excessive mucus in the lungs that lead to difficulty breathing and possible cessation of respiration. Apnoeas can also occur after extensive exposure.

Next: Cardiovascular
How nerve agents affect the **CARDOVASCULAR** system

Bradycardia Exposure can cause a decrease in heart rate.

Next: Gastrointestinal

How nerve agents affect the **GASTROINTESTINAL** system

Nerve agent exposure can lead to an increase in gastrointestinal motility leading to **Gastrointestinal Distress**: smooth muscle tone changes causing gastrointestinal problems, **Emesis**: vomiting, and **Bowel Incontinence**: relaxation of the internal sphincter.

Next: Urinary

How nerve agents affect the **URINARY** system

Urinary Incontinence Exposure to nerve agent can cause relaxation of the internal sphincter muscle of the urethra, and contraction of the detrusor muscles.

Next: Endocrine
How nerve agents affect the ENDOCRINE system

Nerve agent exposure can cause symptoms evident in examination of the skin. These include Perspiration: excessive sweating and Cyanosis: bluish coloring of the skin around the mouth and fingers, due to lack of oxygen to the tissue.
The Synaptic Response

Acetylcholine is essential for signal processing. Acetylcholinesterase hydrolyzes acetylcholine, enabling receptor neurons to continue transmission. Nerve agents block acetylcholinesterase and impede neurotransmission, causing malfunction in organ systems that rely on these signals.
EXPOSURE SYMPTOMS

DOSING

- **Baby 25-50 mg/kg (max 2000 mg)**
- **Child 25-50 mg/kg (max 2000 mg)**
- **Adult 25-50 mg/kg (max 2000 mg)**

Diazepam

- **Baby 0.3 mg/kg**
- **Child 0.5 mg/kg**
- **Adult 10 mg/dose**

Administer first dose if patient received THREE ATIVAN 10 mg immediate-release (IR) tablets.
Clinical Management Test

Instructions: Watch the video above, then move to the next page to complete a series of questions testing your knowledge.
Select the appropriate treatment from your pack below.

You were met with resistance when using the bag-valve-mask to assist patient respiration. Administer the RIC resuscitation device, which is appropriate for use in toxic atmospheres, to ventilate the patient.

CONGRATS!
You're done.

The course for novices, you are encouraged to seek additional training on primitive measures and clinical procedures in challenging crisis management.
Simulation Exercises with SimMan3G

Programmed case scenarios will be presented for training and practice with the SimMan3G mannequin simulator:

- Moderate exposure, Vapor

Hands-on simulation training will include 30-45 minutes.

SimMan3G Scenario Progression

<table>
<thead>
<tr>
<th>Initial State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitals: BP 85/45, HR 60, RR 28, O2 88%</td>
</tr>
<tr>
<td>Cough, Vomit sounds</td>
</tr>
<tr>
<td>Nasal, eye secretions</td>
</tr>
<tr>
<td>Lung Resistance</td>
</tr>
<tr>
<td>Coarse breath and Lung sounds</td>
</tr>
<tr>
<td>Seizure</td>
</tr>
<tr>
<td>Trend 0-5min</td>
</tr>
<tr>
<td>Vitals: BP 78/40, HR 40, RR 36, O2 82%</td>
</tr>
<tr>
<td>Trend 5-15min</td>
</tr>
<tr>
<td>Vitals: BP 62/40, HR 34, RR 8, O2 68%,</td>
</tr>
<tr>
<td>Trend 15-17min</td>
</tr>
<tr>
<td>Vitals: BP -, HR 0, RR 0, O2 -</td>
</tr>
</tbody>
</table>

- ATNAA (Round 1)
 No change in vitals

- BVM
 No change in vitals

- IV Fluid Given
 Trend - 7 minutes
 Vitals: BP 90/64

- ATNAA (Round 2)
 No change in vitals

- Ambu Military III
 No change in vitals

- ATNAA (Round 3)
 Trend - 2 minutes
 Vitals: RR 20, BP 100/60, HR 80, O2 95%
 Stop nasal/eye secretions
 Stop vomiting

- Intubation
 Trend - 2 min
 Vitals - O2 98%
SimMan3g TEACHING PROTOCOL

Notes:
• Use terminology as indicated.
• Do NOT vary the protocol from below.
• Do NOT ad-lib content or add content that differs or departs from that indicated below.
• Refer all content related questions to Dr. Andreatta.
• Do NOT assume correct responses to questions or base responses off your knowledge. Following the protocol EXACTLY is essential.

TEACHING SEQUENCE

1. Orient the subjects to the SimMan3G

2. Tell the subjects they will learn to
 • Recognize the symptoms of cholinergic crisis
 • Perform the clinical tasks associated with medical management of cholinergic crisis

3. Tell subjects to request the following information from the conscious patient:
 • Do they have any PAIN?
 • Any GASTROINTESTINAL or URINARY DISTRESS?
 • DIFFICULTY BREATHING?
 • Assess the patient’s MUSCLE CONTROL by having them squeeze your hand.
 • Determine patient’s MENTAL STATUS by asking them where they are.
 • Ask if ANYTHING ELSE IS BOTHERING them.

4. Instruct subjects to perform a full body patient assessment by checking for the following indicators:
 • Eyes - Miosis
 • Mouth - copious secretions
 • Nose - copious secretions
 • Respiratory Effort - respiratory distress, Cyanosis
 • Muscle control - yes/no, muscular fasciculations
 • Pulse – bradycardia, variable rhythm
 • Neurological – mental status, convulsions/seizure
 • Other physical symptoms
 • Incontinence
 • Fatigue
 • Paralysis

*****SUBJECTS PRACTICE Items 3 & 4 *****

5. Teach subjects how to provide Clinical Management of the patient through the following:
 • Suction – demonstrate how to suction
 • Position patient on side
 – demonstrate how to position patient on the side using subjects
 • Bag-valve-mask ventilation
 - demonstrate how to use BVM
• ATNAA auto-injector administration (includes 1 dose of 2PAMCL & Atropine) - demonstrate how to use ATNAA auto-injector

• IV placement - demonstrate how to place IV. Indicate that training for IV access is not part of this course for safety purposes.

****** SUBJECTS PRACTICE Item 5 ******

6. Instruct subjects to continue providing Clinical Management of the patient through the following:
 • Suction as needed
 • Second ATNAA auto-injector administration (2nd dose of 2PAMCL & Atropine)
 • RDIC – demonstrate how to use RDIC
 • Reassess patient

****** SUBJECTS PRACTICE Item 6 ******

7. Instruct subjects to continue providing Clinical Management of the patient through the following:
 • Suction as needed
 • Third ATNAA auto-injector administration (3rd dose of 2PAMCL & Atropine)
 • CANA auto-injector (includes 1 dose of Diazepam) for seizures/convulsions - demonstrate how to use CANA auto-injector.
 • Reassess patient

****** SUBJECTS PRACTICE Item 7 ******

8. Teach subjects that if the patient loses consciousness, they should intubate the patient to secure the airway.
 • Demonstrate how to use Intubate.
 • Remind subjects that IF PATIENT IS CONSCIOUS DO NOT INTUBATE.

9. Teach subjects to call for patient transport to a Level 2 facility and maintain supportive treatment until patient is either stable or handed-off to transport team.

Simulation Exercises with Standardized Patients

Five case scenarios will be presented for training and practice in the recognition and response to a cholinergic event using simulated patients representing five similar symptomologies, only one of which is a cholinergic event:

• Nerve agent exposure
• Vesicant exposure

Hands-on simulation training will include 30 minutes.
Appendix 9: Training Event Images
Figure 1. Subjects don protective gear prior to entering the surgical area to practice intubation on an anesthetized cat.

Figure 2. Veterinary students observe and assist subjects performing intubation.
Figure 3. Licensed veterinary technicians supervise participants during intubation procedures.

Figure 4. After being intubated by study subjects cats are spayed or neutered by veterinary students as part of Michigan State University College of Veterinary Medicine’s spay/neuter program.
Figure 5. Prior to and after training, subjects are assessed on their ability to perform the procedural steps associated with intubation on pediatric and neonatal simulators.

Figure 6. Subjects are provided with standard equipment and instruments to perform intubation.
Figure 7. Raters use the performance assessment instrument to mark competencies subjects perform during assessment activities.
Figure 1. Raters greet subjects and enter administrative data, prior to the initiation performance assessment activities.

Figure 2. Subjects, raters and standardized patient actors during performance assessment activities.
Figure 3. Subject assesses distractor patient actor.

Figure 4. Subject reassesses nerve agent exposure patient after performing airway management on an airway manikin with RDIC.
Figure 5. Subject administers airway management to airway manikin in order to provide to the standardized patient.

Figure 6. Rater marks completed competency points as subject administers ANTAA to nerve agent exposure patient.
Figure 7. Video production for the animal component of the cholinergic crisis multimedia application was conducted in a surgical suite at the University of Missouri.

Figure 8. The African Green monkey was carefully monitored by licensed veterinary medical professionals from onset of cholinergic crisis to resolution.
Figure 9. Dr. Andreatta and Project Manager, Laszlo Alberti present a certificate of appreciation to the City of Plymouth Fire Station and Chief Klein.
Appendix 10: Preliminary Data
Recognition and Management of Cholinergic Crisis

Assessment Instrument Psychometric Evidence
- Construct validity was supported by statistically significant differences between subjects with and without prior training in the clinical management of a cholinergic event.
- Scores for greater levels of experience exceeded those of lower experience levels for:
 - Knowledge \(F(1, 122) = 8.89, p = .003 \)
 - Performance \(F(1, 122) = 170.34, p = .000 \)

![Figure 1. Construct validity for cholinergic crisis knowledge and performance assessments.](image1)

- Significant correlations between test-retest outcomes for both assessment instruments indicated measurement reliability \(p < .01 \).
- Test-retest (Pearson “r”) correlations were:
 - Knowledge (.97)
 - Performance (.98)
- The assessment instruments demonstrated internal consistency (Cronbach’s alpha):
 - Knowledge (.70)
 - Performance (.90)

Evaluation of Training Modalities
- Both groups had significant performance improvement across all assessment dimensions:
 - Knowledge \(F(1,203) = 1046.47, p = .000 \). >20% increase in knowledge scores
 - Performance \(F(1,203) = 1805.23, p = .000 \). >50% increase in performance

![Figure 2. Knowledge and performance outcomes over time (pre-test and post-test).](image2)
• Self-efficacy \((F(1,203) = 933.22, p = .000) \). >34% increase in self-efficacy scores
• Affect \((F(1,203) = 78.97, p = .000) \) >15% increase in affect scores

There were no significant differences in any of the post-training outcomes for the two groups.

There were significant correlations between the post-training self-efficacy scores and those for performance and affect, as well as between knowledge and performance scores \((p < .05) \) for the live animal trained group.

The post-training scores for the patient actor trained group had significant correlations between self-efficacy scores and those for knowledge, performance and affect \((p < .05) \).

Retention assessment scores decreased significantly from post training scores:
• Cognitive outcomes at all retention intervals \((F(1,161) = 316.83, p = .000) \)
• Performance at 6 weeks \((F(1,161) = 44.87, p = .000) \), 18 weeks \((F(1,54) = 363.11, p = .000) \) and 52 weeks \((F(1,46) = 97.06, p = .000) \)
• Self-efficacy at 6 weeks \((F(1,59) = 19.89, p = .000) \), 18 weeks \((F(1,54) = 131.68, p = .000) \) and 52 weeks \((F(1,46) = 92.05, p = .000) \)
• Performance retention scores were significantly higher at 6 weeks than those at 52 weeks \((p = .000) \).
• There were no significant retention differences between subjects with and without prior training in the clinical management of a cholinergic event in any domain.
• There were no significant retention differences between training groups for knowledge and performance.

![Cognitive Assessment Outcomes](image1)

![Performance Outcomes](image2)

Figure 5. Pre-post instruction assessment scores by training model.

Pediatric and Neonatal Intubation

Assessment Instrument Psychometric Evidence

• For pediatric and neonatal intubation, construct validity was supported by statistically significant differences between subjects with varying levels of experience, such that the scores for greater levels of experience exceeded those of lower experience levels.
• Between group ANOVA outcomes for experience levels were as follows:
 • Cognitive ($F(2,212) = 107.45, p = .000$)
 • Pediatric Performance ($F(2,212) = 115.18, p = .000$)
 • Neonatal Performance ($F(2,212) = 111.89, p = .000$)
• Bonferroni post-hoc analyses confirmed statistical significance between all experience levels for each assessment instrument ($p < .001$).

![Knowledge](image3)

![Pediatric Performance](image4)

![Neonatal Performance](image5)

Figure 1. Construct validity for pediatric-neonatal cognitive and performance assessments.

• Significant correlations between test-retest outcomes for all assessment instruments indicated measurement reliability ($p < .01$).
• Test-retest (Pearson “r”) correlations were:
 • Knowledge (.99)
 • Pediatric performance (.96)
 • Neonatal Performance (.96)
• The assessment instruments demonstrated excellent internal consistency (Cronbach’s alpha):
• **Knowledge (.92)**
• **Pediatric performance (.84)**
• **Neonatal performance (.85)**

Evaluation of Training Modalities

• Overall, subjects performed significantly better across all assessment domains after training:
 • Knowledge \((F(1,293) = 913.96, p = .000)\)
 • Pediatric performance \((F(1,293) = 197.11, p = .000)\)
 • Neonatal performance \((F(1,293) = 111.64, p = .000)\)
 • Self-efficacy \((F(1,293) = 359.64, p = .000)\)

• There were no significant differences between the live animal and simulator groups on post-training assessment outcomes by experience level.

• Retention differences at 18 and 52 weeks post-training favored those who trained using the simulator, likely due to deliberate practice opportunity.

• Knowledge outcomes at 52 weeks \((F(1,26) = 9.38, p = .005)\)

Figure 2. Post-training assessment outcomes by training model and experience level.

Figure 3. Knowledge outcomes between subject groups over time (pre-test; post-test; retention-test).
• Pediatric performance outcomes at 18 weeks \((F(1,51) = 13.42, p = .001) \) and 52 weeks \((F(1,26) = 13.74, p = .001) \)

![Pediatric performance outcomes at different time points](image)

Figure 4. Pediatric performance assessment outcomes between subject groups over time (pre-test; post-test; retention-test).

• Neonatal performance outcomes at 18 weeks \((F(1,51) = 7.22, p = .01) \) and 52 weeks \((F(1,26) = 13.47, p = .001) \)

![Neonatal performance outcomes at different time points](image)

Figure 5. Neonatal performance assessment outcomes between subject groups over time (pre-test; post-test; retention-test).

• Retention assessment scores decreased significantly from post-training scores:
 • Knowledge outcomes at all retention intervals \((F(1,170) = 209.28, p = .000) \)
 • Self-efficacy outcomes at 18 weeks \((F(1,51) = 16.88, p = .000) \) and 52 weeks \((F(1,45) = 8.99, p = .004) \)
• There were significant differences between retention scores for subjects with varying amounts of experience performing pediatric and neonatal intubation across the following domains:
 • Cognitive \((F(3,168) = 64.13, p = .000) \)
 • Pediatric performance \((F(3,168) = 42.81, p = .000) \)
 • Neonatal performance \((F(3,168) = 48.21, p = .000) \)
 • Self-efficacy \((F(3,168) = 31.50, p = .000) \)
Figure 6. Pediatric and neonatal intubation competency assessment outcomes by experience level at each retention interval.
Appendix 11: Publication and Presentation Lists
Publications

Appendix 12: Program Review/Summary Report
(Report Date: 24 JUNE 2014)
University of Minnesota

Critical Analyses and Development of Training Mechanisms: Cholinergic Crisis and Pediatric/Neonatal Intubation

PI: Pamela Andreatta, PhD
Associate Professor
Award # W81XWH-12-2-0001

Project Information

- Organization: University of Minnesota
 - University of Michigan
 - Michigan State University
 - University of Missouri
 - Award #: W81XWH-12-2-0001
- Principal Investigator: Pamela Andreatta, PhD
- Amount: $3.38 Million
- Period of Performance: 4 Nov 11 – 3 Dec 14
- Grants Officer Representative: Mr. Tony Story, CDRMRP
- Grants Specialist: Ms. Gay Hayden, USAMRAA

Consortium

- University of Minnesota (Medical School)
 - Pamela Andreatta, PhD/EdD
 - Jessica Kotz, BSc
- University of Michigan (Medical School, Emergency Medicine)
 - Suzanne Dooley-Rash, MD
 - Joseph House, MD
- Michigan State University (College Veterinary Medicine)
 - Joseph Hauptman, DVM
- University of Missouri (Medical School/College Veterinary Medicine)
 - Stephen Barnes, MD
 - Alex Bukoski, DVM
- USAMRICD
 - Col. (Ret) Charles G. Hurst, MD
 - Col. James Madsen, MD
- TATRC/ University of Southern California
 - Thomas B. Talbot, MD, MS
Hypotheses & High Level Objectives

HYPOTHESES: Cognitive dissonance from affective overload can interfere with application of knowledge & skills in a mass casualty environment.

- Contextually relevant factors improves training transfer to applied performance.
- Live animals provide contextually relevant factors; Ethical considerations using live animals for these purposes.
- Current training methods lack contextually-based performance assessment; Performance assessment will facilitate comparison of training methods.

HIGH LEVEL OBJECTIVE: Evaluate relative impact of live animals and high-fidelity mannequin simulators for training in the recognition of medical need and consequential clinical management of 1) Cholinergic Crisis and 2) Pediatric & Neonatal Intubation

Specific Objectives

OBJECTIVE 1: Comprehensive Literature Review & Competency Measurement

- Create a defensible framework for facilitating, determining and evaluating competency (performance standards, assessment, training methods).

OBJECTIVE 2: Evaluation of Training Methods (Live Animal vs. Simulation)

- **Management of Cholinergic Crisis:** Training interventions follow a modified version of the content offered by USAMRICD.
- **Pediatric & Neonatal Intubation:** Training interventions follow American Heart Association (AHA) PALS/NRP content.
- **Compare Training Outcomes:** (Cognitive, Psychomotor, Affective).
 - Pre/Post Performance
 - Performance Retention (5 weeks, 18 weeks, 52 weeks).

OBJECTIVE 3: Develop of Evidence-based Curricula

- Design comprehensive, data-driven, evidence-based training program: learning objectives; performance standards; instructional methods; assessment metrics; material and human resources.
Tasks & Milestone Update

OBJECTIVE 1: Comprehensive Literature Review and Competency Measurement
- Task Analysis (Completed): Jan 12 - Apr 12
- Critical Steps Identified for Respective Skills (Completed): Feb 12 - Apr 12
- Potential Sources of Errors Identified During Critical Steps: Jan 13 - Jul 13
- Systematic review of the literature, professional practice guidelines, and training experiences: Nov 13 - Jul 13
- Performance Standards: Mar 14 - Apr 14
- Instructional Needs: May 14 - Aug 14
- Develop Performance Assessment Instruments: Apr 21 - May 21
- Verify Assessment Materials: Aug 12 - Aug 13
- Assemble Data-driven, Defensible Comprehensive Assessment Program: Oct 14 - Nov 14
- Assemble Data-driven, Defensible Training Program: Aug 12 - Aug 13

Tasks & Milestone Update

OBJECTIVE 2: Evaluation of Training Methods (Live Animal vs. Simulation)
- Pre-assessment: Dec 12 (Jan 21)
- Training: Nov 14 - Jan 21
- Post-Assessment 1 (Learning): Nov 14 - Jan 21
- Post-Assessment 2 (Retention): Jan 15 - Apr 14
- Data Analysis: Apr 12 - Apr 13

OBJECTIVE 3: Develop Evidence-based Curricula
- Write training objectives: Dec 14 - Apr 14
- Document standards of performance: Dec 14 - Apr 14
- Define instructional methods: Jul 14 - Apr 14
- Authoritative methods of assessment: Mar 14 - Apr 14
- Prepare Evaluation Plan: Curriculum: Mar 14 - Apr 14

Tasks Completed: Objective 1
- Comprehensive Meta-analyses
 - Precise assessment mechanisms; partially assessed performance domain
 - Absent specific and measurable performance standards
 - No statistically validated assessment instruments
 - Absent evidence-based training methods
 - Reported training methods are inadequate to develop and maintain proficiencies in pediatric and neonatal intubation
 - Comprehensive task analyses across each performance domain
 - Simulation models compared to performance requirements
Tasks Completed: Objective 1

- Develop Assessment Instruments
 - Expert review confirmed content validity.
 - Construct validity established by using the instruments to differentiate between performance of a purposively selected sample of novice through expert practitioners, stratified by level of experience performing pediatric-neonatal intubation (N=214) and cholinergic crisis management (N=123).
 - Reliability was established using test-retest (Pearson “r” correlation) and internal consistency (Cronbach’s “α” alpha) for assessment instruments.

Tasks Completed: Objective 2

Cholinergic Crisis

Evaluation of Cholinergic Crisis Training Methods

Training interventions followed a modified version of the content from USAMRICD “Medical Management of Chemical and Biological Casualties, and Field Management of Chemical and Biological Casualties” courses.

- Pre-training assessment (cognitive, psychomotor, affective) of performance abilities.
- Equivalent training opportunities and course content.
- Heart rate variability (baseline, peak, mean) measured throughout all study activities.
- Post-training assessment (cognitive, psychomotor, affective) of performance abilities.
- Retention assessment (cognitive, psychomotor, affective) of performance abilities after 6 weeks, 18 weeks, or 52 weeks*.

Variable of Interest

- Group 1: Non-human Primate Model (Live Animal Model)
- Group 2: Standardized Patient Actor Model (Simulation Model)
Tasks Completed: Objective 2
Pediatric/Neonatal Intubation

Evaluation of Pediatric & Neonatal Intubation Training Methods
Training interventions follow a modified version of the American Heart Association (AHA) Pediatric Advanced Life Support (PALS) course.

- Pre-training assessment (cognitive, psychomotor, affective) of performance abilities.
- Equivalent training opportunities and course content.
- Heart rate variability (baseline, peak, mean) measured throughout all study activities.
- Post-training assessment (cognitive, psychomotor, affective) of performance abilities.
- Retention assessment (cognitive, psychomotor, affective) of performance abilities after 6 weeks, 18 weeks, or 52 weeks.

Tasks Completed: Objective 2
Pediatric/Neonatal Intubation

Variable of interest
- Group 1: Live Cat Model
- Group 2: Simulated Cat Model

Tasks Completed: Objective 3

Development of Evidence-based Curricula

- Design comprehensive curricula for the management of cholinergic crisis and pediatric/neonatal intubation.
- Derive evidenced-based curricular elements from Objectives 1 & 2 data describing cognitive, psychomotor and affective dimensions of performance.
- Assemble and document all curricular elements, including but not limited to:
 - Training Objectives (Completed)
 - Standards Of Performance (Completed)
 - Assessment Methods (Completed)
 - Instructional Methods (In Process)
 - Material Resources (In Process)
 - Human Resources (Completed)
Results: Competency Assessment

Assessment Solutions
- Developed 2 Cognitive, 3 Performance, 2 Self-Efficacy Instruments. Chose STAI validated instrument for measuring affect.
- Established validity & reliability evidence and performance standards for all instruments (statistical significance, \(p < 0.5 \); Pearson’s \(r > .80 \); Cronbach’s \(\alpha > 0.72 \))

Psychometric Evidence

<table>
<thead>
<tr>
<th></th>
<th>Cognitive</th>
<th>Performance</th>
<th>Affective (STAI)</th>
<th>Self-Efficacy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cholinergic Crisis (N = 123)</td>
<td>(p < .01)</td>
<td>(p < .01)</td>
<td>(p < .05)</td>
<td>(p < .001)</td>
</tr>
<tr>
<td></td>
<td>(r = .97)</td>
<td>(r = .98)</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>(\alpha = .69)</td>
<td>(\alpha = .50)</td>
<td>(\alpha = .95)</td>
<td>(\alpha = .91)</td>
</tr>
<tr>
<td>Pediatric & Neonatal Airway (N = 212)</td>
<td>(p < .001)</td>
<td>Pediatric (p < .001)</td>
<td>(p < .05)</td>
<td>(p < .001)</td>
</tr>
<tr>
<td></td>
<td>(r = .99)</td>
<td>Neomatal (r = .96)</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>(\alpha = .92)</td>
<td>Pedriatric (\alpha = .84)</td>
<td>(\alpha = .96)</td>
<td>(\alpha = .95)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Neomatal (\alpha = .85)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Results: Construct Validity

Cholinergic Crisis Management

Construct Validity for Knowledge and Performance Assessments
N = 123

Results: Construct Validity

Pediatric & Neonatal Intubation

Construct Validity for Performance Assessments

Construct Validity for Knowledge Assessment
N = 218
Results: Technology Gaps

Adult Mannequin Simulators

- **Secretions** – Requires copious and simultaneous secretions including sweat, runny nose, tears, vomit, urine, and saliva (foamy, bubbles, slobber).
- **Vocalizations** – Requires alternatives for garbled, confused, slurring, nonsensical expression.
- **Skin** – Requires realistic, progressive occurrences of rashes, erythemas, burns, and other skin conditions associated with chemical, vesicant, and other types of exposure.
- **Nervous System** – Requires improved, simultaneous muscle fasciculations, twitching, seizures.
- **Airway** – Requires Mallampati variability, Pierre Robin airway (short mandible), improved material at vallecula (easily punctured).
- **Lung Auscultation** – Requires more realistic and localized breath sounds.

Results: Technology Gaps

Pediatric / Neonatal Simulators

- **Secretions** – Requires copious and simultaneous secretions including sweat, runny nose, tears, vomit, urine, and saliva (foamy, bubbles, slobber).
- **Vocalizations** – Requires alternatives for garbled, confused, slurring, nonsensical expression.
- **Skin** – Requires realistic, progressive occurrences of rashes, erythemas, burns, and other skin conditions associated with chemical, vesicant, and other types of exposure.
- **Nervous System** – Requires improved muscle fasciculations, twitching, seizures.
- **Lung Auscultation** – Requires more realistic and localized breath sounds.
- **Cyanosis** – True Perioral Cyanosis (1cm around the mouth turning blue).
- **Size** – True Preemie (28-30 weeks, <3kg).
- **Airway** – Requires the following:
 - Fat tongue, improved tongue tissue fidelity (slippery, wet)
 - More redundant airway tissues, slippery tissues, friable/bleeding
 - Large, floppy epiglottis
 - Nasal flaring
 - More anterior airway.

Results: Cholinergic Crisis

Training Methods Comparison

<table>
<thead>
<tr>
<th>COGNITIVE OUTCOMES</th>
<th>Pre-Training</th>
<th>Post-Training</th>
<th>6 Weeks N = 60</th>
<th>18 Weeks N = 55</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 2 (Simulator)</td>
<td>23.25 ± 3.33</td>
<td>31.78 ± 3.06</td>
<td>28.04 ± 3.73</td>
<td>26.31 ± 4.14</td>
</tr>
<tr>
<td>Total Possible: 39</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6 weeks 18 weeks

PRELIMINARY

Training Model: p = N/S
Post-Training Effect: p = .000
6-Week Training Effect: p = .000
18-Week Training Effect: p = .000
Results: Cholinergic Crisis
Training Methods Comparison

Performance Outcomes

<table>
<thead>
<tr>
<th>Group</th>
<th>Pre-Training N = 204</th>
<th>Post-Training N = 204</th>
<th>6 Weeks N = 60</th>
<th>18 Weeks N = 55</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1 (Animal)</td>
<td>6.79 ± 5.62</td>
<td>30.94 ± 7.36</td>
<td>32.78 ± 9.31</td>
<td>13.65 ± 5.99</td>
</tr>
<tr>
<td>Group 2 (Simulator)</td>
<td>7.71 ± 5.52</td>
<td>30.37 ± 7.73</td>
<td>24.23 ± 9.20</td>
<td>15.81 ± 7.50</td>
</tr>
</tbody>
</table>
Total Possible: 45

Results: Cholinergic Crisis
Training Methods Comparison

Self-Efficacy Outcomes

<table>
<thead>
<tr>
<th>Group</th>
<th>Pre-Training N = 204</th>
<th>Post-Training N = 204</th>
<th>6 Weeks N = 60</th>
<th>18 Weeks N = 55</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1 (Animal)</td>
<td>20.96 ± 7.76</td>
<td>36.60 ± 3.46</td>
<td>33.50 ± 4.47</td>
<td>31.45 ± 3.39</td>
</tr>
<tr>
<td>Group 2 (Simulator)</td>
<td>22.14 ± 7.36</td>
<td>36.71 ± 3.16</td>
<td>36.00 ± 4.33</td>
<td>33.31 ± 3.83</td>
</tr>
</tbody>
</table>
Total Possible: 42

Results: Cholinergic Crisis
Training Methods Comparison

Affective (STAI) Outcomes

<table>
<thead>
<tr>
<th>Group</th>
<th>Pre-Training N = 204</th>
<th>Post-Training N = 204</th>
<th>6 Weeks N = 60</th>
<th>18 Weeks N = 55</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1 (Animal)</td>
<td>85.29 ± 12.49</td>
<td>91.50 ± 11.32</td>
<td>85.03 ± 10.50</td>
<td>73.69 ± 12.65</td>
</tr>
<tr>
<td>Group 2 (Simulator)</td>
<td>85.27 ± 11.74</td>
<td>92.34 ± 10.74</td>
<td>94.00 ± 11.85</td>
<td>81.81 ± 11.44</td>
</tr>
</tbody>
</table>
Total Possible: 114
Results: Cholinergic Crisis
Training Methods Comparison

Peak & Sustained Stress Outcomes (Heart Rate)
There were significant increases in peak (p = .002) and sustained stress (p = .000) after training for both groups. There were no significant differences between the peak and sustained stress outcomes by training model (n = 204).

Results: Pediatric/Neonatal Intubation
Training Methods Comparison

<table>
<thead>
<tr>
<th>COGNITIVE OUTCOMES</th>
<th>Pre-Training N = 371</th>
<th>Post-Training N = 371</th>
<th>6 Weeks N = 72</th>
<th>18 Weeks N = 53</th>
<th>52 Weeks N = 46</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1 (Animal)</td>
<td>12.90 ± 6.38</td>
<td>21.81 ± 4.58</td>
<td>17.99 ± 5.25</td>
<td>17.02 ± 5.91</td>
<td>13.39 ± 5.62</td>
</tr>
<tr>
<td>Group 1 (Simulator)</td>
<td>15.27 ± 6.72</td>
<td>21.75 ± 4.25</td>
<td>18.94 ± 5.23</td>
<td>19.32 ± 5.75</td>
<td>18.95 ± 6.43</td>
</tr>
<tr>
<td>Total Possible:</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6 weeks

Training Model: p = N/S
Post Training Effect: p = .000
6-Week Training Effect: p = .000

18 weeks

Training Model: p = N/S
Post Training Effect: p = .000
18-Week Training Effect: p = .000

52 weeks

Training Models: p = .001
Post Training Effect: p = .000
52-Week Training Effect: p = .000

Results: Pediatric/Neonatal Intubation
Training Methods Comparison

<table>
<thead>
<tr>
<th>PEDIATRIC PERFORMANCE OUTCOMES</th>
<th>Pre-Training N = 371</th>
<th>Post-Training N = 371</th>
<th>6 Weeks N = 72</th>
<th>18 Weeks N = 53</th>
<th>52 Weeks N = 46</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1 (Animal)</td>
<td>26.23 ± 8.73</td>
<td>31.05 ± 6.81</td>
<td>32.82 ± 6.66</td>
<td>29.08 ± 7.29</td>
<td>29.50 ± 5.72</td>
</tr>
<tr>
<td>Group 1 (Simulator)</td>
<td>29.32 ± 10.55</td>
<td>36.17 ± 5.32</td>
<td>34.67 ± 5.60</td>
<td>33.41 ± 5.36</td>
<td>35.46 ± 4.51</td>
</tr>
<tr>
<td>Total Possible:</td>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6 weeks

Training Model: p = N/S
Post Training Effect: p = .000
6-Week Training Effect: p = .000

18 weeks

Training Model: p = 1.00
Post Training Effect: p = .000
18-Week Training Effect: p = .000

52 weeks

Training Models: p = .001
Post Training Effect: p = .000
52-Week Training Effect: p = .000
Results: Pediatric/Neonatal Intubation
Training Methods Comparison

<table>
<thead>
<tr>
<th>NEONATAL PERFORMANCE OUTCOMES</th>
<th>Pre-Training N = 171</th>
<th>Post-Training N = 171</th>
<th>6 Weeks N = 72</th>
<th>18 Weeks N = 53</th>
<th>52 Weeks N = 46</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 2 (Simulator)</td>
<td>29.99 ± 10.60</td>
<td>34.76 ± 5.18</td>
<td>33.09 ± 6.34</td>
<td>33.11 ± 6.63</td>
<td>34.57 ± 6.21</td>
</tr>
<tr>
<td>Total Possible: 48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Results: Pediatric/Neonatal Intubation
Training Methods Comparison

<table>
<thead>
<tr>
<th>SELF-EFFICACY OUTCOMES</th>
<th>Pre-Training N = 371</th>
<th>Post-Training N = 371</th>
<th>6 Weeks N = 72</th>
<th>18 Weeks N = 53</th>
<th>52 Weeks N = 46</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1 (Animal)</td>
<td>22.64 ± 8.13</td>
<td>30.47 ± 3.67</td>
<td>29.46 ± 5.36</td>
<td>29.95 ± 4.69</td>
<td>27.39 ± 5.08</td>
</tr>
<tr>
<td>Group 2 (Simulator)</td>
<td>24.19 ± 8.75</td>
<td>30.79 ± 4.65</td>
<td>29.72 ± 4.92</td>
<td>29.70 ± 4.73</td>
<td>29.23 ± 4.75</td>
</tr>
<tr>
<td>Total Possible: 36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Results: Pediatric/Neonatal Intubation
Training Methods Comparison

<table>
<thead>
<tr>
<th>AFFECTIVE OUTCOMES</th>
<th>Pre-Training N = 371</th>
<th>Post-Training N = 371</th>
<th>6 Weeks N = 72</th>
<th>18 Weeks N = 53</th>
<th>52 Weeks N = 46</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1 (Animal)</td>
<td>84.14 ± 14.29</td>
<td>91.08 ± 12.60</td>
<td>92.12 ± 15.04</td>
<td>88.84 ± 12.67</td>
<td>83.06 ± 13.13</td>
</tr>
<tr>
<td>Group 2 (Simulator)</td>
<td>86.15 ± 12.68</td>
<td>91.85 ± 11.38</td>
<td>89.13 ± 14.77</td>
<td>87.04 ± 13.43</td>
<td>84.25 ± 13.53</td>
</tr>
<tr>
<td>Total Possible: 114</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The tables and graphs indicate performance outcomes for different training methods, comparing animal and simulator groups at various time points (6 weeks, 18 weeks, and 52 weeks). The results show improvements in self-efficacy and affective outcomes post-training.
Results: Pediatric/Neonatal Intubation
Training Methods Comparison

Stress Outcomes
(ΔHeart Rate)

<table>
<thead>
<tr>
<th>ΔHeart Rate</th>
<th>Training N = 171</th>
<th>6 Weeks N = 72</th>
<th>18 Weeks N = 52</th>
<th>52 Weeks N = 46</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1 (Animal)</td>
<td>47.24 ± 23.32</td>
<td>28.97 ± 17.41</td>
<td>35.62 ± 17.64</td>
<td>26.28 ± 15.45</td>
</tr>
<tr>
<td>Group 2 (Simulation)</td>
<td>46.74 ± 24.94</td>
<td>34.31 ± 17.27</td>
<td>38.00 ± 23.09</td>
<td>27.00 ± 16.28</td>
</tr>
</tbody>
</table>

Results: Pediatric/Neonatal Intubation
Post-training Cognitive Retention

Cognitive Retention Outcomes
There were no significant differences between retention intervals for cognitive scores. Retention scores remained significantly greater than pre-training scores (N = 171; p = .000).

Results: Pediatric/Neonatal Intubation
Post-training Performance Retention

Performance Retention Outcomes
There were no significant differences between retention intervals for pediatric or neonatal intubation performance. Retention scores remained significantly greater than pre-training scores for pediatric (N = 171; p = .000) and neonatal (N = 171; p = .000) performance.
Results: Pediatric/Neonatal Intubation

Post-training Affect Retention

Affect Retention Outcomes
There were significant differences between retention intervals for affective scores (N = 171; p = .001).
- 6-week retention interval affective scores remained significantly above pre-training scores (N = 72; p = .001).
- 18-week retention scores were significantly below post-training scores (N = 53; p = .001).
- 52-week retention scores were significantly below post-training scores (N = 46; p = .001).

Results: Pediatric/Neonatal Intubation

Post-training Self-Efficacy Retention

Self-Efficacy Retention Outcomes
There were significant differences between retention intervals for self-efficacy scores (N = 171; p = .003).
- 6-week retention interval scores remained at post-training level.
- 18-week retention scores were significantly below post-training scores (N = 53; p = .000), but above pre-training scores (p = .000).
- 52-week retention scores were significantly below post-training scores (N = 46; p = .004), but above pre-training scores (p = .000).

Results: Pediatric/Neonatal Intubation

Post-training Cognitive Retention by Experience Level

Cognitive Outcomes by Experience Level
Cognitive retention scores for subjects with more experience outperformed those with less at every retention point (p = .000).

Pediatric and Neonatal Performance Outcomes by Experience Level
Pediatric and neonatal performance retention scores for subjects with more experience outperformed those with less at every retention point (p = .000).

Self-Efficacy Outcomes by Experience Level
Self-efficacy retention scores for subjects with more experience had higher scores at every retention point (p = .002).

Affect Outcomes by Experience Level
Subjects with more experience scored lower (less anxiety) than those with less experience (p = .005). There were no significant differences between subjects with moderate experience and the other two experience levels.
Deliverables (Completed)

- Summary of findings of systematic review of literature & professional practice guidelines critical competencies (associated performance standards/metrics, methods of assessment, current training methods) that could provide a credible and defensible framework to determine & evaluate competency in clinical management of cholinergic crisis and pediatric & neonatal intubation.
- Technology gap analyses of adult, pediatric, and neonatal mannequin simulators used for training in cholinergic crisis management, and pediatric and neonatal intubation.

Deliverables (Near Completed)

- Report relative benefits of using example of live animal and simulated patient (actor) models for training subjects to clinically manage a cholinergic crisis using competency assessment for cognitive, psychomotor, & affective performance dimensions.
- Instructional (multimedia) resources for cholinergic crisis management.
- Instructional (multimedia) resources for pediatric/neonatal intubation.
- Comprehensive evidence-based curricula using the ADDIE model for management of cholinergic crisis and pediatric/neonatal intubation, inclusive of all curricular components, and formal evaluation and transition plans.

What Remains

- Collect & analyze 52-week retention outcomes for cholinergic crisis arm.
- Assemble curriculum documents with implementation guidelines.
- Produce pediatric/neonatal intubation multimedia app.
- Draft evaluation and implementation plans.
- Write and publish 4 additional manuscripts.
Publications

Presentations

Lessons Learned

- Cooperative and routine communication with Program and Grant Officers is essential for resolving inevitable challenges. They are phenomenal resources and a PI’s best partners.
 - Post-award moratorium placed on use of non-human primate colony at USAMRICD led to scope change for cholesterol crisis arm; 3 year delay recovered during years 4-5.
 - Change in research priorities at university of Michigan Medical School led to transfer of award from University of Michigan to University of Minnesota. One year delay in transfer with costs covered by University of Minnesota; no project delays.
- Multi-institutional coordination requires proactive planning, flexibility in implementation, attention to detail, patience, diligence, and a lot of open communication. The advantages far exceed any challenges.
- A communication plan is essential for multi-institutional collaboration and is ideally developed collaboratively by all involved. This should be done early - even at the proposal stage - and modified only if absolutely necessary in order to maintain consistent protocols for decision making.
Key Next Steps

- Prescribe training, review, and maintenance schedules to assure provider performance of critical competencies at every experience level.
- Assess transfer of pediatric & neonatal intubation training outcomes to clinical performance.
- Further study required to characterize affective influences over time.
- Develop off-the-shelf training resources. The combination of multimedia and simulation-based methods creates an experiential learning environment that yields significant performance improvements.
 - Easily distributed programs.
 - Facilitates on-demand, just-in-time training, review and maintenance.
 - Opportunity for repetitive engagement that supports mastery learning.
 - Performance standards and validated assessment assures competency.
 - Supports military, civilian, and academic environments.

Key Next Steps

- Develop library of interactive resources for rare events where performance mastery is essential.
 - On-demand prompts for just-in-time training or refreshment.
 - Multimedia applications for knowledge acquisition or refreshment.
 - Embedded assessment with individual performance records.
 - Connected to simulators to integrate full performance domain.
- Improve mannequin simulators to improve initial training and maintenance outcomes.
 - Oral & Skin Secretions (adult, pediatric, neonatal)
 - Anatomical Fidelity (pediatric & neonatal airway)
 - Cyanosis (adult, pediatric, neonatal)
 - Muscle Fasciculation (adult, pediatric, neonatal)
 - Embedded, sensor-based assessment with individual performance records.
 - Connected to interactive resources to integrate full performance domain.
- Calibrate sensor-based assessment metrics from simulators; create predictive performance models.
- Develop sensor-based “smart” instruments from predictive modeling.

Summary / Key Results

- Valid/Reliable performance assessment supports competency-based mastery-learning.
 (PRELIMINARY) outcomes suggest there is no significant difference between effectiveness of live animal and simulated model (actor) for the recognition and clinical management of cholineric crisis. 52-Week retention data in process.
- Outcomes suggest there is no significant difference between effectiveness of live animal and simulated models for training in the clinical performance of pediatric and neonatal intubation.
- Outcomes suggest a significant (p<.01) retention difference for pediatric and neonatal intubation knowledge and performance skills favoring those who train with the simulation model over those who train with the animal model at 18 weeks and 52 weeks post training intervals. Likely due to opportunity for repetitive practice.
- Experience level correlated to performance, regardless of training model.
- All experience levels improved performance above baseline, sustained up to 52-weeks for cognitive, performance and self-efficacy.
- Affect outcomes (STAI) appear to decrease after 28 weeks; require further study.
Budgetary Update

- Total award amount of $3,377,701.
- Amount awarded to the University of Michigan was $1,848,643.04
- Amount transferred to the University of Minnesota $1,529,057.96

University of Minnesota Expenditures 5/1/2013 – 6/09/2014:

<table>
<thead>
<tr>
<th>Item</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Direct</td>
<td>$626,480</td>
</tr>
<tr>
<td>Indirect Costs</td>
<td>$317,239</td>
</tr>
<tr>
<td>Total Expenditure</td>
<td>$943,719</td>
</tr>
<tr>
<td>BALANCE</td>
<td>$585,339</td>
</tr>
</tbody>
</table>

Regulatory Update

- IRB Approvals Secured
 - University of Michigan
 - University of Minnesota
 - Michigan State University
 - HRPO

- Animal Use Approvals Secured
 - Michigan State University IACUC
 - ACURO

Questions?

Contact Information:
Dr. Pamela Andreatta
pandreat@umn.edu
Mobile: 650.575.4023