Systematic design of high-performance hybrid feedback algorithms

Andrew Teel
UNIVERSITY OF CALIFORNIA SANTA BARBARA

07/06/2015
Final Report
4. TITLE AND SUBTITLE

Systematic Design of High-performance Hybrid Feedback Algorithms

6. AUTHOR(S)

Andrew R. Teel

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Andrew R. Teel
Department of Electrical and Computer Engineering
University of California
Santa Barbara, CA 93106-9560

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Dr. Fariba Fahroo, PM, Dynamics and Control
AFOSR/RSL
875 N. Randolph St., Rm. 3112
Arlington, VA 22203-1768

14. ABSTRACT

The objective of this research is to develop tools for systematic design of hybrid feedback algorithms in a variety of settings. Hybrid feedback algorithms, which combine classical feedback and logic or other reset mechanisms, are of interest to the Air Force because of the high degree of autonomy and cooperation that future reconnaissance and fighter aircraft will maintain. Complex control and coordination algorithms for such vehicles, involving multiple mode switching and other high-level supervisory control architectures, give rise to complicated hybrid dynamical systems with behaviors that can be difficult to predict and understand. Building on previous tools for predicting the behavior of complex hybrid dynamical systems, the proposed research aims to provide systematic tools for shaping the behavior of complex hybrid dynamical systems. Our techniques will involve Lyapunov-based approaches, optimization-based model predictive control, and dissipativity-based results.

15. SUBJECT TERMS

Nonlinear systems, hybrid systems, control design
FINAL REPORT

SYSTEMATIC DESIGN OF HIGH-PERFORMANCE
HYBRID FEEDBACK ALGORITHMS

AFOSR FA9550-12-1-0127

Submitted to the Air Force Office of Scientific Research
Directorate of Mathematical and Computer Sciences
June 24, 2015

PI: Andrew R. Teel
Department of Electrical and Computer Engineering
University of California
Santa Barbara, CA 93106-9560
Table of Contents

Report Documentation Pages 0
Table of Contents 3
Summary 4
Research publications 5
Research accomplishments 10
Technology transitions or transfer 12
Personnel 12
Awards 12
Summary

The objective of this research was to develop tools for systematic design of hybrid feedback algorithms in a variety of settings. Hybrid feedback algorithms, which combine classical feedback and logic or other reset mechanisms, are of interest to the Air Force because of the high degree of autonomy and cooperation that future reconnaissance and fighter aircraft will maintain. Complex control and coordination algorithms for such vehicles, involving multiple mode switching and other high-level supervisory control architectures, give rise to complicated hybrid dynamical systems with behaviors that can be difficult to predict and understand. The proposed research aimed to provide systematic tools for shaping the behavior of complex hybrid dynamical systems.

One set of problems that provided motivation included stabilization, tracking, synchronization, and disturbance attenuation for physical systems where the kinematic variables evolve on a compact manifold. This setting is relevant for the feedback control of satellites and other airborne rigid bodies that can experience complete angular rotation. A second motivation involved tracking, synchronization, and disturbance attenuation for mechanical systems that experience collisions. A third motivation involved rejection of discontinuous disturbances using internal model techniques. Our techniques involved Lyapunov-based approaches, optimization-based techniques, and dissipativity-based results. For hybrid systems, we developed and employed backstepping design techniques, high-gain observer techniques, and internal model techniques, which parallel what is available for continuous-time systems. We also developed novel control ideas that have no analogue for continuous-time systems. Moreover, we began to develop analysis tools for stochastic discrete-time and hybrid systems and used randomness in hybrid control algorithms to achieve enhanced robustness properties.
Research Publications

The research supported by this grant resulted in 24 journal papers, 25 refereed conference papers, and 2 book chapters. These publications are listed below.

Journal papers

Conference papers

Book Chapters

Research Accomplishments

Control of systems with impacts: Tracking control and stabilization of periodic orbits for mechanical systems with impacts has been a notoriously difficult problem. In the papers [J18] and [B2], with technical support from [J19], we introduce a novel “mirroring” control concept for tracking control in mechanical systems with impacts. In contrast to other results, the mirroring idea alleviates the need for high-gain feedback and achieves global tracking using output feedback and observers. In additional novel work, we used basic results on robustness of stability for hybrid dynamical systems to make new observations about control of walking robots in [C3] and [C18].

Control of systems on manifolds: Topological obstructions prevent robust, global asymptotic stabilization of a point or tracking of a trajectory on a compact manifold using classical control techniques. However, these obstructions can be overcome with hybrid feedback. Constructive techniques for hybrid global stabilization and tracking were generated in [J10], [J17], and [J20]. The key concept introduced here was the idea of synergistic potential functions, or synergistic Lyapunov functions, and the construction of synergistic hybrid feedbacks from these. Additional hybrid feedback algorithms were also applied to ocean vessels in [C14].

Hybrid output regulation: Classical output regulation principles describe how to incorporate internal models of smooth disturbances to reject them completely at a plant output. In work that we started under our previous AFOSR grant, we investigated how to incorporate hybrid models of discontinuous disturbances, or disturbances with discontinuous derivatives, to reject them completely at a plant output. That work continued under the current support, with constructive output regulators provided in [J7] and [J9], controllers for hybrid output regulation of nonlinear systems in [C2] and [C19], robustness principles in [C12], and the application of hybrid output regulation to the problem of spline tracking in [C24].

Event-triggered control: Event-triggered control is an emerging area of study, developed over the last decade, where control signal updates are made only when necessary. Assessment of the need to update a control signal can be made continuously, periodically, or intermittently. In each case, a hybrid dynamical systems model captures well the dynamical behavior of the overall system. However, the case of periodic assessment, especially for linear plans, is especially well suited for an accurate Lyapunov-function analysis employing linear matrix inequality conditions. Such analysis and synthesis tools were proposed in [J21] and [C7], the former having already been cited a remarkable 102 times according to Google Scholar.

Multi-agent and networked systems: Multi-agent systems involve complicated interactions between dynamic agents, in some problems cooperating to achieve a common goal, like estimation consensus or synchronization, and other times being non-cooperative, attempting to maximize their own payoff function. Some multi-agent systems algorithms are deterministic while others employ randomness to achieve or enhance robustness. We used extremum-seeking ideas and switched system ideas for
cooperative multi-agent systems in [C5], used reset concepts for robust consensus in [C6], and analyzed the role of randomness and asynchronous actions in robust Nash equilibrium seeking in non-cooperative games in [C1]. In [C15], we provided new analysis tools for asynchronous, nonlinear, networked control systems. We used stochastic hybrid control to achieve almost sure global synchronization on the circle under different criteria in [C16], [C20], and [B1].

Hybrid systems theory: Hybrid dynamical systems are used to model situations where the state sometimes changes continuously and other times changes instantaneously through jumps. Such models address systems with state resets, mechanical systems with impacts, logic-based switching between controllers, networked control systems, etc. Various stability analysis tools for hybrid systems have been developed over the last twenty years, and yet there are several aspects of stability theory for hybrid systems that are not yet suitably developed. Such tools are critical for certifying effective behavior of hybrid control systems. In the current period, we provided new sufficient conditions for global asymptotic stability [J2], a hybrid Gronwall lemma [J4], a Lyapunov function based small-gain theorem [J6], [C21], analysis tools for assessing finite-gain L^p stability [J15], sufficient conditions for exponential stability [J19], a complete characterization of input-to-state stability for hybrid systems [J23], and new results on averaging theory for hybrid systems [C22]. Moreover, we began to develop a general framework that handles hybrid systems with delays in [C13] and [C25].

Stochastic discrete-time and hybrid systems: Stochastic hybrid systems go beyond standard hybrid dynamical systems by permitting the evolution to be driven by random processes, providing even more modeling flexibility. Various types of stochastic hybrid systems have been studied for multiple decades. We generated a paper surveying this literature in [J3]. One aspect that is particular to all of these earlier results is that uniqueness of solutions is enforced. However, there are many compelling reasons to study stochastic systems that admit multiple solutions. One motivation comes from treating open systems with disturbances as closed systems with non-unique solutions. Another motivation comes from attempting to guarantee robustness of stability for systems with non-regular data. (For more information, see the references discussed herein.) These motivations exist even for discrete-time stochastic systems, where non-uniqueness is also not usually considered in the literature. Recognizing the importance of establishing a better understanding of stochastic discrete-time and hybrid dynamical systems, in particular for the development of effective stochastic, hybrid control algorithms, we published a wide variety of results on this topic. Our results on stochastic discrete-time (difference) inclusions include an invariance principle [J1], converse Lyapunov theorems [J5], [J12], equivalent characterizations of input-to-state stability [J8], relaxed sufficient conditions for asymptotic stability and recurrence [J11], [J16], robustness results for discontinuous stochastic discrete-time systems [J13], [C17], and an application to robust Nash equilibrium seeking in non-cooperative games [C1]. An overview of most of these theoretical developments is contained in [C23]. For hybrid systems with non-stochastic flows (continuous evolution) but stochastic jumps, we provided an extensive set of sufficient conditions for asymptotic stability in probability and recurrence in [J22]. We also developed a useful sequential compactness result [C9],

DISTRIBUTION A: Distribution approved for public release.
and an ensuing invariance/recurrence principle [C10], [C8]. We considered hybrid systems with both stochastic flows and stochastic jumps in [C4], including Lyapunov function based sufficient conditions for asymptotic stability in probability and recurrence. Many open problems remain in completing the story on stability theory for stochastic hybrid systems with non-unique solutions. Development of these tools with enhance our ability to control complex dynamical systems using randomness and logic-based, decision-making criteria.

Acknowledgment/Disclaimer

This work was sponsored (in part) by the Air Force Office of Scientific Research, USAF, under grant/contract number FA9550-12-1-0127. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the Air Force Office of Scientific Research or the U.S. Government.

Personnel Supported

Faculty: Dr. Andrew R. Teel (PI);
Graduate Student Researchers: Nicholas Cox, Matthew Hartman, Jorge Poveda

Transitions

none

Lifetime honors/awards

IFAC Fellow, 2010
IEEE Fellow, 2002
AACC Donald P. Eckman Award, 1999
SIAM Control and Systems Theory Prize, 1998
1. Report Type
Final Report

Primary Contact E-mail
Contact email if there is a problem with the report.
teel@ece.ucsb.edu

Primary Contact Phone Number
Contact phone number if there is a problem with the report
8058933616

Organization / Institution name
University of California, Santa Barbara

Grant/Contract Title
The full title of the funded effort.
Systematic design of high-performance hybrid feedback algorithms

Grant/Contract Number
AFOSR assigned control number. It must begin with "FA9550" or "F49620" or "FA2386".
FA9550-12-1-0127

Principal Investigator Name
The full name of the principal investigator on the grant or contract.
Andrew R. Teel

Program Manager
The AFOSR Program Manager currently assigned to the award
Fariba Fahroo

Reporting Period Start Date
04/01/2012

Reporting Period End Date
03/31/2015

Abstract
Control of systems with impacts: Tracking control and stabilization of periodic orbits for mechanical systems with impacts has been a notoriously difficult problem. We introduced a novel “mirroring” control concept for tracking control in mechanical systems with impacts. In contrast to other results, the mirroring idea alleviates the need for high-gain feedback and achieves global tracking using output feedback and observers. In additional novel work, we used basic results on robustness of stability for hybrid dynamical systems to make new observations about control of walking robots.

Control of systems on manifolds: Topological obstructions prevent robust, global asymptotic stabilization of a point or tracking of a trajectory on a compact manifold using classical control techniques. However, these obstructions can be overcome with hybrid feedback. We generated constructive techniques for hybrid global stabilization and tracking. The key concept introduced here was the idea of synergistic potential functions, or synergistic Lyapunov functions, and the construction of synergistic hybrid feedbacks from these. Additional hybrid feedback algorithms were also applied to ocean vessels.

Hybrid output regulation: Classical output regulation principles describe how to incorporate internal models of smooth disturbances to reject them completely at a plant output. In work that we started under our...
previous AFOSR grant, we investigated how to incorporate hybrid models of discontinuous disturbances, or disturbances with discontinuous derivatives, to reject them completely at a plant output. That work continued under the current support, with constructive output regulators provided, controllers for hybrid output regulation of nonlinear systems, robustness principles, and the application of hybrid output regulation to the problem of spline tracking.

Event-triggered control: Event-triggered control is an emerging area of study, developed over the last decade, where control signal updates are made only when necessary. Assessment of the need to update a control signal can be made continuously, periodically, or intermittently. In each case, a hybrid dynamical systems model captures well the dynamical behavior of the overall system. However, the case of periodic assessment, especially for linear plans, is especially well suited for an accurate Lyapunov-function analysis employing linear matrix inequality conditions. We proposed such analysis and synthesis tools.

Multi-agent and networked systems: Multi-agent systems involve complicated interactions between dynamic agents, in some problems cooperating to achieve a common goal, like estimation consensus or synchronization, and other times being non-cooperative, attempting to maximize their own payoff function. Some multi-agent systems algorithms are deterministic while others employ randomness to achieve or enhance robustness. We used extremum-seeking ideas and switched system ideas for cooperative multi-agent systems, used reset concepts for robust consensus, and analyzed the role of randomness and asynchronous actions in robust Nash equilibrium seeking in non-cooperative games. We provided new analysis tools for asynchronous, nonlinear, networked control systems. We used stochastic hybrid control to achieve almost sure global synchronization on the circle under different criteria.

Hybrid systems theory: Hybrid dynamical systems are used to model situations where the state sometimes changes continuously and other times changes instantaneously through jumps. Such models address systems with state resets, mechanical systems with impacts, logic-based switching between controllers, networked control systems, etc. Various stability analysis tools for hybrid systems have been developed over the last twenty years, and yet there are several aspects of stability theory for hybrid systems that are not yet suitably developed. Such tools are critical for certifying effective behavior of hybrid control systems. In the current period, we provided new sufficient conditions for global asymptotic stability, a hybrid Gronwall lemma, a Lyapunov function based small-gain theorem, analysis tools for assessing finite-gain Lp stability, sufficient conditions for exponential stability, a complete characterization of input-to-state stability for hybrid systems, and new results on averaging theory for hybrid systems. Moreover, we began to develop a general framework that handles hybrid systems with delays.

Stochastic discrete-time and hybrid systems: Stochastic hybrid systems go beyond standard hybrid dynamical systems by permitting the evolution to be driven by random processes, providing even more modeling flexibility. Various types of stochastic hybrid systems have been studied for multiple decades. We generated a paper surveying this literature. One aspect that is particular to all of these earlier results is that uniqueness of solutions is enforced. However, there are many compelling reasons to study stochastic systems that admit multiple solutions. One motivation comes from treating open systems with disturbances as closed systems with non-unique solutions. Another motivation comes from attempting to guarantee robustness of stability for systems with non-regular data. These motivations exist even for discrete-time stochastic systems, where non-uniqueness is also not usually considered in the literature. Recognizing the importance of establishing a better understanding of stochastic discrete-time and hybrid dynamical systems, in particular for the development of effective stochastic, hybrid control algorithms, we published a wide variety of results on this topic. Our results on stochastic discrete-time (difference) inclusions include an invariance principle, converse Lyapunov theorems, equivalent characterizations of input-to-state stability, relaxed sufficient conditions for asymptotic stability and recurrence, robustness results for discontinuous stochastic discrete-time systems, and an application to robust Nash equilibrium seeking in non-cooperative games. For hybrid systems with non-stochastic flows (continuous evolution) but stochastic jumps, we provided an extensive set of sufficient conditions for asymptotic stability in probability and recurrence. We also developed a useful sequential compactness result, and an ensuing
invariance/recurrence principle. We considered hybrid systems with both stochastic flows and stochastic jumps, including Lyapunov function based sufficient conditions for asymptotic stability in probability and recurrence. Many open problems remain in completing the story on stability theory for stochastic hybrid systems with non-unique solutions. Development of these tools with enhance our ability to control complex dynamical systems using randomness and logic-based, decision-making criteria.

Distribution Statement

This is block 12 on the SF298 form.

Distribution A - Approved for Public Release

Explanation for Distribution Statement

If this is not approved for public release, please provide a short explanation. E.g., contains proprietary information.

SF298 Form

Please attach your SF298 form. A blank SF298 can be found here. Please do not password protect or secure the PDF. The maximum file size for an SF298 is 50MB.

AFD-070820-035-print.pdf

Upload the Report Document. File must be a PDF. Please do not password protect or secure the PDF. The maximum file size for the Report Document is 50MB.

AFOSR_final_report.pdf

Upload a Report Document, if any. The maximum file size for the Report Document is 50MB.

Archival Publications (published) during reporting period:

The research supported by this grant resulted in 24 journal papers, 25 refereed conference papers, and 2 book chapters. These publications are listed below.

Journal papers

Conference papers

DISTRIBUTION A: Distribution approved for public release.

Book Chapters

Changes in research objectives (if any):
None

Change in AFOSR Program Manager, if any:
None

Extensions granted or milestones slipped, if any:
None

AFOSR LRIR Number
LRIR Title
Reporting Period
Laboratory Task Manager
Program Officer DISTRIBUTION A: Distribution approved for public release.
Research Objectives

Technical Summary

Funding Summary by Cost Category (by FY, $K)

<table>
<thead>
<tr>
<th></th>
<th>Starting FY</th>
<th>FY+1</th>
<th>FY+2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipment/Facilities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Report Document

Report Document - Text Analysis

Report Document - Text Analysis

Appendix Documents

2. Thank You

E-mail user

Jun 24, 2015 17:42:08 Success: Email Sent to: teel@ece.ucsb.edu