
NETIVORK ANALYSIS \\'ITH STOCHASTIC GRAMMARS

DISSERTATION

Alan C. Lin, Maj , USAF

AFIT-ENG-DS-15-S-014

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A.
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this dissertation are those of the author and do not reflect the
official policy or position of the United States Air Force, Department of Defense, or the
United States Government. This material is declared a work of the U.S. Government and
is not subject to copyright protection in the United States.

AFIT-ENG-DS-15-S-014

NETWORK ANALYSIS WITH STOCHASTIC GRAMMARS

DISSERTATION

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

Alan C. Lin, BS, MS

Maj, USAF

September 2015

DISTRIBUTION STATEMENT A. APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED.

AFIT-ENG-DS-15-S-014

NETWORK ANALYSIS WITH STOCHASTIC GRAMMARS

Alan C. Lin, BS, MS
Maj, USAF

Committee Membership:

Gilbert L. Peterson, PhD.
Chair

Robert F. Mills, PhD.
Member

Michael R. Grimaila, PhD, CISM, CISSP
Member

ADEDJI B. BADIRU, PhD
Dean, Graduate School of Engineering and Management

iv

AFIT-ENG-DS-15-S-014

Abstract

 Digital forensics requires significant manual effort to identify items of evidentiary

interest from the ever-increasing volume of data in modern computing systems. One of

the tasks digital forensic examiners conduct is mentally extracting and constructing

insights from unstructured sequences of events. This research assists examiners with the

association and individualization analysis processes that make up this task with the

development of a Stochastic Context-Free Grammars (SCFG) knowledge representation

for digital forensics analysis of computer network traffic.

 SCFG is leveraged to provide context to the low-level data collected as evidence

and to build behavior profiles. Upon discovering patterns, the analyst can begin the

association or individualization process to answer criminal investigative questions.

 Three contributions resulted from this research. First, domain characteristics

suitable for SCFG representation were identified and a step-by-step approach to adapt

SCFG to novel domains was developed. Second, a novel iterative graph-based method of

identifying similarities in context-free grammars was developed to compare behavior

patterns represented as grammars. Finally, the SCFG capabilities were demonstrated in

performing association and individualization in reducing the suspect pool and reducing

the volume of evidence to examine in a computer network traffic analysis use case.

v

Acknowledgments

 I would like to express my sincere appreciation to my faculty advisor, Dr.

Peterson, for his guidance and support throughout the course of this dissertation effort.

The insight and experience was certainly appreciated.

 Alan C. Lin

vi

Table of Contents
Page

I. Introduction ... 11

1.1 General Issue ... 11
1.1.1 Identification. .. 12
1.1.2 Individualization. ... 12
1.1.3 Association. ... 13
1.1.4 Reconstruction. .. 13

1.2 Hypothesis .. 14
1.3 Contributions... 14

1.3.1 General Methodology to Apply SCFG to a Novel Domain. 14
1.3.2 Grammar Comparison. .. 15
1.3.3 Association and Individualization with SCFG 15

1.4 Methodology ... 16
1.4.1 PCAP to SCFG Terminals ... 17
1.4.2 Association .. 17
1.4.3 Individualization .. 18

1.5 Structure .. 19

II. Stochastic Context-Free Grammars .. 20

2.1 Stochastic Context-Free Grammar (SCFG): Definition and Notation 20
2.2 Stochastic Context-Free Grammar Methods... 21

2.2.1 Parsing. ... 22
2.2.1 SCFG Parsing Algorithms. .. 26

2.3 SCFG Application Domains .. 28
2.3.1 Natural Language Processing. ... 28
2.3.2 Bioinformatics. .. 30
2.3.3 Activity Recognition. .. 31
2.3.4 Automated Planning. ... 33
2.3.5 Computer Networking Traffic Protocol Analysis 36

2.4 Domain Characteristics Suitable for SCFG Representation 37
2.5 General Methodology to Apply SCFG on a Novel Domain............................ 38

2.5.1 Defining Terminal Symbols. ... 39
2.5.2 Defining SCFG Production Rules. ... 39
2.5.3 Adaptations.. 40

2.6 Summary ... 46

III. Methodology .. 47

3.1 Related Work .. 47
3.2 General Digital Forensics Process ... 49
3.3 PCAP file .. 50
3.4 PCAP to SCFG Terminals ... 52
3.5 Association (SCFG Parsing) .. 53

3.5.1 Known Profiles. ... 54

vii

3.5.2 Grammar Comparison. .. 54
3.5.1 SCFG Parsing. .. 63

3.6 Individualization (SCFG Structure Inference) .. 63
3.6.1 Alignment-based Inference... 64
3.6.2 Bigram-based Inference. .. 70

3.7 Summary ... 74

IV. Analysis and Results .. 75

4.1 Association.. 75
4.1.1 Known Profiles. ... 76
4.1.2 Grammar Comparison. .. 80
4.1.3 SCFG Parsing. .. 81
4.1.4 Discussion ... 82

4.2 Individualization ... 84
4.2.1 PCAP to SCFG Terminals. .. 85
4.2.2 Alignment-based Inference... 87
4.2.3 Bigram-based Inference. .. 88

4.3 Discussion ... 90
4.3.1 Background Services.. 91
4.3.2 Bigram Semantics. ... 92
4.3.3 Changing an SCFG Terminal... 93

4.4 Summary ... 94

V. Conclusions and Recommendations ... 96

5.1 Results Summary .. 97
5.2 Recommendations for Future Research.. 98

5.2.1 PCAP processing. .. 98
5.2.2 Association for Flexible Signatures. ... 98
5.2.3 Data generation. .. 99
5.2.4 Transfer learning. .. 100

Appendix A. SCFG Comparison ... 101

A.1 Reasons to Compare CFGs ... 101
A.2 Related Work ... 104
A.3 Example ... 107
A.4 Summary.. 108

Appendix B. SCFG for Test Data Generation ... 111

Bibliography ... 114

viii

List of Figures
Page

Figure 1. Methodology Process Overview. .. 17
Figure 2. Example grammar [38] from a Natural Language Processing (NLP) domain

SCFG. ... 22
Figure 3. A parse tree of the sentence, “the man saw the dog with the telescope” using the

grammar in ... 23
Figure 4. Blackjack Grammar [17] .. 25
Figure 5. Two parse tree derivations for “the man saw the dog with the telescope [38]”. 27
Figure 6. A sample RNA secondary structure with its corresponding SCFG [22]. 31
Figure 7. SCFG production rules (partial) used in Ivanov and Bobick’s [16] parking lot

experiment. ... 33
Figure 8. A plan recognition method translated into a grammar production [13]. 34
Figure 9. Travel domain HTN and SCFG [27]. .. 35
Figure 10. Transition probabilities for Transport Control Protocol (TCP) in the computer

network traffic analysis domain [62]. The transitions between the ACK and ACK
PSH states indicate a data transfer, which occurs much more frequently than ACK to
FIN, which signifies connection teardown. ... 43

Figure 11. Cross-serialization. ... 44
Figure 12. Methodology Process Overview. .. 50
Figure 13. PCAP to SCFG terminal process... 52
Figure 14. Grammar Comparison Process. ... 56
Figure 15. Example CFG and Graph Representation. ... 59
Figure 16. Source-edge matrix (GS) and Terminus-edge matrix (GT) corresponding to the

graph in Figure 15. The non-filled spaces are zero entries. 59
Figure 17. Oracle Grammars.. 78
Figure 18. Terminal Frequency Timelines. .. 80
Figure 19. Network Attack Ontology [86]. .. 84
Figure 20. PCAP activities in timeline format of three sessions. 86
Figure 21. PCAP timelines to SCFG terminals. ... 87
Figure 22. Alignment of the three timelines. .. 87
Figure 23. Timelines with aligned symbols de-prioritized (grayed out). 88
Figure 24. Timelines with both aligned (gray) and bigram (green) activities de-

prioritized. .. 90
Figure 25. Timelines with six terminal set. .. 94
Figure 26. Grammar GA, the basis for comparison. ... 108
Figure 27. Two grammars, GB and GC, compared against GA. GB is GA in Chomsky

Normal Form. GC is covered by GA and though it has a symbol set more similar to
GA, GC is less similar to GA than GB as indicated by remapped causal relationships.
 ... 109

ix

List of Tables
Page

Table 1. SCFG-applied Domains and their Characteristics. .. 38
Table 2. Problem Domains and SCFG Representation. .. 41
Table 3. Examples of Similarity. ... 66
Table 4. Grammar Causalities. ... 81
Table 5. Confusion Matrix based on Total Parse Likelihood. ... 82
Table 6. Most Probable Parse Likelihood... 82
Table 7. Number of S productions. .. 92

x

List of Algorithms
Page

Algorithm 1. CFG Similarity Algorithm. ... 62
Algorithm 2. Edit Distance Algorithm. .. 66
Algorithm 3. Alignment-based Structure Learner. .. 68
Algorithm 4. Needleman-Wunsh Alignment Algorithm. .. 69
Algorithm 5. Full-Coverage Bigram Structure Learner. .. 71
Algorithm 6: Chi-Square Test Bigram Structure Learner. ... 73

11

NETWORK ANALYSIS WITH STOCHASTIC GRAMMARS

I. Introduction

1.1 General Issue

 Digital forensics involves identifying and analyzing relevant fragments of

computer data to piece together a probable explanation, or narrative, of events that

transpired, for investigative and judiciary purposes [1]. The ever-increasing volume of

digital data collected for forensic examinations increases the difficulty of this task. Law

enforcement agencies find themselves unable to commit the human resources necessary

to manually sift through the data, which results in the examination bottlenecking the

overall criminal investigative process [2–4].

 This research focuses on speeding examination by automating portions of the

computer network traffic analysis. Computer network traffic evidence is usually in the

form of a network packet capture in one or more packet capture (PCAP) files. Examining

PCAP files is time consuming because the packet-by-packet format of the data captured

within PCAP files is not reflective of how a typical computer end-user thinks and

operates the system—the user performs a specific task and leaves the computer to carry

out the underlying mechanics required to accomplish the user action. It is often the

actions of evidentiary interest that the examiner is attempting to identify. Examiners need

tools and technologies are necessary to help examiners “efficiently identify the relevant

pieces of data in a timely manner [5, 6].”

 Development of forensic tools and technologies require an understanding of the

legal system since legal experts, not computer scientists or network administrators,

12

conduct judicial proceedings. Digital evidence must be presented in understandable

language for legal and non-technical persons to use in court cases [7]. In an ideal

scenario, a prosecutor first defines the legal question for the forensic examiner, who then

decides on a scientific method to extract the relevant evidence necessary. This

coordination makes the most efficient use of resources and also provides an end-state for

the examination [8].

 Evidence examination, digital and physical, must satisfy both legal and scientific

requirements [9]. To bridge the gap between the legal requirements and the forensic

examination procedures, Inman and Rudin [10] propose a framework of four forensic

processes intended to answer the investigative questions, “who, what, when, where, why,

and how.” While their framework was originally developed for physical evidence, Pollitt

[8] discusses how each of these are adaptable in digital forensics as well.

1.1.1 Identification.

 The identification process attempts to answer the “what” question. In physical

evidence, identification uses a set of characteristics or features to determine the

classification or category of an item [9]. For instance, upon recovering a bullet,

identification may use its size to determine that “the bullet is a 9mm bullet.”

Identification works similarly in digital forensics, where features, such as protocol and

headers, may reveal the type of transmission or the type of file [8].

1.1.2 Individualization.

 Individualization takes the identification process further, by attempting to make or

use uniqueness assertions to answer “which one” or “whose is it” questions [10]. For

instance, identification may type a recovered bullet as a 9mm, individualization attempts

13

to singularly identify that “this is a 9mm from a specific gun.” Individualization in digital

forensics might be found in header information that includes the user-agent and username

[11].

1.1.3 Association.

 Association makes inference about the origin of source or the likelihood that two

items were in contact [10]. Extending the previous bullet examples, an association would

connect the 9mm bullet to the victim or shooter. In digital forensics, association is

identifying evidence connecting the suspect or victim [9], such as modus operandi

patterns or demonstrations of the commission of the crime [8].

1.1.4 Reconstruction.

 Reconstruction attempts to answer “where” and “when” questions [10]. In

physical evidence, this phase is often last in the examination process because it requires

elements of prior processes [9]. Using the previous bullet example again, reconstruction

is relevant that a bullet embedded into a wall after hitting a person only after first

identifying the bullet as a 9mm, individualizing it to the suspect’s gun, and associating it

as the bullet that passed through the victim. Time stamps are common in digital media,

making reconstruction more accessible, though the examiner still needs to account for the

possibility of tampering and synchronization [8]. In both physical and digital settings,

reconstruction tends to focus on the relative order rather than the specific timing of events

[10].

14

1.2 Hypothesis

 This research hypothesizes that stochastic context-free grammar (SCFG) parsing

and structure inference techniques can generate activity patterns and discover patterns in

computer network traffic to distinguish between routine and irregular activities. The goal

is to eliminate suspects or data to focus the digital forensic examination and extract and

contextually structure the raw data into higher-level information necessary for criminal

investigators to answer investigative questions [12].

1.3 Contributions

Three contributions resulted from this research. The first contribution is a step-by-

step approach to apply SCFG to novel domains. The approach is a result of a cross-

domain examination that identified domain characteristics that result in a positive

application of the SCFG knowledge representation. The second contribution led to the

development of a grammar-comparison method resulting from the association process

experimental setup. Finally, performing association and individualization process

demonstrated SCFG mechanics to reduce the suspect pool and the volume of evidence in

computer network traffic examinations.

1.3.1 General Methodology to Apply SCFG to a Novel Domain.

To evaluate SCFG as a knowledge representation for computer network traffic

analysis, we survey problem domains that leverage SCFG, such as natural language

processing [13–15], activity recognition [16–19], bioinformatics [20–24], and automated

planning [13, 25–27]. The survey highlights suitable domain traits for SCFG

representation and its suitability for networking data, resulting in the development of a

15

methodology to adapt SCFG to new domains, which can assist other researchers in

applying SCFG towards their problem domains.

1.3.2 Grammar Comparison.

After determining suitability for computer network traffic analysis, this research

examines representing profiles as behavioral patterns and associating generated activity

sequences back to the originating profile. The association process requires a set of known

profiles. Conducting the association process first required a grammar-based comparison

methodology to evaluate the differences between the profiles. The need to illustrate the

differences in the profiles led to the development of a graph-based grammar comparison

measure with polynomial computation complexity. The profile comparison showed

which profiles shared common causal symbol patterns as a measure of similarity.

Generically, grammar comparison enables comparison of data patterns, rather

than the individual data elements; this has applications in language translation and other

infinitely large domains, where full enumeration of the complete set of outputs is not

possible [28]. Grammar comparison also has implications in the ability to identify

incompatibilities in parsing code between different compilers [29].

1.3.3 Association and Individualization with SCFG

Finally, we investigate using SCFG for association and individualization tasks.

The grammar comparison contribution enabled the association experimental setup, which

applied SCFG parsing on an unknown activity sequence by a profile to produce a parse

likelihood value. The parse likelihood value is demonstrated as an effective means of

identifying the originating profile, thereby eliminating suspects that do not fit the profile.

16

In individualization, structure inference to discover behavior patterns to reduce

the amount of activities in a computer network capture, while retaining the anomalous

activities of interest. Discovered behavior patterns are unique characteristics inferred

from the individualization process. Instead of using the patterns to make the

individualization assertion, the patterns are used to “provide investigative leads” by

identifying events that are not attributable to patterns [8]. Using SCFG for pattern

discovery led to the development of two grammar inference methods to find behavior

patterns exhibited by the individual. Because grammar inference is not domain specific,

the developed inference approaches are applicable to other domains using a SCFG

knowledge representation.

1.4 Methodology

Stochastic Context Free Grammar (SCFG) is a hierarchal, rule-based, knowledge

representation. Because of the discrete symbols representing atomic events and causal

rules enforced by the production rules, they are applicable to abstracting the transition

between distinct events, focusing on the relative sequence of events without accounting

for the specific duration of each activity. The application of SCFG to computer network

traffic analysis required the development of procedures and algorithms, shown in Figure

1 flowchart as rectangular process boxes.

PCAPtoSCFG
Tetminals

Activity
Sequences

Association
(SCFG Parsing)

Individualization
(SCFG Structure

Inference)

Figure 1. Methodology Process Overview.

1.4.1 PCAP to SCFG Terminals

Associated
Profile

Irregular
Activities

The PCAP to SCFG Terminals process required a survey of other domains that

apply SCFG knowledge representation. The survey involved a cross comparison of the

characteristics of the data from each of the domains, the applications of each domain, and

adaptations required to enable SCFG representation. After reaching the conclusion that

computer network traffic data is suitable for SCFG representation, we performed the

PCAP to SCFG Terminal process using a PCAP file :fi:om a self-contained digital forensic

scenario [11] and generated an activity sequence of SCFG terminals.

1.4.2 Association

Performing the association process requires activity sequences fi"om the PCAP to

SCFG Terminal process and a set of behavioral profiles. Association applies SCFG

parsing to identify the originating source, using parse likelihood as a quantitative

measure. This process requires a set of known pro flies in SCFG form and examining tllis

process required a comparison measure of the profile themselves. Investigation into

l7

18

grammar-based methods to evaluate output-to-output [30, 31] or rule-to-rule comparisons

[32, 33] methods revealed that they were either undecidable [33–35] or beyond

polynomial computational complexity [32]. Identifying similarities between grammars

and graphs, we developed grammar comparison methodology based on an iterative graph

node-matching algorithm [36], which enabled comparison of grammars by comparisons

of their symbol causalities. This comparison was performed on the profile grammars to

verify desired similarities and differences.

 With understanding of the differences between the profiles, the association

process parses an unknown activity sequence with each profile, generating a quantitative

measure from total and most-probable parse likelihood to compare between the different

profiles. In this manner, SCFG parsing associates each sequence to the profile based on

that yielded the greatest parse likelihood.

1.4.3 Individualization

To reduce the amount of data under examination, the individualization process

uses alignment and bigram-based SCFG structure inference learning to collectively

discover routine behavior patterns, which isolate activities that could not be attributed to

the discovered patterns. Conducting this process on a network capture over three sessions

identified the known anomalous event. Eliminating the events explainable by routine

behaviors reduced the data size without reducing the anomalous event.

19

1.5 Structure

 The remainder of this dissertation is as follows:

• Chapter II provides background on SCFG knowledge representation, the notation

and provides the rationale behind using it for network processing. In addition, this

chapter presents the general methodology for applying SCFG on a novel domain.

The discussion includes SCFG adaptations to better represent certain domain

characteristics.

• Chapter III describes SCFG in the network forensic applications and presents the

algorithms used in each. We present and use a graph-based methodology for

grammar comparison and the algorithms used in the alignment and bigram

inference structure learners.

• Chapter IV provides the experimental setup for the methodology outlined in the

previous chapter and analysis of the results.

• Chapter V summarizes SCFG usage on computer network traffic and identifies

future work.

• Appendix A provides additional background and related work on grammar

comparison, including applications for such methods.

• Appendix B provides background and related work on SCFG for test data

generation, as a potential future application of using SCFG to generate computer

network traffic that mimic patterned user behavior.

20

II. Stochastic Context-Free Grammars

Stochastic Context-Free Grammar (SCFG) is a hierarchal, rule-based, knowledge

representation capable of expressing a variety of domains. This chapter presents SCFG

fundamentals to facilitate understanding how SCFG are leveraged and how SCFG

enables reasoning on the represented domain. The application to computer network

forensics proposed in the next chapter use SCFG parsing and structure, described in this

chapter, to automate portions of the association and individualization tasks.

 This chapter begins by presenting SCFG definition and notation. Next, the chapter

identifies several problem domains and their respective SCFG applications. These

examples serve to assist in understanding the notations and concepts. Then, a subsection

discusses algorithms and identifies readily available implementations for parsing with

SCFGs; one application of computer network traffic analysis uses parsing with SCFGs.

Finally, this chapter presents a methodology to apply SCFG onto novel domains,

including potential domain adaptations.

2.1 Stochastic Context-Free Grammar (SCFG): Definition and Notation

 Knowledge representation functions as a surrogate for an actual idea or concept

that enables “pragmatically efficient computation [37].” As a means to represent domain

knowledge, Stochastic Context-Free Grammars (SCFGs) use rules to describe the order

between symbols that represent different concepts depending on the problem domain.

SCFG provides a structural order to enable contextual understanding of low-level data.

21

 An SCFG is written as a 4-tuple, G = ‹VT, VN, P, S›, where:

• VT is the finite set of terminal symbols. Terminal symbols are the lowest level
observation in the domain and represent atomic, irreducible elements of the
domain.

• VN is the finite set of non-terminal symbols. Each non-terminal symbol is
defined by a production rule. Each production rule and respective non-
terminal reflects a specific combination of terminal observations. The non-
terminal therefore represents a higher level concept than the low-level
terminal symbols.

• P is the finite set of production rules. In SCFG, a production rule, r, is in the
form, A → γ1..γn [δ], where A ∈ VN, and γi ∈ (VT ∪ VN). Each r has a likelihood
parameter, δ, where 0 ≤ δ ≤ 1 and the sum of all δ’s of all r’s with the same A
must sum to 1. The “→” in the production rule notation means equivalence,
meaning the sequence of symbols on the right-hand side is representable as
the singular non-terminal symbol on the left-hand side. Conversely, the left-
hand side symbol is representable as the sequence on the right-hand side. The
operation that uses production rules equivalencies is called, substitution.

• S is the starting non-terminal symbol (S ∈ VN). The purpose of identifying the
starting symbol is its use in parsing, which is a grammar operation performed
to read or generate output with the grammar. Production rules defining S are at
the highest level of the SCFG rule hierarchy.

2.2 Stochastic Context-Free Grammar Methods

 There are two mechanisms in which grammar reflects the domain knowledge:

parsing and structure inference. Parsing is the process of applying a grammar to an

observance and uses substitution operations and stochastic parameters to explain

observances. Structure inference uses pattern discovery to produce a grammar structure

from observances so that the grammar structure reflects patterns and covers all

observances.

22

2.2.1 Parsing.

 Top-down parsing generates a sentence from the starting symbol, while bottom-

up parsing compresses the sentence into starting symbol. Figure 2 is an NLP part-of-

speech example modified from [38] of an SCFG production rule set that reads a limited

set of English sentences for the purpose of determining grammatical validity and meaning

through part-of-speech assignment. In the NLP domain, each word is in VT and the part-

of-speech is in VN. Each row is a production rule and the entire list of rules is P. Rules

that define S are typically listed at the top, as in the figure.

VT: saw, man, woman, telescope, dog, the, with, in
VN: S, VP, NP, PP, Vt, NN, DT, IN
P: S → NP VP [1.0]
 VP → Vt NP [0.8]
 VP → VP PP [0.2]
 NP → DT NN [0.7]
 NP → NP PP [0.3]
 PP → IN NP [1.0]
 Vt → saw [1.0]
 NN → man [0.1]
 NN → woman [0.1]
 NN → telescope [0.3]
 NN → dog [0.5]
 DT → the [1.0]
 IN → with [0.6]
 IN → in [0.4]
S: S

Figure 2. Example grammar [38] from a Natural Language Processing (NLP) domain SCFG.

 The grammar has a starting symbol S, which means that all sentences from this

grammar compresses into a proper noun (NP) followed by a verb (VP). Figure 3 shows a

parse tree that indicates the different production rule substitutions for the sentence, “the

man saw the dog with the telescope,” showing that this sentence can be

parsed and understood by the grammar. In contrast, no series of production rule

23

substitutions exist can compresses “man in telescope” into S. The grammar cannot

parse any sentences irreducible to S.

Figure 3. A parse tree of the sentence, “the man saw the dog with the telescope” using the grammar in

Figure 2. Each terminal English word is substituted with a non-terminal symbol based on the available

production rules until the sentence reduces to the starting terminal.

 Figure 4 is a Blackjack grammar from the activity recognition domain [17]. The

terminals are card and chip manipulations involved in playing a hand of blackjack. The

non-terminals correspond to various phases of the game. Through substitution and

production rule selection, the authors make inferences on the observed play by parsing

the sequence using the grammar.

 In the course of a game, the player must implement a strategy, denoted by the

non-terminal symbol, G. Every legal blackjack game requires a substitution to G. The

authors infer that the player is using a basic strategy if the parse of the play uses the

the man saw the with dog the telescope

NP

DT NN

VP

S

NP Vt

NP

DT

PP

DT NN

NP

IN

NN

24

production rule, G → J → ff. If a parse uses the other G substitutions, then the player

is using more advanced strategies of “splitting pairs” or “doubling down.” The stochastic

parameters also indicate that players are more likely to use a basic strategy, rather than an

advanced strategy. In parsing sequences of plays from a single player, high incidences of

advanced strategies may indicate a more advanced level player.

 The previous example only applies the structural part of the production rules to

make a determination whether a sentence was or was not from a given grammar.

Applying stochastic parameters for each production rule provide additional domain

representation and inferencing capability [39].

 The context-free characteristic of SCFG allows unconstrained production rule

substitutions. This creates situations where there are multiple valid parses for a sentence.

Stochastic parameters provide a quantitative means to disambiguate different

interpretations. There are two ways to infer meaning from the previous example sentence,

“the man saw the dog with the telescope.” The first meaning is that the

man saw a dog next to a telescope, where the word “with” takes on the semantic meaning

of “next to.” The sentence can also be read to mean that the man saw a dog using a

telescope. Figure 5 shows the parse derivations for each of these meanings. Parse

likelihood is calculated as the product of each of the production rule likelihoods, shown

in the brackets, used in the derivation.

25

VT: a – dealer removed card from house
 b – dealer removed card from player
 c – player removed card from house
 d – player removed card from player
 e – dealer added card to house
 f – dealer dealt card to player
 g – player added card to house
 h – player added card to player
 i – dealer removed chip
 j – player removed chip
 k – dealer pays player chip
 l – player bets chip
VN: S,A,B,C,D,E,F,G,H,I,J,K,L,M,N,O
P: S → AB [1.0] Blackjack
 A → CD [1.0] play game
 B → EF [1.0] determine winner
 C → HI [1.0] setup game
 D → GK [1.0] implement strategy
 E → LKM [0.6] evaluate strategy
 → LM [0.4]
 F → NO [0.5] clean-up
 → ON [0.5]
 G → J [0.8] player strategy -

 → Hf [0.1] Adv - Splitting
 → bfffH [0.1] Adv – Doubling
 H → l [0.5] place bets

 → lH [0.5]
 I → ffI [0.5] deal card pairs
 → ee [0.5]
 J → f [0.8] basic strategy
 → fJ [0.2]
 K → e [0.6] house hits
 → eK [0.4]
 L → ae [1.0] dealer downcard
 M → dh [1.0] player downcard
 N → k [0.16] settle bet
 → kN [0.16]
 → j [0.16]
 → jN [0.16]
 → i [0.16]
 → iN [0.18]
 O → a [0.25] recover card
 → aO [0.25]
 → b [0.25]
 → bO [0.25]
S: S

Figure 4. Blackjack Grammar [17]

26

 Using the grammar in Figure 2, the top parse has a greater parse likelihood, where

the top-parse is 0.000741 (1.0 × 0.7 × 1.0 × 0.1 × 0.8 × 1.0 × 0.3 × 0.7 × 0.5 × 1.0 × 0.6 ×

0.7 × 1.0 × 0.3) likelihood versus the bottom-parse with 0.000494 (1.0 × 0.7 × 1.0 × 0.1 ×

0.2 × 0.8 × 1.0 × 0.7 × 0.5 × 1.0 × 0.6 × 0.7 × 1.0 × 0.3) likelihood. Based on the

grammar likelihoods, the interpretation top interpretation is more likely than the bottom

interpretation.

 In instances where a sentence has multiple parses, equations (1) and (2) outline

the difference between the parse likelihood and the most-probable parse likelihood,

where 𝑝(𝑡) is the parse likelihood for a single parse tree and 𝑛 is the number of valid

parses.

𝑃𝑎𝑟𝑠𝑒 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 = �𝑝(𝑡)
𝑛

1

(1)

𝑀𝑜𝑠𝑡 𝑃𝑟𝑜𝑏𝑎𝑏𝑙𝑒 𝑃𝑎𝑟𝑠𝑒 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 = max [𝑝(𝑡)]1𝑛

(2)

2.2.1 SCFG Parsing Algorithms.

 Parsing and probabilistic parameters enable inference from an SCFG. Both have

pragmatic, small constant polynomial computational complexity for practical

applications.

 There are multiple SCFG parsing algorithms. For conciseness, this subsection

discusses only the Cock-Younger-Kasami (CYK) algorithm [40] and the Earley

Algoritlnn (41]. Both algoritlnns have a small integer exponential, O(n3
) time complexity

and an O(n2
) space complexity. The CYK algorithm approaches parsing using a bottom-

up approach by using a table to store incrementally longer substitutions of the sentence

and tracking valid combinations of production mle used for substitutions until the

sentence reaches S.

s
,...-: ~ .. ~ ~

il<IP' W
, ""'ii'1"""""

lD'r }.llll':<T
u.l lUll
tilt~ 1'-lri~·lll

..... -~'
!l)]'ru~-

J.ml IIU~
f•IW: ~lt~~P.

n •. ~~.-·~i'.ll,,
rne NN m.,r NIP'

'·"I "-"~ w:.l .~··'"i.~
·~ <ifug ,,;i:lb DT W.

• .1!11 .,_.,
tilll~ td~S.(<!ipe

NJ>
~

D1!' NN
t.oll 11-31
~ll.e telescope

Figure 5. Two parse tree derivations for "the man saw the dog with the telescope [38]".

In contrast, the Earley Algoritlnn uses dynamic programming to track possible

pat1ial parsing states stm1ing fi·om S in a top-down fashion lmtil substitutions match the

27

28

sentence; the Earley Algorithm uses a prediction, scanning, and completion operator that

determines checks or adds a state onto the list of parse states.

 While it is possible to implement each parser using the pseudocode from [40, 41],

parser implementations are publically available. The Stanford Natural Language

Processing Group has a Java implementation1, though the parser was designed primarily

for the NLP domain. Royal Holloway University of London developed The Grammar

Tool Box (GTB)2 which more readily accepts domain-independent grammars. This

researched extended an Earley parser written in C++ 3.

2.3 SCFG Application Domains

 SCFG has sufficient expressiveness as a knowledge representation for domains

such as natural language processing [13–15, 42–44], bioinformatics [20–24, 45, 46],

activity recognition [16–19, 47], and automated planning [13, 25–27, 48, 49]. These

domains use the inferencing capabilities to solve domain specific tasks. Some domains

adapt the data or SCFG to better characterize the domain or make inferences that are

more suitable. We examine the domains here for the purpose of identifying domain

characteristics that are suitable for SCFG representation and potential adaptations

available when applying SCFG on a novel domain.

2.3.1 Natural Language Processing.

 Natural language processing (NLP) uses machine learning to understand and

process human languages. NLP applications include document translation, user

1 The Stanford Natural Language Processing Group, http://nlp.stanford.edu/software/index.shtml
2 Royal Holloway University of London Grammar Tool Box (GTB),
http://www.cs.rhul.ac.uk/research/languages/projects/gtb/gtb.html
3 https://github.com/shaobohou/pearley

29

interfaces, speech recognition, and text processing [50]. SCFG knowledge representation

enables language analysis, which involves a decomposition of a sentence through several

stages. This decomposition typically requires several stages that stratify sentences into

syntax (pattern structure), semantics (meaning), and pragmatics (contextual intent) [14].

Each word in the language is a terminal because the words are the lowest useful

observable. The non-terminals represent parts of speech, and the production rules define

valid parts of speech sequences.

 Part-of-speech (POS) tagging is a common processing step that checks syntax and

performs aspects of the semantics stage. The SCFG in Figure 2 is an example of an NLP

grammar. Parsing reveals whether or not the words in the sentence follow a

grammatically accepted order, defined by the grammar production rules. For instance, the

example grammar has production rules a noun precedes a verb (S -> NP VP) and a

determiner precedes only nouns (NP -> DT NN). A parsable sentence passes the syntax

check.

 To obtain more information from the knowledge representation, SCFG uses the

POS tag in the parse to provide semantic meaning for each word. This aspect is necessary

to resolve word ambiguity, where one word can take different meanings. SCFG enables

the correct POS assignment, by assigning a POS that is valid in context of the adjacent

words that follow the syntactic rules. With the correct POS, it would be possible to

discern the meaning behind words like “can” which can take both noun (a container) and

verb (to be able to) interpretation.

Beyond understanding the specific meaning being individual words, the SCFG

parse likelihood disambiguates between multiple valid parses. Figure 3 shows two parses

30

of the same sentence with the same POS tag for each word. The difference at the

pragmatic level comes from the ordering of the production rules in each parse. The

ordering chunks the sentences into parts that affects the interpretation of the sentence. In

general, NLP applications use the production probabilities to infer the most probable

parse by accepting the highest probability parse as the most correct interpretation.

2.3.2 Bioinformatics.

 Bioinformatics is the application of computational techniques to analyze

biological data [51]. Bioinformatics leverages SCFG in studying biological sequences

such as DNA, RNA, and proteins [22]. Researchers in the field found that linguistic

methods were applicable to biological sequences by capturing informational and

structural aspects of macro-molecules [21]. The observables in sequences are limited to

the amino acids that make up the sequence. For instance, the terminal set for RNA

comprises of four nucleotides: adenine (A), cytosine (C), guanine (G), or uracil (U). The

non-terminals correspond to substructures of these nucleotides. An example RNA

structure and respective grammar is shown in Figure 6 [22].

 SCFG was found sufficiently expressive to describe the variability in biological

sequences, such as non-regular features in secondary structure of RNA [21, 52]. The

symbolic, syntactic, semantic, and pragmatics stages of NLP are analogous to the

sequence, structure, function, and role progression in biology [21]. Similar to parsing a

set of text, parsing sequences with a grammar identifies sequences that from the same

family. Other bioinformatics SCFG tasks include discriminating sequences between

transfer RNA (tRNA) and non-tRNA, ascertaining secondary structure in new sequences,

and finding common sequences present in a family of sequences [21, 52]. SCFG can also

31

generate new sequences by applying top-down substitution. Dowell and Eddy [53] found

SCFG grammars that nearly equaled the predictive power of the conventional physics-

based energy minimization approach.

Figure 6. A sample RNA secondary structure with its corresponding SCFG [22].

2.3.3 Activity Recognition.

 Activity recognition is the analysis of sensor data to automatically detect recorded

events of interest in surveillance or smart home applications [54]. The applications use

SCFG to recognize complex events from combinations of simple or atomic actions

recorded from one or more sensors [54, 55]. In contrast to NLP and bioinformatics,

activity recognition does not have a natural or common basis for an SCFG terminal set.

Terminal definition in activity recognition usually requires preprocessing step to identify

V
T
: A,C,G,U

V
N
: S,X

1
,…,X

16

P:
S → A X

1
 U X

2
 → X

3
 X

4
 X

3
 → A X

5
 U

X
5
 → A X

6
 U X

6
 → X

7
 X

8
 X

7
 → A X

9
 U

X
9
 → G X

10
 C X

10
 → A X

11
 X

11
 → U G

X
8
 → G X

12
 C X

12
 → A X

13
 U X

13
 → A X

14

X
14
 → G C X

4
 → G X

15
 C X

15
 → C X

16
 G

X
16
 → U G

(C(C(GAAGC)G)G)UG

32

discrete events, particular from sensors that take a continuous reading. The terminal set is

often dependent on the number of sensors and the type of atomic actions each sensor can

discern. The non-terminals then describe ordered combinations of events of interest

specific to the application.

 For example, Ivanov and Bobick [16] performed experiments at a gesture-level,

where they attempted to infer the type of music from parsing sequences of atomic hand

movements. This requirement only required one sensor to track the hand movement.

They also conducted a single source video surveillance experiment to detect the activities

of persons in a parking lot with a vehicle. Figure 7 is a partial grammar from their

parking lot experiment. With this grammar, they used the grammar to infer the observed

activity based on the actions of the car and the person. The ordering of rules made it

possible to distinguish whether a person was entering the car or parking the car. The “|”

symbol denotes a logical “OR” to group all productions with the same LHS symbol

together.

Moore and Essa [17] extended the work in [16] and performed interaction-level

experiment on blackjack games in which they assessed player behavior using the

probabilistic parameters to profile whether the player was a novice or expert player and

whether the play was a low or high-risk player based on observed strategies and betting

amounts. Their blackjack SCFG is shown in Figure 4.

33

TRACK → CAR-TRACK [0.5]
 | PERSON-TRACK [0.5]

CAR-TRACK → CAR-THROUGH [0.25]
 | CAR-PICKUP [0.25]
 | CAR-OUT [0.25]
 | CAR-DROP [0.25]

CAR-PICKUP → ENTER-CAR-B CAR-STOP PERSON-LOST B-CAR-EXIT [1.0]
ENTER-CAR-B → CAR-ENTER [0.5]

 | CAR-ENTER CAR-HIDDEN [0.5]
CAR-HIDDEN → CAR-LOST CAR-FOUND [0.5]

 CAR-LOST CAR-FOUND CAR-HIDDEN [0.5]
B-CAR-EXIT → CAR-EXIT [0.5]

 | CAR-HIDDEN CAR-EXIT [0.5]
CAR-EXIT → car-exit [0.7]

 | SKIP car-exit [0.3]
CAR-LOST → car-lost [0.7]

 | SKIP car-lost [0.3]
CAR-STOP → car-stop [0.7]

 | SKIP car-stop [0.3]
PERSON-LOST → person-lost [0.7]

 | SKIP person-lost [0.3]
Figure 7. SCFG production rules (partial) used in Ivanov and Bobick’s [16] parking lot

experiment.

2.3.4 Automated Planning.

 Zimmerman and Kambhampati [56] define planning as achieving goals by

constructing a sequence of actions based on the belief that actions have specific

consequences. A plan is an observed action pattern or sequence [57] and analogous to a

sentence in the NLP domain. Automated planning leverages SCFG in two ways. By using

top-down substitutions, a grammar identifies possible actions to meet the top-level goal,

defined by start terminal productions [49]. A plan is complete once the substitution

reaches a list of terminals. If given a partial plan, the problem then attempts to

recommend actions that complete the plan by making it parseable [56, 58].

34

 Alternatively, a bottom-up parse of a plan reveals whether or not a plan satisfies

the constraints of the goal [25]. An unparseable plan means that the goal is unreachable,

based on the constraints placed by the production rules.

 Similar to activity recognition, automated planning requires an application

specific definition of the terminal set that define atomic, discrete actions. The non-

terminals represent sub-activities, where the sub-activities are defined as sequences of

lower level activities. A parse of a complete plan therefore reveals an hierarchy of how

lower level goals accomplish higher level ones. The planning domain refers to this

hierarchy as an hierarchical task network (HTN).

 Geib and Steedman [13] outlined the parallels between NLP and plan recognition

by translating a HTN into a CFG grammar. Plan operators define the effects of primitive

atomic actions which are converted into a grammar’s terminal symbols. Plan methods

define non-primitive actions and convert into grammar productions, where the name of

the method is a non-terminal on the left-hand side, and the sub-tasks are written as the

production’s right-hand side. This conversion assumes a totally ordered method

definition, represented through the serial listing in the production’s right-hand side. Their

example, shown in Figure 8, translates an HTN method into a production [13].

Figure 8. A plan recognition method translated into a grammar production [13].

(m1, acquire(shoes),
 {goto(store),choose(shoes),buy(shoes)},
 {(1 < 2), (2 < 3)})

acquire(shoes) → goto(store),choose(shoes),buy(shoes)

35

 Li, et al. [48, 59] leverage the probabilistic likelihood aspect of SCFG to ensure

that the knowledge representation captures the preferences of the users. The production

rules reflect the different sub-actions that the user takes and the production rule

likelihood reflects the tendency for that user to perform that action, similar to the way

that Moore and Essa [17] determined the complexity of a Blackjack player’s strategy,

based on his likelihood to split pairs or double down. The SCFG infers preferences from

these tendencies to perform certain tasks or strategies over others. Li, et al. [27, 48] used

a travel domain to illustrate how it is possible to infer a person’s preferred mode of travel,

as shown in Figure 9. Combined with learning, a planning system leverages the user’s

preference and biases to better assist the user in achieve goals [56].

Figure 9. Travel domain HTN and SCFG [27].

GoByBus(src,dst) GoByTrain(src,dst)

Travel(src,dst)

GetIn
(bus,src)

BuyTicket
(bus)

GetOut
(bus,dst)

GetIn
(train,src)

BuyTicket
(train)

GetOut
(train,dst)

Primitives (V
T
): BuyTicket, GetIn, GetOut

Tasks (V
N
): Travel, A

1
, A

2
, A

3
, B

1
, B

2

(P):
Travel → A2 B1 [0.2]
Travel → A1 B2 [0.8]
B
1
→ A

1
 A

3
 [1.0]

B
2
→ A

2
 A

3
 [1.0]

A
1
→ BuyTicket [1.0]

A
2
→ GetIn [1.0]

A
3
→ GetOut [1.0]

36

2.3.5 Computer Networking Traffic Protocol Analysis

 Protocol reverse engineering and anomaly-based network intrusion detection are

two networking applications that leverage SCFGs. While these problem domains also use

computer networking traffic, their terminal set is derived from the networking protocols,

rather than the user applications. Therefore, the focus of these efforts is distinct from

those proposed in this research.

 In protocol reverse-engineering, DeYoung [60] found grammatical inference was

possible with Simple Mail Transfer Protocol (SMTP) and Post Office Protocol (POP3).

Similarly, Antunes, et al. [61] conducted protocol reverse engineering on the File

Transfer Protocol (FTP). These works indicate that the grammar inference approach is

feasible for reconstructing the computer networking communication protocols.

 Using protocol definitions, Estevez-Tapiador, et al. [62] developed Finite State

Automata (FSA) models of Hypertext Transfer Protocol (HTTP), FTP, and Secure Shell

(SSH) and learned the states, transitions, and transition probabilities from captured traffic

files using a packet header combinations. FSA models are less expressive than SCFG, but

can be represented as SCFG. The authors found that the transition probabilities could

indicate network attacks. Sequences with network attacks contained subsequences of low

probability transitions. Essentially, they were using a variation of parsing to determine if

an attack occurred on a recorded activity sequence, where a parse involving a low

probability rule indicates a possibility that an attack occurred.

37

2.4 Domain Characteristics Suitable for SCFG Representation

 Understanding the domain characteristics of a new domain is the first step to

applying SCFG to a new domain. A good mapping of domain to representation can

provide a means for efficient reasoning and accessibility. A poor mapping can have the

opposite effect [37].

 Domains must have discrete observables that translate into irreducible symbols in

VT to produce a finite VT. The VT size can range from very large, such as in NLP, to very

small, such as in bioinformatics. Each VT symbol must have a corresponding production

rule; therefore, VT cannot be infinitely large. Continuous domains are not suitable for

SCFG representation without discretization.

 The domain should have an element of causality between observables represented

by a VT symbol. Production rules enforce a linear order on the symbols. Domains that are

unordered collections do not benefit from SCFG inference methods that leverage an

SCFG’s hierarchal structure. Domains where observations depend or anticipate the future

also violate the causality assumption, where observances depend only on past

observances [39].

 The stochastic parameter and the context-free substitution allow SCFG to

represent probabilistic domains of infinite size [63]. Therefore, domains that are

deterministic with solutions in finite space do not require SCFG; these domains may be

represent able using regular expressions or equivalently, finite state automata, which have

lower computational complexity than SCFG’s inference methods.

 While not domain traits, domain data availability and quality also factor into

SCFG suitability. An SCFG produces an identifiable representation of the data when only

38

positive examples are available [64]. Positive examples mean that all data samples are

accepted by the knowledge representation. In contrast, other representations, such as

context-free grammars without stochastic parameters, require negative examples to

identifiably represent the domain. SCFG representation is robust against irregular noise

patterns in the data, by assigning noisy input with low probabilities [19, 39]. However, if

the noise occurs as a frequent and constant pattern within the data, then the SCFG will

incorrectly include the noise in the domain representation.

2.5 General Methodology to Apply SCFG on a Novel Domain

 The domains that leverage SCFG presented throughout this section serves as

starting points for application of SCFG to a new domain, by first identifying a domain

that shares similar characteristics. Table 1 lists the domain with their respective

characteristics. Three characteristics are marked with an “*”; these characteristics involve

SCFG adaptations to the domains, which is discussed at the end of this appendix.

Table 1. SCFG-applied Domains and their Characteristics.
Domain
[References]

Domain Characteristics

Natural Language
Processing (NLP)
[13–15]

Defined and discrete VT ; large VT to VN ratio; consistent VN meaning;
linear order (known cross-serialization* in two languages)

Bioinformatics
[20–24]

Very small, defined and discrete VT; VN variable meanings; linear order;
cross-serialization* possible

Activity Recognition
[16–19]

Discretized VT from continuous data; VN variably assigned or learned;
linear order (time); non-linear* order (concurrency) possible

Automated Planning
[13, 25–27]

Discrete VT; VN variably assigned or learned; both linear order (time);
non-linear* (cross-serialization) possible; loops* have inference
significance

Computer Networking
Traffic Protocol Analysis
[60–62]

Discrete VT; VN variably assigned or learned; linear order (time); loops*
may not have inference significance

39

2.5.1 Defining Terminal Symbols.

 The lowest level data of interest make up the terminal symbols. Continuous data

requires a discretization step. This occurs frequently in activity recognition, where the

data is analog and an initial step recognizes certain low-level actions and then leverages

SCFG to recognize complicated multi-step actions via context. Even with discrete data,

clustering may be applied to group low-level data that does not exhibit a causal

relationship or to raise the level of detail to a higher level of interest to the domain. NLP

part-of-speech tagging is a good example. In applying NLP to plagiarism detection, the

part-of-speech groups thousands of unique words. This grouping is then used to

recognize part-of-speech patterns instead of attempting to recognize all of the potential

word substitutions themselves.

2.5.2 Defining SCFG Production Rules.

 Production rules are an important aspect of how SCFG provides domain

knowledge interference. This subsection discusses two methods to define the production

rule structure, P, and correspondingly the definition of each VN.

 The two approaches to defining grammar production rules include: 1) domain

expert definition and 2) machine learning on domain data. For the first approach, a

domain expert manually defines each production rule and probabilistic parameters for

each rule. This approach is advantageous when a domain expert is available and the

domain knowledge is well understood and consistent between data samples. In

applications where the data is very noisy, an expert defined grammar can focus the

application and grammar to detect only specific patterns of interest. Manual definition is

not possible when a domain expert is not available or costly. In addition, this approach is

40

less practical in large problem domains where it is difficult to anticipate and account for

the entire spectrum of possible events and outcomes [18]. Furthermore, an expert-

defined grammar may be subject to bias, which is problematic if the grammar is intended

for an evaluation application [65].

 Machine learning on domain data is an alternative to expert-defined SCFG

structure. Instead of specifying the rules manually, the domain data is used to create

production rules; the goal of the machine learner is to produce a grammar that can parse

all entries in the data. Li, et al. [27] presents an algorithm that iterates through the data

sample and produces two-right-hand-side production rules. The advantage to using

machine learning is that it reduces the reliance on the availability of a domain expert. The

machine learning method is heavily dependent on the representative quality of the data

set. The two factors affecting data set quality are balance and sampling. Balance is the

range or scope covered in the domain knowledge and sampling reflects the proportion of

coverage of aspects of the domain knowledge present in the data samples [14]. Data

sample selection is not trivial and the machine learning approach is not without

challenges. This production rule learning method also does not handle noise until the

production rule likelihood parameter learning stage, where infrequently used production

rules with lower likelihood are removed from the grammar, leveraging the assumption

that noise is infrequent and random [19].

2.5.3 Adaptations.

 Table 2 shows different domains and notes selected references as example

application of SCFG to a domain. In some domains, there are multiple applications as

indicated in the purpose column, highlighting the versatility of SCFG knowledge

41

representation. To facilitate understanding of SCFG notation, the last four columns

translates each of the symbols in the SCFG 4-tuple in domain terms.

 Certain domain characteristics complicate SCFG representation. This subsection

discusses loops, cross-serialization and nonlinear order and their respective adaptations

from past works so that application in novel domains that exhibit similar properties may

use or expand on these solutions. Adaptations to hand domain characteristics can occur in

probability parameter estimation, parsing methods, or production rule structure. This

section is not intended as an exhaustive list of solutions, but rather a starting point and to

highlight that domain adaptations may originate from different domains that encounter

similar issues.

Table 2. Problem Domains and SCFG Representation.

Domain
[References]

Purpose Terminal
Symbol
(VT)

Non-
Terminal
Symbol
(VN)

Production
Rules (P)

Starting
non-
terminal
(S)

Natural Language
Processing (NLP)
[13–15]

determine
semantics;
disambiguate word
definitions

words parts of
speech

acceptable
language
sequence

valid
sentence
structures

Bio-informatics
[20–24]

discover new
and/or viable
proteins; identify
families of proteins

nucleotid
es

protein
sub-
structures

substructure
patterns

valid RNA
sequence

Activity
Recognition
[16–19]

identify context of
discrete behaviors
(larger more
complex behavior)

discrete
events

sub-
activities in
linear order

sub activities most
complex
activity
sequence

Automated
Planning
[13, 25–27]

(top-down parsing)
identify possible
actions to meet plan
goals
(bottom-up)
determine if actions
fulfill plan goals

discrete
actions

sub-
activities

activities in
linear order

valid plans
and
planning
goals

Computer
Networking
Traffic Analysis
[60–62]

protocol reverse
engineering;
anomaly detection

packet
flags or
keywords

partial
commands

communicati
on protocol
sequences

valid
protocol
usage

42

Loops.

 Loops are symbols or group of symbols that repeat throughout the domain. The

presence of loops can have a substantial impact on the inference from an SCFG in two

ways. Loops can cause SCFG parameter learning to drop production rules during

likelihood estimation because the non-loop sections are sampled less frequently in the

data. Dropping the production rules, however, means that the resulting SCFG fails to

reflect legitimate domain knowledge. For instance, the computer networking traffic

analysis domain that uses packet headers as terminal symbols provides a domain that

exhibits loops. In this domain, a data transfer is reflected as loops of ACK packet headers.

At the end of a data transfer, a legitimate change to connection teardown occurs. ACKs

may repeat very often, particularly in large data transfers, but in all connections, the

teardown sequence only appears once. Machine learning can unintentionally drop the

production rules that reflect the connection teardown process because of the low

sampling in relative frequency compared to the data transfer loop. Figure 10 below is a

packet header transition probability diagram to highlight this domain’s looping structure.

 Preventing inadvertent production rule pruning therefore requires an adaptation in

the parameter estimation phase, involving manual oversight of the machine learning

process to ensure domain knowledge does not get lost [27].

s

Figure 10. Transition probabilities for Transport Control Protocol (TCP) in the computer

network traffic analysis domain [62]. The transitions between the ACK and ACK PSH

states indicate a data transfer, which occurs much more frequently thanACK to FIN,

which signifies connection teardown.

Loops also impact semantic inference fi:om sentence likelihood. Loops, by defmition,

lengthen sentence length. Sentence likelihood calculated :li-om a product of production

mle likelihoods decreases the likelihood with every downward substitution. This effect

may be desirable in domains such as planning, where each action takes eff01t or time,

regardless of repetition. However, in domains such as computer networking traffic

analysis for anomaly detection, where low sentence likelihood is an indicator unusual

network traffic in the data, a drop in likelihood due to data transfer loops does not

necessarily reflect unusual event in the domain. In domains where looping events should

not decrease sentence likelihood, the adaptation occurs in SCFG parsing methods where

43

44

using an alternative sentence likelihood method, such as sentence likelihood normalized

to length [17], minimum likelihood, or minimum likelihood over a span of n symbols

[62], may obtain the desired effect.

Cross-serialization.

 Cross-serialization occurs when a linkage or dependency exists between symbols

that spans over other symbols and no ordering of symbols can remove the span to put the

linked symbols together without spanning another symbol. Figure 11 illustrates cross-

serialization.

Figure 11. Cross-serialization.

Cross-serialization is not natively expressible in a SCFG due to the constraint that

production rules have only a single non-terminal symbol on the left-hand side. However,

authors in the planning domain and the bioinformatics domain devised adaptations on the

production rule structure and parsing method to express cross-serialization. Geib and

Steedman [13] identified instances in plans where cross-serialization exists and propose

the Combinatory Categorical Grammar (CCG) that extends SCFG with combinatory rules

to provide additional guidance on production rule substitution, without breaking

polynomial parsing complexity. In bioinformatics, Rivas and Eddy [20] extended SCFG

using a specialized set of non-terminal symbols and a marker symbol (I) to tell the parser

to switch to cross-serialization handling. A specialized set of rules (R) govern the

45

substitutions of the symbols in I, after parsing removes all VN not in I. The additional I

symbols and R rules in the grammar increases the time complexity to O(L6) and a storage

complexity to O(L4), where L is the length of the RNA sequence [20].

Nonlinear Order.

 Similar to cross-serialization, production rules enforce a strict linear order, where

only one terminal symbol is read at a time and sentence parsing is sequential from left to

right. Linearity assumes that each terminal is atomic, occurring one at a time. This

property works well for domains such as NLP where words are read one at a time or

bioinformatics where proteins do not overlap. In domains such as activity recognition or

automated planning however, certain actions occur simultaneously or have variable

durations.

 To increase SCFG expressivity to understand nonlinear order, authors in the

activity recognition and automated planning domains introduce logical predicates to

relate terminal symbols in a production rule with structure adaptation. Nevatia, et al. [18]

defined an ontology that incorporates composite events. Composite events use operators

to associate primitive events to recognize multiple agent or non-sequential single agent

behaviors. The operators use Allen’s interval temporal logic predicates (before, meets,

overlaps, starts, during, finishes, equals) to handle relationships that are more than just

linearly causal. Ryoo, et al. [55] extended Nevatia, et al.'s three-tier primitive, single-

thread, multi-thread hierarchy and included logical predicates to bind other relationships,

allowing definition of even more complex, higher level activities. With these adaptations,

events in the SCFG are described more expressively, though levels of composite actions

46

leverage production rule substitutions from the grammar hierarchy in the same fashion as

simpler non-composite actions.

2.6 Summary

 This chapter provided the background to understand the fundamental SCFG

concepts. The network forensic applications presented in the next chapter uses grammars

for parsing, using the stochastic parameters to make associations. Structure inference is

also used in a reduction approach to find the evidence of probative value.

47

III. Methodology

 The previous chapter provided the background on Stochastic Context-Free

Grammars (SCFGs) to facilitate discussion on how the application of SCFG knowledge

structure can answer the criminal investigative questions through forensic processes.

Inman and Rudin’s [10] framework comprises of four processes: identification,

individualization, association, and reconstruction. This methodology addresses SCFG for

association and individualization. Identification is not performed because the problem is

scoped to network data and further inference involves subsequent processes. The

sequential nature of the PCAP files also provides the information for the reconstruction

process than usually available in physical evidence settings.

 As discussed in Chapter 2, SCFG parsing and inference methods require discrete,

sequential data. After presenting related digital forensic work and general forensic

approaches, the methodology starts with a process to turn networking information into

activity sequences, or timelines. Following this is the methodology to use SCFG parsing

to provide a quantitative measure for association. Finally, SCFG structure inference

algorithms identify behavior patterns to sift away explainable events from activity

sequences, so the examination can focus attention on activities that are not attributed to

normal behavior. The results from association and individualization processes reduce the

amount of information in a forensic examination.

3.1 Related Work

 Timelines are common in digital forensic procedures. Unlike physical evidence,

digital data often comes with time stamps and other meta data that enable timeline

48

construction. This section presents prior work that similarly focus on digital forensic

timelines to make an examiner’s time and effort more efficient.

 Buchholz and Falk [2] designed a graphical timeline editor, Zeitline, to enable

manual timeline creation. Their editor allowed the examiners to import evidence from

multiple sources and organize them by timestamps. Similar to the concept of SCFG

terminals, their design focused on atomic events, which when grouped together, create an

event hierarchy with very detailed events such as individual file access at the lowest-

levels, to a user task such, as system installation. The tool focuses on time

synchronization because inferences of higher-level complex events are based on

temporally local events.

 Olsson and Boldt [5] similarly identified time to be the most common feature

amongst digital artifacts. Timestamps are common and verifiable against other event logs

for integrity. To improve upon Zeitline [2], they designed a scanner to minimize the

burden of manual data entry. For visualization, their system uses multilevel views that

allows the user to view the times where evidence is found at a high level, and then zoom

in onto specific occasions, rather than flatly examining every file or event log. In their

improvements and future work sections, the authors suggest including data mining and

machine learning as methods to help examiners more efficiently identify the interesting

parts of the timeline.

 Esposito [3] identifies a significant disconnect between timestamps, which are a

singular fixed point in time, and timelines which must provide context of activities that

occur before, during, and after the event. His examination of the Log2timeline tool is also

for the purpose of “cut[ing] through mountains of data to find the needle in the haystack”

49

and his methodology used a selection-based approach, identifying common queries using

the Log2timeline tool.

3.2 General Digital Forensics Process

 There are two general processes to locate and extract evidence of probative value:

selection and reduction [8] . Selection involves targeted and specific queries. With some

knowledge of the case, an examiner can use his experience and understanding of the

system to deterministically locate what he is looking for. The risk with this approach is

that critical evidence may be overlooked and if the examiner has an erroneous hypothesis,

he could return with incomplete results [9]. In contrast, reduction attempts to identify

collected data that is not relevant. Reduction has the advantage of not requiring case-

based searches, but failure to eliminate enough data means wasted time and effort spent

on false leads [8]. In the worst case, it may even involve the arrest of the wrong person

[9].

 The proposed SCFG process uses or identifies general behavioral patterns. These

patterns are used in a reductive manner, eliminating suspect pools or routine activities

from further evaluation. The process is illustrated in Figure 12, where the processes are

denoted as rectangular blocks in the flowchart.

 The first process, PCAP to SCFG Terminals, translates the information from

computer network traffic into activity sequences. The activity sequences are linear event

timelines that are inputs into the two digital forensic applications. With activity

sequences from the computer network traffic, the association process uses SCFG to parse

the activity sequence with each of the known profiles and outputs the profile that returned

the greatest parse likelihood, attributing that activity sequence to the profile, eliminating

the other profiles fi·om examination. Individualization also accepts activity sequences as

inputs and also leverages a reduction approach. This process uses SCFG stmcture

inference to discover behavior pattems and remove routine behaviors fi·om activity

sequences. Individualization outputs the remaining activities in the timelines for fmther

examination.

PCAP to
SCFG Terminals

3.3 PCAP file

Activity
Sequences

Association
(SCFG Parsing)

Individualization
(SCFG Structtu-e

Inference)

Figure 12. Methodology Process Overview.

Associated
Profile

Irregular
Activities

Computer network traffic data in packet capture (PCAP) fommt exhibits

characteristics suitable for SCFG representation. PCAP files records fi·ames serially in

time. Even though packets may anive out of order, programs like Wireshark (66]

reconstmcts the intended flow and provides a serial order to the TCP streams, even if the

packets fi·om the streams interweave.

50

51

 SCFG terminal identification from the flows can be done through port inspection,

which can achieve up to 90% classification accuracy [67, 68], organic keywords and

website meta data that reveal the category of the websites, or commercial databases.

These methods enable classification of a large set of low-level activities to a smaller set

of categories, similar to how Natural Language Processing (NLP) reduces every word in

a language to a few parts of speech categories.

 Focusing on web usage patterns avoids the issues of cookies [69] which requires

consent and cooperation from the user. Related work on this includes Yang [70] who

attempts user identification using frequent mining measures of support and lift to

discriminate between user profiles of web sessions, where the measures indicate the

proportion that a pattern appears. Attempting the same with DNS queries, Banse, et al.

[71] found user behavior to be stable, though some users did not have enough data for a

characteristic pattern to emerge.

 Like Mao, et al. [72], we assume that the user does not interfere with the

observation process and does not deliberately attempt to defeat the recognition system.

Banse, et al. [71] identify additional measures that complicate behavior-based tracking.

Anonymizers like Tor obfuscate the destination IP address, therefore preventing

classification of destination IP site. However, using anonymizers may be itself a

suspicious behavior so detecting Tor traffic satisfies the goal of identifying suspicious

activities for a criminal investigator.

52

3.4 PCAP to SCFG Terminals

 Converting PCAP to terminals is the first step to SCFG representation of

computer network traffic. Similar to Olsson and Boldt [5], we illustrate the PCAP to

terminal process using a digital forensic crime scenario, the fictitious Nitroba University

Harassment case [11]. Figure 13 illustrates the conversion of a network capture and the

rest of this subsection explains each step in further detail.

Figure 13. PCAP to SCFG terminal process.

 In this scenario, a student sends harassing e-mails to a professor. Examiners

seized the network capture, where 11 of her students share the network. This scenario

plays out over a 55MB PCAP file containing over 95,000 packets. Only 192.168.1.64 and

192.168.15.4 show significant activity so the activities from these two sources make up

the timelines of interest. Applying the “http.request.method==POST” filter trims the

timelines to activities that involved user input. Figure 13 shows the TCP stream

53

information from 192.168.15.4. with the applied filter. This TCP stream is the first part of

PCAP to terminal process by putting user activities in linear order.

 Wireshark’s DNS resolver provides human-readable uniform resource locator

(URL) addresses for the conversation endpoints. Well-known sites like

www.facebook.com are easily recognized as social media. For uncommon sites,

examiners can use website meta information and organic keywords. Figure 13 shows the

organic keywords for www.sendanonymousemail.net returned from IPaddress.com in the

top-right and shows www.sendanonymousemail.net from the timeline through

TrustedSource4. Proprietary databases, like BlueCoat5 or TrustedSource, provide large

scale URL categorization. The categories are then used as SCFG low-level terminals.

Sites attributed to referred ads and background services do not reflect user input so those

sites are not included in activity sequences. The TCP streams from Figure 13 resulted in

an activity sequence of: socialnetwork travel media email messaging

3.5 Association (SCFG Parsing)

 Association applies comparisons of competing hypotheses of generalized

behavior patterns for the purpose of attributing a profile to the timelines [10]. Performing

association requires the set of knowns to provide competing hypotheses. In practice,

association rarely identifies the specific offending element, but focuses the investigation

by reducing the suspect pool [73]. Association leverages SCFG parsing and the stochastic

likelihood to provide the probability of the evidence against the several alternative

4 https://trustedsource.org/en/feedback/url?action=checksingle

5 https://www.bluecoat.com/

54

explanations to enable the examiner to determine which alternative is most likely. Parse

likelihood of the sentences by the grammars provide a quantitative comparative measure,

that enables the examiner to provide to the investigator, the profile that matched the

timelines with the greatest likelihood.

3.5.1 Known Profiles.

 Association attempts to use SCFG parse likelihood to determine the originating

grammar. Profiles are necessary for the association process. The quantitative result is

from parsing the unknown activity sequence with each profile grammar. The profiles also

generate the activity sequences for evaluation so the comparison will have truth values.

The overall process incurs an integer multiplier to the computational O(n3) complexity of

parsing.

 As presented in Section 2.5.2, there are two ways to create SCFGs: expert

definition and machine learning. Profiles are in SCFG representation, so the two

production rule definition methods apply. The first method is expert definition, where an

expert defines the behavior pattern in the profile. The second method uses machine

learning on several activities sequences to discover behavior patterns that are converted

into production rules. This work uses both approaches: the grammar comparison and

association testing uses expert SCFGs, and the individualization testing leverages

machine learning.

3.5.2 Grammar Comparison.

 Current methods of comparing grammars at the rule-to-rule level [32, 33] or at the

output-to-output level [30, 31] are computationally impractical or undecidable. Grammar-

based rule-to-rule methods that attempt to replicate and substitute rules to generate

55

equivalent rules are decidable, but exceed polynomial complexity [32]. Output-to-output

methods that compare similarity of two grammars using only their outputs are not

decidable [33–35]. Appendix A provides related works on grammar comparison. Both

techniques have merit in terms of comparing structure or resulting sequences. The novel

grammar comparison method combines both of these to perform the comparison with

O(n3) complexity.

 The grammar comparison method, shown in Figure 14, applies graph node

matching to examine grammar symbol causalities, to identify similarity between

grammars. SCFG rules enforce the symbol causalities and the approach uses the

causalities as the measure of similarity.

By translating the grammar into a graph, we leverage the advantages of graph-

based representation for structure comparison. The graph captures the connectivity

relationship of the SCFG production rules into a single summarized presentation. The

approach leverages only the causality relationships defined in the production rules and

does not incorporate the stochastic parameters. Without requiring the stochastic

parameters, the rest of the discussion on grammar similarity treats the SCFG as Context-

Free Grammars (CFG). The conversion to graphs produces source and terminal matrics

used for the Zager-Verghese graph node-matching algorithm [36]. The graph-node

matching produces a node-likeness matrix, containing node likeness scores between

nodes across the two graphs. Using the Hungarian algorithm produces a node pairing that

maximizes the scores. With the pairings, the grammars now have a way to relate

symbols, which is then used to identify common causal patterns between the two

grannnars as a measure of gramma1· similarity. This section explains the process and an

example grammar compru·ison is in Appendix A.

Grammar A (GA)

Convert to
Graph

Source-Edge (As) and
Terminus-Edge (Ar)

Matrices

Zager-Verghese
Algorithm

Node-Likeness

Matrix(X)

Hungarian
Algorithm

Matches

Compare Causalities

Common causalities

Grammar B (Ga)

Convert to
Graph

Matrices

Figure 14. Grannnru· Comparison Process.

56

57

Convert CFG to Graph.

Translating CFGs to graphs is not unprecedented. Muggleton and Pahlavi [74]

relate CFG to a stochastic automata, by translating the production rules into states and

transitions. Gecse and Kovacs [75] provide another example of translating CFG into

graphs, for the purpose of identifying grammar consistency, highlighting a pragmatic

benefit of examining CFG in graphical form. For comparison purposes, the proposed

method uses a translation similar to Gecse and Kovacs [75], which converts the symbols

into states and the links represent a connection between symbols within a CFG

production rule. A difference between the approach is that all CFG symbols are

represented as nodes in the graph, not just the non-terminals. The graph node matching

algorithm used in the proposed approach has an O(n3) complexity.

 Applying a graph node-matching algorithm provides a measure of similarity and

compares grammars by matching a symbol in one grammar to its closest approximation

in another symbol based on each symbol’s connectivity to other symbols. The node-

matching enable comparisons regarding the causality of symbols in CFG notation.

Similarity is measured as a combination of likeness between symbols and comparison of

common causal relationships between symbols, where the existence of a causal link in

both grammars indicate similarity while differences in causal links indicate dissimilarity.

 The comparison method uses an iterative graph-based approach because it

assumes conditions most similar to the grammar comparison problem, where the

terminals and non-terminals are not guaranteed to be consistent across grammars. Non-

iterative graph-based approaches, such as edit distance/isomorphism or feature extraction,

58

typically assume a shared set of terminals and non-terminals between the grammars under

comparison and exceed polynomial complexity.

 We first represent each grammar as a directed graph in order to take advantage of

graph node-matching. In graph form, each node represents a grammar symbol. The node-

matching algorithm then produces a node likeness matrix. Applying the Hungarian

algorithm [76] on the node likeness matrix produces a pair-wise matching of terminals

between the grammars. Production rules then provide additional causality information

that combined with the pair-wise matching, yields insight into grammar similarity. Figure

14 illustrates the grammar comparison process.

 Each CFG production rule defines an equivalency relationship between the left

hand side (LHS) symbol and the right hand side (RHS) symbols. A graph representation

of the CFG also conveys this relationship between LHS and RHS symbols.

 The graph nodes correspond to the VN and VT symbols. Each production rule

creates an edge between the LHS symbol’s node and its RHS symbols’ nodes. In graph

representation, the S node is the node without incoming edges and VT nodes are nodes

without outgoing edges. This is different than the representation in [75] which does not

include VT nodes. Another difference is that edges are numerically labeled instead of their

stochastic likelihood. The edge labels are used in a node-edge correspondence to produce

a pairwise similarity matrix between nodes. Figure 15 uses the example grammar from

Gecse and Kovacs [75] represented as a directed graph. The mathematical operators in

the RHS not relevant to the example were removed from the production rules in the

figure for clarity.

59

Figure 15. Example CFG and Graph Representation.

The numeric label for each link is used only in the construction of matrices in the source-

edge (GS) and terminus-edge (GT) matrices, shown in Figure 16, in the Zager-Verghese

method [36] for node-matching so their order is unimportant other than consistency

between GS and GT [36].

GS 1 2 3 4 5 6
S 1 1
T 1 1
F 1 1
A

GT 1 2 3 4 5 6
S 1 1
T 1 1
F 1
A 1

Figure 16. Source-edge matrix (GS) and Terminus-edge matrix (GT) corresponding to the graph in Figure

15. The non-filled spaces are zero entries.

Zager-Verghese Graph Node-Matching Algorithm.

This approach combines CFG-specific information with the Zager-Verghese [36]

iterative graph similarity algorithm. Among the iterative methods, Zager-Verghese is

used because it has similar conditions to the CFG comparison problem in that

correspondence between nodes is unknown and similarity is calculated on all node pairs

between graphs [77].

VT: a

VN: S,T,F
S: S
P:
 S → S T
 S → T
 T → T F
 T → F
 F → S
 F → a

60

 The Zager-Verghese [36] node-matching algorithm iteratively calculates

similarity between nodes applying the assumption that two nodes are similar if their

neighborhoods are similar. We selected this graph similarity method because it does not

require the grammars to share the same VT ⋃ VN set or labels, in contrast to other graph

similarity algorithms [1]. Their contribution to graph node matching is that their

algorithm converges independent of initial values. Using GS and GT, the algorithm

iteratively calculates node-likeness (X) and edge-likeness (Y) scores.

Hungarian Algorithm.

Applying Hungarian algorithm [76] on X produces a lower-bound node matching

between nodes across the two graphs. The iterative calculations for X and Y require

matrix multiplications that are O(n3) [78, Ch. 13] and the Hungarian algorithm is also

O(n3) [79].

Causality Comparison.

 The node mapping enables comparisons between grammars with different

symbols because the symbols are matched based on their connectivity to other symbols.

In addition, a CFG in graph form reflects the following CFG-specific information:

1. VT are the only sink nodes

2. VN always have at least one out-going link

3. RHS symbols have a causality relationship with one another

4. S only has outgoing links

5. Connectivity to self (1’s in the same coordinate in both GS and GT) indicate

recursion

61

The graphical representation over-generalizes the CFG and does not take into

account all the knowledge represented in a CFG. For instance, the production rule S → A

B and S → B A are indistinguishable in graph form, which does not denote the causality

relationship between A and B. Thus, it is possible to translate a grammar into a graph, but

not possible to definitively reconstruct a grammar from the graph without providing the

additional causality information.

 CFG-specific information can be further incorporated by manually altering X. For

instance, if we know that two grammars share a common VT, we zero out matching scores

between different terminals in X to prevent irrelevant node matches. The same approach

applies to zeroing out matches between VN versus VT if we know certain symbols are

definitively in VN or VT. All adjustments to X based on additional CFG information occur

prior to running the Hungarian algorithm.

 The node mapping is used to examine the causal relationships between each

grammar. Each grammar has a list of node pairs that specify a before-and-after

relationship in the production rule’s RHS. After the graph node matching, CFG

comparison requires examining the causal commonality between RHS symbols not

captured in the summary graph. In doing so, CFG similarity extends Zager and Verghese

[36] pairwise node similarity scores to include node causality similarity, rather than a

single similarity index. This algorithm is shown in Algorithm 1.

62

Algorithm 1. CFG Similarity Algorithm.

Input:
GA (Grammar A)
GB (Grammar B) //Grammar B nodes ≥ Grammar A nodes
AS (Graph A Source-Edge Matrix)
AT (Graph A Terminus-Edge Matrix)
BS (Graph B Source-Edge Matrix)
BT (Graph B Terminus-Edge Matrix)

Output:
List of matched causalities in GB to causalities in GA
X′ = ones matrix of size (number of
nodes in BS , number of nodes in AS)

//buffer for node similarity
scores

Y′= ones matrix of size (number of
edges in BS, number of edges in AS)

//buffer for edge similarity
scores

for n-iterations //number of iterations
 Y = Bs

T X′ AS + BTT X′ AT
 Y = normalize(Y)

//Y stores the edge similarity
scores
//T superscript is the matrix
transpose operation

 X = Bs
T Y′ AS + BTT Y′ AT

 X = normalize(X)
//X stores the node similarity
scores

 X′ = X

//copy updated to buffer matrices
for next iteration Y′ = Y

end
 X = addCFGinfo (X) //modify X with CFG terminal

information, such as zeroing out
cells between terminal and non-
terminal symbols or keeping known
terminal matches

Hungarian(X) //generate pairwise node-to-node
matching

CA = identifyCausalities(GA)
CB = identifyCausalities(GB)

//identify symbol causality in both
grammars and store as lists

CB = remapSymbols(X, CB)

//remap the symbols in CB using
results from the node matching

return compareCausalities(CA, CB) //compare causalities for
similarities and differences in
symbol causality

 By convention, GA is the smaller grammar, where size is determined as the

number of nodes. Each grammar symbol uses a subscript of the grammar when it is not

obvious. Capital letters denote non-terminal symbols and lower-case letters denote

terminal symbols. The node-likeness matrix (X) contains the values after running Zager-

63

Verghese [36] through 1,000 iterations. In the example in Appendix A, the bold entries

denote the pairwise node matches from the Hungarian algorithm. Causal links between

symbol pairs are designated with a “>”, where it conveys precedence.

Comparisons are run on MATLAB version 12.1a and used the YiCao

implementation [76] of the Hungarian algorithm. In contrast to the Borlin’s

implementation used in [36], YiCao’s implementation does not require padding of X and

Y. The implementation performs matching by cost, so X was multiplied by a -1 factor to

find minimum cost assignment matching.

 The Hungarian algorithm performs a node-to-node comparison that does not

account for the possibility where a node in one graph may represent multiple nodes in

other. It correctly matched the recursive symbol and the resulting node matching showed

greater similarity in the causal links than without having the node matching information.

3.5.1 SCFG Parsing.

 Parsing is performed using an Earley parser written in C++ 6. This particular

implementation was selected primarily because it was only a parser and did not contain

domain dependent functions or methods. It also did not require conversion of the

grammars into Chomsky-Normal-Form.

3.6 Individualization (SCFG Structure Inference)

 Individualization attempts to discover behavior patterns from specific sequence of

events to focus investigative efforts on events not attributable to the normal activity

patterns. The application leverages the individual characteristics that make the object

6 https://github.com/shaobohou/pearley

64

unique, where the behavior patterns make up the individual characteristics. Broeders [80]

uses the example where a scratch on a bullet is not unique, but a specific arrangement of

scratches makes it unique. Similarly, an activity is not unique, but frequent patterns of

activities become unique to a user.

 Pattern discovery uses two unsupervised SCFG inference techniques, alignment-

based inference and bigram-based inference. Alignment-based inference is a top-down

approach to find overarching patterns across the timelines. In contrast, the bigram

approach is a bottom-up approach identifies patterns as mergers of frequently occurring

adjacent events. These patterns are used in reduction to focus the examination on events

that do not fit a pattern. The examiner can then provide the criminal investigator the

unexplained events in addition to the patterns of behavior, which may also be of

probative value.

3.6.1 Alignment-based Inference.

 Alignment-based structure learning attempts to discover patterns from the top-

down by identifying causal patterns of symbols throughout the data. Alignment considers

the possibility that the causal patterns may consist of symbols that are not immediately

adjacent to one another by allowing gaps in pattern sequences.

 Clustering the corpus improves the resulting alignments when aligning similar

sequences. Sequence similarity is based on the arithmetic mean of content distance and

edit distance to reflect different similarity characteristics in the timelines [81]. Content

similarity takes into account bigram patterns, even if they are not in aligned positions.

Content similarity is a combination of precision and recall, which are defined as:

65

𝐶𝑜𝑛𝑡𝑒𝑛𝑡 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × √𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ √𝑅𝑒𝑐𝑎𝑙𝑙

(3)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
|𝑏𝑖𝑔𝑟𝑎𝑚(𝑣1)∩ 𝑏𝑖𝑔𝑟𝑎𝑚(𝑣2)|

|𝑏𝑖𝑔𝑟𝑎𝑚(𝑣1)|

(4)

𝑅𝑒𝑐𝑎𝑙𝑙 =
|𝑏𝑖𝑔𝑟𝑎𝑚(𝑣1)| ∩ |𝑏𝑖𝑔𝑟𝑎𝑚(𝑣2)|

|𝑏𝑖𝑔𝑟𝑎𝑚(𝑣2)|

(5)

Where:
 𝑏𝑖𝑔𝑟𝑎𝑚(𝑣) is the set of bigrams from sentence 𝑣
 |𝑏𝑖𝑔𝑟𝑎𝑚(𝑣) ∩ 𝑏𝑖𝑔𝑟𝑎𝑚(𝑣)| is total number of common bigrams

Edit distance takes into account similarity when there is alignment, even though bigram

patterns are not preserved. The edit distance algorithm is shown in Algorithm 2.

To produce a result that can be used with content similarity, the edit distance is

normalized by the length of the longer sentence, shown in Equation (6). This way, both

content and edit distance similarity are on a range between 0 (completely dissimilar) to 1

(completely identical). Table 3 shows example calculations for each of the similarity

measures.

𝐸𝑑𝑖𝑡 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦

=
𝑚𝑎𝑥�𝑙𝑒𝑛𝑔𝑡ℎ(𝑣1), 𝑙𝑒𝑛𝑔𝑡ℎ(𝑣2)� − 𝑒𝑑𝑖𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑣1, 𝑣2)

max�𝑙𝑒𝑛𝑔𝑡ℎ(𝑣1), 𝑙𝑒𝑛𝑔𝑡ℎ(𝑣2)�

(6)

𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =
𝐶𝑜𝑛𝑡𝑒𝑛𝑡 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦+ 𝐸𝑑𝑖𝑡 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦

(7)

66

Algorithm 2. Edit Distance Algorithm.

Input:
string1 [1..m]
string2 [1..n]

Output:
distance between string1 and string2

initialize distance_array(m,n) //set 2-dim array
to all 0’s

del_err_cost = 1;
ins_err_cost = 1;
sub_err_cost = 1;

//cost can be
changed to bias
against specific
error types

for i = 1 to m
 d[i,0] = i
for j = 1 to n
 d[0,j] = j
for j=1 to n
 for i = 1 to m //letters match
 if string1[i] == string2[j]
 d[i,j] = d[i-1,j-1]
 else
 d[i,j] = min(
 d[i-1,j] + del_err_cost, //deletion error
 d[i,j-1] + ins_err_cost, //insertion error
 d[i-1,j-1] + sub_err_cost) //deletion error
)
return d[m,n] //distance

Table 3. Examples of Similarity.

v1 v2 Content
Similarity

Edit Distance
Similarity

Combined
Similarity

ABC CAB 0.59 0.33 0.92

ABCD DABC 0.73 0.50 1.23

ABC ADC 0.00 0.66 0.66

AAAA AAAAB 0.93 0.80 1.73

Clustering the corpus reduces the number top-level S productions since each

cluster represents at most one S production. Each cluster is then recursively aligned using

67

multisequence alignment. If there is an alignment, it is turned into a production rule and

the parts of the sequences that do not match the alignment are stored as a subcorpus,

tracked by a symbol, N, that increments with each new subcorpus. The halting condition

is when no alignment is found in a corpus or subcorpus. All sequences are associated to

the tracking symbol. However, if a subcorpus produces an alignment, then that alignment

gets stored as a production rule and the multialignment is performed on the subcorpuses

surrounding the aligned symbols. This approach is outlined in Algorithm 3.

The algorithm uses the Needleman-Wunsh algorithm for pairwise sequence

alignment from the bioinformatics domain [82]. Similar to edit distance, the Needleman-

Wunsch algorithm uses a scoring system that rewards aligned symbols and penalizes gaps

and mismatches. A score matrix and a corresponding traceback matrix records the

alignment path that determines aligned positions and insertions of necessary gaps. The

algorithm is shown in Algorithm 4 and has an O(mn) time and space complexity, where

m and n are the length of the two sequences.

Using the Needleman-Wunsh in a progressive manner builds a multiple sequence

alignment from a series of pairwise alignments to avoid simultaneous multiple sequence

alignment algorithms which incurs an exponential computational complexity of O(2knk),

where k is the number of sequences [83, Ch. 6]. The pairwise progression incrementally

adds additional sequences to past alignments and back-propagates gaps into previous

alignments when gaps are necessary to align the newest sequence. Order alignment has

an impact on the overall alignment because of the introduced gaps. A greedy approach to

ordering uses a similarity matrix to identify most similar sequences first. Each cell in the

similarity matrix is populated with similarity measures such as edit distance normalized

68

to the longer sequence length. Then, the ordering begins with the two-most similar

sequences and adds the remaining most similar sequence until the ordering includes every

sequence, creating a guide-tree. Pair-wise alignment then uses the ordering to determine

the incremental sequence of alignments.

Algorithm 3. Alignment-based Structure Learner.

Input:
W - list of all timelines

Output:
P - production rules

N = 0 //non-terminal index
clusters = cluster(W) //number of clusters drive

the number S productions
//cluster function
described in text

foreach cluster in clusters
 find_alignment(cluster,N) //recursively called

//each cluster becomes a
corpus

function find_alignment(corpus, N) //corpus is an input

variable for list of
timelines (cluster on 1st

call) or partial segments
of timelines (subcorpus on
recursive calls)

 alignCol = multiAlignment(corpus) //no aligned columns base
case

 if alignCol.size = 0
 associate each sequence to N in P
 return
 else // Example:
 map incremented N to a subcorpus
 surrounding aligned columns
 associate N to alignment
 add alignment to P

// 0 …N+1… * …N+2… * … N+3…

 foreach subcorpus in corpus // if * are aligned columns
 find_alignment(subcorpus,N) // the …N… becomes a

subcorpus identified by N

69

Algorithm 4. Needleman-Wunsh Alignment Algorithm.

Input:
seq1 [1..m]
seq2 [1..n]

Output:
alignment1 [1..x]
alignment2 [1..y]
alignment_score

score_matrix[m+1,n+1]
traceback_matrix[m+1,n+1]

//create score and
traceback 2-dim
matrices

init_penalty = -10;
gap_penalty = -2;
match_reward = 5;
mismatch_penalty = -3;
assignment_score = 0;

//scoring system

for i = 1 to n //initialize score

matrix and
traceback matrix

 score_matrix[i][0] = i * init_penalty
 traceback[i][0] = “up”
end
for j = 1 to m
 score_matrix[0][j] = j * init_penalty
 traceback[0][j] = “left”
end

for i = 1 to n
 for j = 1 to m
 int s //temp var
 if (seq1[j-1] == seq2[i-1] s = match_bonus
 else s = mismatch_penalty

 int diag = score_matrix[i-1][j-1] + s; //identify scores

to determine path
direction in
traceback matrix

 int up = score_matrix[i-1][j] + gap_penalty
 int left = score_matrix[i][j-1] + gap_penalty

 score_matrix[i][j] = max(diag,up,left) //score_matrix
records the max
score

 traceback[i][j] = max(“diag”,”up”,”left”) //traceback_matrix
records the
direction of the
max score

 end
end

i = n
j = m

while ([i][j] != [0][0])
 if (traceback[i][j] == “diag”) //diag means

symbols are aligned alignment1.prepend(seq1[j-1])
 alignment2.prepend(seq2[i-1])
 i=i-1

70

 j=j-1
 else
 if (traceback[i][j] == “left” //left means a gap

in the seq2 alignment1.prepend(seq1[j-1])
 alignment2.prepend(“-”)
 j=j-1
 else
 alignment1.prepend(“-”) //up means a gap in

seq1 alignment2.prepend(seq2[i-1])
 i=i-1
end
assignment_score = score_matrix[m+1,n+1]
return assignment_score, alignment1, alignment2

3.6.2 Bigram-based Inference.

 To induce an hierarchal structure in the activity recognition domain and planning

domains respectively, Peng, et al. [81] and Li, et al. [48] apply the intuition that

frequently adjacent terminals are instances of higher-level events. Li, et al. [48]

iteratively combines symbols into bigrams, starting with looping symbols and the most-

frequent bigram. The inferred grammar then adds a production rule with the bigram as

the RHS. A new symbol for the LHS replaces every instance of the bigram in the corpus

until the entire corpus is deduced to the start symbol, S. An expectation-maximization

algorithm, such as inside-outside [63], prunes the grammar of productions that occur less

than a set threshold. Algorithm 5 shows a modified version of the algorithm. Depending

on the domain, the sort function orders the corpus in a manner that makes the most sense.

In planning, the shorter plans are more desirable so the sort function reorders the plan

based on shortest length first to capture the bigrams from best plans first. In the network

timeline domain, creating bigrams from timelines that are most similar to the other

timelines may be an alternative approach, similar to the way multiple sequence alignment

builds a guide tree to determine the ordering for pairwise alignment.

71

Algorithm 5. Full-Coverage Bigram Structure Learner.

Input:
Set of all terminal symbols VT
list of all timelines, W
Output:
Production Rules, P

sort(W)

//pre-sort

for each symbol, t in VT do
 Create new symbol in VN and create
 production in form VN → t

//add terminal
productions for CNF

 Add production to P
end
rewriteTimelines(W,P) // 𝑊 is now only in

VN symbols
while not empty(W) do
 while length(𝑤) > 2 do
 add production Z → X Z for new
 loops

//X is repeated
symbol, right-
recursive format

 rewriteTimelines(W,P) //checks existing
rules

 add production Z → X Y for most-frequent-bigram
 rewriteTimelines(W,P)
 add production S→ w to P //do not add if

already in P
 remove w from W

normalizeWeights(P)

 Instead of performing the pruning at the end, Peng, et al. [81] combine terminals

when their joint-occurrence frequency is larger than their expected marginal frequency.

They build joint frequency and marginal frequency tables from the timelines and apply a

chi-square test on each bigram to determine if the bigram should be represented as a

production rule. By using the chi-square test, bigram combinations that fail the

significance test are not combined and the algorithm reaches a halting condition faster

than the full-coverage algorithm. A variation of this algorithm is shown in Algorithm 6,

which does not show the generalization function in Peng, et al.[81]’s algorithm for

clarity. In addition, the chi-square function will reject bigrams of symbols that exist only

72

as a bigram because too many variables in the equation are zero. However, if the bigram

frequently appears in Joint Frequency Table, then rejecting the bigram produces counter-

intuitive response based on the semantics of what the structure learner is attempting to

accomplish. Thus, in addition to checking for divide by zero values, the chi-square test

checks for situations where this occurs. The implementation retains a history of bigram

combinations at each level in VN
L that makes the hierarchy evident. The highest level WL

defines the S productions in the inferred grammar.

 Using the chi-square test improves upon coverage-based algorithms like the one

in Algorithm 6, but incurs computational complexity. Coverage-based algorithms, such

as SEQUITUR [84] can achieve linear time and space performance--the algorithm

efficiently adds new bigrams but does not revisit and reorder combinations, other than to

enforce two properties that guide rule usage.

 The bigram approach however is sensitive to the rewrite process. For instance, if

AB and BC are both significant bigrams, ABC can be written as either (AB)C or A(BC).

Grouping sensitivity potentially obscures patterns at higher levels. For this reason,

bigram inference is complimented with alignment-based inference for this forensic

application.

73

Algorithm 6: Chi-Square Test Bigram Structure Learner.

Input:
merge-threshold, m
list of all timelines, W

Output:
list of combined activities, VN

L at level L
WL, rewritten with VN at each level L

L = 0 //terminal level
VN

0 = terminals(W) //VN
0 = VT

do
 L++ //R is a map of the

bigram to the first and
second symbol

 (WL,VN
L) = collocation(WL-1,VN

L-1,L, R)
until VN

L.isEmpty()

function collocation(WL-1,VN

L-1,L, R)
 foreach bigram in WL-1
 increment bigram count in jft //jft stores the

frequency of the bigram
 increment bigram count in mft1 //mft1 stores the

frequency of a bigram
containing the first
symbol

 increment bigram count in mft2 //mft2 stores the
frequency of a bigram
containing the second
symbol

 end
 T = total number of bigrams in jft
 A = bigram count in jft //chi-2 shortcut for 2x2

checks

//must check for div by
zero error

//chi-2 invalid if less
than seven of the
variables are not zero

//for domain purposes, if
symbols in bigram only
exist together, mark it
significant

 E = mft1 count of bigram’s first symbol
 G = mft2 count of bigram’s second symbol
 C = E – A
 B = G – A
 F = T – E
 H = T - G
 D = F - B
 chi = T*((A*D)–(B*C))2 / (G*H*E*F)
 if (chi ≥ m)
 add bigram to VN

L
 add bigram to R
 rewrite WL in VN

L

return (WL,VN
L)

74

3.7 Summary

 This section presented the algorithms developed for applying SCFG to network

forensic applications. The first part of the chapter uses domains with SCFG applications

to identify domain traits that suggest suitability for SCFG representation. We then show

how PCAP files of capture network traffic can be converted into timelines of a terminal

alphabet using IP meta data, organic keywords, and URL classification databases on a

network forensic scenario. While we were able to generate a timeline, the PCAP did not

contain sufficient information to build an SCFG structure. To demonstrate association

with SCFG, we designed four grammars to act as competing hypotheses. Before

performing association, we compared the grammars at the output level using terminal

frequency analysis and at the grammar level, using graph-based node-matching approach,

developed in the course of this research. We then examine SCFG for individualization,

presenting the structure learning algorithms that focus on repeated patterns. The next

chapter presents the analysis and results from the experimental setups proposed in this

chapter.

75

IV. Analysis and Results

 Chapter 3 presented the SCFG algorithms for the network forensic association

and individualization. This chapter presents the experimental setup, the results, and

analysis. SCFG parsing associates an activity sequence to a known profile, reducing

unlikely profiles from suspects under consideration. SCFG structure inference discovers

normal behavioral patterns from a series of activity sequences, enabling the examiner to

focus on events in the activity sequences that are not explained by the discovered

patterns.

 This chapter begins with the association process, which describes the design of

the known profiles, the results of the grammar comparison to confirm differences

between the profiles, and the confusion matrices of associating a sequence to a profile

from a set of known profiles. Then, the individualization processes is demonstrated using

a computer network traffic use case; SCFG reduced the number of activities with

probative value across activity sequences using SCFG structure inference techniques,

while retaining the event of interest.

4.1 Association

 The association process requires an activity sequence and a set of known profiles,

characterized by different behavioral patterns, represented as an SCFG. This subsection

first discusses the design of the known profiles. Following this is confirmation of

similarity and differences between profiles through the output-to-output and grammar-to-

grammar comparison. Finally, the confusion matrices from total parse likelihood and

76

most-probable parse likelihood show that these quantitative measures associate the

correct, originating profile.

4.1.1 Known Profiles.

 In addition to timelines from a PCAP, the association process in Figure 12 shows

an input of known behavior profiles. As mentioned in 3.5.1, the methods to create

profiles in SCFG are through expert definition and machine learning. The original plan to

create known profiles attempted to use machine learning on the computer network traffic

captures from various digital forensic scenarios, like the Nitroba scenario [11]. However,

the classroom examples often resolved into a single timeline of unstructured events,

which was insufficient to infer behavior patterns, such as the example shown in Figure

13.

We attempted the PCAP to SCFG Terminal process using the PCAP 110 file from

the 2013 Digital Forensics Network Challenge and obtained similar results, where user

interaction was primarily in the form of GET requests. The file consists of 5,666 packets.

Wireshark identifies 176 TCP connections, where all connections originated from a

single IP address. The parameters of the scenario was focused on deciphering packet

level details, inferring that the entire PCAP is one timeline, so the structure learning

could not identify significant patterns.

 The Network Trap and Trace scenario from the 2011 Digital Forensics Challenge

provided more variation. Only 3,365 packets long, Wireshark identified the second and

last TCP conversation as an MIRC connection. The context of the scenario is to identify

the intent and actions of the subject and subjects. Considering that the only

77

communication connection occurs in two connections, relevant information is probably

contained in those two streams. Concerning target identification, the sites visited between

the two communication events are suspect.

 The DFRSW 2008 challenge consists of two components where the network

capture is only one piece of the evidence. This scenario better reflects realistic scenarios

where the crime is not fully encapsulated in one file and network examination may

provide only part of the narrative. In the scenario, Wireshark DNS resolution made

association of a category to banking and webmail sites straightforward, though some of

the IPs did not produce results with any of the IP classification methods mentioned

earlier.

 The digital forensic scenarios show that network traffic captured as PCAP files

exhibit the discrete observable, linear order characteristics suitable for SCFG

representation. The variability and the potential for volume of activities also warrants

SCFG representation. However, the lack of multiple timelines in these scenarios hindered

the ability to use SCFG structure learning to identify patterns in the timelines.

 As an alternative, four grammars shown in Figure 17 serve as a set of generalized

behavior patterns to provide the competing hypotheses necessary for this application. The

four grammars share a common seven-terminal alphabet: (email, social, news,

shopping, travel, wiki, scholar). The purpose of using a terminal alphabet

is to focus on behavioral patterns, rather than individual sites. For instance, the Nitroba

scenario used a URL that resolved to www.sendanomymousemail.net, which using a

selection-based approach, identified the logical starting point for the investigation.

78

 Oracle A represents an ideal profile where behaviors are rigid with discernable

patterns. This behavior is driven by the single S production. The variability from this

profile comes from intermediate non-terminals, which include recursive productions with

have multiple terminal derivations. For instance, Update can be any combination of

social and/or news observations, but it must occur between some form of Comm and

Task.

 Oracle A (idealized patterns) Oracle B (random)
1.00 S --> Comm Update Task
1.00 Comm --> email
0.20 Update -> social
0.20 Update --> news
0.30 Update --> Update social
0.30 Update --> Update news
0.40 Task --> LitRev
0.10 Task --> TOrders
0.20 Task --> Comm
0.30 Task --> Task Task
1.00 TOrders --> shopping
travel
0.20 LitRev --> LitRev wiki
0.20 LitRev --> LitRev scholar
0.60 LitRev --> scholar

0.80 S --> S Task
0.20 S --> Task
0.20 Task --> email
0.20 Task --> wiki
0.20 Task --> scholar
0.10 Task --> news
0.10 Task --> shopping
0.10 Task --> travel
0.10 Task --> social

Oracle C (pattern in noise) Oracle D (multiple patterns)
1.00 S --> Task1 Task2 Task3
0.80 Task1 --> email
0.20 Task1 -- Noise email
0.80 Task2 --> social
0.20 Task2 --> Noise social
0.80 Task3 --> scholar
0.20 Task3 --> Noise scholar
0.10 Noise --> Noise Noise
0.10 Noise --> social
0.10 Noise --> email
0.10 Noise --> wiki
0.10 Noise --> scholar
0.10 Noise --> shopping
0.10 Noise --> travel
0.10 Noise --> news
0.20 Noise --> space

0.80 S --> Comm Task
0.20 S --> Update
1.00 Comm --> email
0.20 Update -> social
0.20 Update --> news
0.30 Update --> Update social
0.30 Update --> Update news
0.40 Task --> LitRev
0.10 Task --> TOrders
0.20 Task --> Comm
0.30 Task --> Task Task
1.00 TOrders --> shopping
travel
0.20 LitRev --> LitRev wiki
0.20 LitRev --> LitRev scholar
0.60 LitRev --> scholar

Figure 17. Oracle Grammars.

 In contrast, Oracle B is a shallow and thus, non-descriptive profile. There are two

S productions, but only to describe the loop of Tasks, which can be any low-level

79

terminal. Essentially, this oracle generates timelines of random activities, controlled by

the looping probability and probability of Task to each respective low-level terminal.

Through this grammar structure, Oracle B has coverage over any sentence generated with

the common, seven-terminal alphabet. The purpose of this oracle is to compare the effect

of a general grammar against oracle grammars that exhibit patterns.

 Oracle C has a defined sequential pattern of email, social, and scholar

observations. Unlike Oracle A, the pattern is intentionally intermixed with other symbols

to represent noise using the Noise non-terminal, which mimics the * noise non-terminal

in Kitani, et al. [19]’s experiment.

 The purpose of Oracle D is to have a profile that shares many of the same

production rules as Oracle A. Oracle D exhibits two strict pattern, and is the only profile

to have multiple patterns with more than one S production.

 The oracles share a common alphabet to avoid the situation where the presence or

the absence of a terminal is sufficient for association. To verify the output characteristics,

we graph the frequency of terminals in the corpuses of 100, 1000, and 10,000 activity

sequences generated by the oracles. The oracles under comparison use a common

terminal alphabet and the purpose of this step is to examine whether terminal frequencies

reveal the oracle that created the corpus. Figure 18 plots the frequency of each terminal in

the corpus, normalized to the number of timelines in the corpus, as indicated in the

parenthesis. Corpuses A, C, and D exhibit a tight frequency bands independent of the

number of timelines. As expected from the production rule likelihoods, corpuses from

Oracle B do not follow a consistent pattern, as expected given the randomness driven by

80

Oracle B’s production rules. As desired, the frequency lines are intertwined and the

presence of a symbol does not clearly identify a specific originating corpus.

Figure 18. Terminal Frequency Timelines.

4.1.2 Grammar Comparison.

Grammar comparison is performed where it is expected that Oracle A, B, and C

are distinct, while Oracle A is similar to Oracle D. Table 4 shows the causalities in the

four grammars, where “>” symbolizes precedence. The presented grammars (CFG)

method calculates the similarity between CFGs by calculating the similarity between the

symbols, where symbol similarity is measured by their inclusion and causality in each

production rule.

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

Te
rm

in
al

 Fr
eq

ue
nc

y

(N
or

m
al

iz
ed

 to
 #

 o
f T

im
el

in
es

)

Terminal Symbols

Terminal Frequencies in Corpuses
CorpusA(100)
CorpusA(1000)
CorpusA(10000)
CorpusB(100)
CorpusB(1000)
CorpusB(10k)
CorpusC(100)
CorpusC(1000)
CorpusC(10k)
CorpusD(100)
CorpusD(1000)
CorpusD(10k)

81

Table 4. Grammar Causalities.
Oracle A Oracle B Oracle C Oracle D

Comm > Update
Update > Task
Update > news
Update > social
Task > Task
shopping > travel
LitRev > wiki
LitRev > Scholar

S > Task Task1 > Task2
Task2 > Task3
Noise > email
Noise > scholar
Noise > social
Noise > Noise

Comm > Task
Update > news
Update > social
Task > Task
shopping > travel
LitRev > wiki
LitRev > Scholar

In comparing Oracle A to Oracle B, the grammar comparison identified non-

terminal correspondence between SB to SA and TaskB to TaskA that did not produce

common causalities. Oracle A compared to Oracle C produced a mapping of CommA to

SC, Update to Task1, SA to Task2, LitRev to Task3, and TaskA to Noise; this

mapping yielded only a single common causality for TaskA → TaskA from Noise →

Noise. Oracle A and Oracle D had a common graphical representation and share six

common causalities, achieving the desired effect.

4.1.3 SCFG Parsing.

 Parsing provides a quantitative comparison between behavior profiles to identify

the most likely origin. A sequence was attributed to a profile based on which profile

produced the total parse or most-probable parse likelihood. Table 5 and

Table 6 show the confusion matrices for corpuses generated from the grammars against

the set of grammars. Most-probable parse likelihood provided greater separation from

mis-association as Oracle B, which was designed for coverage. However, this increased

the number of mis-associations of randomness to Oracle C and D.

82

Table 5. Confusion Matrix based on Total Parse Likelihood.

Total Parse
Likelihood

CorpusA CorpusB CorpusC CorpusD

Oracle A 100 1 0 0
Oracle B 0 93 5 9
Oracle C 0 0 95 0
Oracle D 0 6 0 91

Table 6. Most Probable Parse Likelihood.

Most Probable
Parse

Likelihood

CorpusA CorpusB CorpusC CorpusD

Oracle A 100 1 0 0
Oracle B 0 91 0 0
Oracle C 0 1 100 0
Oracle D 0 7 0 100

4.1.4 Discussion

 Parse likelihood and most-probable parse likelihood correctly associated the

originating profile. Parsing produces a quantitative measurement for comparison, but the

parse likelihood is useful only in comparison against parse likelihoods by other grammars

in the set. The value is not useful in determining the association without values from

other grammars for comparison. As shown in the confusion matrices, false positives

occur. False associations are problematic because it could result in an erroneous arrest.

Most probable parse likelihood made more correct associations. Most-probable parse

only must be less than or equal to total parse likelihood, providing additional example

that the magnitude of the likelihood score is insufficient to make proper associations.

 The following paragraphs discuss similarities of this association to anomaly

detection and signature-based intrusion detection, which are also computer networking

83

traffic problems. SCFG parsing incurs polynomial complexity and is better suited for data

analysis, rather than real-time systems. In addition, the rate of false positives requires an

element of human supervision.

Anomaly Detection.

 Despite functional similarities with anomaly detection, the association process

assumes a human-in-the-loop due to a high false positive rate. Prior work on inferring

user behaviors from network usage achieved 60-80% correct associations of activities

with the original user [70, 71], which is inappropriate in a real-time, unmonitored setting.

 In the digital forensics setting, the most-probable parse is more advantageous

from a human-monitoring standpoint since it requires examination of only a single parse

tree per profile. Total parse likelihood, in contrast, requires determination of all possible

parses, which is difficult to track manually, to ensure that all combinations are accounted

for.

Parsing for Flexible Signature-based Intrusion Detection Analysis.

 Oracle C was designed to accept a specific pattern in the presence of noise,

enabling a break in causality between key pattern symbols. Skoudis and Liston [85] assert

that most attacks follow a general five-phase approach consisting of: 1) Reconnaissance,

2) Scanning, 3) Gaining Access, 4) Maintaining Access, and 5) Covering Tracks. These

make an overarching pattern for an attack and each of the phases can be implemented in a

variety of ways on a lower level. For a grammar, each phase is essentially a Task and a

network attack is, at the highest level, a five Task causal pattern. Gorodetski and

Kotenko’s [86] ontology, shown in provides examples of how each phase of an attack

can be implemented satisfied to fulfill the Task. For example, TCP connect scan, UDP

84

scan, Network Ping Sweeps are lower-level activities that can be substituted with a

Reconnaissance Task non-terminal. The flexibility in using a grammar-based

approach is that the lower-level definitions can be modified or changed without

impacting the knowledge structure unrelated to the changes. If network attack grammar

can parse the sequence, then the sequence includes all five phases of an attack in the

correct order. Using grammar parsing in this manner is different than making

comparisons between profiles, but it does meet the description of the association process

where parsing identifies the modus operandi.

Figure 19. Network Attack Ontology [86].

4.2 Individualization

 We captured a single user’s traffic data over the course of three days. Truth data

was recorded so that the actual event timeline was known. Wireshark’s [66] dumpcap

85

utility was used to capture the packets. Due to out of memory errors, dumpcap started to

drop packets and eventually crashed during the end of captures. With the recorded truth

data, the sessions were performed again. The grammar inference techniques do not use

visit duration as a feature in pattern discovery so the resulting activity sequences were

unaffected. The captures were recorded in 15 MB, 18 MB, and 23 MB PCAP files.

 For testing purposes, the user purposely visited www.HSBC.com during the

middle of the second capture. The site was selected because it is not suspicious site based

on the URL; the TrustedSource database categorized it as minimal risk with a banking

web category. However, the act of visiting this particular page was in contrast to normal

habits which typically carries out banking tasks with shopping activities. The site is also

not uniquely identifiable based on visit frequency. With the exception of visits to

cacwebmail.afit.edu on Internet Explorer, all other browsing was conducted on Chrome.

The goal of the reduction, using patterns discovered in the individualization process, is to

eliminate patterned activities while not eliminating the HSBC visit.

4.2.1 PCAP to SCFG Terminals.

 The first step converts the three PCAP files into timelines. Sequential streams

from the same address were grouped together. This is similar to the loop compression

SCFG adaptation to focus the behavior patterns on transitions between activities. Similar

to the reconstruction process, the behavior patterns require relative rather than absolution

time order [10]. This also abstracts away the length of time spent on an activity, which is

not a feature represented in SCFGs. The HSBC activity highlighted in red in the second

timeline denotes the uncharacteristic activity. The reduction process should eliminate

other events without reducing this activity.

86

 For the same reasons discussed in the PCAP to timeline section, the timeline does

not include activities from ad services, typically indicated by the referred-from field in

the stream. The timelines also do not include activities caused by background services

such as antivirus updates or operating system updates because they are not user initiated.

Figure 20 shows the activities from the three sessions, t1, t2, and t3, consisting of 41 total

activities.

Figure 20. PCAP activities in timeline format of three sessions.

 The second step uses IP address meta data and organic keywords retrieved from

ipaddress.com as well as McAfee’s Threat Intelligence database at

www.trustedsource.org to classify the different activities into terminals. Figure 21 shows

the timelines as sequences of terminals from a five symbol set of edu (education),

socnet (social networking), news, shopping, and banking.

87

Figure 21. PCAP timelines to SCFG terminals.

4.2.2 Alignment-based Inference.

 The next step applied alignment-based inference to identify activity patterns that

occur across the timelines. This produced an alignment, where aligned symbols are

shown in blue in Figure 22. The grayed out dashes represent gaps in the alignment which

may include any number of symbols in the timelines.

Figure 22. Alignment of the three timelines.

The alignment indicates a pattern of regularity between the timelines. With knowledge of

this behavioral pattern, the aligned activities are grayed out to de-prioritize them for

investigation, as shown in Figure 23 reducing the total of unexplained activities from 41

to 14.

88

Figure 23. Timelines with aligned symbols de-prioritized (grayed out).

4.2.3 Bigram-based Inference.

 Bigram inference techniques further identify frequent activity patterns, focusing

on increasing patterns of adjacent symbols. Removing these patterns from the sequences

again reduces the number of remaining activities by de-prioritizing activities that

frequently occur together. Bigram inference produced the following vocabulary:

• shoppingbanking,
• socnetnews
• edusocnet
• socnetedu
• newssocnet
• (edusocnet)news
• (shoppingbanking)socnet
• edu(shoppingbanking)
• (socnetedu)(shoppingbanking)
• (socnetedu)shopping
• (edusocnet)banking

89

The vocabulary terms signify additional behavioral patterns. The parentheses indicate

a previously merged bigram within another bigram. Activities that are unexplained by the

alignment are matched against the vocabulary list. Sequences that appear in the

vocabulary list are also de-prioritized, shown in washed-out green in Figure 24. The

bigram discovery process is independent of the alignment inference process. Therefore,

the results from the bigram process can reduce the event sequences on their own. By

using both approaches, activities can be explained away using both methods. An activity

exclude through alignment can still be used as part of a bigram to exclude activities not

explained by the alignment discovery process. To highlight these occurrences, activities

as part of bigrams that were grayed out in the alignment step are relabeled green, but

retain the grey circle.

 In comparing results between the two processes, the alignment included two

adjacent activities, edusocnet, that was also discovered in the bigram inference

approach. The alignment also included another adjacent pair, edu and shopping,

which did not appear on the bigram vocabulary list. However, edushopping appears in

the vocabulary list three times, under edu(shoppingbanking),

(socnetedu)(shoppingbanking) and (socnetedu)shopping, marking

it as part of other frequent patterns.

90

Figure 24. Timelines with both aligned (gray) and bigram (green) activities de-

prioritized.

 At the point of investigation in Figure 24, only two activities remain across the

three timelines that are unexplained by behavior patterns inferred from alignment and

bigrams. These two activities should be the start of the investigation, which includes the

intended implanted event. This application of SCFG inference primarily leverages the

pattern discovery elements of structure learning which was more important than the final

inferred SCFG structure to the forensic application.

4.3 Discussion

 The application of alignment-based and bigram-based inference reduced the

amount of activities requiring more in-depth examination. This section examines

variations to the procedure, which highlights future considerations for applying this

process.

 The first variation deals with the PCAP to SCFG terminal step that eliminates

background services from timelines, and the effect on the two structure inference

techniques if background services are mis-construed as an user event. Next, the bigrams

91

are evaluated for semantic significance. Finally, the individualization process is examined

using six terminals instead of five in the PCAP to SCFG terminal step.

4.3.1 Background Services.

 The PCAP to terminal step ignored background services. Inclusion of these sites

into the timeline increases the terminal set and the variety of patterns within timelines.

Background services that only periodically check for updates is similar to random noise

and the terminal will unlikely achieve bigram significance though their occurrence may

bisect significant bigrams, requiring more of the occurrences of non-bisected bigrams to

achieve the significance threshold. If the background services occur at the same time

during user session, such as updates at 7 am on Tuesday, then it may become part of an

alignment which gets sifted out as routine. Assuming ad sites are always associated with

the referring page, ad terminals would associate with the intended referring page in

bigram inference, thereby making them frequent and routine.

 In examining the effects of noise and variation, we performed both types of

alignment on the corpuses generated in the association section. We examined the bigram

inference method, first on 10 and then 100 activity sequences. In Corpuses A, the bigram

vocabulary greatly increased with the number of samples, which can attributed to the

recursive Task symbol that interjects variety at the end of the sequences. Corpus B,

experiences a decrease in the number of vocabulary layers and significant symbols. This

effect is due to the randomness of Corpus B, where fewer bigrams pass the chi-square

threshold because symbols are randomly adjacent to one another. Inferred vocabulary

from Corpus C greatly increased with the number of samples, similarly due to the

recursive Noise production. The graph node matching identified the similarity between

92

TaskA and NoiseC. Corpus D did not experience as large a growth in vocabulary size

because the split of Update meant that the social and news terminals never intermix

with other terminals, reducing the number of bigram potential.

 Bigram inference is not a good method to identify overarching patterns. The

number of overarching patterns is directly correlated to the number of S productions.

Table 7 shows the number of S productions using both bigram and alignment-based

inference. In contrast, alignment-based inference, which processes the corpus top-down,

generated fewer S productions proportional the number of samples. The exception to this

is the random patterns in Corpus B, where the number of S productions increased.

Table 7. Number of S productions.

 Bigram-Inference Alignment-based Inference
Corpus # of S

productions
 (10 Samples)

of S
productions

(100 Samples)

of S
productions (10

Samples)

of S
productions

(100 Samples)
A 9 79 9 48
B 6 84 10 94
C 9 87 10 52
D 7 37 8 33

4.3.2 Bigram Semantics.

 The bigram inference identified frequently adjacent activities. However, the

vocabulary does not necessarily infer a semantically-significant higher-level activity. For

instance, the edusocnetnews pattern indicates that these items appear adjacent to one

another but it is not obvious regarding why edu occurs before socnet or socnet

before news events. Significance is clearer when reverting the SCFG terminals back to

the actual websites. For instance, socnetnews appears because posts and discussions

on social networks refer to current events. Therefore, this bigram may carry a semantic

93

meaning of “getting current events.” In contrast, edusoc does not convey a higher-

level goal. In this sense, the occurrence of these patterns may be an indicator of user

preference, rather than some specific plan to accomplish a set task. The inability to

guarantee that bigrams have a significant semantic meaning reduces the benefit of using a

hierarchal knowledge structure.

4.3.3 Changing an SCFG Terminal.

 The cacwebmail activity had an afit.edu extension and was assigned the edu

terminal based on the ipaddress.com classification. We repeat the individualization

process and obtain a reduction that categorized cacwebmail activity with a comm

terminal, as a better reflection of the actual activity. This expanded the number of

terminals in the sequences to six. As expected, increasing the variety of symbols

increases the distance between sequences and this change produced two clusters: (t1, t2)

and (t3). An increase in the number of clusters means that there is less likely to be a

single alignment pattern, because the alignment pattern from one cluster does not transfer

to other clusters. This is illustrated in Figure 22, where t3 does not have any activity in

grey; all washed out activities in t3 are due to bigram patterns.

94

Figure 25. Timelines with six terminal set.

 The introduction of the comm terminal also changed the bigram vocabulary:

• shoppingbanking
• commsocnet
• socnetnews
• (commsocnet)banking
• (commsocnet)news
• socnetedu
• ((commsocnet)banking)shopping
• socnet(commsocnet)banking
• edusocnet

The resulting change is a decrease in the amount of activities explainable as part of a

pattern, leaving five activities unattributed; most importantly though, the red activity was

still included correctly left in the remaining activity set.

4.4 Summary

This chapter demonstrated reduction using SCFG parsing and structure inference in

the association and individualization forensic processes, respectively. SCFG parsing to

performed association by using the parsing sequences with known grammars and

95

attributing the sequence to the grammar that had the highest most-probable parse

likelihood. Individualization applied alignment and bigram-based inference to discover

behavioral patterns that identify events as routine. By eliminating routine events from

activity sequences, the examiner can focus on the remaining, unexplained events in the

timelines.

96

V. Conclusions and Recommendations

 Digital forensics examinations require significant manual effort to identify items

of probative value from the ever-increasing volume of data in modern computing

systems. This research proposes that Stochastic Context-Free Grammar (SCFG)

knowledge representation can assist examiners in the association and individualization

analysis processes on computer network traffic. SCFG is leveraged to provide context to

the low-level data collected as evidence and to build behavior profiles. Upon discovering

patterns, the analyst can begin the association or individualization process to answer

criminal investigative questions. SCFG capabilities were demonstrated in performing

association and individualization in reducing the suspect pool and reducing the volume of

evidence to examine in a computer network traffic analysis use case.

 Three contributions resulted from this research. First, domain characteristics

suitable for SCFG representation were identified and a step-by-step approach to adapt

SCFG onto novel domains was developed, enabling the PCAP to SCFG terminal process

that translating low-level networking capture file into user activity sequences.

 Second, performing the association process on user activity sequences required a

set of known behavioral profiles. This necessitated a way to compare the different

profiles, that led to the development of a novel iterative graph-based method of

identifying similarities in context-free grammars, enabling comparisons between

behavior patterns represented as grammars.

 Third, SCFG parsing and structure inference performed association and

individualization forensic processes to reduce the suspect pool or to reduce activity

sequences to events of probative value. The results from these forensic processes answer

97

investigative questions in a manner conveyable to a non-technical audience. Parsing

produces a quantitative measure associating the most likely origin. Structure inference

explained pattern events so that examination can focus on unattributed events.

5.1 Results Summary

 PCAP to SCFG terminal processing is possible through Wireshark ordering of

TCP streams, the IP meta data and organic keywords, and web categorization databases.

These factors enable a discrete and causal sequence compatible with SCFG knowledge

representation. The cross-disciplinary examination of SCFG applications identified

SCFG-compatible domain characteristics and domain adaptations that other researchers

can leverage to apply SCFG to other domains.

 Association relied on existing profiles as grammars and the stochastic parameters

of the production rules in the profiles. Parsing produced a comparative quantitative

measure that enabled comparison between all the profiles in the set and association to the

originating profile. The grammar comparison methodology developed as part of the

experimental setup for this process has additional applications in NLP translation and

computer language compiler interoperability analysis.

 The alignment and bigram-based structure inference learner explained away the

majority of activities in the set of activity sequences under examination, while not

eliminating the anomalous user activity. The degree of reduction is sensitive to the PCAP

to SCFG terminal process. The structure inference learning algorithms are domain

independent and may have applicability to other domains.

98

5.2 Recommendations for Future Research

 This section presents avenues of future research. The first recommendation

addresses the issue of turning PCAPS into timelines. The next two recommendations are

extensions of the association and individualization processes, based off topics from the

discussion section for each process from Chapter 4. The association process may be

extended to identify completed network attacks, which requires low-level signatures as

expert defined production rules. The individualization application extends the grammar

inference algorithms to produce test data that retains the behavior pattern of the users by

first discovering patterns from user recorded computer network traffic. The final future

research recommendation is transfer learning of SCFG stochastic parameters.

5.2.1 PCAP processing.

 The PCAP to URL timeline was a manual and time consuming process. Recent

efforts such as [87, 88] attempt to automate the process. Additional issues may also

complicate timeline construction. Networks that use caching require different techniques

for classification for association to a terminal. Dynamic IP addresses makes it difficult to

determine whether different activities belong in a single individualization scenario.

Range queries, which hides user queries with random dummy queries, adds significant

noise to the timelines.

5.2.2 Association for Flexible Signatures.

The association sub-section 4.1.4 discusses the potential for parsing to identify the

modus operandi of an attack from computer network traffic captures. This extends the

PCAP processing future work to include recognition beyond URL categorization. The

advantage to using SCFG is the flexibility to include additional low-level recognitions of

99

these activities without impacting the rest of the knowledge structure. In addition, SCFG

has advantages over just signature-based detection because SCFG parsing puts each

phase of an attack into context of the entire five-phase attack, so incomplete attacks do

not get flagged.

5.2.3 Data generation.

 Despite obfuscating IP information, the information within search queries and

visited sites may themselves reveal personally identifying information [71] studies and

why studies that collect their own data cannot freely share their test data. The lack of a

common data set is one challenge in performing network behavior analysis research,

because cross comparison studies are difficult. From the privacy perspective, inferring an

SCFG grammar to mimicking real user behavior by creating new data from capture data.

This process creates a gap between the recorded data and user behavior so that the user

tasks can be fulfilled using non-sensitive means. For instance, if a data capture records a

user visiting www.facebook.com/specific_username, that event is abstracted as a

social event in the grammar. When actually performing the social terminal,

social may be satisfied by any site categorized as social and without reference to

any specific username. Because the translation from categories into actual sites, this

effort requires additional sensitivity analysis regarding terminal selection and noise, as

discussed in sub-sections 4.3.1and 4.3.3. Precedence for SCFG in test data generation is

described in Appendix B.

100

5.2.4 Transfer learning.

 Transfer learning is the “ability of a system to recognize and apply knowledge

and skills learned in previous tasks to novel tasks in new domains [89].” Inside-outside

[90] is the machine learning algorithm typically used to calculate the stochastic

parameters for each production in an SCFG. Because inside-outside’s computational

complexity is cubically driven by the number of productions and the number of inputs

sequences, using the graph-based similarity methods may identify similar terminals

across grammars and transfer the stochastic parameters matched terminals to reduce the

cost of parameter learning.

101

Appendix A. SCFG Comparison

 One of the reasons to use SCFG knowledge representation is to compactly

represent large amounts of data as a set of rules governing the order of symbols. The

comparison method also has application CFG problems such as language translation or

identifying compatibility between compilers requires the ability to compare grammars.

 Current methods of comparing CFGs occur at the rule-to-rule level or at the

output-to-output level, which is a computationally impractical or undecidable problem.

This paper presents a CFG comparison method that measures grammar similarity by

identifying the structural symbol similarity between grammars. The presented method

first produces a graph representation of the CFGs where nodes represent grammar

symbols. Then, a graph node-matching algorithm produces a node similarity matrix

between nodes, identifying nodes, and therefore CFG symbols that are most similar. The

symbol matching then enables the CFG comparison of symbol connectivity and

causalities, which measures the subset of similar symbol patterns between the two

grammars. Results on several benchmark problems show that this method produces

results in polynomial time and overcomes limitations in rule-to-rule and output-to-output

grammar-based comparisons.

A.1 Reasons to Compare CFGs

 There are multiple reasons to compare CFGs. First, CFGs represent large amounts

of data. Making comparisons at the representation level avoids making more numerous

output-to-output comparisons, which reduces the utility of a compact representation in

the first place. Second, CFG comparisons show the existence of common patterns

102

between the two sets of represented data. Language translation is an NLP application that

exhibits these two elements of CFG comparison; it is not possible to enumerate and

compare every sentence between two languages and translation benefits from

understanding common sentence structure patterns [28]. Finally, grammar comparisons

reveal potential incompatibilities across different grammars on the same data. An

application of this scenario occurs in computer languages, where comparing grammars

from different parsers for the same programming language will indicate varying

acceptance levels over an identical piece of code [29].

 Grammar-based methods evaluate grammar similarity using rule-to-rule

comparisons [32, 33] or output-to-output comparisons [30, 31]. However, these

approaches are computationally in exponential time [32] or undecidable [33–35]. The

related work in this appendix provides a brief survey on different grammar-based

similarity measurement concepts. Like CFGs, graphs represent vast amounts of data or

highly-dimensional data in a compact matter [74]. Graphical models also describe logical

structure in many real-world domains such as social networks, web addresses, and

biology [77]. Algorithms that leverage graph structures often reveal useful information

not obvious in its original data form. Graph comparisons methods include edit distance

calculations, graph feature extraction, and iterative matching methods [77]. Edit distance

approaches are also exponentially complex. Graph feature extraction methods are

computationally fast, but are very sensitive to the selected statistics and may not produce

intuitive results. Therefore, this paper uses an iterative graph similarity algorithm.

We address the undecidability issue of grammar comparison methods by translating the

grammar into a graph and leveraging the advantages of graph-based representation for

103

comparison. The graph captures the connectivity relationship of the CFG production rules

into a single summarized presentation. Translating CFGs to graphs is not unprecedented.

Muggleton and Pahlavi [74] relate CFG to a stochastic automata, by translating the

production rules into states and transitions. Gecse and Kovacs [75] provide another

example of translating CFG into graphs, for the purpose of identifying grammar

consistency, highlighting a pragmatic benefit of examining CFG in graphical form. For

comparison purposes, the proposed method uses a translation similar to Gecse and

Kovacs [75], which converts the symbols into states and the links represent a connection

between symbols within a CFG production rule. A difference is that all CFG symbols are

represented as nodes in the graph, not just the non-terminals. The graph node matching

algorithm used in the proposed approach has an O(n3) complexity.

 Applying a graph node-matching algorithm provides a measure of similarity and

compares grammars by matching a symbol in one grammar to its closest approximation

in another symbol based on each symbol’s connectivity to other symbols. The node-

matching enable comparisons regarding the causality of symbols in CFG notation.

 Similarity is measured as a combination of likeness between symbols and

comparison of common causal relationships between symbols, where an existence of a

causal link in both grammars indicate similarity while differences in causal links indicate

dissimilarity. Comparisons of benchmark grammars show the intuitiveness of the results

based on the node-matching results.

104

A.2 Related Work

 In Wu, et al.’s [28] paper on language translation, the authors represent Chinese

and Taiwanese sign-language as probabilistic context-free grammars. Their work focused

on transferring the likelihood of each production rule to rank translations. The experiment

required a bilingual corpus, where the same text appeared in both languages, which is an

output-to-output comparison on a small subset of the languages. If a bilingual corpus is

not available, translation requires alternative approaches to identify common rules in both

languages.

 Fischer, et al. [29] also used an output-to-output grammar comparison approach to

detect Java parser incompatibilities. Each grammar generated a test data set comprised of

auto-generated code from the parser’s CFG. They determined parser compatibility based

on how much each parser accepted test data generated by a different parser. While they

used an output-to-output based approach, they found that identifying non-terminal

matching is useful in understanding grammar compatibility.

 Rule-to-rule or grammar based similarity comparisons examine similarity from

the perspective of structural equivalence [33, 35] and weak equivalence (coverage) [34,

35]. Structural equivalence performs comparisons by iterating over the production rules

and determining whether symbols and their respective rules exist or in combination exist

in both grammars. Paull and Unger [33] define two grammars as structurally equivalent

if both grammars produce the same sentences using different production rules. Hunt, et

al. [32] conjecture that structural equivalence is not polynomially-bounded.

 An alternative grammar-based equivalence approach explores the concept of weak

equivalence, which focuses only on equivalent coverage or output-to-output comparisons.

105

Two grammars are weakly equivalent if both grammars produce the same set of

sentences. Unlike structural equivalence, weak equivalence is not concerned with how

each grammar produces the same sentence, so weakly equivalent grammars do not

necessarily preserve semantics. An application of weak equivalence is grammar

compaction. Grammar compaction attempts to reduce the number of production rules

within a single grammar by eliminating production rules that are parseable with other

production rules, at the cost of some semantic information [35, 91]. However, there are

no known algorithms to determine weak equivalency between grammars to pragmatically

leverage this concept [34, 35].

 To address the pragmatic issues with determining weak equivalence, Hunt and

Rosenkrantz [92] approach similarity from the perspective of structural containment, or

Reynolds covering, where one grammar is able to map production rules to create rules of

the other grammar. They determined that finding Reynolds coverage between arbitrary

grammars is an NP-complete problem, but polynomial-time algorithms exist for restricted

grammars [92]. Soisalon-Soinen and Wood [31] examine a different covering

relationship, undercover, based on the produced sentences. However, they also found that

determining undercover relationship between two unrestricted CFGs is also an

undecidable problem.

 Tree-based comparisons are an intuitive transition to compare acyclic grammars

in a graphical model. The parsing operation of a grammar resembles a tree-like hierarchy

where the S is the root node, the internal nodes are VN, and all the leaf nodes are VT.

Summars-Stay, et al. [93] applied tree-based operations to examine grammar similarity

where the similarity measure is the cost of transforming one tree into the other. The cost

106

is calculated as the sum of the cost of insertion, deletion, or relabeling operations [94] .

For cross comparisons, Bulter [95] normalizes cost to the number of nodes in the larger

tree. Calculating tree edit-distance is O(n3) [96]. To reduce the computational cost, Rui,

et al. [97] expanded on the tree edit distance approach by transforming the trees into a

binary vector representation that preserves the semantic relationship between nodes, but

enables a linear complexity search that identifies the lower-bound relationship between

trees. Knowing the lower-bound narrows the search space by filtering candidates that do

not meet the lower-bound.

 Recursive (cyclic) CFGs are not representable as a tree. Therefore, more general

graphs are required to represent a broader scope of CFGs. Rosenkrantz and Hunt [30]

related grammar isomorphism to graph isomorphism, though their finding applies only to

regular grammars, which is less expressive than CFGs. Gecse and Kovacs [75] provide a

CFG graphical representation as directed graphs. Their focus was in identifying grammar

consistency rather than performing comparisons between grammars, but their work

provides an example of the pragmatic benefits of examining CFG in graph form.

Once a CFG is in graph form, there are three approaches to measuring graph similarity:

graph isomorphism, feature extraction, and iterative. The graph isomorphism approach

applies edit distance operations to make one graph isomorphic to another [77]. Similarity

is therefore, a quantitative measurement of the number of addition, subtraction, or

substitution operations on edges and nodes. Algorithms determining graph isomorphism

are exponential and thus impractical on large-scale graphs. In contrast, the feature

extraction approach attempts to compare graph features such as degree distribution,

diameter, or eigenvalues [77]. Algorithms to calculate these features scale well as graph

107

size increases, but are sensitive to feature selection. Improper selection may yield

unintuitive results [77]. Iterative methods approach similarity as a node-by-node

comparison of their neighborhood and edges [36, 98].

 Graph-based approaches also introduce the concept of sub-graph matching, where

one graph may be a smaller portion of another. This is applicable to CFGs as one

grammar may be a subset of another, analogous to the grammar-based coverage concepts.

Sub-graph matching typically requires node mapping, which is analogous to comparing

grammars that do not share the same VT ⋃ VN set or labels.

A.3 Example

 Upon increasing the complexity of the grammars, straight-forward rule-to-rule

evaluation becomes less clear. Figure 26 shows a grammar, GA, its graphical

representation, and a list of the causalities from the grammar production rules and Figure

27 shows a comparison between GA against GC and GB.

 The grammar GB is GA converted into Chomsky Normal Form (CNF). In CNF, all

production rules are in the form A → B C or A → a, restricting the RHS of a production

rule to two non-terminals (upper-case letters) or a single terminal (lower-case letters). All

CFGs have an equivalent CFG representation [39]. By definition, the CNF version of the

grammar is weakly equivalent to the original, but RHS restrictions cause structural

changes, evident in the graphical representation. GB includes additional nodes and lines

not in GA, which also complicate node matching.

 The grammar GC has an additional nonterminal symbol than GA, but less than GB,

and can produce sentences not parseable by GA. From the production rules, GC also

108

exhibits a causality relationship between a non-terminal and terminal symbol, A and a,

that mimic the causality relationships in GA between A and b, not exhibited in GB. Once

the node matches are applied to the causality lists in GB and GC, the causality lists

indicate that GB has causal pairs in common with GA, despite a larger set of symbols, in

contrast to GC.

GA GA Graph GA Causalities

VT: a, b
VN: S, A
S: S
P:
 S → A b A

 S → A b
 S → b A
 S → b
 A → A a
 A → a

A > b
b > A
A > a

Figure 26. Grammar GA, the basis for comparison.

A.4 Summary

 Comparing context-free grammars (CFGs) has demonstrated use in applications

such as language translation in Natural Language Processing (NLP), compiler

compatibility, and activity recognition. CFGs compactly represent vast amounts of data.

Making comparisons at the data representation level avoids computationally costly

output-to-output comparisons and reveals common patterns between the sets of data.

Grammar-based similarity concepts use rule-to-rule or output-to-output comparisons

which are also computationally impractical or undecidable.

109

GB GC
VT: a, b VT: a, b
VN: S, T, A, B, C VN: S,A,B

S: S S: S
P: P:

 S → T A S → B
 S → B A A → a
 S → A B B → A a
 S → b B → a A
 T → A B B → b
 A → A C
 A → a
 B → b
 C → a

X SA AA aA bA X SA AA aA bA
SB 0.13 0.14 0.00 0.00 SC 0.09 0.09 0.00 0.00
TB 0.04 0.21 0.00 0.00 AC 0.09 0.43 0.08 0.02
BB 0.00 0.05 0.02 0.01 BC 0.26 0.72 0.01 0.01
AB 0.14 0.85 0.07 0.02 aC 0.00 0.25 0.14 0.04
CB 0.02 0.13 0.06 0.01 bC 0.00 0.25 0.14 0.04
aB 0.04 0.34 0.09 0.01
bB 0.00 0.02 0.01 0.01

GB

Causalities
Remapped GB

nodes to GA
 GC

Causalities
Remapped GC

nodes to GA
 A > B  A > b in GA A > a  S > a
 B > A  b > A in GA a > A  a < S
 T > A  S > A
 A > C  A > C

Figure 27. Two grammars, GB and GC, compared against GA. GB is GA in Chomsky
Normal Form. GC is covered by GA and though it has a symbol set more similar to GA, GC

is less similar to GA than GB as indicated by remapped causal relationships.

110

 We translate CFG into graphs to leverage known polynomial-time similarity

algorithms. Turning CFGs into graphs collapses the connectivity relationship between

symbols from all the production rules into one summarized presentation for efficient

comparison. We selected a polynomial complexity graph node-matching algorithm that

produces a likelihood matrix that matches grammar symbols across the grammars under

comparison. Similarity is based on the likeness between symbols across two grammars

and the existence of common causal links between symbols in each grammar. Benchmark

programs produced intuitive results in comparison to known grammar concepts.

The proposed approach may yield promising results in transfer learning, which

commonly includes taxonomies translatable to CFG. Identifying similarities reduces the

dependence on labeled data and may achieve better learning results.

 The proposed method does not leverage stochastic information found in stochastic

context-free grammars (SCFG). Additional work may extend the proposed method to

incorporate the stochastic parameters to measure SCFG similarity.

111

Appendix B. SCFG for Test Data Generation

 Vishwanath and Vahdat [99] developed Swing, a network traffic generator to

produce usage traces that reflect the characteristics of template traces at the packet level.

They adopted a structural model determine the type of traffic flow, which included a user

category that determined the application used and a session category that determined the

higher-level task carried out by the user. Thus, Swing reproduces packet level

characteristics, such as byte and packet burstiness, by using notions of the higher-level

user and session concepts. Because of Swing’s focus at the packet level, most of their

work discusses details below the session layer.

 Chinchilla, et al. [100] proposed a traffic emulator, trafgen, to model traffic at the

transport protocol level. They outlined user behavior modeling as combinations of

Markov (memory-less), Petri Nets (preconditional), Hierarchical, and

psychological/sociological transitions. Users are denoted as specific IP addresses.

 Simpson, et al. [101] collected user network data from approximately 1,700

volunteers who downloaded and ran the NETI@home (NETwork Intelligence at home)

client on their machines. Using the client allowed the authors to gain insight into end-user

behavior in a network-independent manner. Capturing information at the user end also

avoids the complexity of accounting for proxies and caches. The study captured

behaviors based on TCP or UDP ports, user think time, consecutive contacts, and contact

selection. The modeling approach did not attempt to categorize user type or specific user

tasks.

 Gold, et al. [102, 103] developed GOSMR (Goal-Directed Scenario Modeling

Robots) in an attempt to add the element of goal-directed behaviors in network traffic

112

generators. GOSMR focuses on the activity of the agents, particularly agent response to

satisfy goals under network disruption. Each agent has stack of Actions. Actions are self-

contained, though actions can put lower-level actions onto the stack to satisfy itself. A

Behavior object suggests an action for the using the utility and payoffs to choose the

action, an agent has an empty stack. GOSMR can also alter the payoffs and penalties to

mimic certain conditions to force the agents to take different actions as a reflection of the

changed conditions to satisfy the same goal. GOSMR also includes a partial-order search

through plan space planner to provide an agent alternate actions to achieve the agent’s

goal in the event an attempted action fails. An advantage of their framework is that the

set of agent behaviors is modular and can be added or inserted as needed, without

modifying the overall architecture. In their experiments, the agents all act accordingly to

the same set of rewards, so different agents tended to behave the same way, such as using

faster responding services more.

 Maurer [104] documented early experience of using “enhanced” CFGs to produce

data to test code. His enhancement to CFGs includes using stochastic parameters,

essentially SCFGs. To test specific branches, he applied selective substitution to ensure

coverage. Empirically, he set the recursive productions to a smaller probability such that

tests did not grow infinitely large.

 Gecse and Kovacs [75] propose a method for evaluating the consistency of SCFG

and transforming arbitrary SCFGs into consistent ones, with the specific emphasis on

producing test data. Consistency is defined as the likelihood of terminating a sentence

generation after a finite number of steps. Consistency is important for test data generation

113

when no corpus is available to infer probability parameters that yields sufficient coverage

and error tolerance.

 Zhao, et al. [105] discover behavioral patterns in computer programs for the

purpose of identifying common substructures to ease debugging and to also simulate

program executions. Their approach used context-sensitive graph grammars and

substructure compression, an MDL approach, to identify the substructure patterns.

 Buehrer, et al. [106] examined the differences between automated traffic and

human generated traffic based on behavioral patterns. Used legimitely, generating more

realistic traffic patterns may help test networks. Used maliciously, this can also be used to

garner click-through rates. From the aspect of test data generation, their work provides

insight into how to distinguish generated versus empirical data. They were able to

distinguish between the groups, but the classification was based primarily on activity rate

and volume factors rather than the activities themselves.

114

Bibliography

[1] R. J. Walls, B. N. Levine, M. Liberatore, and C. Shields, “Effective digital
forensics research is investigator-centric,” in Proc. USENIX Workshop on Hot
Topics in Security (HotSec), 2011.

[2] F. Buchholz and C. Falk, “Design and Implementation of Zeitline: a Forensic
Timeline Editor.,” Digit. Forensic Res. Work., pp. 1–7, 2005.

[3] S. Esposito, “Analysis of Forensic Super Timelines,” Air Force Institute of
Technology, 2012.

[4] P. Gladyshev and A. Patel, “Formalising event time bounding in digital
investigations,” Int. J. Digit. Evid., vol. 4, no. 2, pp. 1–14, 2005.

[5] J. Olsson and M. Boldt, “Computer forensic timeline visualization tool,” Digit.
Investig., vol. 6, no. SUPPL., pp. S78–S87, 2009.

[6] “Digital Evidence and Forensics,” 2010. [Online]. Available:
http://www.nij.gov/topics/forensics/evidence/digital/Pages/welcome.aspx.

[7] E. S. Pilli, R. C. Joshi, and R. Niyogi, “Network forensic frameworks: Survey and
research challenges,” Digit. Investig., vol. 7, no. 1–2, pp. 14–27, 2010.

[8] M. Pollitt, “Applying traditional forensic taxonomy to digital forensics,” IFIP Int.
Fed. Inf. Process., vol. 285, pp. 17–26, 2008.

[9] H. C. Lee and E. M. Pagliaro, “Forensic Evidence and Crime Scene Investigation,”
J. Forensic Investig., vol. 1, no. 1, pp. 1–5, 2013.

[10] K. Inman and N. Rudin, “The origin of evidence,” Forensic Sci. Int., vol. 126, no.
1, pp. 11–16, 2002.

[11] “Nitroba University Harassment Scenario,” 2010. [Online]. Available:
http://digitalcorpora.org/corpora/scenarios/nitroba-university-harassment-scenario.

[12] C. Perera, S. Member, A. Zaslavsky, and P. Christen, “Context Aware Computing
for The Internet of Things : A Survey,” Commun. Surv. Tutorials, IEEE, vol. 16,
no. 1, pp. 414–454, 2014.

[13] C. W. Geib and M. Steedman, “On Natural Language Processing and Plan
Recognition.,” in International Joint Conferences on Artificial Intelligence, 2007,
pp. 1612–1617.

115

[14] N. Indurkya and F. J. Damerau, Handbook of natural language processing, 2nd ed.
2010.

[15] M. Olsen, R. Horton, and G. Roe, “Something borrowed: sequence alignment and
the identification of similar passages in large text collections.,” Digit. Stud. champ
numérique, vol. 2, no. 1, 2011.

[16] Y. A. Ivanov and A. F. Bobick, “Recognition of visual activities and interactions
by stochastic parsing,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 8, pp.
852–872, 2000.

[17] D. Moore and I. Essa, “Recognizing multitasked activities from video using
stochastic context-free grammar,” AAAI/IAAI, pp. 770–776, 2002.

[18] R. Nevatia, T. Zhao, and S. Hongeng, “Hierarchical language-based representation
of events in video streams,” in Computer Vision and Pattern Recognition
Workshop, 2003. CVPRW’03., 2003, vol. 4, p. 39.

[19] K. M. Kitani, Y. Sato, and A. Sugimoto, “Recovering the basic structure of human
activities from a video-based symbol string,” in Motion and Video Computing,
2007, 2007, p. 9.

[20] E. Rivas and S. R. Eddy, “The language of RNA: a formal grammar that includes
pseudoknots,” BMC Bioinformatics, vol. 16, no. 4, pp. 334–340, 2000.

[21] D. Searls, “The language of genes,” Nature, vol. 420, no. 6912, pp. 211–217,
2002.

[22] Y. Sakakibara, “Grammatical inference in bioinformatics,” Pattern Anal. Mach.
Intell., vol. 27, no. 7, pp. 1051–1062, 2005.

[23] R. Giegerich, “Introduction to Stochastic Context Free Grammars,” in RNA
Sequence, Structure, and Function: Computational and Bioinformatic Methods.,
Humana Press, 2011, pp. 85–106.

[24] J. Anderson, P. Tataru, and J. Staines, “Evolving stochastic context--free
grammars for RNA secondary structure prediction,” BMC Bioinformatics, vol. 13,
no. 1, p. 78, 2012.

[25] C. W. Geib and R. P. Goldman, “A probabilistic plan recognition algorithm based
on plan tree grammars,” Artif. Intell., vol. 173, no. 11, pp. 1101–1132, Jul. 2009.

[26] C. Mu and Y. Li, “An intrusion response decision-making model based on
hierarchical task network planning,” Expert Syst. Appl., vol. 37, no. 3, pp. 2465–
2472, Mar. 2010.

116

[27] N. Li, S. Kambhampati, and S. W. Yoon, “Learning Probabilistic Hierarchical
Task Networks to Capture User Preferences.,” in International Joint Conference
on Artificial Intelligence, 2009, pp. 1754–1759.

[28] C.-H. Wu, H.-Y. Su, Y.-H. Chiu, and C.-H. Lin, “Transfer-based statistical
translation of Taiwanese sign language using PCFG,” ACM Trans. Asian Lang.
Inf. Process., vol. 6, no. 1, p. 1–es, Apr. 2007.

[29] B. Fischer, R. Lämmel, and V. Zaytsev, “Comparison of context-free grammars
based on parsing generated test data,” Lect. Notes Comput. Sci. (including Subser.
Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 6940 LNCS, pp. 324–
343, 2012.

[30] D. J. Rosenkrantz and H. B. Hunt, “Testing for grammatical coverings,” Theor.
Comput. Sci., vol. 38, no. 3, pp. 323–341, 1985.

[31] E. Soisalon-Soininen and D. Wood, “On structural similarity of context-free
grammars,” in Mathematical Foundations of Computer Science, J. Gruska and M.
Chytil, Eds. Springer Berlin Heidelberg, 1981, pp. 491–498.

[32] H. B. Hunt III, D. J. Rosenkrantz, and T. G. Szymanski, “On the equivalence,
containment, and covering problems for the regular and context-free languages,” J.
Comput. …, vol. 268, pp. 222–268, 1976.

[33] M. M. C. Paull and S. H. S. Unger, “Structural equivalence of context-free
grammars,” J. Comput. Syst. Sci., vol. 463, pp. 427–463, 1968.

[34] P. S. Landweber, “Decision Problems of Phrase-Structure Grammars,” IEEE
Trans. Electron. Comput., vol. EC-13, 1964.

[35] K. Taniguchi and T. Kasami, “Reduction of context-free grammars,” Inf. Control,
vol. 108, no. September 1968, pp. 92–108, 1970.

[36] L. a. Zager and G. C. Verghese, “Graph similarity scoring and matching,” Appl.
Math. Lett., vol. 21, pp. 86–94, 2008.

[37] R. Davis, H. Shrobe, and P. Szolovits, “What Is a Knowledge Representation?,” AI
Magazine, vol. 14, no. 1, pp. 17–33, 1993.

[38] M. Collins, “Probabilistic Context-Free Grammars (PCFGs).” 2013.

[39] C. D. Manning and H. Schutze, “Chapter 11. Probabilistic Context Free
Grammars,” in Foundations of Statistical Natural Language Processing, 1999, pp.
381–404.

117

[40] D. H. Younger, “Recognition and Parsing of Context-Free Languages in Time n3,”
Inf. Control, vol. 10, pp. 189–208, 1967.

[41] J. Earley, “An efficient context-free parsing algorithm,” Communications of the
ACM, vol. 13. pp. 94–102, 1970.

[42] S. M. Shieber, “Evidence against the context-freeness of natural language,”
Linguist. Philos., pp. 333–343, 1985.

[43] R. Bod, “Using an annotated corpus as a stochastic grammar,” in Proceedings of
the sixth conference on European chapter of the Association for Computational
Linguistics, 1993, pp. 37–44.

[44] L. Lee, “Learning of context-free languages: A survey of the literature,” 1996.

[45] J. Reeder, P. Steffen, and R. Giegerich, “Effective ambiguity checking in
biosequence analysis,” BMC Bioinformatics, vol. 6, no. 1, p. 153, 2005.

[46] V. O. Polyanovsky, M. A. Roytberg, and V. G. Tumanyan, “Comparative analysis
of the quality of a global algorithm and a local algorithm for alignment of two
sequences.,” Algorithms Mol. Biol., vol. 6, no. 1, p. 25, Jan. 2011.

[47] Z. Zhang, T. Tan, and K. Huang, “An extended grammar system for learning and
recognizing complex visual events,” Pattern Anal. Mach. Intell. IEEE Trans., vol.
33, no. 2, pp. 240–255, 2011.

[48] N. Li, W. Cushing, S. Kambhampati, and S. Yoon, “Learning User Plan
Preferences Obfuscated by Feasibility Constraints.,” Int. Conf. Autom. Plan.
Sched., 2009.

[49] K. Erol, J. Hendler, and D. S. Nau, “HTN planning: Complexity and expressivity,”
in AAAI, 1994, vol. 94, pp. 1123–1128.

[50] G. G. Chowdhury, “Natural language processing,” in Annual Review of
Information Science and Technology, 2003.

[51] N. M. Luscombe, D. Greenbaum, and M. Gerstein, “What is bioinformatics ? An
introduction and overview,” Yearb. Med. Inform., pp. 83–100, 2001.

[52] F. Coste, “Tutorial on modelling biological sequences by grammatical inference:
Bibliography,” Engineering, vol. 1, no. August, pp. 107–151, 2010.

[53] R. D. Dowell and S. R. Eddy, “Evaluation of several lightweight stochastic
context-free grammars for RNA secondary structure prediction,” BMC
Bioinformatics, vol. 5, no. 1, p. 71, 2004.

118

[54] M. S. Ryoo and J. K. Aggarwal, “Stochastic Representation and Recognition of
High-Level Group Activities,” Int. J. Comput. Vis., vol. 93, no. 2, pp. 183–200,
Jun. 2010.

[55] M. S. Ryoo and J. K. Aggarwal, “Recognition of composite human activities
through context-free grammar based representation,” in Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, 2006,
pp. 1709–1718.

[56] T. Zimmerman and S. Kambhampati, “Learning-assisted automated planning:
Looking back, taking stock, going forward,” AI Magazine, vol. 24, no. 2, p. 73,
2003.

[57] D. V Pynadath and M. P. Wellman, “Probabilistic state-dependent grammars for
plan recognition,” in Uncertainty in Artificial Intelligence Proceedings, 2000, pp.
507–514.

[58] C. W. Geib and R. P. Goldman, “Recognizing Plans with Loops Represented in a
Lexicalized Grammar.,” in AAAI, 2011.

[59] N. Li, W. Cushing, S. Kambhampati, and S. Yoon, “Learning probabilistic
hierarchical task networks as probabilistic context-free grammars to capture user
preferences,” ACM Trans. Intell. Syst. Technol., vol. 5, no. 2, pp. 1–34, 2014.

[60] M. E. DeYoung, “Dynamic protocol reverse engineering: A grammatical inference
approach,” Thesis, Air Force Institute of Technology, 2008.

[61] J. Antunes, N. Neves, and P. Verissimo, “Reverse engineering of protocols from
network traces,” in 18th Working Conference on Reverse Engineering (WCRE),
2011, 2011, pp. 169–178.

[62] J. M. Estevez-Tapiador, P. Garcia-Teodoro, and J. E. Diaz-Verdejo, “Stochastic
protocol modeling for anomaly based network intrusion detection,” in First IEEE
International Workshop on Information Assurance, 2003. IWIAS 2003., 2003, pp.
3–12.

[63] K. Lari and S. J. Young, “The estimation of stochastic context-free grammars
using the Inside-Outside algorithm,” Comput. Speech Lang., vol. 4, no. 1, pp. 35–
56, Jan. 1990.

[64] J. J. Horning, “A Study of Grammatical Inference,” Dissertation, Stanford
University, 1969.

119

[65] A. D’Ulizia, F. Ferri, and P. Grifoni, “A survey of grammatical inference methods
for natural language learning,” Artif. Intell. Rev., vol. 36, no. 1, pp. 1–27, Jan.
2011.

[66] G. Combs, “Wireshark.” 2015.

[67] H. Kim, K. Claffy, and M. Fomenkov, “Internet traffic classification demystified:
myths, caveats, and the best practices,” in ACM Conference on emerging
Networking EXperiments and Technologies, 2008.

[68] T. T. T. Nguyen and G. Armitage, “A survey of techniques for internet traffic
classification using machine learning,” IEEE Commun. Surv. Tutorials, vol. 10,
no. 4, pp. 56–76, 2008.

[69] A. Barsamian, V. Berk, and J. Murphy, “Identifying Network Users Using Flow-
Based Behavioral Fingerprinting.” 2013.

[70] Y. Yang, “Web user behavioral profiling for user identification,” Decis. Support
Syst., vol. 49, no. 3, pp. 261–271, 2010.

[71] C. Banse, D. Herrmann, and H. Federrath, “Tracking users on the Internet with
behavioral patterns: Evaluation of its practical feasibility,” IFIP Adv. Inf. Commun.
Technol., vol. 376 AICT, pp. 235–248, 2012.

[72] W. Mao, J. Gratch, and X. Li, “Probabilistic plan inference for group behavior
prediction,” IEEE Intell. Syst., vol. 27, no. 4, pp. 27–36, 2012.

[73] M. Rogers, “The role of criminal profiling in the computer forensics process,”
Comput. Secur., vol. 22, no. 4, pp. 292–298, 2003.

[74] L. Getoor and B. Taskar, Introduction to Statistical Relational Learning. The MIT
Press, 2007.

[75] R. Gecse and A. Kovács, “Consistency of stochastic context-free grammars,”
Math. Comput. Model., vol. 52, no. 3–4, pp. 490–500, 2010.

[76] Yi Cao (Cranfield University), “Munkres (Hungarian) Algorithm for Linear
Assignment Problem.” 2011.

[77] D. Koutra, a Parikh, a Ramdas, and J. Xiang, “Algorithms for Graph Similarity
and Subgraph Matching,” 2011.

[78] A. J. Laub, Matrix Analysis for Scientists and Engineers. 2005.

120

[79] J. Edmonds and R. M. Karp, “Theoretical Improvements in Algorithmic Efficiency
for Network Flow Problems,” J. ACM, vol. 19, no. 2, pp. 248–264, 1972.

[80] T. Broeders, “Forensic evidence and international courts and tribu nals:,” pp. 1–10,
2003.

[81] H. K. Peng, P. Wu, J. Zhu, and J. Y. Zhang, “Helix: Unsupervised grammar
induction for structured activity recognition,” Proc. - IEEE Int. Conf. Data Mining,
ICDM, pp. 1194–1199, 2011.

[82] S. B. Needleman and C. D. Wunsch, “A general method applicable to the search
for similarities in the amino acid sequence of two proteins.,” J. Mol. Biol., vol. 48,
no. 3, pp. 443–453, 1970.

[83] N. C. Jones and P. A. Pevzner, An Introduction to Bioinformatics Algorithms, vol.
101, no. 474. 2004.

[84] C. G. Nevill-Manning and I. H. Witten, “Identifying Hierarchical Structure in
Sequences: A linear-time algorithm,” vol. 7, pp. 67–82, 1997.

[85] E. Skoudis and T. Liston, Counter Hack Reloaded: A Step-by-Step Guide to
Computer Attacks and Effective Defenses. Pearson Education, 2005.

[86] V. Gorodetski and I. Kotenko, “Attacks against computer network: Formal
grammar-based framework and simulation tool,” in Recent Advances in Intrusion
Detection, 2002, pp. 219–238.

[87] G. Xie, M. Iliofotou, T. Karagiannis, M. Faloutsos, and Y. Jin, “ReSurf:
Reconstructing Web-Surfing Activity From Network Traffic,” IFIP Netw. Conf.,
pp. 1–9, 2013.

[88] C. Neasbitt, R. Perdisci, K. Li, and T. Nelms, “ClickMiner : Towards Forensic
Reconstruction of User-Browser Interactions from Network Traces Categories and
Subject Descriptors,” Proc. 2014 ACM SIGSAC Conf. Comput. Commun. Secur.
ACM, pp. 1244–1255, 2014.

[89] S. J. Pan and Q. Yang, “A Survey on Transfer Learning,” IEEE Trans. Knowl.
Data Eng., vol. 22, no. 10, pp. 1345–1359, Oct. 2010.

[90] M. Johnson, “Open-source software by Mark Johnson,” 2007. [Online]. Available:
http://web.science.mq.edu.au/~mjohnson/Software.htm.

[91] M. Hepple and J. Van Genabith, “Experiments in Structure Preserving Grammar
Compaction,” no. PTB II, 1999.

121

[92] H. B. Hunt and D. J. Rosenkrantz, “Efficient algorithms for structural similarity of
grammars,” in Proceedings of the 7th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages - POPL ’80, 1980, pp. 213–219.

[93] D. Summers-Stay, C. L. Teo, Y. Yang, C. Fermuller, and Yiannis Aloimonos,
“Using a Minimal Action Grammar for Activity Understanding in the Real
World,” IEEE Int. Conf. Intell. Robot. Syst., pp. 4104–4111, 2012.

[94] K. Zhang and D. Shasha, “Simple Fast Algorithms for the Editing Distance
between Trees and Related Problems,” SIAM J. Comput., vol. 18, no. 6, pp. 1245–
1262, 1989.

[95] D. Buttler, “A short survey of document structure similarity algorithms,” in
International Conference on Internet Computing, 2004, pp. 3–9.

[96] P. Bille, “A survey on tree edit distance and related problems,” Theor. Comput.
Sci., pp. 1–27, 2005.

[97] R. Yang, P. Kalnis, and A. K. H. Tung, “Similarity evaluation on tree-structured
data,” Proc. 2005 ACM SIGMOD Int. Conf. Manag. data SIGMOD 05, p. 754,
2005.

[98] G. Kollias, “Fast parallel algorithms for graph matching problems,” Comput.
Math. with Appl., vol. 36, p. 123, 1998.

[99] K. V. Vishwanath and A. Vahdat, “Swing: Realistic and responsive network traffic
generation,” IEEE/ACM Trans. Netw., vol. 17, no. 3, pp. 712–725, 2009.

[100] R. Chinchilla, J. Hoag, D. Koonce, H. Kruse, S. Osterman, and Y. Wang,
“Characterization of Internet Traffic and User Classification: Foundations for the
Next Generation of Network Emulation,” 2002.

[101] C. R. Simpson, D. Reddy, and G. F. Riley, “Empirical Models of End-User
Network Behavior from NETI@home Data Analysis,” Simulation, vol. 84, no. 10–
11, pp. 557–571, 2008.

[102] K. Gold, Z. J. Weber, B. Priest, J. Ziegler, K. Sittig, and W. W. Streilein,
“Modeling How Thinking About the Past and Future Impacts Network Traffic
with the GOSMR Architecture Categories and Subject Descriptors,” Proc.
AAMAS, 2013.

[103] K. Gold and W. Street, “Learning to Efficiently Pursue Communication Goals on
the Web with the GOSMR Architecture,” pp. 1227–1233, 2013.

122

[104] P. M. Maurer, “Generating test data with enhanced context-free grammars,” IEEE
Softw., vol. 7, no. 4, 1990.

[105] C. Zhao, K. Ates, J. Kong, and K. Zhang, “Discovering program’s behavioral
patterns by inferring graph-grammars from execution traces,” Proc. - Int. Conf.
Tools with Artif. Intell. ICTAI, vol. 2, pp. 395–402, 2008.

[106] G. Buehrer, J. W. Stokes, and K. Chellapilla, “A large-scale study of automated
web search traffic,” Proc. 4th Int. Work. Advers. Inf. Retr. web - AIRWeb ’08, p. 1,
2008.

123

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of the collection of information, including suggestions for reducing this burden to Department of Defense,
Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington,
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to comply
with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

17-09-2015
2. REPORT TYPE

Doctoral Dissertation
3. DATES COVERED (From – To)

March 2013 – Sep 2015

TITLE AND SUBTITLE

Network Analysis with Stochastic Grammars

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Lin, Alan C., Maj, USAF

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
 Air Force Institute of Technology
 Graduate School of Engineering and Management (AFIT/EN)
 2950 Hobson Way, Building 640
 WPAFB OH 45433-8865

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT-ENG-DS-15-S-014

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Intentionally left blank

10. SPONSOR/MONITOR’S
ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
 DISTRUBTION STATEMENT A. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES
This material is declared a work of the U.S. Government and is not subject to copyright
protection in the United States.
14. ABSTRACT

Digital forensics requires significant manual effort to identify items of evidentiary interest from the ever-
increasing volume of data in modern computing systems. Digital forensic examiners mentally extract
insights from unstructured sequences of events. To help examiners prioritize and extract useful
information from low-level network data, this research hypothesizes using Stochastic Context-Free
Grammar (SCFG) knowledge representation to perform behavior analysis in network forensic
examination. Results demonstrated that SCFG produced a qualitative measure to compare behavior
profiles and associate the likely source. In addition, the development of two grammar inference methods
identified behavior patterns in network data, to narrow the search space and focus examination on events
unexplained by the behavior patterns.

15. SUBJECT TERMS
Data mining, Stochastic Grammar, Pattern Discovery
16. SECURITY CLASSIFICATION
OF:

17. LIMITATION
OF
 ABSTRACT

UU

18.
NUMBER
OF PAGES

123

19a. NAME OF RESPONSIBLE PERSON
Gilbert L. Peterson, AFIT/ENG

a.
REPORT

U

b.
ABSTRACT

U

c. THIS
PAGE

U

19b. TELEPHONE NUMBER (Include area code)
(937)255-6565,ext4281
gilbert.peterson@afit.edu

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

