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Abstract 
 

 Digital forensics requires significant manual effort to identify items of evidentiary 

interest from the ever-increasing volume of data in modern computing systems. One of 

the tasks digital forensic examiners conduct is mentally extracting and constructing 

insights from unstructured sequences of events. This research assists examiners with the 

association and individualization analysis processes that make up this task with the 

development of a Stochastic Context-Free Grammars (SCFG) knowledge representation 

for digital forensics analysis of computer network traffic.  

 SCFG is leveraged to provide context to the low-level data collected as evidence 

and to build behavior profiles. Upon discovering patterns, the analyst can begin the 

association or individualization process to answer criminal investigative questions. 

 Three contributions resulted from this research. First, domain characteristics 

suitable for SCFG representation were identified and a step-by-step approach to adapt 

SCFG to novel domains was developed. Second, a novel iterative graph-based method of 

identifying similarities in context-free grammars was developed to compare behavior 

patterns represented as grammars. Finally, the SCFG capabilities were demonstrated in 

performing association and individualization in reducing the suspect pool and reducing 

the volume of evidence to examine in a computer network traffic analysis use case.  
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NETWORK ANALYSIS WITH STOCHASTIC GRAMMARS 

 
I. Introduction 

1.1 General Issue 

 Digital forensics involves identifying and analyzing relevant fragments of 

computer data to piece together a probable explanation, or narrative, of events that 

transpired, for investigative and judiciary purposes [1]. The ever-increasing volume of 

digital data collected for forensic examinations increases the difficulty of this task. Law 

enforcement agencies find themselves unable to commit the human resources necessary 

to manually sift through the data, which results in the examination bottlenecking the 

overall criminal investigative process [2–4].  

 This research focuses on speeding examination by automating portions of the 

computer network traffic analysis. Computer network traffic evidence is usually in the 

form of a network packet capture in one or more packet capture (PCAP) files. Examining 

PCAP files is time consuming because the packet-by-packet format of the data captured 

within PCAP files is not reflective of how a typical computer end-user thinks and 

operates the system—the user performs a specific task and leaves the computer to carry 

out the underlying mechanics required to accomplish the user action. It is often the 

actions of evidentiary interest that the examiner is attempting to identify. Examiners need 

tools and technologies are necessary to help examiners “efficiently identify the relevant 

pieces of data in a timely manner [5, 6].” 

 Development of forensic tools and technologies require an understanding of the 

legal system since legal experts, not computer scientists or network administrators, 
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conduct judicial proceedings. Digital evidence must be presented in understandable 

language for legal and non-technical persons to use in court cases [7]. In an ideal 

scenario, a prosecutor first defines the legal question for the forensic examiner, who then 

decides on a scientific method to extract the relevant evidence necessary. This 

coordination makes the most efficient use of resources and also provides an end-state for 

the examination [8].  

 Evidence examination, digital and physical,  must satisfy both legal and scientific 

requirements [9]. To bridge the gap between the legal requirements and the forensic 

examination procedures, Inman and Rudin [10] propose a framework of four forensic 

processes intended to answer the investigative questions, “who, what, when, where, why, 

and how.” While their framework was originally developed for physical evidence, Pollitt 

[8] discusses how each of these are adaptable in digital forensics as well.  

1.1.1 Identification. 

 The identification process attempts to answer the “what” question. In physical 

evidence, identification uses a set of characteristics or features to determine the 

classification or category of an item [9]. For instance, upon recovering a bullet, 

identification may use its size to determine that “the bullet is a 9mm bullet.” 

Identification works similarly in digital forensics, where features, such as protocol and 

headers, may reveal the type of transmission or the type of file [8]. 

1.1.2 Individualization. 

 Individualization takes the identification process further, by attempting to make or 

use uniqueness assertions to answer “which one” or “whose is it” questions [10]. For 

instance, identification may type a recovered bullet as a 9mm, individualization attempts 
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to singularly identify that “this is a 9mm from a specific gun.” Individualization in digital 

forensics might be found in header information that includes the user-agent and username 

[11].   

1.1.3 Association. 

 Association makes inference about the origin of source or the likelihood that two  

items were in contact [10]. Extending the previous bullet examples, an association would 

connect the 9mm bullet to the victim or shooter. In digital forensics, association is 

identifying evidence connecting the suspect or victim [9], such as modus operandi 

patterns or demonstrations of the commission of the crime [8].  

1.1.4 Reconstruction. 

 Reconstruction attempts to answer “where” and “when” questions [10]. In 

physical evidence, this phase is often last in the examination process because it requires 

elements of prior processes [9]. Using the previous bullet example again, reconstruction 

is relevant that a bullet embedded into a wall after hitting a person only after first 

identifying the bullet as a 9mm, individualizing it to the suspect’s gun, and associating it 

as the bullet that passed through the victim. Time stamps are common in digital media, 

making reconstruction more accessible, though the examiner still needs to account for the 

possibility of tampering and synchronization [8]. In both physical and digital settings, 

reconstruction tends to focus on the relative order rather than the specific timing of events 

[10].  
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1.2 Hypothesis 

 This research hypothesizes that stochastic context-free grammar (SCFG) parsing 

and structure inference techniques can generate activity patterns and discover patterns in 

computer network traffic to distinguish between routine and irregular activities. The goal 

is to eliminate suspects or data to focus the digital forensic examination and extract and 

contextually structure the raw data into higher-level information necessary for criminal 

investigators to answer investigative questions [12].  

1.3 Contributions 

Three contributions resulted from this research. The first contribution is a step-by-

step approach to apply SCFG to novel domains. The approach is a result of a cross-

domain examination that identified domain characteristics that result in a positive 

application of the SCFG knowledge representation. The second contribution led to the 

development of a grammar-comparison method resulting from the association process 

experimental setup. Finally, performing association and individualization process 

demonstrated SCFG mechanics to reduce the suspect pool and the volume of evidence in 

computer network traffic examinations. 

1.3.1 General Methodology to Apply SCFG to a Novel Domain. 

To evaluate SCFG as a knowledge representation for computer network traffic 

analysis, we survey problem domains that leverage SCFG, such as natural language 

processing [13–15], activity recognition [16–19], bioinformatics [20–24], and automated 

planning [13, 25–27]. The survey highlights suitable domain traits for SCFG 

representation and its suitability for networking data, resulting in the development of a 
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methodology to adapt SCFG to new domains, which can assist other researchers in 

applying SCFG towards their problem domains. 

1.3.2 Grammar Comparison. 

After determining suitability for computer network traffic analysis, this research 

examines representing profiles as behavioral patterns and associating generated activity 

sequences back to the originating profile. The association process requires a set of known 

profiles. Conducting the association process first required a grammar-based comparison 

methodology to evaluate the differences between the profiles. The need to illustrate the 

differences in the profiles led to the development of a graph-based grammar comparison 

measure with polynomial computation complexity. The profile comparison showed 

which profiles shared common causal symbol patterns as a measure of similarity.  

Generically, grammar comparison enables comparison of data patterns, rather 

than the individual data elements; this has applications in language translation and other 

infinitely large domains, where full enumeration of the complete set of outputs is not 

possible [28]. Grammar comparison also has implications in the ability to identify 

incompatibilities in parsing code between different compilers [29].  

1.3.3 Association and Individualization with SCFG 

Finally, we investigate using SCFG for association and individualization tasks. 

The grammar comparison contribution enabled the association experimental setup, which 

applied SCFG parsing on an unknown activity sequence by a profile to produce a parse 

likelihood value. The parse likelihood value is demonstrated as an effective means of 

identifying the originating profile, thereby eliminating suspects that do not fit the profile. 
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In individualization, structure inference to discover behavior patterns to reduce 

the amount of activities in a computer network capture, while retaining the anomalous 

activities of interest. Discovered behavior patterns are unique characteristics inferred 

from the individualization process. Instead of using the patterns to make the 

individualization assertion, the patterns are used to “provide investigative leads” by 

identifying events that are not attributable to patterns [8]. Using SCFG for pattern 

discovery led to the development of two grammar inference methods to find behavior 

patterns exhibited by the individual. Because grammar inference is not domain specific, 

the developed inference approaches are applicable to other domains using a SCFG 

knowledge representation. 

1.4 Methodology 

Stochastic Context Free Grammar (SCFG) is a hierarchal, rule-based, knowledge 

representation. Because of the discrete symbols representing atomic events and causal 

rules enforced by the production rules, they are applicable to abstracting the transition 

between distinct events, focusing on the relative sequence of events without accounting 

for the specific duration of each activity. The application of SCFG to computer network 

traffic analysis required the development of procedures and algorithms, shown in Figure 

1 flowchart as rectangular process boxes. 

 



PCAPtoSCFG 
Tetminals 

Activity 
Sequences 

Association 
(SCFG Parsing) 

Individualization 
(SCFG Structure 

Inference) 

Figure 1. Methodology Process Overview. 

1.4.1 PCAP to SCFG Terminals 

Associated 
Profile 

Irregular 
Activities 

The PCAP to SCFG Terminals process required a survey of other domains that 

apply SCFG knowledge representation. The survey involved a cross comparison of the 

characteristics of the data from each of the domains, the applications of each domain, and 

adaptations required to enable SCFG representation. After reaching the conclusion that 

computer network traffic data is suitable for SCFG representation, we performed the 

PCAP to SCFG Terminal process using a PCAP file :fi:om a self-contained digital forensic 

scenario [ 11] and generated an activity sequence of SCFG terminals. 

1.4.2 Association 

Performing the association process requires activity sequences fi"om the PCAP to 

SCFG Terminal process and a set of behavioral profiles. Association applies SCFG 

parsing to identify the originating source, using parse likelihood as a quantitative 

measure. This process requires a set of known pro flies in SCFG form and examining tllis 

process required a comparison measure of the profile themselves. Investigation into 

l7 
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grammar-based methods to evaluate output-to-output [30, 31] or rule-to-rule comparisons 

[32, 33] methods revealed that they were either undecidable [33–35] or beyond 

polynomial computational complexity [32]. Identifying similarities between grammars 

and graphs, we developed grammar comparison methodology based on an iterative graph 

node-matching algorithm [36], which enabled comparison of grammars by comparisons 

of their symbol causalities. This comparison was performed on the profile grammars to 

verify desired similarities and differences.  

 With understanding of the differences between the profiles, the association 

process parses an unknown activity sequence with each profile, generating a quantitative 

measure from total and most-probable parse likelihood to compare between the different 

profiles. In this manner, SCFG parsing associates each sequence to the profile based on 

that yielded the greatest parse likelihood.  

1.4.3 Individualization 

To reduce the amount of data under examination, the individualization process 

uses alignment and bigram-based SCFG structure inference learning to collectively 

discover routine behavior patterns, which isolate activities that could not be attributed to 

the discovered patterns. Conducting this process on a network capture over three sessions 

identified the known anomalous event. Eliminating the events explainable by routine 

behaviors reduced the data size without reducing the anomalous event. 
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1.5 Structure  

 The remainder of this dissertation is as follows: 
 

• Chapter II provides background on SCFG knowledge representation, the notation 

and provides the rationale behind using it for network processing. In addition, this 

chapter presents the general methodology for applying SCFG on a novel domain. 

The discussion includes SCFG adaptations to better represent certain domain 

characteristics. 

• Chapter III describes SCFG in the network forensic applications and presents the 

algorithms used in each. We present and use a graph-based methodology for 

grammar comparison and the algorithms used in the alignment and bigram 

inference structure learners. 

• Chapter IV provides the experimental setup for the methodology outlined in the 

previous chapter and analysis of the results.  

• Chapter V summarizes SCFG usage on computer network traffic and identifies 

future work. 

• Appendix A provides additional background and related work on grammar 

comparison, including applications for such methods. 

• Appendix B provides background and related work on SCFG for test data 

generation, as a potential future application of using SCFG to generate computer 

network traffic that mimic patterned user behavior.  
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II. Stochastic Context-Free Grammars 

Stochastic Context-Free Grammar (SCFG) is a hierarchal, rule-based, knowledge 

representation capable of expressing a variety of domains. This chapter presents SCFG 

fundamentals to facilitate understanding how SCFG are leveraged and how SCFG 

enables reasoning on the represented domain. The application to computer network 

forensics proposed in the next chapter use SCFG parsing and structure, described in this 

chapter, to automate portions of the association and individualization tasks. 

 This chapter begins by presenting SCFG definition and notation. Next, the chapter 

identifies several problem domains and their respective SCFG applications. These 

examples serve to assist in understanding the notations and concepts. Then, a subsection 

discusses algorithms and identifies readily available implementations for parsing with 

SCFGs; one application of computer network traffic analysis uses parsing with SCFGs. 

Finally, this chapter presents a methodology to apply SCFG onto novel domains, 

including potential domain adaptations. 

2.1 Stochastic Context-Free Grammar (SCFG): Definition and Notation 

 Knowledge representation functions as a surrogate for an actual idea or concept 

that enables “pragmatically efficient computation [37].” As a means to represent domain 

knowledge, Stochastic Context-Free Grammars (SCFGs) use rules to describe the order 

between symbols that represent different concepts depending on the problem domain. 

SCFG provides a structural order to enable contextual understanding of low-level data. 
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 An SCFG is written as a 4-tuple, G = ‹VT, VN, P, S›, where:  

• VT is the finite set of terminal symbols. Terminal symbols are the lowest level 
observation in the domain and represent atomic, irreducible elements of the 
domain. 
 

• VN is the finite set of non-terminal symbols. Each non-terminal symbol is 
defined by a production rule. Each production rule and respective non-
terminal reflects a specific combination of terminal observations. The non-
terminal therefore represents a higher level concept than the low-level 
terminal symbols.  
 

• P is the finite set of production rules. In SCFG, a production rule, r, is in the 
form, A → γ1..γn [δ], where A ∈ VN, and γi ∈ (VT ∪ VN). Each r has a likelihood 
parameter, δ, where 0 ≤ δ ≤ 1 and the sum of all δ’s of all r’s with the same A 
must sum to 1. The “→” in the production rule notation means equivalence, 
meaning the sequence of symbols on the right-hand side is representable as 
the singular non-terminal symbol on the left-hand side. Conversely, the left-
hand side symbol is representable as the sequence on the right-hand side. The 
operation that uses production rules equivalencies is called, substitution.  
 

• S is the starting non-terminal symbol (S ∈ VN). The purpose of identifying the 
starting symbol is its use in parsing, which is a grammar operation performed 
to read or generate output with the grammar. Production rules defining S are at 
the highest level of the SCFG rule hierarchy.  

 

2.2 Stochastic Context-Free Grammar Methods 

 There are two mechanisms in which grammar reflects the domain knowledge: 

parsing and structure inference. Parsing is the process of applying a grammar to an 

observance and uses substitution operations and stochastic parameters to explain 

observances. Structure inference uses pattern discovery to produce a grammar structure 

from observances so that the grammar structure reflects patterns and covers all 

observances.  
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2.2.1 Parsing. 

 Top-down parsing generates a sentence from the starting symbol, while bottom-

up parsing compresses the sentence into starting symbol. Figure 2 is an NLP part-of-

speech example modified from [38] of an SCFG production rule set that reads a limited 

set of English sentences for the purpose of determining grammatical validity and meaning 

through part-of-speech assignment. In the NLP domain, each word is in VT and the part-

of-speech is in VN. Each row is a production rule and the entire list of rules is P. Rules 

that define S are typically listed at the top, as in the figure.  

VT: saw, man, woman, telescope, dog, the, with, in 
VN: S, VP, NP, PP, Vt, NN, DT, IN 
P: S → NP VP [1.0] 
 VP → Vt NP [0.8] 
 VP → VP PP [0.2] 
 NP → DT NN [0.7] 
 NP → NP PP [0.3] 
 PP → IN NP [1.0] 
 Vt → saw  [1.0] 
 NN → man  [0.1] 
 NN → woman  [0.1] 
 NN → telescope  [0.3] 
 NN → dog  [0.5] 
 DT → the  [1.0] 
 IN → with  [0.6] 
 IN → in  [0.4] 
S: S     

 

Figure 2. Example grammar [38] from a Natural Language Processing (NLP) domain SCFG.  

 
 The grammar has a starting symbol S, which means that all sentences from this 

grammar compresses into a proper noun (NP) followed by a verb (VP). Figure 3 shows a 

parse tree that indicates the different production rule substitutions for the sentence, “the 

man saw the dog with the telescope,” showing that this sentence can be 

parsed and understood by the grammar. In contrast, no series of production rule 
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substitutions exist can compresses “man in telescope” into S. The grammar cannot 

parse any sentences irreducible to S. 

 
Figure 3. A parse tree of the sentence, “the man saw the dog with the telescope” using the grammar in  

Figure 2. Each terminal English word is substituted with a non-terminal symbol based on the available 

production rules until the sentence reduces to the starting terminal. 

 

 Figure 4 is a Blackjack grammar from the activity recognition domain [17]. The 

terminals are card and chip manipulations involved in playing a hand of blackjack. The 

non-terminals correspond to various phases of the game. Through substitution and 

production rule selection, the authors make inferences on the observed play by parsing 

the sequence using the grammar.  

 In the course of a game, the player must implement a strategy, denoted by the 

non-terminal symbol, G. Every legal blackjack game requires a substitution to G. The 

authors infer that the player is using a basic strategy if the parse of the play uses the 

the man saw the with dog the telescope 

NP 

DT NN 

VP 

S 

NP Vt 

NP 

DT 

PP 

DT NN 

NP 

IN 

NN 
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production rule, G → J → ff. If a parse uses the other G substitutions, then the player 

is using more advanced strategies of “splitting pairs” or “doubling down.” The stochastic 

parameters also indicate that players are more likely to use a basic strategy, rather than an 

advanced strategy. In parsing sequences of plays from a single player, high incidences of 

advanced strategies may indicate a more advanced level player.    

 The previous example only applies the structural part of the production rules to 

make a determination whether a sentence was or was not from a given grammar. 

Applying stochastic parameters for each production rule provide additional domain 

representation and inferencing capability [39].  

 The context-free characteristic of SCFG allows unconstrained production rule 

substitutions. This creates situations where there are multiple valid parses for a sentence. 

Stochastic parameters provide a quantitative means to disambiguate different 

interpretations. There are two ways to infer meaning from the previous example sentence, 

“the man saw the dog with the telescope.” The first meaning is that the 

man saw a dog next to a telescope, where the word “with” takes on the semantic meaning 

of “next to.” The sentence can also be read to mean that the man saw a dog using a 

telescope. Figure 5 shows the parse derivations for each of these meanings. Parse 

likelihood is calculated as the product of each of the production rule likelihoods, shown 

in the brackets, used in the derivation.  
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VT: a – dealer removed card from house  
 b – dealer removed card from player  
 c – player removed card from house  
 d – player removed card from player  
 e – dealer added card to house  
 f – dealer dealt card to player  
 g – player added card to house  
 h – player added card to player  
 i – dealer removed chip  
 j – player removed chip  
 k – dealer pays player chip  
 l – player bets chip  
VN: S,A,B,C,D,E,F,G,H,I,J,K,L,M,N,O 
P: S → AB [1.0] Blackjack  
 A → CD [1.0] play game 
 B → EF [1.0] determine winner 
 C → HI [1.0] setup game 
 D → GK [1.0] implement strategy 
 E → LKM [0.6] evaluate strategy 
  → LM [0.4]  
 F → NO [0.5] clean-up 
  → ON [0.5]  
 G → J [0.8] player strategy - 

   → Hf [0.1]  Adv - Splitting 
   → bfffH [0.1]  Adv – Doubling 
  H → l [0.5] place bets 

  → lH [0.5]  
 I → ffI [0.5] deal card pairs 
  → ee [0.5]  
 J → f [0.8] basic strategy 
  → fJ [0.2]  
 K → e [0.6] house hits 
  → eK [0.4]  
 L → ae [1.0] dealer downcard 
 M → dh [1.0] player downcard 
 N → k [0.16] settle bet 
  → kN [0.16]  
  → j [0.16]  
  → jN [0.16]  
  → i [0.16]  
  → iN [0.18]  
 O → a [0.25] recover card 
  → aO [0.25]  
  → b [0.25]  
  → bO [0.25]  
S: S     

Figure 4. Blackjack Grammar [17] 



26 

 
  Using the grammar in Figure 2, the top parse has a greater parse likelihood, where 

the top-parse is 0.000741 (1.0 × 0.7 × 1.0 × 0.1 × 0.8 × 1.0 × 0.3 × 0.7 × 0.5 × 1.0 × 0.6 × 

0.7 × 1.0 × 0.3) likelihood versus the bottom-parse with 0.000494 (1.0 × 0.7 × 1.0 × 0.1 × 

0.2 × 0.8  × 1.0 × 0.7 × 0.5 × 1.0 × 0.6 × 0.7 × 1.0 × 0.3) likelihood. Based on the 

grammar likelihoods, the interpretation top interpretation is more likely than the bottom 

interpretation.  

 In instances where a sentence has multiple parses, equations (1) and (2) outline 

the difference between the parse likelihood and the most-probable parse likelihood, 

where 𝑝(𝑡) is the parse likelihood for a single parse tree and 𝑛 is the number of valid 

parses.  

𝑃𝑎𝑟𝑠𝑒 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 = �𝑝(𝑡)
𝑛

1

 

 

(1) 

 
 

𝑀𝑜𝑠𝑡 𝑃𝑟𝑜𝑏𝑎𝑏𝑙𝑒 𝑃𝑎𝑟𝑠𝑒 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 = max [𝑝(𝑡)]1𝑛 

 

(2) 

 
 
 
2.2.1 SCFG Parsing Algorithms.  

 Parsing and probabilistic parameters enable inference from an SCFG. Both have 

pragmatic, small constant polynomial computational complexity for practical 

applications.   

 There are multiple SCFG parsing algorithms. For conciseness, this subsection 

discusses only the Cock-Younger-Kasami (CYK) algorithm [40] and the Earley 



Algoritlnn (41]. Both algoritlnns have a small integer exponential, O(n3
) time complexity 

and an O(n2
) space complexity. The CYK algorithm approaches parsing using a bottom-

up approach by using a table to store incrementally longer substitutions of the sentence 

and tracking valid combinations of production mle used for substitutions until the 

sentence reaches S. 
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Figure 5. Two parse tree derivations for "the man saw the dog with the telescope [38]". 

In contrast, the Earley Algoritlnn uses dynamic programming to track possible 

pat1ial parsing states stm1ing fi·om S in a top-down fashion lmtil substitutions match the 
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sentence; the Earley Algorithm uses a prediction, scanning, and completion operator that 

determines checks or adds a state onto the list of parse states.   

 While it is possible to implement each parser using the pseudocode from [40, 41], 

parser implementations are publically available.  The Stanford Natural Language 

Processing Group has a Java implementation1, though the parser was designed primarily 

for the NLP domain. Royal Holloway University of London developed The Grammar 

Tool Box (GTB)2 which more readily accepts domain-independent grammars. This 

researched extended an Earley parser written in C++ 3.  

2.3 SCFG Application Domains 

 SCFG has sufficient expressiveness as a knowledge representation for domains 

such as natural language processing [13–15, 42–44], bioinformatics [20–24, 45, 46], 

activity recognition [16–19, 47], and automated planning [13, 25–27, 48, 49]. These 

domains use the inferencing capabilities to solve domain specific tasks. Some domains 

adapt the data or SCFG to better characterize the domain or make inferences that are 

more suitable. We examine the domains here for the purpose of identifying domain 

characteristics that are suitable for SCFG representation and potential adaptations 

available when applying SCFG on a novel domain.  

2.3.1 Natural Language Processing. 

 Natural language processing (NLP) uses machine learning to understand and 

process human languages. NLP applications include document translation, user 

                                                
1 The Stanford Natural Language Processing Group, http://nlp.stanford.edu/software/index.shtml 
2 Royal Holloway University of London Grammar Tool Box (GTB), 
http://www.cs.rhul.ac.uk/research/languages/projects/gtb/gtb.html 
3 https://github.com/shaobohou/pearley 
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interfaces, speech recognition, and text processing [50]. SCFG knowledge representation 

enables language analysis, which involves a decomposition of a sentence through several 

stages. This decomposition typically requires several stages that stratify sentences into 

syntax (pattern structure), semantics (meaning), and pragmatics (contextual intent) [14]. 

Each word in the language is a terminal because the words are the lowest useful 

observable. The non-terminals represent parts of speech, and the production rules define 

valid parts of speech sequences.  

 Part-of-speech (POS) tagging is a common processing step that checks syntax and 

performs aspects of the semantics stage. The SCFG in Figure 2 is an example of an NLP 

grammar. Parsing reveals whether or not the words in the sentence follow a 

grammatically accepted order, defined by the grammar production rules. For instance, the 

example grammar has production rules a noun precedes a verb (S -> NP VP) and a 

determiner precedes only nouns (NP -> DT NN). A parsable sentence passes the syntax 

check.  

 To obtain more information from the knowledge representation, SCFG uses the 

POS tag in the parse to provide semantic meaning for each word. This aspect is necessary 

to resolve word ambiguity, where one word can take different meanings. SCFG enables 

the correct POS assignment, by assigning a POS that is valid in context of the adjacent 

words that follow the syntactic rules. With the correct POS, it would be possible to 

discern the meaning behind words like “can” which can take both noun (a container) and 

verb (to be able to) interpretation.  

Beyond understanding the specific meaning being individual words, the SCFG 

parse likelihood disambiguates between multiple valid parses. Figure 3 shows two parses 
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of the same sentence with the same POS tag for each word. The difference at the 

pragmatic level comes from the ordering of the production rules in each parse. The 

ordering chunks the sentences into parts that affects the interpretation of the sentence. In 

general, NLP applications use the production probabilities to infer the most probable 

parse by accepting the highest probability parse as the most correct interpretation.  

2.3.2 Bioinformatics. 

 Bioinformatics is the application of computational techniques to analyze 

biological data  [51]. Bioinformatics leverages SCFG in studying biological sequences 

such as DNA, RNA, and proteins [22]. Researchers in the field found that linguistic 

methods were applicable to biological sequences by capturing informational and 

structural aspects of macro-molecules [21]. The observables in sequences are limited to 

the amino acids that make up the sequence. For instance, the terminal set for RNA 

comprises of four nucleotides: adenine (A), cytosine (C), guanine (G), or uracil (U). The 

non-terminals correspond to substructures of these nucleotides. An example RNA 

structure and respective grammar is shown in Figure 6 [22].  

 SCFG was found sufficiently expressive to describe the variability in biological 

sequences, such as non-regular features in secondary structure of RNA [21, 52]. The 

symbolic, syntactic, semantic, and pragmatics stages of NLP are analogous to the 

sequence, structure, function, and role progression in biology [21]. Similar to parsing a 

set of text, parsing sequences with a grammar identifies sequences that from the same 

family. Other bioinformatics SCFG tasks include discriminating sequences between 

transfer RNA (tRNA) and non-tRNA, ascertaining secondary structure in new sequences, 

and finding common sequences present in a family of sequences  [21, 52]. SCFG can also 
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generate new sequences by applying top-down substitution. Dowell and Eddy [53] found 

SCFG grammars that nearly equaled the predictive power of the conventional physics-

based energy minimization approach.  

 
 

Figure 6. A sample RNA secondary structure with its corresponding SCFG [22].  

 
2.3.3 Activity Recognition. 

 Activity recognition is the analysis of sensor data to automatically detect recorded 

events of interest in surveillance or smart home applications [54]. The applications use 

SCFG to recognize complex events from combinations of simple or atomic actions 

recorded from one or more sensors [54, 55]. In contrast to NLP and bioinformatics, 

activity recognition does not have a natural or common basis for an SCFG terminal set. 

Terminal definition in activity recognition usually requires preprocessing step to identify 
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discrete events, particular from sensors that take a continuous reading. The terminal set is 

often dependent on the number of sensors and the type of atomic actions each sensor can 

discern. The non-terminals then describe ordered combinations of events of interest 

specific to the application.  

 For example, Ivanov and Bobick [16] performed experiments at a gesture-level, 

where they attempted to infer the type of music from parsing sequences of atomic hand 

movements. This requirement only required one sensor to track the hand movement. 

They also conducted a single source video surveillance experiment to detect the activities 

of persons in a parking lot with a vehicle. Figure 7 is a partial grammar from their 

parking lot experiment. With this grammar, they used the grammar to infer the observed 

activity based on the actions of the car and the person. The ordering of rules made it 

possible to distinguish whether a person was entering the car or parking the car. The “|” 

symbol denotes a logical “OR” to group all productions with the same LHS symbol 

together. 

Moore and Essa [17] extended the work in [16] and performed interaction-level 

experiment on blackjack games in which they assessed player behavior using the 

probabilistic parameters to profile whether the player was a novice or expert player and 

whether the play was a low or high-risk player based on observed strategies and betting 

amounts. Their blackjack SCFG is shown in Figure 4. 
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TRACK →  CAR-TRACK  [0.5] 
  |  PERSON-TRACK [0.5] 

CAR-TRACK →  CAR-THROUGH [0.25] 
  | CAR-PICKUP [0.25] 
  | CAR-OUT [0.25] 
  | CAR-DROP [0.25] 

CAR-PICKUP →  ENTER-CAR-B CAR-STOP PERSON-LOST B-CAR-EXIT [1.0] 
ENTER-CAR-B →  CAR-ENTER [0.5] 

  | CAR-ENTER CAR-HIDDEN [0.5] 
CAR-HIDDEN →  CAR-LOST CAR-FOUND [0.5] 

   CAR-LOST CAR-FOUND CAR-HIDDEN [0.5] 
B-CAR-EXIT →  CAR-EXIT [0.5] 

  | CAR-HIDDEN CAR-EXIT [0.5] 
CAR-EXIT →  car-exit [0.7] 

  | SKIP car-exit [0.3] 
CAR-LOST →  car-lost [0.7] 

  | SKIP car-lost [0.3] 
CAR-STOP →  car-stop [0.7] 

  | SKIP car-stop [0.3] 
PERSON-LOST →  person-lost [0.7] 

  | SKIP person-lost [0.3] 
Figure 7. SCFG production rules (partial) used in Ivanov and Bobick’s [16] parking lot 

experiment. 

  

2.3.4 Automated Planning. 

 Zimmerman and Kambhampati [56] define planning as achieving goals by 

constructing a sequence of actions based on the belief that actions have specific 

consequences. A plan is an observed action pattern or sequence [57] and analogous to a 

sentence in the NLP domain. Automated planning leverages SCFG in two ways. By using 

top-down substitutions, a grammar identifies possible actions to meet the top-level goal, 

defined by start terminal productions [49]. A plan is complete once the substitution 

reaches a list of terminals. If given a partial plan, the problem then attempts to 

recommend actions that complete the plan by making it parseable [56, 58].  
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 Alternatively, a bottom-up parse of a plan reveals whether or not a plan satisfies 

the constraints of the goal [25]. An unparseable plan means that the goal is unreachable, 

based on the constraints placed by the production rules. 

 Similar to activity recognition, automated planning requires an application 

specific definition of the terminal set that define atomic, discrete actions. The non-

terminals represent sub-activities, where the sub-activities are defined as sequences of 

lower level activities. A parse of a complete plan therefore reveals an hierarchy of how 

lower level goals accomplish higher level ones. The planning domain refers to this 

hierarchy as an hierarchical task network (HTN).  

 Geib and Steedman [13] outlined the parallels between NLP and plan recognition 

by translating a HTN into a CFG grammar. Plan operators define the effects of primitive 

atomic actions which are converted into a grammar’s terminal symbols. Plan methods 

define non-primitive actions and convert into grammar productions, where the name of 

the method is a non-terminal on the left-hand side, and the sub-tasks are written as the 

production’s right-hand side. This conversion assumes a totally ordered method 

definition, represented through the serial listing in the production’s right-hand side. Their 

example, shown in Figure 8, translates an HTN method into a production [13]. 

 
Figure 8. A plan recognition method translated into a grammar production [13]. 

 

(m1, acquire(shoes), 
        {goto(store),choose(shoes),buy(shoes)}, 
        {(1 < 2), (2 < 3)}) 
 
acquire(shoes) → goto(store),choose(shoes),buy(shoes)  
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 Li, et al. [48, 59] leverage the probabilistic likelihood aspect of SCFG to ensure 

that the knowledge representation captures the preferences of the users. The production 

rules reflect the different sub-actions that the user takes and the production rule 

likelihood reflects the tendency for that user to perform that action, similar to the way 

that Moore and Essa [17] determined the complexity of a Blackjack player’s strategy, 

based on his likelihood to split pairs or double down. The SCFG infers preferences from 

these tendencies to perform certain tasks or strategies over others. Li, et al. [27, 48] used 

a travel domain to illustrate how it is possible to infer a person’s preferred mode of travel, 

as shown in Figure 9. Combined with learning, a planning system leverages the user’s 

preference and biases to better assist the user in achieve goals [56].  

 
Figure 9. Travel domain HTN and SCFG [27]. 
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2.3.5 Computer Networking Traffic Protocol Analysis 

 Protocol reverse engineering and anomaly-based network intrusion detection are 

two networking applications that leverage SCFGs. While these problem domains also use 

computer networking traffic, their terminal set is derived from the networking protocols, 

rather than the user applications. Therefore, the focus of these efforts is distinct from 

those proposed in this research.  

 In protocol reverse-engineering, DeYoung [60] found grammatical inference was 

possible with Simple Mail Transfer Protocol (SMTP) and Post Office Protocol (POP3). 

Similarly, Antunes, et al. [61] conducted protocol reverse engineering on the File 

Transfer Protocol (FTP). These works indicate that the grammar inference approach is 

feasible for reconstructing the computer networking communication protocols.  

 Using protocol definitions, Estevez-Tapiador, et al. [62] developed Finite State 

Automata (FSA) models of Hypertext Transfer Protocol (HTTP), FTP, and Secure Shell 

(SSH) and learned the states, transitions, and transition probabilities from captured traffic 

files using a packet header combinations. FSA models are less expressive than SCFG, but 

can be represented as SCFG. The authors found that the transition probabilities could 

indicate network attacks. Sequences with network attacks contained subsequences of low 

probability transitions. Essentially, they were using a variation of parsing to determine if 

an attack occurred on a recorded activity sequence, where a parse involving a low 

probability rule indicates a possibility that an attack occurred. 
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2.4 Domain Characteristics Suitable for SCFG Representation 

  Understanding the domain characteristics of a new domain is the first step to 

applying SCFG to a new domain. A good mapping of domain to representation can 

provide a means for efficient reasoning and accessibility. A poor mapping can have the 

opposite effect [37].  

 Domains must have discrete observables that translate into irreducible symbols in 

VT to produce a finite VT. The VT size can range from very large, such as in NLP, to very 

small, such as in bioinformatics. Each VT symbol must have a corresponding production 

rule; therefore, VT cannot be infinitely large. Continuous domains are not suitable for 

SCFG representation without discretization. 

 The domain should have an element of causality between observables represented 

by a VT symbol. Production rules enforce a linear order on the symbols. Domains that are 

unordered collections do not benefit from SCFG inference methods that leverage an 

SCFG’s hierarchal structure. Domains where observations depend or anticipate the future 

also violate the causality assumption, where observances depend only on past 

observances [39].   

 The stochastic parameter and the context-free substitution allow SCFG to 

represent probabilistic domains of infinite size [63]. Therefore, domains that are 

deterministic with solutions in finite space do not require SCFG; these domains may be 

represent able using regular expressions or equivalently, finite state automata, which have 

lower computational complexity than SCFG’s inference methods. 

 While not domain traits, domain data availability and quality also factor into 

SCFG suitability. An SCFG produces an identifiable representation of the data when only 
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positive examples are available [64]. Positive examples mean that all data samples are 

accepted by the knowledge representation. In contrast, other representations, such as 

context-free grammars without stochastic parameters, require negative examples to 

identifiably represent the domain. SCFG representation is robust against irregular noise 

patterns in the data, by assigning noisy input with low probabilities [19, 39]. However, if 

the noise occurs as a frequent and constant pattern within the data, then the SCFG will 

incorrectly include the noise in the domain representation. 

2.5 General Methodology to Apply SCFG on a Novel Domain 

 The domains that leverage SCFG presented throughout this section serves as 

starting points for application of SCFG to a new domain, by first identifying a domain 

that shares similar characteristics. Table 1 lists the domain with their respective 

characteristics. Three characteristics are marked with an “*”; these characteristics involve 

SCFG adaptations to the domains, which is discussed at the end of this appendix. 

Table 1. SCFG-applied Domains and their Characteristics. 
Domain 
[References] 

Domain Characteristics 

Natural Language 
Processing (NLP) 
[13–15] 

Defined and discrete VT ; large VT to VN ratio; consistent VN meaning; 
linear order (known cross-serialization* in two languages) 

Bioinformatics 
[20–24] 

Very small, defined and discrete VT; VN variable meanings;  linear order; 
cross-serialization* possible 

Activity Recognition 
[16–19] 

Discretized VT from continuous data; VN variably assigned or learned; 
linear order (time); non-linear* order (concurrency) possible 

Automated Planning 
[13, 25–27] 

Discrete VT; VN variably assigned or learned; both linear order (time); 
non-linear* (cross-serialization) possible; loops* have inference 
significance 

Computer Networking 
Traffic Protocol Analysis 
[60–62] 

Discrete VT; VN variably assigned or learned; linear order (time); loops* 
may not have inference significance 
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2.5.1 Defining Terminal Symbols. 

 The lowest level data of interest make up the terminal symbols. Continuous data 

requires a discretization step. This occurs frequently in activity recognition, where the 

data is analog and an initial step recognizes certain low-level actions and then leverages 

SCFG to recognize complicated multi-step actions via context. Even with discrete data, 

clustering may be applied to group low-level data that does not exhibit a causal 

relationship or to raise the level of detail to a higher level of interest to the domain. NLP 

part-of-speech tagging is a good example. In applying NLP to plagiarism detection, the 

part-of-speech groups thousands of unique words. This grouping is then used to 

recognize part-of-speech patterns instead of attempting to recognize all of the potential 

word substitutions themselves. 

2.5.2 Defining SCFG Production Rules. 

 Production rules are an important aspect of how SCFG provides domain 

knowledge interference. This subsection discusses two methods to define the production 

rule structure, P, and correspondingly the definition of each VN.  

 The two approaches to defining grammar production rules include: 1) domain 

expert definition and 2) machine learning on domain data. For the first approach, a 

domain expert manually defines each production rule and probabilistic parameters for 

each rule. This approach is advantageous when a domain expert is available and the 

domain knowledge is well understood and consistent between data samples. In 

applications where the data is very noisy, an expert defined grammar can focus the 

application and grammar to detect only specific patterns of interest. Manual definition is 

not possible when a domain expert is not available or costly. In addition, this approach is 
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less practical in large problem domains where it is difficult to anticipate and account for 

the entire spectrum of possible events and outcomes [18].  Furthermore, an expert-

defined grammar may be subject to bias, which is problematic if the grammar is intended 

for an evaluation application [65].   

 Machine learning on domain data is an alternative to expert-defined SCFG 

structure. Instead of specifying the rules manually, the domain data is used to create 

production rules; the goal of the machine learner is to produce a grammar that can parse 

all entries in the data. Li, et al. [27] presents an algorithm that iterates through the data 

sample and produces two-right-hand-side production rules. The advantage to using 

machine learning is that it reduces the reliance on the availability of a domain expert. The 

machine learning method is heavily dependent on the representative quality of the data 

set. The two factors affecting data set quality are balance and sampling. Balance is the 

range or scope covered in the domain knowledge and sampling reflects the proportion of 

coverage of aspects of the domain knowledge present in the data samples [14]. Data 

sample selection is not trivial and the machine learning approach is not without 

challenges. This production rule learning method also does not handle noise until the 

production rule likelihood parameter learning stage, where infrequently used production 

rules with lower likelihood are removed from the grammar, leveraging the assumption 

that noise is infrequent and random [19]. 

2.5.3 Adaptations. 

 Table 2 shows different domains and notes selected references as example 

application of SCFG to a domain. In some domains, there are multiple applications as 

indicated in the purpose column, highlighting the versatility of SCFG knowledge 
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representation. To facilitate understanding of SCFG notation, the last four columns 

translates each of the symbols in the SCFG 4-tuple in domain terms. 

 Certain domain characteristics complicate SCFG representation. This subsection 

discusses loops, cross-serialization and nonlinear order and their respective adaptations 

from past works so that application in novel domains that exhibit similar properties may 

use or expand on these solutions. Adaptations to hand domain characteristics can occur in 

probability parameter estimation, parsing methods, or production rule structure. This 

section is not intended as an exhaustive list of solutions, but rather a starting point and to 

highlight that domain adaptations may originate from different domains that encounter 

similar issues. 

Table 2. Problem Domains and SCFG Representation. 

Domain 
[References] 

Purpose  Terminal 
Symbol  
(VT) 

Non-
Terminal 
Symbol  
(VN) 

Production 
Rules (P) 

Starting 
non-
terminal 
(S) 

Natural Language 
Processing (NLP) 
[13–15] 

determine 
semantics; 
disambiguate word 
definitions 

words parts of 
speech 

acceptable 
language 
sequence 

valid 
sentence 
structures 

Bio-informatics 
[20–24] 

discover new 
and/or viable 
proteins; identify 
families of proteins 

nucleotid
es 

protein 
sub-
structures 

substructure 
patterns 

valid RNA 
sequence 

Activity 
Recognition 
[16–19] 

identify context of 
discrete behaviors 
(larger more 
complex behavior) 

discrete 
events 

sub-
activities in 
linear order 

sub activities most 
complex 
activity 
sequence 

Automated 
Planning 
[13, 25–27] 

(top-down parsing) 
identify possible 
actions to meet plan 
goals 
(bottom-up) 
determine if actions 
fulfill plan goals 

discrete 
actions 

sub-
activities 

activities in 
linear order 

valid plans 
and 
planning 
goals 

Computer 
Networking 
Traffic Analysis 
[60–62] 

protocol reverse 
engineering; 
anomaly detection 

packet 
flags or 
keywords 

partial 
commands 

communicati
on protocol 
sequences 

valid 
protocol 
usage 
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Loops. 

 Loops are symbols or group of symbols that repeat throughout the domain. The 

presence of loops can have a substantial impact on the inference from an SCFG in two 

ways. Loops can cause SCFG parameter learning to drop production rules during 

likelihood estimation because the non-loop sections are sampled less frequently in the 

data. Dropping the production rules, however, means that the resulting SCFG fails to 

reflect legitimate domain knowledge. For instance, the computer networking traffic 

analysis domain that uses packet headers as terminal symbols provides a domain that 

exhibits loops. In this domain, a data transfer is reflected as loops of ACK packet headers. 

At the end of a data transfer, a legitimate change to connection teardown occurs. ACKs 

may repeat very often, particularly in large data transfers, but in all connections, the 

teardown sequence only appears once. Machine learning can unintentionally drop the 

production rules that reflect the connection teardown process because of the low 

sampling in relative frequency compared to the data transfer loop. Figure 10 below is a 

packet header transition probability diagram to highlight this domain’s looping structure.  

 Preventing inadvertent production rule pruning therefore requires an adaptation in 

the parameter estimation phase, involving manual oversight of the machine learning 

process to ensure domain knowledge does not get lost [27]. 



s 

Figure 10. Transition probabilities for Transport Control Protocol (TCP) in the computer 

network traffic analysis domain [62]. The transitions between the ACK and ACK PSH 

states indicate a data transfer, which occurs much more frequently thanACK to FIN, 

which signifies connection teardown. 

Loops also impact semantic inference fi:om sentence likelihood. Loops, by defmition, 

lengthen sentence length. Sentence likelihood calculated :li-om a product of production 

mle likelihoods decreases the likelihood with every downward substitution. This effect 

may be desirable in domains such as planning, where each action takes eff01t or time, 

regardless of repetition. However, in domains such as computer networking traffic 

analysis for anomaly detection, where low sentence likelihood is an indicator unusual 

network traffic in the data, a drop in likelihood due to data transfer loops does not 

necessarily reflect unusual event in the domain. In domains where looping events should 

not decrease sentence likelihood, the adaptation occurs in SCFG parsing methods where 
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using an alternative sentence likelihood method, such as sentence likelihood normalized 

to length [17], minimum likelihood, or minimum likelihood over a span of n symbols 

[62], may obtain the desired effect. 

Cross-serialization. 

 Cross-serialization occurs when a linkage or dependency exists between symbols 

that spans over other symbols and no ordering of symbols can remove the span to put the 

linked symbols together without spanning another symbol. Figure 11 illustrates cross-

serialization. 

 
Figure 11. Cross-serialization.  

 
Cross-serialization is not natively expressible in a SCFG due to the constraint that 

production rules have only a single non-terminal symbol on the left-hand side. However, 

authors in the planning domain and the bioinformatics domain devised adaptations on the 

production rule structure and parsing method to express cross-serialization. Geib and 

Steedman [13] identified instances in plans where cross-serialization exists and propose 

the Combinatory Categorical Grammar (CCG) that extends SCFG with combinatory rules 

to provide additional guidance on production rule substitution, without breaking 

polynomial parsing complexity. In bioinformatics, Rivas and Eddy [20] extended SCFG 

using a specialized set of non-terminal symbols and a marker symbol (I) to tell the parser 

to switch to cross-serialization handling. A specialized set of rules (R) govern the 
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substitutions of the symbols in I, after parsing removes all VN not in I. The additional I 

symbols and R rules in the grammar increases the time complexity to O(L6) and a storage 

complexity to O(L4), where L is the length of the RNA sequence [20]. 

Nonlinear Order. 

 Similar to cross-serialization, production rules enforce a strict linear order, where 

only one terminal symbol is read at a time and sentence parsing is sequential from left to 

right. Linearity assumes that each terminal is atomic, occurring one at a time. This 

property works well for domains such as NLP where words are read one at a time or 

bioinformatics where proteins do not overlap. In domains such as activity recognition or 

automated planning however, certain actions occur simultaneously or have variable 

durations.  

 To increase SCFG expressivity to understand nonlinear order, authors in the 

activity recognition and automated planning domains introduce logical predicates to 

relate terminal symbols in a production rule with structure adaptation. Nevatia, et al. [18] 

defined an ontology that incorporates composite events. Composite events use operators 

to associate primitive events to recognize multiple agent or non-sequential single agent 

behaviors. The operators use Allen’s interval temporal logic predicates (before, meets, 

overlaps, starts, during, finishes, equals) to handle relationships that are more than just 

linearly causal. Ryoo, et al. [55] extended Nevatia, et al.'s three-tier primitive, single-

thread, multi-thread hierarchy and included logical predicates to bind other relationships, 

allowing definition of even more complex, higher level activities. With these adaptations, 

events in the SCFG are described more expressively, though levels of composite actions 
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leverage production rule substitutions from the grammar hierarchy in the same fashion as 

simpler non-composite actions. 

2.6 Summary 

 This chapter provided the background to understand the fundamental SCFG 

concepts. The network forensic applications presented in the next chapter uses grammars 

for parsing, using the stochastic parameters to make associations. Structure inference is 

also used in a reduction approach to find the evidence of probative value. 

  



47 

III. Methodology 

 
 The previous chapter provided the background on Stochastic Context-Free 

Grammars (SCFGs) to facilitate discussion on how the application of SCFG knowledge 

structure can answer the criminal investigative questions through forensic processes. 

Inman and Rudin’s [10] framework comprises of four processes: identification, 

individualization, association, and reconstruction. This methodology addresses SCFG for 

association and individualization. Identification is not performed because the problem is 

scoped to network data and further inference involves subsequent processes. The 

sequential nature of the PCAP files also provides the information for the reconstruction 

process than usually available in physical evidence settings. 

 As discussed in Chapter 2, SCFG parsing and inference methods require discrete, 

sequential data. After presenting related digital forensic work and general forensic 

approaches, the methodology starts with a process to turn networking information into 

activity sequences, or timelines. Following this is the methodology to use SCFG parsing 

to provide a quantitative measure for association. Finally, SCFG structure inference 

algorithms identify behavior patterns to sift away explainable events from activity 

sequences, so the examination can focus attention on activities that are not attributed to 

normal behavior. The results from association and individualization processes reduce the 

amount of information in a forensic examination. 

3.1 Related Work 

 Timelines are common in digital forensic procedures. Unlike physical evidence, 

digital data often comes with time stamps and other meta data that enable timeline 
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construction. This section presents prior work that similarly focus on digital forensic 

timelines to make an examiner’s time and effort more efficient.  

 Buchholz and Falk [2] designed a graphical timeline editor, Zeitline, to enable 

manual timeline creation. Their editor allowed the examiners to import evidence from 

multiple sources and organize them by timestamps. Similar to the concept of SCFG 

terminals, their design focused on atomic events, which when grouped together, create an 

event hierarchy with very detailed events such as individual file access at the lowest-

levels, to a user task such, as system installation. The tool focuses on time 

synchronization because inferences of higher-level complex events are based on 

temporally local events. 

 Olsson and Boldt [5] similarly identified time to be the most common feature 

amongst digital artifacts. Timestamps are common and verifiable against other event logs 

for integrity. To improve upon Zeitline [2], they designed a scanner to minimize the 

burden of manual data entry. For visualization, their system uses multilevel views that 

allows the user to view the times where evidence is found at a high level, and then zoom 

in onto specific occasions, rather than flatly examining every file or event log. In their 

improvements and future work sections, the authors suggest including data mining and 

machine learning as methods to help examiners more efficiently identify the interesting 

parts of the timeline.  

 Esposito [3] identifies a significant disconnect between timestamps, which are a 

singular fixed point in time, and timelines which must provide context of activities that 

occur before, during, and after the event. His examination of the Log2timeline tool is also 

for the purpose of “cut[ing] through mountains of data to find the needle in the haystack” 
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and his methodology used a selection-based approach, identifying common queries using 

the Log2timeline tool. 

3.2 General Digital Forensics Process 

 There are two general processes to locate and extract evidence of probative value: 

selection and reduction [8] . Selection involves targeted and specific queries. With some 

knowledge of the case, an examiner can use his experience and understanding of the 

system to deterministically locate what he is looking for. The risk with this approach is 

that critical evidence may be overlooked and if the examiner has an erroneous hypothesis, 

he could return with incomplete results [9]. In contrast, reduction attempts to identify 

collected data that is not relevant. Reduction has the advantage of not requiring case-

based searches, but failure to eliminate enough data means wasted time and effort spent 

on false leads [8]. In the worst case, it may even involve the arrest of the wrong person 

[9].  

 The proposed SCFG process uses or identifies general behavioral patterns. These 

patterns are used in a reductive manner, eliminating suspect pools or routine activities 

from further evaluation. The process is illustrated in Figure 12, where the processes are 

denoted as rectangular blocks in the flowchart. 

 The first process, PCAP to SCFG Terminals, translates the information from 

computer network traffic into activity sequences. The activity sequences are linear event 

timelines that are inputs into the two digital forensic applications. With activity 

sequences from the computer network traffic, the association process uses SCFG to parse 

the activity sequence with each of the known profiles and outputs the profile that returned 



the greatest parse likelihood, attributing that activity sequence to the profile, eliminating 

the other profiles fi·om examination. Individualization also accepts activity sequences as 

inputs and also leverages a reduction approach. This process uses SCFG stmcture 

inference to discover behavior pattems and remove routine behaviors fi·om activity 

sequences. Individualization outputs the remaining activities in the timelines for fmther 

examination. 

PCAP to 
SCFG Terminals 

3.3 PCAP file 

Activity 
Sequences 

Association 
(SCFG Parsing) 

Individualization 
(SCFG Structtu-e 

Inference) 

Figure 12. Methodology Process Overview. 

Associated 
Profile 

Irregular 
Activities 

Computer network traffic data in packet capture (PCAP) fommt exhibits 

characteristics suitable for SCFG representation. PCAP files records fi·ames serially in 

time. Even though packets may anive out of order, programs like Wireshark (66] 

reconstmcts the intended flow and provides a serial order to the TCP streams, even if the 

packets fi·om the streams interweave. 
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 SCFG terminal identification from the flows can be done through port inspection, 

which can achieve up to 90% classification accuracy [67, 68], organic keywords and 

website meta data that reveal the category of the websites, or commercial databases. 

These methods enable classification of a large set of low-level activities to a smaller set 

of categories, similar to how Natural Language Processing (NLP) reduces every word in 

a language to a few parts of speech categories.   

 Focusing on web usage patterns avoids the issues of cookies [69] which requires 

consent and cooperation from the user. Related work on this includes Yang [70] who 

attempts user identification using frequent mining measures of support and lift to 

discriminate between user profiles of web sessions, where the measures indicate the 

proportion that a pattern appears. Attempting the same with DNS queries, Banse, et al. 

[71] found user behavior to be stable, though some users did not have enough data for a 

characteristic pattern to emerge.   

 Like Mao, et al. [72],  we assume that the user does not interfere with the 

observation process and does not deliberately attempt to defeat the recognition system. 

Banse, et al. [71] identify additional measures that complicate behavior-based tracking. 

Anonymizers like Tor obfuscate the destination IP address, therefore preventing 

classification of destination IP site. However, using anonymizers may be itself a 

suspicious behavior so detecting Tor traffic satisfies the goal of identifying suspicious 

activities for a criminal investigator. 
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3.4 PCAP to SCFG Terminals 

 Converting PCAP to terminals is the first step to SCFG representation of 

computer network traffic. Similar to Olsson and Boldt [5], we illustrate the PCAP to 

terminal process using a digital forensic crime scenario, the fictitious Nitroba University 

Harassment case [11]. Figure 13 illustrates the conversion of a network capture and the 

rest of this subsection explains each step in further detail. 

 
 

Figure 13. PCAP to SCFG terminal process. 

 
 In this scenario, a student sends harassing e-mails to a professor. Examiners 

seized the network capture, where 11 of her students share the network. This scenario 

plays out over a 55MB PCAP file containing over 95,000 packets. Only 192.168.1.64 and 

192.168.15.4 show significant activity so the activities from these two sources make up 

the timelines of interest. Applying the “http.request.method==POST” filter trims the 

timelines to activities that involved user input. Figure 13 shows the TCP stream 
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information from 192.168.15.4. with the applied filter. This TCP stream is the first part of 

PCAP to terminal process by putting user activities in linear order. 

 Wireshark’s DNS resolver provides human-readable uniform resource locator 

(URL) addresses for the conversation endpoints. Well-known sites like 

www.facebook.com are easily recognized as social media. For uncommon sites, 

examiners can use website meta information and organic keywords. Figure 13 shows the 

organic keywords for www.sendanonymousemail.net returned from IPaddress.com in the 

top-right and shows www.sendanonymousemail.net from the timeline through 

TrustedSource4. Proprietary databases, like BlueCoat5 or TrustedSource, provide large 

scale URL categorization. The categories are then used as SCFG low-level terminals. 

Sites attributed to referred ads and background services do not reflect user input so those 

sites are not included in activity sequences. The TCP streams from Figure 13 resulted in 

an activity sequence of: socialnetwork travel media email messaging  

3.5 Association (SCFG Parsing) 

 Association applies comparisons of competing hypotheses of generalized 

behavior patterns for the purpose of attributing a profile to the timelines [10]. Performing 

association requires the set of knowns to provide competing hypotheses. In practice, 

association rarely identifies the specific offending element, but focuses the investigation 

by reducing the suspect pool [73]. Association leverages SCFG parsing and the stochastic 

likelihood to provide the probability of the evidence against the several alternative 

                                                
4 https://trustedsource.org/en/feedback/url?action=checksingle 
 
5 https://www.bluecoat.com/ 
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explanations to enable the examiner to determine which alternative is most likely. Parse 

likelihood of the sentences by the grammars provide a quantitative comparative measure, 

that enables the examiner to provide to the investigator, the profile that matched the 

timelines with the greatest likelihood. 

3.5.1 Known Profiles. 

 Association attempts to use SCFG parse likelihood to determine the originating 

grammar. Profiles are necessary for the association process. The quantitative result is 

from parsing the unknown activity sequence with each profile grammar. The profiles also 

generate the activity sequences for evaluation so the comparison will have truth values. 

The overall process incurs an integer multiplier to the computational O(n3) complexity of 

parsing.  

 As presented in Section 2.5.2, there are two ways to create SCFGs: expert 

definition and machine learning. Profiles are in SCFG representation, so the two 

production rule definition methods apply. The first method is expert definition, where an 

expert defines the behavior pattern in the profile. The second method uses machine 

learning on several activities sequences to discover behavior patterns that are converted 

into production rules. This work uses both approaches: the grammar comparison and 

association testing uses expert SCFGs, and the individualization testing leverages 

machine learning. 

3.5.2 Grammar Comparison. 

 Current methods of comparing grammars at the rule-to-rule level [32, 33] or at the 

output-to-output level [30, 31] are computationally impractical or undecidable. Grammar-

based rule-to-rule methods that attempt to replicate and substitute rules to generate 
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equivalent rules are decidable, but exceed polynomial complexity [32]. Output-to-output 

methods that compare similarity of two grammars using only their outputs are not 

decidable [33–35]. Appendix A provides related works on grammar comparison. Both 

techniques have merit in terms of comparing structure or resulting sequences. The novel 

grammar comparison method combines both of these to perform the comparison with 

O(n3) complexity.  

 The grammar comparison method, shown in Figure 14, applies graph node 

matching to examine grammar symbol causalities, to identify similarity between 

grammars. SCFG rules enforce the symbol causalities and the approach uses the 

causalities as the measure of similarity.  

By translating the grammar into a graph, we leverage the advantages of graph-

based representation for structure comparison. The graph captures the connectivity 

relationship of the SCFG production rules into a single summarized presentation. The 

approach leverages only the causality relationships defined in the production rules and 

does not incorporate the stochastic parameters. Without requiring the stochastic 

parameters, the rest of the discussion on grammar similarity treats the SCFG as Context-

Free Grammars (CFG). The conversion to graphs produces source and terminal matrics 

used for the Zager-Verghese graph node-matching algorithm [36]. The graph-node 

matching produces a node-likeness matrix, containing node likeness scores between 

nodes across the two graphs. Using the Hungarian algorithm produces a node pairing that 

maximizes the scores. With the pairings, the grammars now have a way to relate 

symbols, which is then used to identify common causal patterns between the two 



grannnars as a measure of gramma1· similarity. This section explains the process and an 

example grammar compru·ison is in Appendix A. 

Grammar A (GA) 

Convert to 
Graph 

Source-Edge (As) and 
Terminus-Edge (Ar) 

Matrices 

Zager-Verghese 
Algorithm 

Node-Likeness 

Matrix(X) 

Hungarian 
Algorithm 

Matches 

Compare Causalities 

Common causalities 

Grammar B (Ga) 

Convert to 
Graph 

Matrices 

Figure 14. Grannnru· Comparison Process. 
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Convert CFG to Graph. 

Translating CFGs to graphs is not unprecedented. Muggleton and Pahlavi [74] 

relate CFG to a stochastic automata, by translating the production rules into states and 

transitions. Gecse and Kovacs [75] provide another example of translating CFG into 

graphs, for the purpose of identifying grammar consistency, highlighting a pragmatic 

benefit of examining CFG in graphical form. For comparison purposes, the proposed 

method uses a translation similar to Gecse and Kovacs [75], which converts the symbols 

into states and the links represent a connection between symbols within a CFG 

production rule. A difference between the approach is that all CFG symbols are 

represented as nodes in the graph, not just the non-terminals. The graph node matching 

algorithm used in the proposed approach has an O(n3) complexity. 

 Applying a graph node-matching algorithm provides a measure of similarity and 

compares grammars by matching a symbol in one grammar to its closest approximation 

in another symbol based on each symbol’s connectivity to other symbols. The node-

matching enable comparisons regarding the causality of symbols in CFG notation. 

Similarity is measured as a combination of likeness between symbols and comparison of 

common causal relationships between symbols, where the existence of a causal link in 

both grammars indicate similarity while differences in causal links indicate dissimilarity. 

 The comparison method uses an iterative graph-based approach because it 

assumes conditions most similar to the grammar comparison problem, where the 

terminals and non-terminals are not guaranteed to be consistent across grammars. Non-

iterative graph-based approaches, such as edit distance/isomorphism or feature extraction, 
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typically assume a shared set of terminals and non-terminals between the grammars under 

comparison and exceed polynomial complexity. 

 We first represent each grammar as a directed graph in order to take advantage of 

graph node-matching. In graph form, each node represents a grammar symbol. The node-

matching algorithm then produces a node likeness matrix. Applying the Hungarian 

algorithm [76] on the node likeness matrix produces a pair-wise matching of terminals 

between the grammars. Production rules then provide additional causality information 

that combined with the pair-wise matching, yields insight into grammar similarity. Figure 

14 illustrates the grammar comparison process. 

 Each CFG production rule defines an equivalency relationship between the left 

hand side (LHS) symbol and the right hand side (RHS) symbols. A graph representation 

of the CFG also conveys this relationship between LHS and RHS symbols.  

 The graph nodes correspond to the VN and VT symbols. Each production rule 

creates an edge between the LHS symbol’s node and its RHS symbols’ nodes. In graph 

representation, the S node is the node without incoming edges and VT nodes are nodes 

without outgoing edges. This is different than the representation in [75] which does not 

include VT nodes. Another difference is that edges are numerically labeled instead of their 

stochastic likelihood. The edge labels are used in a node-edge correspondence to produce 

a pairwise similarity matrix between nodes. Figure 15 uses the example grammar from 

Gecse and Kovacs [75] represented as a directed graph. The mathematical operators in 

the RHS not relevant to the example were removed from the production rules in the 

figure for clarity.  
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Figure 15. Example CFG and Graph Representation. 

 

The numeric label for each link is used only in the construction of matrices in the source-

edge (GS) and terminus-edge (GT) matrices, shown in Figure 16, in the Zager-Verghese 

method [36] for node-matching so their order is unimportant other than consistency 

between GS and GT [36].  

 
GS 1 2 3 4 5 6 
S 1 1     
T   1 1   
F     1 1 
A       

 

GT 1 2 3 4 5 6 
S  1   1  
T 1  1    
F    1   
A      1 

 

 

Figure 16. Source-edge matrix (GS) and Terminus-edge matrix (GT) corresponding to the graph in Figure 

15. The non-filled spaces are zero entries. 

 

Zager-Verghese Graph Node-Matching Algorithm. 

This approach combines CFG-specific information with the Zager-Verghese [36] 

iterative graph similarity algorithm. Among the iterative methods, Zager-Verghese is 

used because it has similar conditions to the CFG comparison problem in that 

correspondence between nodes is unknown and similarity is calculated on all node pairs 

between graphs [77].  

VT: a   

VN: S,T,F   
S: S   
P:    
 S → S T 
 S → T 
 T → T F 
 T → F 
 F → S 
 F → a 
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 The Zager-Verghese [36] node-matching algorithm iteratively calculates 

similarity between nodes applying the assumption that two nodes are similar if their 

neighborhoods are similar. We selected this graph similarity method because it does not 

require the grammars to share the same VT ⋃ VN set or labels, in contrast to other graph 

similarity algorithms [1]. Their contribution to graph node matching is that their 

algorithm converges independent of initial values. Using GS and GT, the algorithm 

iteratively calculates node-likeness (X) and edge-likeness (Y) scores.  

Hungarian Algorithm. 

Applying Hungarian algorithm [76] on X produces a lower-bound node matching 

between nodes across the two graphs. The iterative calculations for X and Y require 

matrix multiplications that are O(n3) [78, Ch. 13] and the Hungarian algorithm is also 

O(n3) [79]. 

Causality Comparison. 

 The node mapping enables comparisons between grammars with different 

symbols because the symbols are matched based on their connectivity to other symbols. 

In addition, a CFG in graph form reflects the following CFG-specific information: 

 
1. VT are the only sink nodes 

2. VN always have at least one out-going link 

3. RHS symbols have a causality relationship with one another 

4. S only has outgoing links 

5. Connectivity to self (1’s in the same coordinate in both GS and GT) indicate 

recursion 
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The graphical representation over-generalizes the CFG and does not take into 

account all the knowledge represented in a CFG. For instance, the production rule S → A 

B and S → B A are indistinguishable in graph form, which does not denote the causality 

relationship between A and B. Thus, it is possible to translate a grammar into a graph, but 

not possible to definitively reconstruct a grammar from the graph without providing the 

additional causality information.  

 CFG-specific information can be further incorporated by manually altering X. For 

instance, if we know that two grammars share a common VT, we zero out matching scores 

between different terminals in X to prevent irrelevant node matches. The same approach 

applies to zeroing out matches between VN versus VT if we know certain symbols are 

definitively in VN or VT. All adjustments to X based on additional CFG information occur 

prior to running the Hungarian algorithm.  

 The node mapping is used to examine the causal relationships between each 

grammar. Each grammar has a list of node pairs that specify a before-and-after 

relationship in the production rule’s RHS. After the graph node matching, CFG 

comparison requires examining the causal commonality between RHS symbols not 

captured in the summary graph. In doing so, CFG similarity extends Zager and Verghese 

[36] pairwise node similarity scores to include node causality similarity, rather than a 

single similarity index. This algorithm is shown in Algorithm 1. 
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Algorithm 1. CFG Similarity Algorithm. 

Input:  
GA (Grammar A) 
GB (Grammar B)                   //Grammar B nodes ≥  Grammar A nodes 
AS (Graph A Source-Edge Matrix) 
AT (Graph A Terminus-Edge Matrix) 
BS (Graph B Source-Edge Matrix) 
BT (Graph B Terminus-Edge Matrix) 
 
Output: 
List of matched causalities in GB to causalities in GA 
X′ = ones matrix of size (number of 
nodes in BS , number of nodes in AS) 

//buffer for node similarity 
scores 

Y′= ones matrix of size (number of 
edges in BS, number of edges in AS) 

//buffer for edge similarity 
scores  

  
for n-iterations //number of iterations  
   Y = Bs

T X′ AS + BTT X′ AT 
   Y = normalize(Y) 
    

//Y stores the edge similarity 
scores 
//T superscript is the matrix 
transpose operation 

   X = Bs
T Y′ AS + BTT Y′ AT 

   X = normalize(X) 
//X stores the node similarity 
scores 

   
   X′ =  X 

 
//copy updated to buffer matrices 
for next iteration    Y′ = Y 

end  
 X = addCFGinfo (X) //modify X with CFG terminal 

information, such as zeroing out 
cells between terminal and non-
terminal symbols or keeping known 
terminal matches  

Hungarian(X) //generate pairwise node-to-node 
matching 

CA = identifyCausalities(GA) 
CB = identifyCausalities(GB) 

//identify symbol causality in both 
grammars and store as lists 

CB = remapSymbols(X, CB) 
 

//remap the symbols in CB using 
results from the node matching 

return compareCausalities(CA, CB) //compare causalities for 
similarities and differences in 
symbol causality 

  

 By convention, GA is the smaller grammar, where size is determined as the 

number of nodes. Each grammar symbol uses a subscript of the grammar when it is not 

obvious. Capital letters denote non-terminal symbols and lower-case letters denote 

terminal symbols. The node-likeness matrix (X) contains the values after running Zager-
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Verghese [36] through 1,000 iterations. In the example in Appendix A, the bold entries 

denote the pairwise node matches from the Hungarian algorithm. Causal links between 

symbol pairs are designated with a “>”, where it conveys precedence. 

Comparisons are run on MATLAB version 12.1a and used the YiCao 

implementation [76] of the Hungarian algorithm. In contrast to the Borlin’s 

implementation used in [36], YiCao’s implementation does not require padding of X and 

Y. The implementation performs matching by cost, so X was multiplied by a -1 factor to 

find minimum cost assignment matching. 

 The Hungarian algorithm performs a node-to-node comparison that does not 

account for the possibility where a node in one graph may represent multiple nodes in 

other. It correctly matched the recursive symbol and the resulting node matching showed 

greater similarity in the causal links than without having the node matching information. 

3.5.1 SCFG Parsing. 

 Parsing is performed using an Earley parser written in C++ 6. This particular 

implementation was selected primarily because it was only a parser and did not contain 

domain dependent functions or methods. It also did not require conversion of the 

grammars into Chomsky-Normal-Form.     

3.6 Individualization (SCFG Structure Inference) 

 Individualization attempts to discover behavior patterns from specific sequence of 

events to focus investigative efforts on events not attributable to the normal activity 

patterns. The application leverages the individual characteristics that make the object 

                                                
6 https://github.com/shaobohou/pearley 
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unique, where the behavior patterns make up the individual characteristics. Broeders [80] 

uses the example where a scratch on a bullet is not unique, but a specific arrangement of 

scratches makes it unique. Similarly, an activity is not unique, but frequent patterns of 

activities become unique to a user. 

 Pattern discovery uses two unsupervised SCFG inference techniques, alignment-

based inference and bigram-based inference. Alignment-based inference is a top-down 

approach to find overarching patterns across the timelines. In contrast, the bigram 

approach is a bottom-up approach identifies patterns as mergers of frequently occurring 

adjacent events. These patterns are used in reduction to focus the examination on events 

that do not fit a pattern. The examiner can then provide the criminal investigator the 

unexplained events in addition to the patterns of behavior, which may also be of 

probative value. 

3.6.1 Alignment-based Inference. 

 Alignment-based structure learning attempts to discover patterns from the top-

down by identifying causal patterns of symbols throughout the data. Alignment considers 

the possibility that the causal patterns may consist of symbols that are not immediately 

adjacent to one another by allowing gaps in pattern sequences.  

 Clustering the corpus improves the resulting alignments when aligning similar 

sequences. Sequence similarity is based on the arithmetic mean of content distance and 

edit distance to reflect different similarity characteristics in the timelines [81]. Content 

similarity takes into account bigram patterns, even if they are not in aligned positions. 

Content similarity is a combination of precision and recall, which are defined as: 
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𝐶𝑜𝑛𝑡𝑒𝑛𝑡 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = 2 × 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × √𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ √𝑅𝑒𝑐𝑎𝑙𝑙

 

 

(3) 

 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
|𝑏𝑖𝑔𝑟𝑎𝑚(𝑣1)∩ 𝑏𝑖𝑔𝑟𝑎𝑚(𝑣2)|

|𝑏𝑖𝑔𝑟𝑎𝑚(𝑣1)|
 

 

(4) 

 
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
|𝑏𝑖𝑔𝑟𝑎𝑚(𝑣1)| ∩ |𝑏𝑖𝑔𝑟𝑎𝑚(𝑣2)|

|𝑏𝑖𝑔𝑟𝑎𝑚(𝑣2)|
 

 

(5) 

 
 
Where:   
 𝑏𝑖𝑔𝑟𝑎𝑚(𝑣) is the set of bigrams from sentence 𝑣 
 |𝑏𝑖𝑔𝑟𝑎𝑚(𝑣)  ∩ 𝑏𝑖𝑔𝑟𝑎𝑚(𝑣)| is total number of common bigrams 
 
 

Edit distance takes into account similarity when there is alignment, even though bigram 

patterns are not preserved. The edit distance algorithm is shown in Algorithm 2. 

To produce a result that can be used with content similarity, the edit distance is 

normalized by the length of the longer sentence, shown in Equation (6). This way, both 

content and edit distance similarity are on a range between 0 (completely dissimilar) to 1 

(completely identical). Table 3 shows example calculations for each of the similarity 

measures. 

𝐸𝑑𝑖𝑡 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦

=  
𝑚𝑎𝑥�𝑙𝑒𝑛𝑔𝑡ℎ(𝑣1), 𝑙𝑒𝑛𝑔𝑡ℎ(𝑣2)� − 𝑒𝑑𝑖𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑣1, 𝑣2)

max�𝑙𝑒𝑛𝑔𝑡ℎ(𝑣1), 𝑙𝑒𝑛𝑔𝑡ℎ(𝑣2)�
 

 

(6) 

 
 

𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =
𝐶𝑜𝑛𝑡𝑒𝑛𝑡 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦+ 𝐸𝑑𝑖𝑡 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦  

 

(7) 
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Algorithm 2. Edit Distance Algorithm. 

Input:  
string1 [1..m] 
string2 [1..n] 
 
Output: 
distance between string1 and string2  

 

initialize distance_array(m,n) //set 2-dim array 
to all 0’s 

del_err_cost = 1;  
ins_err_cost = 1;  
sub_err_cost  = 1; 

//cost can be 
changed to bias 
against specific 
error types  

for i = 1 to m   
      d[i,0] = i  
for j = 1 to n  
      d[0,j] = j  
for j=1 to n  
      for i = 1 to m //letters match 
             if string1[i] == string2[j]  
          d[i,j] = d[i-1,j-1] 
             else  
                d[i,j] = min(  
                d[i-1,j] + del_err_cost, //deletion error 
                d[i,j-1] + ins_err_cost, //insertion error 
                d[i-1,j-1] + sub_err_cost) //deletion error 
              )  
return d[m,n] //distance 

  
 

Table 3. Examples of Similarity. 

v1 v2 Content 
Similarity 

Edit Distance 
Similarity 

Combined 
Similarity 

ABC CAB 0.59 0.33 0.92 

ABCD DABC 0.73 0.50 1.23 

ABC ADC 0.00 0.66 0.66 

AAAA AAAAB 0.93 0.80 1.73 

 
  

Clustering the corpus reduces the number top-level S productions since each 

cluster represents at most one S production. Each cluster is then recursively aligned using 
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multisequence alignment. If there is an alignment, it is turned into a production rule and 

the parts of the sequences that do not match the alignment are stored as a subcorpus, 

tracked by a symbol, N, that increments with each new subcorpus. The halting condition 

is when no alignment is found in a corpus or subcorpus. All sequences are associated to 

the tracking symbol. However, if a subcorpus produces an alignment, then that alignment 

gets stored as a production rule and the multialignment is performed on the subcorpuses 

surrounding the aligned symbols. This approach is outlined in Algorithm 3. 

The algorithm uses the Needleman-Wunsh algorithm for pairwise sequence 

alignment from the bioinformatics domain [82]. Similar to edit distance, the Needleman-

Wunsch algorithm uses a scoring system that rewards aligned symbols and penalizes gaps 

and mismatches. A score matrix and a corresponding traceback matrix records the 

alignment path that determines aligned positions and insertions of necessary gaps. The 

algorithm is shown in Algorithm 4 and has an O(mn) time and space complexity, where 

m and n are the length of the two sequences. 

Using the Needleman-Wunsh in a progressive manner builds a multiple sequence 

alignment from a series of pairwise alignments to avoid simultaneous multiple sequence 

alignment algorithms which incurs an exponential computational complexity of O(2knk), 

where k is the number of sequences [83, Ch. 6]. The pairwise progression incrementally 

adds additional sequences to past alignments and back-propagates gaps into previous 

alignments when gaps are necessary to align the newest sequence. Order alignment has 

an impact on the overall alignment because of the introduced gaps. A greedy approach to 

ordering uses a similarity matrix to identify most similar sequences first. Each cell in the 

similarity matrix is populated with similarity measures such as edit distance normalized 
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to the longer sequence length. Then, the ordering begins with the two-most similar 

sequences and adds the remaining most similar sequence until the ordering includes every 

sequence, creating a guide-tree. Pair-wise alignment then uses the ordering to determine 

the incremental sequence of alignments. 

Algorithm 3. Alignment-based Structure Learner. 

Input:  
W - list of all timelines 
 
Output: 
P - production rules 

 

N = 0 //non-terminal index 
clusters = cluster(W) //number of clusters drive 

the number S productions 
//cluster function 
described in text 

foreach cluster in clusters  
    find_alignment(cluster,N) //recursively called 

//each cluster becomes a 
corpus  

  
function find_alignment(corpus, N)  //corpus is an input 

variable for list of 
timelines (cluster on 1st 

call) or partial segments 
of timelines (subcorpus on 
recursive calls)  

    alignCol = multiAlignment(corpus) //no aligned columns base 
case 

    if alignCol.size = 0  
        associate each sequence to N in P  
        return  
    else // Example: 
        map incremented N to a subcorpus  
  surrounding aligned columns 
        associate N to alignment 
        add alignment to P 
 

// 0 …N+1… * …N+2… * … N+3…  

        foreach subcorpus in corpus // if * are aligned columns 
              find_alignment(subcorpus,N) // the …N… becomes a 

subcorpus identified by N 
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Algorithm 4. Needleman-Wunsh Alignment Algorithm. 

Input:  
seq1 [1..m] 
seq2 [1..n] 
 
Output: 
alignment1 [1..x] 
alignment2 [1..y] 
alignment_score 

 

  
score_matrix[m+1,n+1] 
traceback_matrix[m+1,n+1] 

//create score and 
traceback 2-dim 
matrices 

init_penalty = -10;  
gap_penalty = -2;  
match_reward  = 5; 
mismatch_penalty = -3; 
assignment_score = 0; 

//scoring system 

 
for i = 1 to n //initialize score 

matrix and 
traceback matrix 

      score_matrix[i][0] = i * init_penalty 
      traceback[i][0] = “up” 
end 
for j = 1 to m 
 score_matrix[0][j] = j * init_penalty 
      traceback[0][j] = “left”  
end  
  
for i = 1 to n  
      for j = 1 to m  
             int s //temp var 
             if (seq1[j-1] == seq2[i-1]  s = match_bonus  
             else s = mismatch_penalty  
  
             int diag = score_matrix[i-1][j-1] + s; //identify scores 

to determine path 
direction in 
traceback matrix 

             int up = score_matrix[i-1][j] + gap_penalty 
            int left = score_matrix[i][j-1] + gap_penalty 

            score_matrix[i][j] = max(diag,up,left) //score_matrix 
records the max 
score 

            traceback[i][j] = max(“diag”,”up”,”left”) //traceback_matrix 
records the 
direction of the 
max score 

     end    
end 
 
i = n 
j = m 

 

while ([i][j] != [0][0])  
     if (traceback[i][j] == “diag”)  //diag means 

symbols are aligned            alignment1.prepend(seq1[j-1]) 
           alignment2.prepend(seq2[i-1]) 
            i=i-1  
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            j=j-1  
   else  
       if (traceback[i][j] == “left” //left means a gap 

in the seq2              alignment1.prepend(seq1[j-1]) 
             alignment2.prepend(“-”)  
              j=j-1  
      else  
            alignment1.prepend(“-”) //up means a gap in 

seq1             alignment2.prepend(seq2[i-1]) 
             i=i-1  
end  
assignment_score = score_matrix[m+1,n+1]  
return assignment_score, alignment1, alignment2  
 
 

3.6.2 Bigram-based Inference. 

 To induce an hierarchal structure in the activity recognition domain and planning 

domains respectively, Peng, et al. [81] and Li, et al. [48] apply the intuition that 

frequently adjacent terminals are instances of higher-level events. Li, et al. [48] 

iteratively combines symbols into bigrams, starting with looping symbols and the most-

frequent bigram. The inferred grammar then adds a production rule with the bigram as 

the RHS. A new symbol for the LHS replaces every instance of the bigram in the corpus 

until the entire corpus is deduced to the start symbol, S. An expectation-maximization 

algorithm, such as inside-outside [63], prunes the grammar of productions that occur less 

than a set threshold.  Algorithm 5 shows a modified version of the algorithm. Depending 

on the domain, the sort function orders the corpus in a manner that makes the most sense. 

In planning, the shorter plans are more desirable so the sort function reorders the plan 

based on shortest length first to capture the bigrams from best plans first. In the network 

timeline domain, creating bigrams from timelines that are most similar to the other 

timelines may be an alternative approach, similar to the way multiple sequence alignment 

builds a guide tree to determine the ordering for pairwise alignment. 
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Algorithm 5. Full-Coverage Bigram Structure Learner. 

Input:  
Set of all terminal symbols VT   
list of all timelines, W 
Output: 
Production Rules, P 

 

 
sort(W) 

 
//pre-sort 

for each symbol, t in VT  do  
 Create new symbol in VN and create  
 production in form VN →  t 

//add terminal 
productions for CNF 

 Add production to P  
end  
rewriteTimelines(W,P) // 𝑊 is now only in 

VN  symbols 
while not empty(W) do  
 while length(𝑤) > 2 do  
  add production Z → X Z for new  
  loops 

//X is repeated 
symbol, right-
recursive format 

  rewriteTimelines(W,P) //checks existing 
rules 

  add production Z → X Y for most-frequent-bigram 
  rewriteTimelines(W,P)  
 add production S→ w to P //do not add if 

already in P 
 remove w from W  
  
normalizeWeights(P) 
 

 

 
 Instead of performing the pruning at the end, Peng, et al. [81] combine terminals 

when their joint-occurrence frequency is larger than their expected marginal frequency. 

They build joint frequency and marginal frequency tables from the timelines and apply a 

chi-square test on each bigram to determine if the bigram should be represented as a 

production rule. By using the chi-square test, bigram combinations that fail the 

significance test are not combined and the algorithm reaches a halting condition faster 

than the full-coverage algorithm. A variation of this algorithm is shown in Algorithm 6, 

which does not show the generalization function in Peng, et al.[81]’s algorithm for 

clarity. In addition, the chi-square function will reject bigrams of symbols that exist only 
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as a bigram because too many variables in the equation are zero. However, if the bigram 

frequently appears in Joint Frequency Table, then rejecting the bigram produces counter-

intuitive response based on the semantics of what the structure learner is attempting to 

accomplish. Thus, in addition to checking for divide by zero values, the chi-square test 

checks for situations where this occurs. The implementation retains a history of bigram 

combinations at each level in VN
L that makes the hierarchy evident. The highest level WL 

defines the S productions in the inferred grammar.  

 Using the chi-square test improves upon coverage-based algorithms like the one 

in Algorithm 6, but incurs computational complexity. Coverage-based algorithms, such 

as SEQUITUR [84] can achieve linear time and space performance--the algorithm 

efficiently adds new bigrams but does not revisit and reorder combinations, other than to 

enforce two properties that guide rule usage.  

 The bigram approach however is sensitive to the rewrite process. For instance, if 

AB and BC are both significant bigrams, ABC can be written as either (AB)C or A(BC). 

Grouping sensitivity potentially obscures patterns at higher levels. For this reason, 

bigram inference is complimented with alignment-based inference for this forensic 

application. 
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Algorithm 6: Chi-Square Test Bigram Structure Learner. 

Input:  
merge-threshold, m 
list of all timelines, W  
 
Output: 
list of combined activities, VN

L at level L 
WL, rewritten with VN at each level L 

 

L = 0 //terminal level 
VN

0 = terminals(W) //VN
0 = VT 

do  
   L++ //R is a map of the 

bigram to the first and 
second symbol 

   (WL,VN
L) = collocation(WL-1,VN

L-1,L, R) 
until VN

L.isEmpty()  
  
function collocation(WL-1,VN

L-1,L, R)  
   foreach bigram in WL-1  
        increment bigram count in jft //jft stores the 

frequency of the bigram 
        increment bigram count in mft1 //mft1 stores the 

frequency of a bigram 
containing the first 
symbol 

        increment bigram count in mft2 //mft2 stores the 
frequency of a bigram 
containing the second 
symbol 

   end  
   T = total number of bigrams in jft  
   A = bigram count in jft //chi-2 shortcut for 2x2 

checks 
 
//must check for div by 
zero error 
 
//chi-2 invalid if less 
than seven of the 
variables are not zero 
 
//for domain purposes, if 
symbols in bigram only 
exist together, mark it 
significant 

   E = mft1 count of bigram’s first symbol 
   G = mft2 count of bigram’s second symbol 
   C = E – A 
   B = G – A 
   F = T – E 
   H = T - G 
   D = F - B 
   chi = T*((A*D)–(B*C))2 / (G*H*E*F) 
   if (chi ≥ m)  
          add bigram to VN

L 
          add bigram to R  
   rewrite WL in VN

L 

return (WL,VN
L)  
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3.7 Summary 

 This section presented the algorithms developed for applying SCFG to network 

forensic applications. The first part of the chapter uses domains with SCFG applications 

to identify domain traits that suggest suitability for SCFG representation. We then show 

how PCAP files of capture network traffic can be converted into timelines of a terminal 

alphabet using IP meta data, organic keywords, and URL classification databases on a 

network forensic scenario. While we were able to generate a timeline, the PCAP did not 

contain sufficient information to build an SCFG structure. To demonstrate association 

with SCFG, we designed four grammars to act as competing hypotheses. Before 

performing association, we compared the grammars at the output level using terminal 

frequency analysis and at the grammar level, using graph-based node-matching approach, 

developed in the course of this research. We then examine SCFG for individualization, 

presenting the structure learning algorithms that focus on repeated patterns. The next 

chapter presents the analysis and results from the experimental setups proposed in this 

chapter. 
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IV. Analysis and Results 

 Chapter 3 presented the SCFG algorithms for the network forensic association 

and individualization. This chapter presents the experimental setup, the results, and 

analysis. SCFG parsing associates an activity sequence to a known profile, reducing 

unlikely profiles from suspects under consideration. SCFG structure inference discovers 

normal behavioral patterns from a series of activity sequences, enabling the examiner to 

focus on events in the activity sequences that are not explained by the discovered 

patterns. 

 This chapter begins with the association process, which describes the design of 

the known profiles, the results of the grammar comparison to confirm differences 

between the profiles, and the confusion matrices of associating a sequence to a profile 

from a set of known profiles. Then, the individualization processes is demonstrated using 

a computer network traffic use case; SCFG reduced the number of activities with 

probative value across activity sequences using SCFG structure inference techniques, 

while retaining the event of interest.  

4.1 Association 

 The association process requires an activity sequence and a set of known profiles, 

characterized by different behavioral patterns, represented as an SCFG. This subsection 

first discusses the design of the known profiles. Following this is confirmation of 

similarity and differences between profiles through the output-to-output and grammar-to-

grammar comparison. Finally, the confusion matrices from total parse likelihood and 
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most-probable parse likelihood show that these quantitative measures associate the 

correct, originating profile. 

 
4.1.1 Known Profiles. 

 In addition to timelines from a PCAP, the association process in Figure 12 shows 

an input of known behavior profiles. As mentioned in 3.5.1, the methods to create 

profiles in SCFG are through expert definition and machine learning. The original plan to 

create known profiles attempted to use machine learning on the computer network traffic 

captures from various digital forensic scenarios, like the Nitroba scenario [11]. However, 

the classroom examples often resolved into a single timeline of unstructured events, 

which was insufficient to infer behavior patterns, such as the example shown in Figure 

13.  

We attempted the PCAP to SCFG Terminal process using the PCAP 110 file from 

the 2013 Digital Forensics Network Challenge and obtained similar results, where user 

interaction was primarily in the form of GET requests. The file consists of 5,666 packets. 

Wireshark identifies 176 TCP connections, where all connections originated from a 

single IP address. The parameters of the scenario was focused on deciphering packet 

level details, inferring that the entire PCAP is one timeline, so the structure learning 

could not identify significant patterns. 

 The Network Trap and Trace scenario from the 2011 Digital Forensics Challenge 

provided more variation. Only 3,365 packets long, Wireshark identified the second and 

last TCP conversation as an MIRC connection. The context of the scenario is to identify 

the intent and actions of the subject and subjects. Considering that the only 
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communication connection occurs in two connections, relevant information is probably 

contained in those two streams. Concerning target identification, the sites visited between 

the two communication events are suspect. 

 The DFRSW 2008 challenge consists of two components where the network 

capture is only one piece of the evidence. This scenario better reflects realistic scenarios 

where the crime is not fully encapsulated in one file and network examination may 

provide only part of the narrative. In the scenario, Wireshark DNS resolution made 

association of a category to banking and webmail sites straightforward, though some of 

the IPs did not produce results with any of the IP classification methods mentioned 

earlier.  

 The digital forensic scenarios show that network traffic captured as PCAP files 

exhibit the discrete observable, linear order characteristics suitable for SCFG 

representation. The variability and the potential for volume of activities also warrants 

SCFG representation. However, the lack of multiple timelines in these scenarios hindered 

the ability to use SCFG structure learning to identify patterns in the timelines. 

 As an alternative, four grammars shown in Figure 17 serve as a set of generalized 

behavior patterns to provide the competing hypotheses necessary for this application. The 

four grammars share a common seven-terminal alphabet: (email, social, news, 

shopping, travel, wiki, scholar). The purpose of using a terminal alphabet 

is to focus on behavioral patterns, rather than individual sites. For instance, the Nitroba 

scenario used a URL that resolved to www.sendanomymousemail.net, which using a 

selection-based approach, identified the logical starting point for the investigation.  
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  Oracle A represents an ideal profile where behaviors are rigid with discernable 

patterns. This behavior is driven by the single S production. The variability from this 

profile comes from intermediate non-terminals, which include recursive productions with 

have multiple terminal derivations. For instance, Update can be any combination of 

social and/or news observations, but it must occur between some form of Comm and 

Task.  

 Oracle A (idealized patterns) Oracle B (random) 
1.00 S --> Comm Update Task 
1.00 Comm --> email 
0.20 Update -> social 
0.20 Update --> news 
0.30 Update --> Update social 
0.30 Update --> Update news 
0.40 Task --> LitRev 
0.10 Task --> TOrders  
0.20 Task --> Comm 
0.30 Task --> Task Task 
1.00 TOrders --> shopping 
travel 
0.20 LitRev --> LitRev wiki 
0.20 LitRev --> LitRev scholar 
0.60 LitRev --> scholar 

0.80 S --> S Task 
0.20 S --> Task 
0.20 Task --> email 
0.20 Task --> wiki 
0.20 Task --> scholar 
0.10 Task --> news 
0.10 Task --> shopping 
0.10 Task --> travel 
0.10 Task --> social 

 
 
  

Oracle C (pattern in noise) Oracle D (multiple patterns) 
1.00 S --> Task1 Task2 Task3 
0.80 Task1 --> email 
0.20 Task1 -- Noise email 
0.80 Task2 --> social 
0.20 Task2 --> Noise social 
0.80 Task3 --> scholar 
0.20 Task3 --> Noise scholar 
0.10 Noise --> Noise Noise 
0.10 Noise --> social 
0.10 Noise --> email 
0.10 Noise --> wiki 
0.10 Noise --> scholar 
0.10 Noise --> shopping 
0.10 Noise --> travel 
0.10 Noise --> news 
0.20 Noise --> space 

0.80 S --> Comm Task 
0.20 S --> Update 
1.00 Comm --> email 
0.20 Update -> social 
0.20 Update --> news 
0.30 Update --> Update social 
0.30 Update --> Update news 
0.40 Task --> LitRev 
0.10 Task --> TOrders  
0.20 Task --> Comm 
0.30 Task --> Task Task 
1.00 TOrders --> shopping 
travel 
0.20 LitRev --> LitRev wiki 
0.20 LitRev --> LitRev scholar 
0.60 LitRev --> scholar 

Figure 17. Oracle Grammars. 

 

 In contrast, Oracle B is a shallow and thus, non-descriptive profile. There are two 

S productions, but only to describe the loop of Tasks, which can be any low-level 
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terminal. Essentially, this oracle generates timelines of random activities, controlled by 

the looping probability and probability of Task to each respective low-level terminal. 

Through this grammar structure, Oracle B has coverage over any sentence generated with 

the common, seven-terminal alphabet. The purpose of this oracle is to compare the effect 

of a general grammar against oracle grammars that exhibit patterns. 

 Oracle C has a defined sequential pattern of email, social, and scholar 

observations. Unlike Oracle A, the pattern is intentionally intermixed with other symbols 

to represent noise using the Noise non-terminal, which mimics the * noise non-terminal 

in Kitani, et al. [19]’s experiment.   

 The purpose of Oracle D is to have a profile that shares many of the same 

production rules as Oracle A. Oracle D exhibits two strict pattern, and is the only profile 

to have multiple patterns with more than one S production.  

 The oracles share a common alphabet to avoid the situation where the presence or 

the absence of a terminal is sufficient for association. To verify the output characteristics, 

we graph the frequency of terminals in the corpuses of 100, 1000, and 10,000 activity 

sequences generated by the oracles. The oracles under comparison use a common 

terminal alphabet and the purpose of this step is to examine whether terminal frequencies 

reveal the oracle that created the corpus. Figure 18 plots the frequency of each terminal in 

the corpus, normalized to the number of timelines in the corpus, as indicated in the 

parenthesis. Corpuses A, C, and D exhibit a tight frequency bands independent of the 

number of timelines. As expected from the production rule likelihoods, corpuses from 

Oracle B do not follow a consistent pattern, as expected given the randomness driven by 
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Oracle B’s production rules. As desired, the frequency lines are intertwined and the 

presence of a symbol does not clearly identify a specific originating corpus.  

 
Figure 18. Terminal Frequency Timelines. 

 
  

4.1.2 Grammar Comparison. 

Grammar comparison is performed where it is expected that Oracle A, B, and C 

are distinct, while Oracle A is similar to Oracle D. Table 4 shows the causalities in the 

four grammars, where “>” symbolizes precedence. The presented grammars (CFG) 

method calculates the similarity between CFGs by calculating the similarity between the 

symbols, where symbol similarity is measured by their inclusion and causality in each 

production rule.  
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Table 4. Grammar Causalities. 
Oracle A Oracle B Oracle C Oracle D 

Comm > Update 
Update > Task 
Update > news 
Update > social 
Task > Task 
shopping > travel 
LitRev > wiki 
LitRev > Scholar 

S > Task Task1 > Task2 
Task2 > Task3 
Noise > email 
Noise > scholar 
Noise > social 
Noise > Noise 

Comm > Task 
Update > news 
Update > social 
Task > Task 
shopping > travel 
LitRev > wiki 
LitRev > Scholar 

 
  

In comparing Oracle A to Oracle B, the grammar comparison identified non-

terminal correspondence between SB to SA and TaskB to TaskA that did not produce 

common causalities. Oracle A compared to Oracle C produced a mapping of CommA to 

SC, Update to Task1, SA to Task2, LitRev to Task3, and TaskA to Noise; this 

mapping yielded only a single common causality for TaskA → TaskA from Noise → 

Noise. Oracle A and Oracle D had a common graphical representation and share six 

common causalities, achieving the desired effect. 

 
4.1.3 SCFG Parsing. 

 Parsing provides a quantitative comparison between behavior profiles to identify 

the most likely origin. A sequence was attributed to a profile based on which profile 

produced the total parse or most-probable parse likelihood. Table 5 and  

Table 6 show the confusion matrices for corpuses generated from the grammars against 

the set of grammars. Most-probable parse likelihood provided greater separation from 

mis-association as Oracle B, which was designed for coverage. However, this increased 

the number of mis-associations of randomness to Oracle C and D.  
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Table 5. Confusion Matrix based on Total Parse Likelihood. 

Total Parse 
Likelihood 

CorpusA CorpusB CorpusC CorpusD 

Oracle A 100 1 0 0 
Oracle B 0 93 5 9 
Oracle C 0 0 95 0 
Oracle D 0 6 0 91 

 

Table 6. Most Probable Parse Likelihood. 

Most Probable 
Parse 

Likelihood 

CorpusA CorpusB CorpusC CorpusD 

Oracle A 100 1 0 0 
Oracle B 0 91 0 0 
Oracle C 0 1 100 0 
Oracle D 0 7 0 100 

   

4.1.4 Discussion 

 Parse likelihood and most-probable parse likelihood correctly associated the 

originating profile. Parsing produces a quantitative measurement for comparison, but the 

parse likelihood is useful only in comparison against parse likelihoods by other grammars 

in the set. The value is not useful in determining the association without values from 

other grammars for comparison. As shown in the confusion matrices, false positives 

occur. False associations are problematic because it could result in an erroneous arrest. 

Most probable parse likelihood made more correct associations. Most-probable parse 

only must be less than or equal to total parse likelihood, providing additional example 

that the magnitude of the likelihood score is insufficient to make proper associations. 

  The following paragraphs discuss similarities of this association to anomaly 

detection and signature-based intrusion detection, which are also computer networking 
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traffic problems. SCFG parsing incurs polynomial complexity and is better suited for data 

analysis, rather than real-time systems. In addition, the rate of false positives requires an 

element of human supervision.  

Anomaly Detection. 

 Despite functional similarities with anomaly detection, the association process 

assumes a human-in-the-loop due to a high false positive rate. Prior work on inferring 

user behaviors from network usage achieved 60-80% correct associations of activities 

with the original user [70, 71], which is inappropriate in a real-time, unmonitored setting.  

 In the digital forensics setting, the most-probable parse is more advantageous 

from a human-monitoring standpoint since it requires examination of only a single parse 

tree per profile. Total parse likelihood, in contrast, requires determination of all possible 

parses, which is difficult to track manually, to ensure that all combinations are accounted 

for.  

Parsing for Flexible Signature-based Intrusion Detection Analysis. 

 Oracle C was designed to accept a specific pattern in the presence of noise, 

enabling a break in causality between key pattern symbols. Skoudis and Liston [85] assert 

that most attacks follow a general five-phase approach consisting of: 1) Reconnaissance, 

2) Scanning, 3) Gaining Access, 4) Maintaining Access, and 5) Covering Tracks. These 

make an overarching pattern for an attack and each of the phases can be implemented in a 

variety of ways on a lower level. For a grammar, each phase is essentially a Task and a 

network attack is, at the highest level, a five Task causal pattern. Gorodetski and 

Kotenko’s [86] ontology, shown in  provides examples of how each phase of an attack 

can be implemented satisfied to fulfill the Task.  For example, TCP connect scan, UDP 



84 

scan, Network Ping Sweeps are lower-level activities that can be substituted with a 

Reconnaissance Task non-terminal. The flexibility in using a grammar-based 

approach is that the lower-level definitions can be modified or changed without 

impacting the knowledge structure unrelated to the changes. If network attack grammar 

can parse the sequence, then the sequence includes all five phases of an attack in the 

correct order. Using grammar parsing in this manner is different than making 

comparisons between profiles, but it does meet the description of the association process 

where parsing identifies the modus operandi.  

 

Figure 19. Network Attack Ontology [86]. 

 

4.2 Individualization 

 We captured a single user’s traffic data over the course of three days. Truth data 

was recorded so that the actual event timeline was known. Wireshark’s [66] dumpcap 
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utility was used to capture the packets. Due to out of memory errors, dumpcap started to 

drop packets and eventually crashed during the end of captures. With the recorded truth 

data, the sessions were performed again. The grammar inference techniques do not use 

visit duration as a feature in pattern discovery so the resulting activity sequences were 

unaffected. The captures were recorded in 15 MB, 18 MB, and 23 MB PCAP files.  

 For testing purposes, the user purposely visited www.HSBC.com during the 

middle of the second capture. The site was selected because it is not suspicious site based 

on the URL; the TrustedSource database categorized it as minimal risk with a banking 

web category. However, the act of visiting this particular page was in contrast to normal 

habits which typically carries out banking tasks with shopping activities. The site is also 

not uniquely identifiable based on visit frequency. With the exception of visits to 

cacwebmail.afit.edu on Internet Explorer, all other browsing was conducted on Chrome. 

The goal of the reduction, using patterns discovered in the individualization process, is to 

eliminate patterned activities while not eliminating the HSBC visit. 

4.2.1 PCAP to SCFG Terminals. 

 The first step converts the three PCAP files into timelines. Sequential streams 

from the same address were grouped together. This is similar to the loop compression 

SCFG adaptation to focus the behavior patterns on transitions between activities. Similar 

to the reconstruction process, the behavior patterns require relative rather than absolution 

time order [10]. This also abstracts away the length of time spent on an activity, which is 

not a feature represented in SCFGs. The HSBC activity highlighted in red in the second 

timeline denotes the uncharacteristic activity. The reduction process should eliminate 

other events without reducing this activity.  
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 For the same reasons discussed in the PCAP to timeline section, the timeline does 

not include activities from ad services, typically indicated by the referred-from field in 

the stream. The timelines also do not include activities caused by background services 

such as antivirus updates or operating system updates because they are not user initiated. 

Figure 20 shows the activities from the three sessions, t1, t2, and t3, consisting of 41 total 

activities.  

  

Figure 20. PCAP activities in timeline format of three sessions. 

 
 The second step uses IP address meta data and organic keywords retrieved from 

ipaddress.com as well as McAfee’s Threat Intelligence database at 

www.trustedsource.org to classify the different activities into terminals. Figure 21 shows 

the timelines as sequences of terminals from a five symbol set of edu (education), 

socnet (social networking), news, shopping, and banking. 
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Figure 21. PCAP timelines to SCFG terminals. 

 
4.2.2 Alignment-based Inference. 

 The next step applied alignment-based inference to identify activity patterns that 

occur across the timelines. This produced an alignment, where aligned symbols are 

shown in blue in Figure 22. The grayed out dashes represent gaps in the alignment which 

may include any number of symbols in the timelines.  

 
Figure 22. Alignment of the three timelines. 

 
The alignment indicates a pattern of regularity between the timelines. With knowledge of 

this behavioral pattern, the aligned activities are grayed out to de-prioritize them for 

investigation, as shown in Figure 23 reducing the total of unexplained activities from 41 

to 14.  
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Figure 23. Timelines with aligned symbols de-prioritized (grayed out). 

 
4.2.3 Bigram-based Inference. 

 Bigram inference techniques further identify frequent activity patterns, focusing 

on increasing patterns of adjacent symbols. Removing these patterns from the sequences 

again reduces the number of remaining activities by de-prioritizing activities that 

frequently occur together. Bigram inference produced the following vocabulary:  

• shoppingbanking, 
• socnetnews 
• edusocnet 
• socnetedu 
• newssocnet 
• (edusocnet)news 
• (shoppingbanking)socnet 
•  edu(shoppingbanking) 
• (socnetedu)(shoppingbanking) 
• (socnetedu)shopping 
• (edusocnet)banking 

 



89 

The vocabulary terms signify additional behavioral patterns. The parentheses indicate 

a previously merged bigram within another bigram. Activities that are unexplained by the 

alignment are matched against the vocabulary list. Sequences that appear in the 

vocabulary list are also de-prioritized, shown in washed-out green in Figure 24. The 

bigram discovery process is independent of the alignment inference process. Therefore, 

the results from the bigram process can reduce the event sequences on their own. By 

using both approaches, activities can be explained away using both methods. An activity 

exclude through alignment can still be used as part of a bigram to exclude activities not 

explained by the alignment discovery process. To highlight these occurrences, activities 

as part of bigrams that were grayed out in the alignment step are relabeled green, but 

retain the grey circle.  

 In comparing results between the two processes, the alignment included two 

adjacent activities, edusocnet, that was also discovered in the bigram inference 

approach. The alignment also included another adjacent pair, edu and shopping, 

which did not appear on the bigram vocabulary list. However, edushopping appears in 

the vocabulary list three times, under edu(shoppingbanking), 

(socnetedu)(shoppingbanking) and (socnetedu)shopping, marking 

it as part of other frequent patterns. 
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Figure 24. Timelines with both aligned (gray) and bigram (green) activities de-

prioritized. 

 
 At the point of investigation in Figure 24, only two activities remain across the 

three timelines that are unexplained by behavior patterns inferred from alignment and 

bigrams. These two activities should be the start of the investigation, which includes the 

intended implanted event. This application of SCFG inference primarily leverages the 

pattern discovery elements of structure learning which was more important than the final 

inferred SCFG structure to the forensic application.  

4.3 Discussion 

 The application of alignment-based and bigram-based inference reduced the 

amount of activities requiring more in-depth examination. This section examines 

variations to the procedure, which highlights future considerations for applying this 

process. 

 The first variation deals with the PCAP to SCFG terminal step that eliminates 

background services from timelines, and the effect on the two structure inference 

techniques if background services are mis-construed as an user event. Next, the bigrams 
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are evaluated for semantic significance. Finally, the individualization process is examined 

using six terminals instead of five in the PCAP to SCFG terminal step. 

4.3.1 Background Services. 

 The PCAP to terminal step ignored background services. Inclusion of these sites 

into the timeline increases the terminal set and the variety of patterns within timelines. 

Background services that only periodically check for updates is similar to random noise 

and the terminal will unlikely achieve bigram significance though their occurrence may 

bisect significant bigrams, requiring more of the occurrences of non-bisected bigrams to 

achieve the significance threshold. If the background services occur at the same time 

during user session, such as updates at 7 am on Tuesday, then it may become part of an 

alignment which gets sifted out as routine. Assuming ad sites are always associated with 

the referring page, ad terminals would associate with the intended referring page in 

bigram inference, thereby making them frequent and routine. 

 In examining the effects of noise and variation, we performed both types of 

alignment on the corpuses generated in the association section. We examined the bigram 

inference method, first on 10 and then 100 activity sequences. In Corpuses A, the bigram 

vocabulary greatly increased with the number of samples, which can attributed to the 

recursive Task symbol that interjects variety at the end of the sequences. Corpus B, 

experiences a decrease in the number of vocabulary layers and significant symbols. This 

effect is due to the randomness of Corpus B, where fewer bigrams pass the chi-square 

threshold because symbols are randomly adjacent to one another. Inferred vocabulary 

from Corpus C greatly increased with the number of samples, similarly due to the 

recursive Noise production. The graph node matching identified the similarity between 
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TaskA and NoiseC. Corpus D did not experience as large a growth in vocabulary size 

because the split of Update meant that the social and news terminals never intermix 

with other terminals, reducing the number of bigram potential. 

 Bigram inference is not a good method to identify overarching patterns. The 

number of overarching patterns is directly correlated to the number of S productions. 

Table 7 shows the number of S productions using both bigram and alignment-based 

inference. In contrast, alignment-based inference, which processes the corpus top-down, 

generated fewer S productions proportional the number of samples. The exception to this 

is the random patterns in Corpus B, where the number of S productions increased. 

Table 7. Number of S productions. 

 Bigram-Inference Alignment-based Inference 
Corpus # of S 

productions 
 (10 Samples) 

# of S 
productions  

(100 Samples) 

# of S 
productions (10 

Samples) 

# of S 
productions 

(100 Samples) 
A 9 79 9 48 
B 6 84 10 94 
C 9 87 10 52 
D 7 37 8 33 

 

4.3.2 Bigram Semantics. 

 The bigram inference identified frequently adjacent activities. However, the 

vocabulary does not necessarily infer a semantically-significant higher-level activity. For 

instance, the edusocnetnews pattern indicates that these items appear adjacent to one 

another but it is not obvious regarding why edu occurs before socnet or socnet 

before news events. Significance is clearer when reverting the SCFG terminals back to 

the actual websites. For instance, socnetnews appears because posts and discussions 

on social networks refer to current events. Therefore, this bigram may carry a semantic 
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meaning of “getting current events.” In contrast, edusoc does not convey a higher-

level goal. In this sense, the occurrence of these patterns may be an indicator of user 

preference, rather than some specific plan to accomplish a set task. The inability to 

guarantee that bigrams have a significant semantic meaning reduces the benefit of using a 

hierarchal knowledge structure. 

4.3.3 Changing an SCFG Terminal. 

 The cacwebmail activity had an afit.edu extension and was assigned the edu 

terminal based on the ipaddress.com classification. We repeat the individualization 

process and obtain a reduction that categorized cacwebmail activity with a comm 

terminal, as a better reflection of the actual activity. This expanded the number of 

terminals in the sequences to six. As expected, increasing the variety of symbols 

increases the distance between sequences and this change produced two clusters: (t1, t2) 

and (t3). An increase in the number of clusters means that there is less likely to be a 

single alignment pattern, because the alignment pattern from one cluster does not transfer 

to other clusters. This is illustrated in Figure 22, where t3 does not have any activity in 

grey; all washed out activities in t3 are due to bigram patterns.  
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Figure 25. Timelines with six terminal set. 

 
 The introduction of the comm terminal also changed the bigram vocabulary: 

• shoppingbanking 
• commsocnet 
• socnetnews 
• (commsocnet)banking 
• (commsocnet)news 
• socnetedu 
• ((commsocnet)banking)shopping 
• socnet(commsocnet)banking 
• edusocnet 

 
The resulting change is a decrease in the amount of activities explainable as part of a 

pattern, leaving five activities unattributed; most importantly though, the red activity was 

still included correctly left in the remaining activity set.  

4.4 Summary 

This chapter demonstrated reduction using SCFG parsing and structure inference in 

the association and individualization forensic processes, respectively. SCFG parsing to 

performed association by using the parsing sequences with known grammars and 
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attributing the sequence to the grammar that had the highest most-probable parse 

likelihood.  Individualization applied alignment and bigram-based inference to discover 

behavioral patterns that identify events as routine. By eliminating routine events from 

activity sequences, the examiner can focus on the remaining, unexplained events in the 

timelines.  
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V. Conclusions and Recommendations 

 Digital forensics examinations require significant manual effort to identify items 

of probative value from the ever-increasing volume of data in modern computing 

systems. This research proposes that Stochastic Context-Free Grammar (SCFG) 

knowledge representation can assist examiners in the association and individualization 

analysis processes on computer network traffic. SCFG is leveraged to provide context to 

the low-level data collected as evidence and to build behavior profiles. Upon discovering 

patterns, the analyst can begin the association or individualization process to answer 

criminal investigative questions. SCFG capabilities were demonstrated in performing 

association and individualization in reducing the suspect pool and reducing the volume of 

evidence to examine in a computer network traffic analysis use case. 

 Three contributions resulted from this research. First, domain characteristics 

suitable for SCFG representation were identified and a step-by-step approach to adapt 

SCFG onto novel domains was developed, enabling the PCAP to SCFG terminal process 

that translating low-level networking capture file into user activity sequences. 

 Second, performing the association process on user activity sequences required a 

set of known behavioral profiles. This necessitated a way to compare the different 

profiles, that led to the development of a novel iterative graph-based method of 

identifying similarities in context-free grammars, enabling comparisons between 

behavior patterns represented as grammars.  

 Third, SCFG parsing and structure inference performed association and 

individualization forensic processes to reduce the suspect pool or to reduce activity 

sequences to events of probative value. The results from these forensic processes answer 
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investigative questions in a manner conveyable to a non-technical audience. Parsing 

produces a quantitative measure associating the most likely origin. Structure inference 

explained pattern events so that examination can focus on unattributed events. 

5.1 Results Summary 

 PCAP to SCFG terminal processing is possible through Wireshark ordering of 

TCP streams, the IP meta data and organic keywords, and web categorization databases. 

These factors enable a discrete and causal sequence compatible with SCFG knowledge 

representation. The cross-disciplinary examination of SCFG applications identified 

SCFG-compatible domain characteristics and domain adaptations that other researchers 

can leverage to apply SCFG to other domains. 

 Association relied on existing profiles as grammars and the stochastic parameters 

of the production rules in the profiles. Parsing produced a comparative quantitative 

measure that enabled comparison between all the profiles in the set and association to the 

originating profile. The grammar comparison methodology developed as part of the 

experimental setup for this process has additional applications in NLP translation and 

computer language compiler interoperability analysis. 

 The alignment and bigram-based structure inference learner explained away the 

majority of activities in the set of activity sequences under examination, while not 

eliminating the anomalous user activity. The degree of reduction is sensitive to the PCAP 

to SCFG terminal process. The structure inference learning algorithms are domain 

independent and may have applicability to other domains. 
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5.2 Recommendations for Future Research 

 This section presents avenues of future research. The first recommendation 

addresses the issue of turning PCAPS into timelines. The next two recommendations are 

extensions of the association and individualization processes, based off topics from the 

discussion section for each process from Chapter 4. The association process may be 

extended to identify completed network attacks, which requires low-level signatures as 

expert defined production rules. The individualization application extends the grammar 

inference algorithms to produce test data that retains the behavior pattern of the users by 

first discovering patterns from user recorded computer network traffic. The final future 

research recommendation is transfer learning of SCFG stochastic parameters.  

5.2.1 PCAP processing. 

 The PCAP to URL timeline was a manual and time consuming process. Recent 

efforts such as [87, 88] attempt to automate the process. Additional issues may also 

complicate timeline construction. Networks that use caching require different techniques 

for classification for association to a terminal. Dynamic IP addresses makes it difficult to 

determine whether different activities belong in a single individualization scenario. 

Range queries, which hides user queries with random dummy queries, adds significant 

noise to the timelines. 

5.2.2 Association for Flexible Signatures. 

The association sub-section 4.1.4 discusses the potential for parsing to identify the 

modus operandi of an attack from computer network traffic captures. This extends the 

PCAP processing future work to include recognition beyond URL categorization. The 

advantage to using SCFG is the flexibility to include additional low-level recognitions of 



99 

these activities without impacting the rest of the knowledge structure. In addition, SCFG 

has advantages over just signature-based detection because SCFG parsing puts each 

phase of an attack into context of the entire five-phase attack, so incomplete attacks do 

not get flagged. 

5.2.3 Data generation. 

 Despite obfuscating IP information, the information within search queries and 

visited sites may themselves reveal personally identifying information [71] studies and 

why studies that collect their own data cannot freely share their test data. The lack of a 

common data set is one challenge in performing network behavior analysis research, 

because cross comparison studies are difficult. From the privacy perspective, inferring an 

SCFG grammar to mimicking real user behavior by creating new data from capture data. 

This process creates a gap between the recorded data and user behavior so that the user 

tasks can be fulfilled using non-sensitive means. For instance, if a data capture records a 

user visiting www.facebook.com/specific_username, that event is abstracted as a 

social event in the grammar. When actually performing the social terminal, 

social may be satisfied by any site categorized as social and without reference to 

any specific username. Because the translation from categories into actual sites, this 

effort requires additional sensitivity analysis regarding terminal selection and noise, as 

discussed in sub-sections 4.3.1and 4.3.3. Precedence for SCFG in test data generation is 

described in Appendix B.  
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5.2.4 Transfer learning. 

 Transfer learning is the “ability of a system to recognize and apply knowledge 

and skills learned in previous tasks to novel tasks in new domains [89].” Inside-outside 

[90] is the machine learning algorithm typically used to calculate the stochastic 

parameters for each production in an SCFG. Because inside-outside’s computational 

complexity is cubically driven by the number of productions and the number of inputs 

sequences, using the graph-based similarity methods may identify similar terminals 

across grammars and transfer the stochastic parameters matched terminals to reduce the 

cost of parameter learning. 
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Appendix A. SCFG Comparison 
 

 One of the reasons to use SCFG knowledge representation is to compactly 

represent large amounts of data as a set of rules governing the order of symbols. The 

comparison method also has application CFG problems such as language translation or 

identifying compatibility between compilers requires the ability to compare grammars. 

 Current methods of comparing CFGs occur at the rule-to-rule level or at the 

output-to-output level, which is a computationally impractical or undecidable problem. 

This paper presents a CFG comparison method that measures grammar similarity by 

identifying the structural symbol similarity between grammars. The presented method 

first produces a graph representation of the CFGs where nodes represent grammar 

symbols. Then, a graph node-matching algorithm produces a node similarity matrix 

between nodes, identifying nodes, and therefore CFG symbols that are most similar. The 

symbol matching then enables the CFG comparison of symbol connectivity and 

causalities, which measures the subset of similar symbol patterns between the two 

grammars. Results on several benchmark problems show that this method produces 

results in polynomial time and overcomes limitations in rule-to-rule and output-to-output 

grammar-based comparisons. 

A.1 Reasons to Compare CFGs 

 There are multiple reasons to compare CFGs. First, CFGs represent large amounts 

of data. Making comparisons at the representation level avoids making more numerous 

output-to-output comparisons, which reduces the utility of a compact representation in 

the first place. Second, CFG comparisons show the existence of common patterns 
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between the two sets of represented data. Language translation is an NLP application that 

exhibits these two elements of CFG comparison; it is not possible to enumerate and 

compare every sentence between two languages and translation benefits from 

understanding common sentence structure patterns [28]. Finally, grammar comparisons 

reveal potential incompatibilities across different grammars on the same data. An 

application of this scenario occurs in computer languages, where comparing grammars 

from different parsers for the same programming language will indicate varying 

acceptance levels over an identical  piece of code [29].   

 Grammar-based methods evaluate grammar similarity using rule-to-rule 

comparisons [32, 33] or output-to-output comparisons [30, 31]. However, these 

approaches are computationally in exponential time [32] or undecidable [33–35]. The 

related work in this appendix provides a brief survey on different grammar-based 

similarity measurement concepts. Like CFGs, graphs represent vast amounts of data or 

highly-dimensional data in a compact matter [74]. Graphical models also describe logical 

structure in many real-world domains such as social networks, web addresses, and 

biology [77]. Algorithms that leverage graph structures often reveal useful information 

not obvious in its original data form. Graph comparisons methods include edit distance 

calculations, graph feature extraction, and iterative matching methods [77]. Edit distance 

approaches are also exponentially complex. Graph feature extraction methods are 

computationally fast, but are very sensitive to the selected statistics and may not produce 

intuitive results. Therefore, this paper uses an iterative graph similarity algorithm.  

We address the undecidability issue of grammar comparison methods by translating the 

grammar into a graph and leveraging the advantages of graph-based representation for 
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comparison. The graph captures the connectivity relationship of the CFG production rules 

into a single summarized presentation. Translating CFGs to graphs is not unprecedented. 

Muggleton and Pahlavi [74] relate CFG to a stochastic automata, by translating the 

production rules into states and transitions. Gecse and Kovacs [75] provide another 

example of translating CFG into graphs, for the purpose of identifying grammar 

consistency, highlighting a pragmatic benefit of examining CFG in graphical form. For 

comparison purposes, the proposed method uses a translation similar to Gecse and 

Kovacs [75], which converts the symbols into states and the links represent a connection 

between symbols within a CFG production rule. A difference is that all CFG symbols are 

represented as nodes in the graph, not just the non-terminals. The graph node matching 

algorithm used in the proposed approach has an O(n3) complexity. 

 Applying a graph node-matching algorithm provides a measure of similarity and 

compares grammars by matching a symbol in one grammar to its closest approximation 

in another symbol based on each symbol’s connectivity to other symbols. The node-

matching enable comparisons regarding the causality of symbols in CFG notation. 

 Similarity is measured as a combination of likeness between symbols and 

comparison of common causal relationships between symbols, where an existence of a 

causal link in both grammars indicate similarity while differences in causal links indicate 

dissimilarity. Comparisons of benchmark grammars show the intuitiveness of the results 

based on the node-matching results. 
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A.2 Related Work 

 In Wu, et al.’s [28] paper on language translation, the authors represent Chinese 

and Taiwanese sign-language as probabilistic context-free grammars. Their work focused 

on transferring the likelihood of each production rule to rank translations. The experiment 

required a bilingual corpus, where the same text appeared in both languages, which is an 

output-to-output comparison on a small subset of the languages. If a bilingual corpus is 

not available, translation requires alternative approaches to identify common rules in both 

languages. 

 Fischer, et al. [29] also used an output-to-output grammar comparison approach to 

detect Java parser incompatibilities. Each grammar generated a test data set comprised of 

auto-generated code from the parser’s CFG. They determined parser compatibility based 

on how much each parser accepted test data generated by a different parser. While they 

used an output-to-output based approach, they found that identifying non-terminal 

matching is useful in understanding grammar compatibility.  

 Rule-to-rule or grammar based similarity comparisons examine similarity from 

the perspective of structural equivalence [33, 35] and weak equivalence (coverage) [34, 

35]. Structural equivalence performs comparisons by iterating over the production rules 

and determining whether symbols and their respective rules exist or in combination exist 

in both grammars. Paull and Unger [33]  define two grammars as structurally equivalent 

if both grammars produce the same sentences using different production rules. Hunt, et 

al. [32] conjecture that structural equivalence is not polynomially-bounded. 

 An alternative grammar-based equivalence approach explores the concept of weak 

equivalence, which focuses only on equivalent coverage or output-to-output comparisons. 
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Two grammars are weakly equivalent if both grammars produce the same set of 

sentences. Unlike structural equivalence, weak equivalence is not concerned with how 

each grammar produces the same sentence, so weakly equivalent grammars do not 

necessarily preserve semantics. An application of weak equivalence is grammar 

compaction. Grammar compaction attempts to reduce the number of production rules 

within a single grammar by eliminating production rules that are parseable with other 

production rules, at the cost of some semantic information [35, 91]. However, there are 

no known algorithms to determine weak equivalency between grammars to pragmatically 

leverage this concept [34, 35]. 

 To address the pragmatic issues with determining weak equivalence, Hunt and 

Rosenkrantz [92] approach similarity from the perspective of structural containment, or 

Reynolds covering, where one grammar is able to map production rules to create rules of 

the other grammar. They determined that finding Reynolds coverage between arbitrary 

grammars is an NP-complete problem, but polynomial-time algorithms exist for restricted 

grammars [92]. Soisalon-Soinen and Wood [31] examine a different covering 

relationship, undercover, based on the produced sentences. However, they also found that 

determining undercover relationship between two unrestricted CFGs is also an 

undecidable problem. 

 Tree-based comparisons are an intuitive transition to compare acyclic grammars 

in a graphical model. The parsing operation of a grammar resembles a tree-like hierarchy 

where the S is the root node, the internal nodes are VN, and all the leaf nodes are VT. 

Summars-Stay, et al. [93] applied tree-based operations to examine grammar similarity 

where the similarity measure is the cost of transforming one tree into the other. The cost 
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is calculated as the sum of the cost of insertion, deletion, or relabeling operations [94] . 

For cross comparisons, Bulter [95] normalizes cost to the number of nodes in the larger 

tree. Calculating tree edit-distance is O(n3) [96]. To reduce the computational cost, Rui, 

et al. [97] expanded on the tree edit distance approach by transforming the trees into a 

binary vector representation that preserves the semantic relationship between nodes, but 

enables a linear complexity search that identifies the lower-bound relationship between 

trees. Knowing the lower-bound narrows the search space by filtering candidates that do 

not meet the lower-bound. 

 Recursive (cyclic) CFGs are not representable as a tree. Therefore, more general 

graphs are required to represent a broader scope of CFGs. Rosenkrantz and Hunt [30] 

related grammar isomorphism to graph isomorphism, though their finding applies only to 

regular grammars, which is less expressive than CFGs. Gecse and Kovacs [75] provide a 

CFG graphical representation as directed graphs. Their focus was in identifying grammar 

consistency rather than performing comparisons between grammars, but their work 

provides an example of the pragmatic benefits of examining CFG in graph form. 

Once a CFG is in graph form, there are three approaches to measuring graph similarity: 

graph isomorphism, feature extraction, and iterative. The graph isomorphism approach 

applies edit distance operations to make one graph isomorphic to another [77]. Similarity 

is therefore, a quantitative measurement of the number of addition, subtraction, or 

substitution operations on edges and nodes. Algorithms determining graph isomorphism 

are exponential and thus impractical on large-scale graphs. In contrast, the feature 

extraction approach attempts to compare graph features such as degree distribution, 

diameter, or eigenvalues [77]. Algorithms to calculate these features scale well as graph 
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size increases, but are sensitive to feature selection. Improper selection may yield 

unintuitive results [77]. Iterative methods approach similarity as a node-by-node 

comparison of their neighborhood and edges [36, 98].  

 Graph-based approaches also introduce the concept of sub-graph matching, where 

one graph may be a smaller portion of another. This is applicable to CFGs as one 

grammar may be a subset of another, analogous to the grammar-based coverage concepts. 

Sub-graph matching typically requires node mapping, which is analogous to comparing 

grammars that do not share the same VT ⋃ VN set or labels. 

A.3 Example 

 Upon increasing the complexity of the grammars, straight-forward rule-to-rule 

evaluation becomes less clear. Figure 26 shows a grammar, GA, its graphical 

representation, and a list of the causalities from the grammar production rules and Figure 

27 shows a comparison between GA against GC and GB. 

 The grammar GB is GA converted into Chomsky Normal Form (CNF). In CNF, all 

production rules are in the form A → B C or A → a, restricting the RHS of a production 

rule to two non-terminals (upper-case letters) or a single terminal (lower-case letters). All 

CFGs have an equivalent CFG representation [39]. By definition, the CNF version of the 

grammar is weakly equivalent to the original, but RHS restrictions cause structural 

changes, evident in the graphical representation. GB includes additional nodes and lines 

not in GA, which also complicate node matching.  

 The grammar GC has an additional nonterminal symbol than GA, but less than GB, 

and can produce sentences not parseable by GA. From the production rules, GC also 
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exhibits a causality relationship between a non-terminal and terminal symbol, A and a, 

that mimic the causality relationships in GA between A and b, not exhibited in GB. Once 

the node matches are applied to the causality lists in GB and GC, the causality lists 

indicate that GB has causal pairs in common with GA, despite a larger set of symbols, in 

contrast to GC. 

GA GA Graph GA Causalities 

VT: a, b   
VN: S, A   
S: S   
P:    
 S → A b A  

 S → A b 
 S → b A 
 S → b 
 A → A a 
 A → a 

 

 

 

 
A > b 
b > A 
A > a 

 
 

Figure 26. Grammar GA, the basis for comparison. 
 

A.4 Summary 

 Comparing context-free grammars (CFGs) has demonstrated use in applications 

such as language translation in Natural Language Processing (NLP), compiler 

compatibility, and activity recognition. CFGs compactly represent vast amounts of data. 

Making comparisons at the data representation level avoids computationally costly 

output-to-output comparisons and reveals common patterns between the sets of data. 

Grammar-based similarity concepts use rule-to-rule or output-to-output comparisons 

which are also computationally impractical or undecidable. 
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GB  GC 
VT: a, b    VT: a, b   
VN: S, T, A, B, C   VN: S,A,B   

S: S    S: S   
P:     P:    

 S → T A   S → B 
 S → B A   A → a 
 S → A B   B → A a 
 S → b   B → a A 
 T → A B   B → b 
 A → A C      
 A → a      
 B → b      
 C → a      

 

 
 

  

 
 

           
X SA AA aA bA  X SA AA aA bA 
SB 0.13 0.14 0.00 0.00  SC 0.09 0.09 0.00 0.00 
TB 0.04 0.21 0.00 0.00  AC 0.09 0.43 0.08 0.02 
BB 0.00 0.05 0.02 0.01  BC 0.26 0.72 0.01 0.01 
AB 0.14 0.85 0.07 0.02  aC 0.00 0.25 0.14 0.04 
CB 0.02 0.13 0.06 0.01  bC 0.00 0.25 0.14 0.04 
aB 0.04 0.34 0.09 0.01       
bB 0.00 0.02 0.01 0.01       

           
GB 

Causalities 
Remapped GB 

nodes to GA 
 GC 

Causalities 
Remapped GC 

nodes to GA 
 A > B  A > b in GA   A > a  S > a  
 B > A    b > A in GA   a > A  a < S  
 T > A  S > A        
 A > C  A > C        
           

Figure 27. Two grammars, GB and GC, compared against GA. GB is GA in Chomsky 
Normal Form. GC is covered by GA and though it has a symbol set more similar to GA, GC 

is less similar to GA than GB as indicated by remapped causal relationships. 
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  We translate CFG into graphs to leverage known polynomial-time similarity 

algorithms. Turning CFGs into graphs collapses the connectivity relationship between 

symbols from all the production rules into one summarized presentation for efficient 

comparison. We selected a polynomial complexity graph node-matching algorithm that 

produces a likelihood matrix that matches grammar symbols across the grammars under 

comparison. Similarity is based on the likeness between symbols across two grammars 

and the existence of common causal links between symbols in each grammar. Benchmark 

programs produced intuitive results in comparison to known grammar concepts. 

The proposed approach may yield promising results in transfer learning, which 

commonly includes taxonomies translatable to CFG. Identifying similarities reduces the 

dependence on labeled data and may achieve better learning results. 

 The proposed method does not leverage stochastic information found in stochastic 

context-free grammars (SCFG). Additional work may extend the proposed method to 

incorporate the stochastic parameters to measure SCFG similarity. 
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Appendix B. SCFG for Test Data Generation 
 

 Vishwanath and Vahdat [99] developed Swing, a network traffic generator to 

produce usage traces that reflect the characteristics of template traces at the packet level. 

They adopted a structural model determine the type of traffic flow, which included a user 

category that determined the application used and a session category that determined the 

higher-level task carried out by the user. Thus, Swing reproduces packet level 

characteristics, such as byte and packet burstiness, by using notions of the higher-level 

user and session concepts. Because of Swing’s focus at the packet level, most of their 

work discusses details below the session layer. 

 Chinchilla, et al. [100] proposed a traffic emulator, trafgen, to model traffic at the 

transport protocol level. They outlined user behavior modeling as combinations of 

Markov (memory-less), Petri Nets (preconditional), Hierarchical, and 

psychological/sociological transitions. Users are denoted as specific IP addresses.  

 Simpson, et al. [101] collected user network data from approximately 1,700 

volunteers who downloaded and ran the NETI@home (NETwork Intelligence at home) 

client on their machines. Using the client allowed the authors to gain insight into end-user 

behavior in a network-independent manner. Capturing information at the user end also 

avoids the complexity of accounting for proxies and caches. The study captured 

behaviors based on TCP or UDP ports, user think time, consecutive contacts, and contact 

selection. The modeling approach did not attempt to categorize user type or specific user 

tasks.  

 Gold, et al. [102, 103] developed GOSMR (Goal-Directed Scenario Modeling 

Robots) in an attempt to add the element of goal-directed behaviors in network traffic 
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generators. GOSMR focuses on the activity of the agents, particularly agent response to 

satisfy goals under network disruption. Each agent has stack of Actions. Actions are self-

contained, though actions can put lower-level actions onto the stack to satisfy itself. A 

Behavior object suggests an action for the using the utility and payoffs to choose the 

action, an agent has an empty stack. GOSMR can also alter the payoffs and penalties to 

mimic certain conditions to force the agents to take different actions as a reflection of the 

changed conditions to satisfy the same goal. GOSMR also includes a partial-order search 

through plan space planner to provide an agent alternate actions to achieve the agent’s 

goal in the event an attempted action fails. An advantage of their framework is that the 

set of agent behaviors is modular and can be added or inserted as needed, without 

modifying the overall architecture. In their experiments, the agents all act accordingly to 

the same set of rewards, so different agents tended to behave the same way, such as using 

faster responding services more. 

 Maurer [104] documented early experience of using “enhanced” CFGs to produce 

data to test code. His enhancement to CFGs includes using stochastic parameters, 

essentially SCFGs. To test specific branches, he applied selective substitution to ensure 

coverage. Empirically, he set the recursive productions to a smaller probability such that 

tests did not grow infinitely large.  

  Gecse and Kovacs [75] propose a method for evaluating the consistency of SCFG 

and transforming arbitrary SCFGs into consistent ones, with the specific emphasis on 

producing test data. Consistency is defined as the likelihood of terminating a sentence 

generation after a finite number of steps. Consistency is important for test data generation 
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when no corpus is available to infer probability parameters that yields sufficient coverage 

and error tolerance.  

 Zhao, et al. [105] discover behavioral patterns in computer programs for the 

purpose of identifying common substructures to ease debugging and to also simulate 

program executions. Their approach used context-sensitive graph grammars and 

substructure compression, an MDL approach, to identify the substructure patterns. 

 Buehrer, et al. [106] examined the differences between automated traffic and 

human generated traffic based on behavioral patterns. Used legimitely, generating more 

realistic traffic patterns may help test networks. Used maliciously, this can also be used to 

garner click-through rates. From the aspect of test data generation, their work provides 

insight into how to distinguish generated versus empirical data. They were able to 

distinguish between the groups, but the classification was based primarily on activity rate 

and volume factors rather than the activities themselves. 
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