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1. Introduction 

Explosive blast accounts for over 63% of combat casualties, and 20% of the 
deployed force potentially suffer from traumatic brain injury (TBI) (DePalma et al. 
2005; Hoge et al. 2008; Ling et al. 2009; Rosenfeld and Ford 2010; Theeler and 
Jackson 2012). Bomb blasts accounts for 82% of all injuries caused by terrorists 
worldwide (Champion et al. 2009; Covey and Born 2010; Capehart and Bass 2012). 
To find mitigation countermeasures and treatment methods (Margulies et al. 2009), 
the shock tube is a frequently used lab tool. The shock tube provides controllable 
and a repeatable shock pressure wave (Richmond and White 1966; Martinez 1999; 
Bauman et al. 2009; Long et al. 2010; Kleinschmit 2011; Stuhmiller 2011; Varas 
2011; Panzer 2012; Reneer 2012; Zhu et al. 2012; Courtney et al. 2014). Shock 
tubes of various cross-sectional sizes and shapes and various tube lengths have been 
designed for tests on assorted vehicles, equipment, and animals large and small.  

Animals tested include mice, rats, hamsters, guinea pigs, rabbits, cats, dogs, goats, 
sheep, burros, swine, monkeys, and cattle for tests to find eardrum failure threshold, 
lung damage threshold, and lethality threshold. Scaling models have been 
developed to find a survivable over-pressure range from test data with animals 
(Bowen et al. 1968; Bass et al. 2008; Courtney et al. 2011; Panzer et al. 2011; Jean 
et al. 2014). Using animal models to study brain injury, the characteristics of the 
brain anatomy need to be considered. Among the animals tested, the porcine brain 
has unique characteristics: It is gyrencephalic with a gyrification index similar to 
that of the human brain (Neal et al. 2007; Zilles et al. 2013; Lewitus et al. 2014). 
The porcine gray matter to white matter ratio is also similar to the human ratio 
(Zhang and Sejnowski 2000; Bush 2003; Winter 2011). Therefore, animal models 
with porcine brains should have greater relevancy to the human brain injury 
research (Finnie and Blumberg 2002; Cernak 2005; Manley et al. 2005; Swindle  
et al. 2012). 

A series of experiments applying a blast wave from a shock tube for pressure 
loading on porcine heads has been conducted at Duke University (Shridharani 
2012). This report describes the simulation work to study the porcine head 
response. The simulation uses the ALE3D code (LLNL 2014). In the following 
sections, the material models are discussed first, then the mesh setup for the 
simulations, followed by the simulation results for comparison, and finally other 
calculated physical quantities are presented. The objective is to attain insight into 
the experiments conducted at Duke University and understand the loading 
associated with blast-related brain injury mechanics.  
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2. Material Models 

2.1 Soft Tissue 

A newly implemented, compressible version of the Mooney-Rivlin model (Becker 
2014) is used for soft tissue. This nonlinear hyperelastic model is not tied to any 
particular equation of state; any equation of state in the ALE3D package for the 
pressure may be used. The constitutive relation for the deviatoric part, S, of the 
Cauchy stress tensor is given by 

 𝐒𝐒 = µ0
J
�ω0𝑑𝑑𝑑𝑑𝑑𝑑𝐁𝐁� − (1 −ω0)𝑑𝑑𝑑𝑑𝑑𝑑�𝐁𝐁�−1��, (1) 

where 𝐁𝐁� = 𝐁𝐁/J2 3�  is the volume adjusted part of the left Cauchy-Green 
deformation tensor B = FFT, dev denotes the deviatoric part, F denotes the 
deformation gradient, J = det F = (det B)1/2 is the Jacobian, µ0 is the shear modulus 
at small strains, and ω0 is a dimensionless constant with 0 < ω0 ≤ 1. This new model 
eliminates the complicated and physically unrealistic features of the compressible 
Mooney-Rivlin model originally in ALE3D (and currently in LS-DYNA); (cf. the 
discussion in Appendix A of Scheidler [2010]). The relationships between the 
parameters µ0 and ω0 above and the parameters A and B in the previous model 
(ALE3D ysmodel 144) are A = 1

2
ω0µ0 and B = 1

2
(1 −ω0)µ0. The accuracy of the 

advection of B is enhanced by advecting the logarithm of B. 

For this new version of the Mooney-Rivlin model (ALE3D ysmodel 146), the axial 
stress σ in a uniaxial stress test is given by 

 σ = µ0
J
�ω0 �λ2 −

1
λ
� − (1 −ω0) � 1

λ2
− λ��, (2) 

where λ is the principal stretch in axial direction with the isochoric deformation 
assumption. The pressure was determined by setting the lateral stress to zero. For a 
nearly incompressible material like soft tissue, the Jacobian J may be set to 1 in  
Eq. 2, since the volume change in a uniaxial stress test will be negligible.  

Quasi-static uniaxial stress data at strain rates from 10–3/s to 1/s was available for 
soft tissue. Due to lack of reliable data at the higher strain rates generated by 
projectile penetration, the quasi-static data was qualitatively extrapolated to yield a 
stress-stretch curve for strain rates of 103–104/s. The model is rate-independent. A 
fit is constructed at a strain rate of 103–104/s to produce stresses consistent with 
deformation at the higher rates. Equation 2 (J = 1) was then fit to this extrapolated  
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curve (Scheidler 2010), giving µ0 = 80 kPa (0.8 bar) and ω0 = 0.3. This value of the 
shear modulus is within the range of values found in the literature: 4.2–23.0 psi (or 
0.289–1.59 bar) (Winter 1975). 

The Grüneisen form of the equation of state (as implemented in ALE3D) is used 
for the ballistic gelatin as follows: 

 P =
ρ0c2K�1+�1−

γ0
2 �K−

a
2K

2�

�1−(S1−1)K−S2
K2

(K+1)−S3
K3

(K+1)2�
2 + (γ0 + aK)e, (3) 

where the compression K is given by K = � ρ
ρ0
− 1�; S1, S2, and S3 are coefficients 

from the US – up relationship; and γ0 is the Grüneisen parameter. 

The reference density, ρ0, is 1.05 g/cm3 (Winter 1975). The bulk sound speed, c, is 
0.156 cm/µs. The bulk modulus is 0.026 Mbar. The cubic polynomial coefficients 
fitting the shock compression curve are the same as those for water: S1 = 2.56,  
S2 = –1.986, S3 = 0.2268; the Grüneisen parameter γ0 is constant 0.5 and the linear 
correction factor, a, is 0. 

2.2 Brain 

The Mooney-Rivlin model is also applied for the brain. The density of the brain is 
chosen to be 1.04 g/cm3 (Claessens et al. 1997; Wang et al. 2007; Ho and Kleiven 
2009; Watanabe et al. 2009). The bulk modulus is set to be 2.19 GPa (0.022 Mbar) 
(Margulies and Meany 1998; Zong et al. 2006; Watanabe et al. 2009). The bulk 
sound speed (calculated from the bulk modulus and density) is 0.145 cm/µs. The 
shear modulus, µ0, is 13 kPa and ω0 = 0 (Ott et al. 2012). The Poisson’s ratio 
calculated from the bulk and shear moduli is 0.4999. The cubic polynomial 
coefficients fitting the shock compression curve are the same as those for water:  
S1 = 2.56, S2 = –1.986, and S3 = 0.2268; the Grüneisen parameter γ0 is constant 0.5 
and the linear correction factor, a, is 0. 

2.3 Skull 

The density of the skull is chosen to be 1.412 g/cm3 (Sauren and Claessens 1993; 
Henry and Letowski 2007; Moore et al. 2009; Taylor et al. 2009). This number 
came from earlier measurements with human cadaver skulls, 0.051 lb/in3 (1.412  
g/cm3) (McElhaney 1970). The material is modeled as homogenous (i.e., with no 
distinction between the skull and the suture). Density fractionation measurement 
with the porcine cortical bone powder samples shows that about 65% of dry bone 
powder has density values in the 2.0- to 2.1-g/mL range and about 30% is in the  
2.1- to 2.2-g/mL range, while for human bone powder, about 80% is in the 2.0- to 
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2.1-g/mL range and about 15% is in the 2.1- to 2.2-g/mL range (Aerssens et al. 
1998). However, this density was measured from the dry bone powder prepared 
from femoral shaft bone samples. The skull, being porous, would have a lower 
density than the measured values. The Young’s modulus is set to 6.5 GPa (Moore 
et al. 2009; Motherway et al. 2009; Taylor et al. 2009). Poisson’s ratio is set to 0.22. 
The elastic model is applied to model the skull. 

The material parameters are summarized in Tables 1–3. 

Table 1 Material parameters in the model 

Sample Density (g/cm3) Shear Modulus ω0 Bulk Modulus (Mbar) 
Soft tissue 1.05 0.8 bar 0.3 0.026 
Brain 1.04 0.13 bar 0 0.022 
Skull 1.412 0.026 Mbar . . . 0.038 

Table 2 Derived variables 

Sample Bulk Sound Speed 
(cm/µs) Young’s Modulus Poisson Ratio 

Soft tissue 0.156 240 kPa 0.4999 
Brain 0.145 39 kPa 0.4999 
Skull 0.165 6.5 GPa 0.22 

Table 3 Coefficients for the Grüneisen form of the equation of state 

Sample S1 S2 S3 γ0 a 
Soft tissue 2.56 –1.986 0.2268 0.5 0 

Brain 2.56 –1.986 0.2268 0.5 0 
Skull 0.94 0 0 1.0 0 

3. The Simulation Setup 

Since the recorded pressure history at the exit of the shock tube is not sufficient for 
use as boundary condition to drive the simulation, to accurately simulate the blast 
from the shock tube, the whole shock tube has to be modelled. In the experiments 
the shock tube has a 12-inch (30.5-cm) driver section where nitrogen is used as the 
driver medium. The driven section is 10-ft (304.8-cm) long with a 12-inch diameter 
(Fig. 1).  Flush-mounted pressure transducers located 1/4-inch inward from the tube 
exit record the pressure trace near the exit (Endevco 8530B, San Juan Capistrano, 
CA) (Shridharani 2012). 
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Fig. 1 Mesh configuration for the shock tube and the space around the test object 

Within the shock tube, the mesh is advection-enabled during simulation. The mesh 
element size is initially around (X × Y × Z) = 0.6 × 0.5 × 0.5 cm or less. With 
weighted advection, the mesh element size can reduce to around (X × Y × Z) = 0.4 
× 0.5 × 0.5 cm or less near the shock front during the passage of the shock front.  

For the object space (the space directly outside the tube exit, where the test object 
is placed) the mesh stays Eulerian; 2 meshes, 1 finer and 1 coarser, have been used 
for this report. With the finer mesh, the mesh element is about 0.3 × 0.2 × 0.2 cm 
around the test object, while with the coarser mesh, the mesh elements having 
dimensions about 0.6 × 0.5 × 0.5 cm around the test object, is run for comparison. 

In the region further downstream of the test object, the mesh needs to be extended 
far enough such that the pressure profile at the downstream boundary should not 
affect the computational accuracy near the center of the simulation (the space just 
outside the tube exit). Beyond the tube exit, the mesh is extended by 140 cm in the  
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axial X direction and 120 cm in the radial direction (Y or Z). The mesh element 
size increases gradually both in the X direction and in the radial direction away 
from the core region with constant-sized mesh (Fig. 1). 

The porcine head is created from computed tomography (CT) images of a porcine 
head, which is different from the one used in the blast tests (Yorkshire pigs). The 
solid volume for the porcine head is shaped into the ALE3D mesh. Since only the 
head portion is digitally available, the cervical spine is numerically fixed to the 
coordinates to emulate the presence of the porcine body. 

4. Comparison with Experimental Data 

The simulations with ALE3D use centimeters, microseconds, grams, and megabar 
(the B-Division units) (LLNL 2014), in which the pressure uses megabar for 
simulation; 1 Mbar = 105 MPa. 

4.1 Comparison with Measured Pressure Trace near the Tube 
Exit 

In the experiments the blast gas flow in the shock tube is characterized only by the 
pressure measured near the exit of the shock tube with transducers at 1/4-inch 
upstream of the tube exit, evenly spaced around the tube circumference 
(Shridharani 2012). One such pressure trace dataset for an incident pressure of  
2.6 bar gauge (37.7 psig) has been provided by the experimentalist group. However, 
the pressure in the driver section of the shock tube is not provided by the 
experimentalists. Instead the pressure in the driver section is estimated with the 
analytical relationship for pressures of a 1-dimensional (1-D) Riemann shock tube 
problem, as follows:  

 𝑝𝑝3
𝑝𝑝1

= 𝑝𝑝2
𝑝𝑝1
�1 − (𝛾𝛾 − 1)

𝑝𝑝2
𝑝𝑝1
−1

�2𝛾𝛾�(𝛾𝛾+1)𝑝𝑝2
𝑝𝑝1
+(𝛾𝛾−1)�

�

−2𝛾𝛾/(𝛾𝛾−1)

 , (4) 

where p1 is the atmospheric pressure, p2 the pressure at the shock tube exit, p3 the 
pressure in the driver section, and γ the heat capacity ratio (Schreier 1982; Terao 
2007; Needham 2010). The heat capacity ratio, γ, for air is 1.4. The calculated 
pressure in the driver section for each prescribed pressure at the shock tube exit is 
listed in Table 4. 
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Table 4 Pressure in the shock tube 

Pressure at the 
Shock Tube Exit 

(psig)  

Pressure at the 
Shock Tube Exit 

(bar) (abs) 

Pressure in the 
Driver Sectiona 

(bar) (abs)   
37.7 3.61 17.98 
49.8 4.45 31.79 
74.0 6.12 83.81 

                          aEstimated 

The simulated pressure trace at the pressure transducer location (1/4-inch upstream 
of the tube exit)—for the case with an incident pressure (at the pressure transducers 
at the end of the shock tube) of 37.7 psig (2.6 bar gauge) in experiment—in 
comparison with the measured pressure history at the same location is shown in 
Fig. 2, along with the pressure traces at other locations (to be described afterward). 
No test object is present in the test section in this shock tube simulation. 

 

Fig. 2 Comparison of pressure history traces at different tracer locations in simulation. 
The line marked test is the measured pressure data from the experiment. The locations of the 
tracers are shown in Fig. 3. 

The tracer stx1 is located at the center on the exit YZ-plane (at X = 0). The tracer 
stx1d is located at the center on the YZ-plane 5 cm upstream from exit (X = –5 cm). 
The tracer stx2b is located next to the tube wall at 1/4–inch from the tube exit (X = 
–0.635 cm; i.e., same location as the transducers in experiments). The tracer stx2d 
is located next to the tube wall at 5 cm upstream from the tube exit (X = –5 cm).  

During simulation, the frictionless slip condition is applied on the tube wall in place 
of an actual frictional turbulent boundary layer. The nodes on the wall are allowed 
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to slide along the wall surface direction except the last circumferential nodes on the 
YZ-plane (at X = 0) at the tube exit. However, in this computational scheme, the 
pressure calculated around these last nodes develops a higher percentage of error, 
which has been hard to correct. If, instead, we move 5 cm upstream from the tube 
exit (the YZ plane at X = –5 cm), the calculated pressure shows a more planar 1-D 
profile (i.e., the pressure at the center of the YZ-plane [tracer stx1d] is practically 
the same as the pressure near the tube wall on the same YZ-plane [tracer stx2d]). 
Therefore, the pressure at these locations (stx1d or stx2d) is used for comparison 
with the measured pressure data from the experimentalists. 

The peak pressure in the simulation reaches 3.6 × 10–6 Mbar (2.6 bar gauge or over-
pressure)—same as in the experiments. The simulated pressure history still 
resembles a Friedlander-style pressure profile for a typical explosion in the open 
but without the negative pressure phase. The pressure unloading being slower in 
the simulation than in the experiment is probably due to the difference in the 
rarefaction waves, which appears to be slower in simulation than that in the 
experiments. The apparent unloading rate may also be affected by the location of 
the tracer. Moreover, while in simulations the pressure wave running down the 
shock tube starts out as a planar wave, in experiments the pressure wave jets out 
the driver section through a small ruptured hole through the center of the Mylar 
diaphragm such that the pressure wave starts out as a gas jet instead of an idealized 
planar wave. This gas jet has a higher pressure around the centerline, which will 
affect the pressure profile further down the shock tube. The ruptured hole also 
changes the dynamics of the rarefaction wave; it may cause the rarefaction wave to 
propagate a little faster (than the planar wave in simulation). But how far the 
rarefaction wave has run over the shock wave front is not knowable from the 
experimental data. For further details, see the Appendix, which includes discussion 
about the effect of mesh resolution. 

4.2 Comparison with Measured Porcine Head Surface Pressure 

The porcine test object is placed next to the exit of the shock tube, with its right 
side facing the exit of the shock tube (Fig. 3). 
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Fig. 3 Porcine head outside the exit of the shock tube 

Figure 4 shows the tracers mentioned in the various sections on the Z = –2 plane. 
However, the pressure transducers and the accelerometer may not be on the same 
plane in the experiment. 
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Fig. 4 Locations of tracers mentioned in the various sections (Z = –2 plane) 

Figure 5 shows the locations of the tracers in the coarser mesh. 
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Fig. 5 Locations of the tracers in the coarser mesh (Z = –2 plane) 

Pressure sensors are placed on the right, top, and left side of the porcine head for 
the surface pressure measurements. Figure 6 shows the simulated surface pressure 
(fine mesh) compared with the measured surface pressure for tests with an incident 
blast pressure of 37.7 psig (2.6 bar gauge) (C Bass; personal communication; 
November 2010; unreferenced). The pressure in the simulation on the right side of 
the porcine face follows the Lagrangian tracer, tspr, initially in a nonmixed host 
element beneath the skin. The host element may become a mixed element with 
which the tracer drifts along due to head movement during impact. To improve 
comparison, another tracer tspr2, a Eulerian tracer, is added just outside the skin 
surface. The pressure history at this Eulerian tracer location initially follows the 
experimental measurement closely; however, the relative distance of this tracer 
point to the surface of the porcine face increases with time because the porcine head 
moves with the blast. The pressure at tspr stays higher a little longer than in 
experiment. This may relate to the flat top in simulation instead of a sharp top in  
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experiment (Fig. 2). In the figure, tspc (Lagrangian tracer) is the pressure history at 
a center top location on the skin surface, and tspl (Lagrangian tracer) is the pressure 
history at a location on the left side of the skin surface. 

At the moment of blast impact, the peak pressure reaches around 7 bar. When the 
over-pressure reaches 15 psi (1.034 bar, 103.4 kPa gauge), there is a 50% chance 
of eardrum rupture in a human (Owen-Smith 1979). 

 

Fig. 6 Simulated surface pressures (fine mesh) compared with the measured surface 
pressure (right face) 

4.3 Comparison with Measured Intracranial Pressure 

There are 3 Lagrangian tracer points within the brain (Fig. 4) for the intracranial 
pressure measurements: one right, one near the top, and one left. Figure 7 shows 
the intracranial pressures at these tracer locations for the test with an incident 
pressure of 49.8 psig (3.44 bar gauge).  
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Fig. 7 History of the intracranial pressures (fine mesh) compared with the measured 
pressures during tests. However, the piezo-resistive pressure transducers will not be able to 
pick up negative (abs) pressure values. 

The plot is separated out into 3 plots: one for right, one for center, and one for left 
each; along with the lower and upper bound lines from each test data set and the 
simulation result using the coarser mesh. Figure 8 shows such a plot for the 
intracranial pressure on the right side (tracer ticpr, facing the shock tube). 
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Fig. 8 Intracranial pressure on the right side. Test data are shown with their lower and 
upper bounds. The pressure in simulations show the results from the finer mesh and from the 
coarser mesh. 

The intracranial pressure on the right side (tracer ticpr) peaks around 3.7 bar, similar 
to the measured data in the first ms after the blast impact. The simulated pressure 
with finer mesh (ticpr) is not far off the test data. The simulated pressure with the 
coarser mesh is initially similar to the result with the finer mesh. The sudden jump 
in pressure shown in the coarse mesh (Figs. 8–10) may come from the effect of 
tracer drift and the effect of the mixed elements. Other differences between the 
simulated pressure and the test data may come from factors such as the location of 
the tracer, the geometry differences between the digital model and the real test 
object, and difference in pressure loading.  

Figure 9 shows the plot for the intracranial pressure at the center location (tracer 
ticpc). 
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Fig. 9 Intracranial pressure at the center location. The test data are shown with their lower 
and upper bounds. The pressure in simulations show the results from the finer mesh and from 
the coarser mesh. 

Figure 10 shows the plot for the intracranial pressure on the left side (tracer ticpl). 
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Fig. 10 Intracranial pressure on the left side. The test data are shown with their lower and 
upper bounds. The pressure in simulations show the results from the finer mesh and from the 
coarser mesh. 

The tracer points drift with the head, which moves with time. Figure 11 shows the 
history of the X coordinates of the tracer points (fine mesh). 

At the moment of impact, the intracranial pressure reaches above 3 bar. Intracranial 
pressure exceeding 34 psi (gauge) (2.3 bar) has been linked to high probability of 
severe injury for human brains (Ward 1978; Ward and Chan 1980). 
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Fig. 11 History of the X coordinates of the tracer points: ticpr, ticpc, and ticpl (fine mesh) 

4.4 Comparison with Measured Acceleration Data 

An accelerometer box is attached to the top of the skull for measuring the 
acceleration of the porcine head during the tests. Figure 12 shows the acceleration 
in simulation compared with measured data for the test with an incident pressure of 
37.7 psig (2.6 bar gauge). The Lagrangian tracer location tac1 is located near the 
top of the skull, similar to the location of the accelerometer box during the tests; 
the Lagrangian tracer ticpc is located within the brain, which does not have a 
corresponding test data set. The tracer sampling rate is 1 µs, same as in experiment. 
The amplitude of the acceleration at tracer tac1 (~612 g)—being lower than the 
measured data (~1,000 g)—may come from a combination of factors, e.g., the 
difference in mass between the digitized head and the real head, the transient data 
surge of the instrumentation, and/or the smoothing or averaging effect in time and 
space. Lowering the density of skull can increase the acceleration, but it will also 
increase the sound velocity in the skull. The amplitude of acceleration at tracer ticpc 
(brain) is slightly higher while using the finer mesh (~400 g) than using the coarser 
mesh (~360 g).  
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Fig. 12 Cranial acceleration history. Inset shows the close-up around the spike. The tracer 
tac1 corresponds to the location of the accelerometer in the tests. The tracer ticpc is inside the 
brain and has no corresponding experimental measurement data. 

The negative phase in the measured acceleration suggested that the accelerometer 
may have sprung back during the initial impact. The measured acceleration history 
shows a superposed higher frequency oscillation with a wave length around 35 µs. 
It may come from pressure waves in the head, which travel about 5 cm in the brain 
in 35 µs and about 6 cm in the skull in 35 µs. 

Figure 13 shows the accelerations at the tracer tac1 (accelerometer location) both 
from simulations with the finer mesh and with the coarser finite element mesh. 
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Fig. 13 Cranial acceleration history. The tracer tac1 corresponds to the location of the 
accelerometer in the experiments. 

Figure 14 shows the accelerations at the tracer ticpc (within the brain) both from 
simulations with the finer mesh and with the coarser mesh. 



 

20 

 

Fig. 14 Cranial acceleration history. The tracer ticpc is inside the brain and has no 
corresponding experimental measurement data (the line marked test is the same as previous—
at the accelerometer location). 

5. Additional Calculated Variables 

5.1 The Coup and Contrecoup Profile 

The blast wave of the shock tube impacts on the right side of the porcine head. The 
intracranial pressure on the right side of the porcine head reaches above 3 bar (abs) 
at around 4,500 µs (Fig. 15). 
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Fig. 15 Regions in color at 4,500 µs have pressure above 3 bar (abs). Finite element mesh 
shows the brain and eyes of the pig. 

The pressure wave then traverses to the other side of the brain along the impact 
direction. At 5,000 µs, negative pressure builds up on the other side (nonimpact 
side) of the brain (Fig. 16). The subsequent pressure wave on the opposite side from 
the initial impact (coup) is called the contrecoup in the literature.  
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Fig. 16 Regions in color at 5,000 µs have pressure (abs) below 1 bar (~1 atm) 

When the pressure falls below certain critical level, cavitation may occur. The 
critical vaporization pressure changes with temperature. At normal porcine body 
temperature (about 39 °C) the water vaporization pressure is about 7 kPa (0.07 bar) 
(Malley 2005; Herbert et al. 2006). The vapor pressure of blood is equivalent to a 
saline with 0.9 g of sodium chloride per 100 g of water (Culbert 1935). Its vapor 
pressure will be a little lower (less than 1-mm Hg [≈133 Pa]) than that of water 
(Kientzler et al. 1952). Since 99% of the cerebrospinal fluid (CSF) is water, its 
vapor pressure is likely similar. If cavitation does occur in the vasculature (blood) 
or in the CSF, it generates tiny gas bubbles that may negatively impact the normal 
function of the brain; too many gas bubbles can be detrimental or even lethal 
(Brennen 1995; Brennen 2006). The process of cavitation can further change the 
subsequent pressure field in the surrounding region of the brain. Figure 17 shows 
the profile of pressure regions below 0.07 bar. 
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Fig. 17 Regions in color at 5,000 µs have pressure below 0.07 bar (abs), where the cavitation 
may ensue 

Adding information about the vasculature orientations into mesh will enhance the 
accuracy of simulation (Omori et al. 2000; Ho and Kleiven 2007). With the 
vasculature orientation in the mesh, the stress along the vasculature or the shear 
across the vasculature can be calculated more accurately. 
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5.2 The Deformation of the Skull 

McElhaney (1976) discussed the mean strain criterion (MSC) as an indicator of 
head injury, where mean strain is defined as the displacement of one side of the 
head relative to the other, divided by the distance across the cranium. Impact tests 
with various sized primates to produce minor, but identifiable brain injury show 
that the MSL of 0.0329 inches/inch is tolerable for Rhesus monkeys subjected to 
rigid striker impacts. A tolerable mean strain level of 0.0061 inches/inch has been 
predicted by the MSC model for fresh intact cadaver (McElhaney 1976). 
Furthermore, the maximum tolerable skull deformation has been estimated to be 
approximately 0.02 inch (Fan 1971). Since the impact surface area of a blast is 
larger than that of a focused impact, these estimates from tests with focused impacts 
could be used as a guide but need modification to find the tolerable stain level for 
the blast impact. 

Figure 18 shows the relative strain from 2 tracers at opposite sides of the cranium 
for the case of an incident pressure of 2.6 bar (gauge). 

 

Fig. 18 Mean strain across the cranium 

The head injury appears to be probable for the simulated porcine head; however, 
the elastic model for the skull may have overestimated the magnitude of the strain 
(Powell et al. 2012).  
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5.3 Strain in the Brain 

Figure 19 shows the equivalent strain profile at 9,800 µs at about 5 ms after blast. 
It has been estimated that with a strain greater than 20%, the axotomy (axonal 
disconnection) will result from membrane fragmentation and cytoskeletal 
proteolysis (Maxwell 1997). 

Another cumulative strain damage measure, based on the calculated volume 
fraction of the brain that has experienced a specific level of stretch, has been used 
as a predictor for deformation-related brain injury. The measure is based on the 
maximum principal strain calculated from a strain tensor obtained by integration of 
the rate of deformation tensor (Bandak and Eppinger 1994). 

Adding information about the nerve fiber orientation into mesh will enhance the 
accuracy of simulation (Chatelin et al. 2011; Wright and Ramesh 2012; Dagro  
et al. 2013). With the nerve fiber orientation in the mesh, the stress along the nerve 
fiber or the shear across the nerve fiber can be calculated more accurately. 
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Fig. 19 Regions in color at 9,800 µs have equivalent strain greater than 0.15 

5.4 The Effective Stress (von Mises Stress) 

Figure 20 shows the profile of the effective stress (or von Mises stress) at 9,800 µs 
at about 5 ms after blast. The effective stress ranges from 0 to 0.13 bar (13 kPa) in 
the brain. The von Mises stress is defined as 

 𝜎𝜎�𝑒𝑒 =  �3
2
𝜎𝜎′𝑖𝑖𝑖𝑖𝜎𝜎′𝑖𝑖𝑖𝑖 . (5) 
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On the (σ1, σ2) stress space, the maximum shear (Tresca yield surface) is within the 
envelope of von Mises stress. Shear stress in the midbrain of the brainstem at  
7.8 kPa level has been correlated with 50% probability of mild traumatic brain 
injury (mTBI) (Zhang et al. 2004). 

 

Fig. 20 Regions in color at 9,800 µs have von Mises stress greater than 7.8e-2 bar  
(7.8 kPa) 

5.5 Deviatoric Strain Energy 

Figure 21 shows the profile of the deviatoric strain energy at 9,800 µs at about  
5 ms after blast. Higher deviatoric strain energy may lead to regional injury. 
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Fig. 21 Regions in color at 9,800 µs have deviatoric strain energy greater than 1.e-3  
bar-cc/cc (1.e-4 J/cm3) (threshold not established yet) 

5.6 Löwenhielm Vein Injury Criterion 

Stress tests with parasagittal bridging veins from the lateral convexity of the brain 
show that the vein’s strain capacity is dependent on strain rate; maximal strain is 
markedly reduced as the rate was increased (Löwenhielm 1974; Takhounts 2003). 
The border line in the strain rate and strain space can be fitted to the relationship 

 εcritical = 0.0608 (log10(ε̇))2 −  0.4414 (log10(ε̇)) +  0.9872 , (6) 

where ε̇ is strain rate in 1/s. 
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Figure 22 shows the profile of � ε
εcritical

�, where the equivalent strain and equivalent 

strain rate are used in place of strain and strain rate. Higher � ε
εcritical

� ratio shows a 

higher possibility of vein injury. When � ε
εcritical

� is greater than 1, the strain will be 

large enough to show vein injury. In Fig. 22, the regions in color have � ε
εcritical

� 
greater than 0.015. 

 

Fig. 22 Regions in color at 9,800 µs have � 𝛆𝛆
𝛆𝛆𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜

� greater than 0.015. It may increase with 
time 
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5.7 Viscous Injury Criterion  

Rapid motion of the skull causes displacement of the skull against the soft tissues 
of the brain, which lag in their motion due to inertia and loose coupling to the skull. 
Relative displacement between brain and skull produces deformation of brain tissue 
and stretching of bridging veins, which contribute to the tissue-level causes of brain 
injury. The brain compliance approach interprets brain deformation by the viscous 
response (VC) or the product of strain and strain rate at the tissue level. The viscous 
response is a measure of the viscoelastic reaction of tissue to dynamic deformation 
and combines 2 parameters of soft tissue injury: strain (compression, C) and strain 
rate (velocity of deformation, V). The viscous response is representative of the 
absorbed energy through kinetic energy conversion (Lau 1986; Viano 1988; Zhang 
2003). The estimated threshold for 25% of mild traumatic brain injury is 14/s (or 
1.4e-5/µs) (Zhang 2003). Figure 23 shows the profile of the VC or (ε ∙  ε̇) at 9,800 
µs at about 5 ms after blast. The equivalent strain and equivalent strain rate are used 
in placed of strain and strain rate. 
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Fig. 23 Regions in color at 9,800 µs have VC or (𝜺𝜺 ∙  𝜺̇𝜺) greater than 1.4e-5/μs 

5.8 Linear Accelerations 

Test data from frontal hammer blows and air blasts to the exposed brain, drop tests 
of human cadaver heads (Wayne State Tolerance Curve), and concussive data from 
animals as well as long-duration human sled experiments have led to the Gadd 
Severity Index. The injury assessment is based on the average acceleration and 
pulse duration, since the injury survivability of brain increases if the duration of the 
pulse decreases. For that, an effective acceleration is defined as  
A =  1

(t2−t1)∫ a(t)dtt2
t1

, where a(t) is the acceleration and (t2 – t1) represents the 

duration. A head injury criterion (HIC) is defined as HIC =



 

32 

max � 1
(t2−t1)∫ a(t)dtt2

t1
�
2.5

(t2 − t1), which is adopted as the head injury standard 

for Federal Motor Vehicle Safety Standard 208 (Ewing et al. 1968; Versace 1971; 
Hess et al. 1980; Ommaya 1981; Kleinberger et al. 1998; Eppinger et al. 1999; King 
2000). 

For the incident pressure of 37.7 psig (2.6 bar gauge), the calculated HIC for the 
blast simulation is around 10 (based on Δt = 5 ms; based on the acceleration at the 
Langrangian tracer tac1 [the accelerometer location]). Since the blast peak 
acceleration surge duration is typically only a few tens of microseconds compared 
with the acceleration duration in a vehicle collision typically of a few tens of 
milliseconds, the conventional HIC criterion developed for motor vehicle safety is 
not suitable for the blast impact. A more relevant formula developed specifically 
for blast impact should take this shorter acceleration duration into consideration. 

Another acceleration inspired measure named the skull fracture correlate (SFC) is 
defined as 𝑆𝑆𝑆𝑆𝑆𝑆 =  ∆𝑉𝑉𝐻𝐻𝐻𝐻𝐻𝐻

∆𝑇𝑇𝐻𝐻𝐻𝐻𝐻𝐻
 , where ∆𝑉𝑉𝐻𝐻𝐻𝐻𝐻𝐻 is the change in velocity and ∆𝑇𝑇𝐻𝐻𝐻𝐻𝐻𝐻 is the 

HIC time interval. For 15% or less probability of skull fracture, the threshold is 
SFC < 124 g with a 95% confidence band of 96 < SFC < 144 g. The SFC correlation 
is established based on logistic regression against an extensive set of post mortem 
human specimen data (Vander Vorst et al. 2003; Chan et al. 2006). These fracture 
correlations developed from drop tests could be referenced and modified for finding 
the corresponding threshold for blast impact. 

For the incident pressure of 37.7 psig (2.6 bar gauge), the calculated SFC for the 
simulation is around 94 g based on the velocity change of a point in the skull facing 
the shock tube blast (for ∆𝑇𝑇𝐻𝐻𝐻𝐻𝐻𝐻  = 5 ms). 

5.9 Angular Acceleration 

Angular acceleration is a major component that can lead to brain injury (King et al. 
2003; Weaver et al. 2012; Kleiven 2013; Rowson and Duma 2013). High angular 
acceleration results in high shear within the brain; injury can arise as a consequence. 
The calculated initial angular acceleration for the simulation of blasted porcine head 
is on the order of 105 rad/s2 calculated from the displacement of 2 tracer points at 
opposite sides of the cranium (mostly around the Y axis). An acceleration of 40,000 
rad/s2 for durations greater than 6.5 ms will have a  greater than 99% probability of 
producing concussion in Rhesus monkeys (whiplash injury on the sagittal plane) 
(Ommaya et al. 1967). However, since a single point at the cervical spine in the 
simulation is numerically fixed to the coordinates, the angular acceleration in the 
simulation is probably overestimated. 
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A rotational brain injury criterion, BRIC =  ωmax
ωcr

+  αmax
αcr

 , where ω is the rotational 

velocity and α is acceleration, has been correlated to brain injury—the critical 
rotation velocity ωcr = 42.1 rad/s and the critical acceleration αcr = 363 krad/
s2 for college football data (Weaver 2012; Takhounts et al. 2013). This formula, 
developed from the Abbreviated Injury Scale data from college football players, 
could be used as a guide but needs modification to be applicable to blast impact 
related injury. 

It was found that a simple combination of peak change in rotational velocity and 
HIC showed a high correlation (R = 0.98) with the maximum principal strain in the 
brain of the National Football League football players (Kleiven 2007). 

6. Discussion 

6.1 Shear Modulus for the Brain 

The shear modulus of human brain tissue has been measured to be 13.0 ± 10 kPa 
(i.e., from 3 to 23 kPa) for strain rates ranging from 25 to 248 strain/s using the 
Split Hopkinson Pressure Bar technique (Ott et al. 2012) (Table 5). This range 
covers many published work on the brain properties (Shuck and Advani 1972; 
Donnelly 1997; Margulies and Meany 1998; Hamhaber 2006; Kruse et al. 2008; 
Bilston 2011a; Bilston 2011b; Bayly et al. 2012; Rashid 2012). Among the 
published works, many use the value 22.53 kPa (Hoberecht 2009; Moore et al. 
2009), which is around the upper end of the 13.0 ± 10 kPa mentioned. Since the 
shear modulus is rate-dependent, the value around the upper end of the 13.0 ± 10 
kPa is more appropriate for higher rate problems.  

Table 5 Brain material parameters 

Density 
(g/cm3) 

Shear Modulus 
(bar) 

Bulk Modulus 
(Mbar) 

Bulk Sound 
Speed (cm/µs) 

Young’s 
Modulus (kPa) Poisson Ratio 

1.04 0.2253 0.022 0.145 67.6 0.4999 
 
Figure 24 shows the intracranial pressure profile using this shear modulus value of 
22.53 kPa instead of 13 kPa (cf. Section 2.2). 
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Fig. 24 History of the intracranial pressures where the shear modulus is 22.53 kPa 

Since the deviatoric stress is orders of magnitude less than pressure, the shear 
modulus will have little effect on pressure. So the intracranial pressure 
measurements will not be sensitive to variations in the shear modulus. 

On the other hand, the history of the equivalent strain (mostly shear strain) shows 
greater sensitivity to the variations in the shear modulus (Fig. 25). 
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Fig. 25 History of the equivalent strain at the ticpr tracer location for different shear moduli 
(22.53, 13, 3 kPa) 

The history of the von Mises stress (Fig. 26) again shows sensitivity to the 
variations in the shear modulus. 
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Fig. 26 History of the von Mises stress at the ticpr tracer location for different shear moduli 
(22.53, 13, 3 kPa). 

6.2 The Acceleration of the Head 

Figure 27 shows the acceleration of the skull (tracer tac1, equivalent to the 
accelerometer in the experiments) for different shear moduli. They remain the 
same. The acceleration in the brain (tracer ticpc; no corresponding measurements) 
also remain the same for different shear moduli. 
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Fig. 27 Acceleration in the head with different shear moduli 

6.3 Other Simulation Work Comparison 

There have been many attempts to simulate brain injury (Brands et al. 2004; Moore 
et al. 2009; Nyein et al. 2010; Panzer et al. 2012; Lamy et al. 2013; Zhang et al. 
2013; Zhu et al. 2013). In general there were no experimental data on injured human 
brains to compare. Elaborate partitioning of the brain into functional compartments 
(gray matter, white matter, corpus callosum, etc.) does not yet have reliable 
corresponding material properties. 

A popular model for brain is the generalized Maxwell model, or simply the 
viscoelastic model in LS-DYNA (*MAT_VISCOELASIC, 
*MAT_GENERAL_VISCOELASTIC). The constitutive model for an isotropic 
viscoelastic material with small strain is given by 

 σ = ∫ 2G(t − τ) dε
dτ

dτ + I∫ K(t − τ) dΔ
dτ

dτt
0

t
0  , (7) 

where 𝜎𝜎 is the Cauchy stress, 𝜀𝜀 the deviatoric strain, Δ the volumetric strain, I the 
identity tensor. G(t) and K(t) are the Prony series shear and bulk relaxation kernel 
functions, respectively. 

In a 1-D relaxation test, the Prony series for the shear relaxation is 
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 G(t) = G∞ + ∑ Gne−t τn⁄N
n=1  , (8) 

where G∞ is the long term modulus once the material is fully relaxed and τ is the 
relaxation time constant. When only one term in the series is used, it can be 
simplified to 

 G(t)  =  G∞ + (G0 − G∞)e−t τ⁄  ,  (9) 

where G0 is the initial shear modulus independent from relaxation. This is also the 
form used in LS-DYNA (*MAT_VISCOELASIC). This model works well for 
some problems. There are various values used for the relaxation time constant in 
various simulation endeavors. But some simulation work used unrealistic 
parameters, such as unrealistic time constant. From tests on the rat brain (Finan et 
al. 2012), the relaxation time constant has been measured to be typically greater 
than 11 ms, which is far greater than the positive phase of the Friedlander curve of 
a blast wave. Some simulation work used artificially much shorter time constant. 
So this model may not have worked well for certain problems. 

In the current pursuit using the Mooney-Rivlin model, there is a need to include 
strain-rate dependency. Since the strain-rate dependency determines the initial peak 
shear stress after the blast impact, it is critical for the brain injury study. One way 
to augment the model is to add a strain-rate dependency and a viscoelastic feature 
to the current Mooney-Rivlin model (2), such as 

σ =
µ0
J
�ω0 �λ2 −

1
λ
� − (1 −ω0) �

1
λ2
− λ�� �1 + C ∙ ln �

ε̇
ε0̇
�� 

                                                                           �� D
µ0
� ∫ 2G(t − τ) dε

dτ
dτt

0 �, (10) 

where C is a dimensionless coefficient for the rate dependency, ε0̇ is a reference 
strain rate, and D is a dimensionless coefficient for the viscoelastic feature. When 
fitted to available experimental data, it can provide a more precise peak stress at the 
moment of impact, which can relate readily to the probability of brain injury. 

Figure 28 shows the equivalent strain rate in the porcine brain under blast impact. 
The maximum strain rate in the brain can reach about 104/s (may be mesh resolution 
dependent). Next to the surface of a penetrating projectile, the equivalent strain rate 
in gelatin can reach 106/s (Huang 2013). 
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Fig. 28 Region in color at 4,600 µs has the equivalent strain rate in the porcine brain greater 
than 50/s 

In this simulation study there is no viscoelastic relaxation in the model. However, 
even without the viscoelastic relaxation the intracranial pressure still shows 
attenuation in time. Furthermore, the viscoelastic shear relaxation tends to lower 
the probability to brain injury, which makes it somewhat less critical in studying 
the brain injury when the relaxation time constant is much greater than the positive 
phase of the blast wave. 
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6.4 Material Properties 

Many of the current material property data came from testing with sliced samples. 
There are sample gripping problems. For instance, in Split Hopkinson Bar tests the 
samples need to be mounted to the test fixture. Innovative experimental techniques 
such as shear wave imaging, magnetic resonance elastography are emerging 
(Mariappan et al. 2010; Macé et al. 2011; Aurant et al. 2012; Bayly et al. 2012; 
Suzuki et al. 2014; Tomita et al. 2014). Some techniques are noninvasive. They 
may lead to noninvasive measurement of high strain-rate data of soft tissues in vivo.  

In the current simulation study, the skull geometry does not have cavities, and the 
mesh is not geometry-conforming. The High Intensity Focused Ultrasound and CT 
can be used to generate more accurate mesh for skull simulation (Aubry et al. 2003; 
Autuori et al. 2006; Motherway 2009; Nakajima et al. 2009; Binkowski et al. 2010; 
Kazakia et al. 2013). Meshes having more details of surface outlines, cranial sutures 
and cranial porosities, and spacial density distribution will greatly enhance the 
accuracy of simulations, for example, in the bone conduction study. 

6.5 Medical Imaging 

Continued improvement in imaging techniques may lead to association of minute, 
initially unidentifiable symptoms with later development of axonal swelling and 
amyloid and tau protein abnormalities in the brain. These symptoms have also been 
diagnosed in sportsmen who suffer from chronic traumatic encephalopathy (Makris 
et al. 2008; Holli et al. 2009; Gavett et al. 2010; MacDonald et al. 2011; Bigler and 
Maxwell 2012; Goldstein et al. 2012; Lin et al. 2012; MacDonald et al. 2013; Smith 
et al. 2013; Taber et al. 2013; McKee et al. 2014; Barrio et al. 2015).  

6.6 Gender Difference 

There are gender differences in the brain, such as in pain thresholds and differential 
regulation of cell death programs (the anti-inflammatory process of apoptosis and 
the proinflammatory process of necrosis). XY neurons were more susceptible to 
nitrosative stress and exhibited a proclivity toward an apoptosis-inducing factor-
dependent pathway, while XX neurons were more susceptible to apoptosis-
inducing agents (McCarthy et al. 2012; Jog and Caricchio 2013; Ortona et al. 2014; 
Sharma et al. 2014). Situations may arise where a more precise differentiation in 
mitigation and treatment between genders for brain injury cases may need attention. 
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7. Summary and Conclusion 

Shock tube blast on porcine head experimental data, including incident pressure, 
surface pressure, intracranial pressure, and cranial acceleration, have been 
compared with simulation using ALE3D. Other physical variables (coup-
contrecoup pressure profile, vaporization pressure, skull strain, strain in brain, 
effective stress, deviatoric strain energy, Löwenhielm vein injury criterion, viscous 
injury criterion, linear acceleration, and angular acceleration) in the simulations do 
not have corresponding test data for comparison; they are discussed in association 
with their injury instigation implications with references to other published 
findings. The effect of variation of shear modulus based on published measurement 
data for the brain on impact response is discussed. Furthermore, some nuances 
about the shock tube simulation are discussed. 

With progress in geometry-conforming meshing technique, in noninvasive high-
rate properties, and in development in material models, further advances in 
simulation fidelity will emerge that will help in early diagnosis, treatment, and 
prevention of brain injury. 
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Appendix.    Shock Tube Simulation 
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A-1. Effect of Mesh Size 

To better understand the simulation of the shock tube, simulations using  
2-dimensional (2-D) meshes have been performed. The 2-D meshes here are similar 
to their 3-dimensional (3-D) counterpart, but the mesh size and configuration have 
been varied. Figure A-1 shows the pressure history at the center of the shock tube 
exit for different mesh sizes and configurations as summarized in Table A-1, where 
rlxginit and rlxweightvar are mesh relaxation parameters in ALE3D. The pressure 
wave front reached the shock tube exit between 4,600 and 4,700 µs. 

 

Fig. A-1 Pressure history at the center of the shock tube exit. (The time scale is stretched 
around the impact time.) 

Table A-1 Parameters for Fig. A-1 

Label Initial dx (cm) 
(end part) 

Initial dx (cm) 
(full tube length) 

dx (cm) of the last 
element at 4,700 µs 

rlxginit time 
(μs) rlxweightvar 

11a 0.5 NA 0.216 4,601 1.e-8 
11b 2/3 NA 0.540 4,601 1.e-8 
11c 1 NA 0.843 4,601 1.e-8 
11d 1/3 NA 0.195 4,601 1.e-8 
11a1 0.5 NA 0.012 4,701 1.e-8 
11a2 0.5 NA 0.051 4,701 1.e-6 
13a NA 1 0.473 4,601 1.e-8 

13a1 NA 1 0.032 4,701 1.e-8 
13b NA 0.5 0.218 4,601 1.e-8 
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The simulated pressures are all similar, except that with smaller mesh elements the 
simulation shows higher surge at the time of blast impact, which is likely caused 
by wave reflection at the mesh boundary where smaller mesh elements are 
transitioned into larger mesh elements. Figure A-2 shows the pressure profile over 
the cross section for 3 different mesh configurations (having different dx at 4,700 
µs) around the shock wave exit at 4,800 µs. The differences in the pressure profile 
is effected by the mesh size of the last mesh element where the mesh element size 
transitions over to a larger mesh size. 

 

Fig. A-2 Pressure profile over the cross section for 3 different mesh configurations around 
the shock wave exit (in 2-D simulation) at 4,800 µs 

A-2. Pressure Profiles within the Shock Tube 

In the same 2-D simulation study, the pressure histories at locations along the shock 
tube direction (X-axis) are plotted as shown in Fig. A-3 (with the parameters in 
Table A-2). The small wavy patterns in the unloading curves are likely from wave 
reflections at the discontinuous mesh size transition, which propagates upstream 
against the subsonic gas flow.  
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Fig. A-3 Pressure histories at locations along the shock tube near the tube wall 

Table A-2 Parameters in the 2-D simulation 

Initial dx (cm) 
(full tube length) 

rlxginit time 
(μs) rlxweightvar 

1 4,601 1.e-8 
 

Figure A-4 shows the pressure histories at similar locations along the centerline of 
the shock tube. 
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Fig. A-4 Pressure histories at locations along the centerline of the shock tube 

There are minimal differences between these 2 figures. The relatively flat top of the 
curves shrinks with locations toward the exit of the shock tube. Eventually the flat 
top will reduce to a sharp top when the shock tube is further extended and will 
resemble a Friedlander wave shape.1 

Figure A-5 shows the pressure profile next to the centerline of the 3-D shock tube 
compared with the pressure profile of the 2-D shock tube (3-D parameters detailed 
in Table A-3). They are very similar. The rarefaction wave (Prandtl-Meyer wave) 
reflected from the closed backend of the driver section is catching up with the shock 
wave front. When the length is large enough such that the rarefaction wave is 
catching up with the shock wave front, the pressure profile will have a narrow top 
resembling the Friedlander wave form. 2 However, it is not uncommon to find 
pressure histories with flat top in lab tests.3,4 

                                                 
1Tasissa AF. On the formation of Friedlander waves in a compressed-gas driven shock-tube. [MS thesis]. 

[Cambridge (MA)]: Massachusetts Institute of Technology; 2014. 
2Leonardi ADC. An investigation of the biomechanical response from shock wave loading to the head. 

[Ph.D. thesis]. [Detroit (MI)]: Wayne State University; 2011. 
3Long, JB, Tong L, Bauman RA, Atkins JL, Januszkiewicz AJ, Riccio C, Gharavi R, Shoge R, Parks S, 

Ritzel DV, Bentley TB. Blast-induced traumatic brain injury: using a shock tube to recreate a battlefield 
injury in the laboratory. International Federation for Medical and Biological Engineering Proceedings; 
2010;32. 

4Cernak I, Merkle AC, Koliatsos VE, Bilik JM, Luong QT, Mahota TM, Xu L, Slack N, Windle D, 
Ahmed FA. The pathobiology of blast injuries and blast-induced neurotrauma as identified using a new 
experimental model of injury in mice. Neurobiology of Disease. 2011;41:538–551. 



 

60 

 

Fig. A-5 Pressure profile along the centerline of the 3-D and 2-D shock tubes at different 
times 

Table A-3 Parameters in the 3-D simulation 

initial dx (cm) 
(full tube length) 

rlxginit time 
(μs) rlxweightvar 

1 4601 1.e-8 
 

Figure A-6 compares the pressure profile next with the tube wall for the 3-D shock 
tube with the pressure profile for the 2-D shock tube. There is some timing shift. 
Both profiles show computational problem near the exit of the shock tube. 
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Fig. A-6 Pressure profile next to the tube wall of the 3-D and 2-D shock tubes at different 
time 

A-3. Pressure Profile around the Shock Tube Exit 

Figure A-7 shows the pressure profile (in 3-D simulation) around the shock tube 
exit in elevation plot at 5,500 µs (about 900 µs after the wave front passed the exit). 
The sharp spikes around the tube end result from higher numerical errors associated 
with the boundary conditions along the tube wall (cf. Section 4.1 of report). 
Ignoring the sharp spikes, the profile shows a nonplanar pressure distribution over 
the cross section having higher pressure near the centerline and lower pressure 
closer to the tube wall. The small pressure rise near the pressure front (around  
X = 40) comes from mesh transition from fine mesh to coarse mesh (from small dx 
to large dx). 
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Fig. A-7 Pressure profile at 5,500 µs around the shock tube exit in elevation plot 

Figure A-8 shows the pressure profile over the cross section for 3 different times 
around the shock wave exit (in 3-D simulation). Solid lines are sampled at location 
5 cm upstream from the exit; dashed lines are sampled at the exit (the pressure 
transducer locations). Ignoring the numerically erroneous higher values near the 
wall, the pressure around the centerline is higher than the pressure toward the tube 
wall. 
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Fig. A-8 Pressure profile over the cross section for 3 different time around the shock wave 
exit (in 3-D simulation) 

Figure A-9 shows the difference in the pressure profiles at exit between the 3-D 
and the 2-D simulations. Because there is a small timing shift coming from mesh 
differences in the shock tube, the time selected for 2-D lines is a little shifted from 
that in 3-D in order to find a closer match. The differences in pressure near the tube 
wall may come from differences in the mesh resolution and in the relaxation 
processes. 
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Fig. A-9 Difference in the pressure profiles between the 3-D and the 2-D simulations 

From the simulated pressure profile with planar pressure wave, and the fact that in 
experiments the initial pressure wave is a jet through the Mylar diaphragm, the 
pressure at the center of the shock exit will be higher than the pressure near the 
wall.
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List of Symbols, Abbreviations, and Acronyms 

1-D  1 dimensional 

2-D  2 dimensional 

3-D  3 dimensional 

CSF  cerebro-spinal fluid 

CT  computed tomography 

HIC  head injury criterion 

MSC  mean strain criterion 

SFC  skull fracture correlate 

TBI  traumatic brain injury 
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