TECHNICAL REPORT RDMR-BA-14-01

USE OF UNIFIED MODELING
LANGUAGE (UML) IN MODEL-BASED
DEVELOPMENT (MBD) FOR
SAFETY-CRITICAL APPLICATIONS

Susan M. Bonne
Software Engineering Directorate
Aviation and Missile Research, Development,
and Engineering Center

And

Jason K. Rupert
APT Research, Inc.
4950 Research Drive
Huntsville, AL 35805

December 2014

Distribution Statement A: Approved for public release;
distribution is unlimited.

> =
«AMRDEC

DESTRUCTION NOTICE

FOR CLASSIFIED DOCUMENTS, FOLLOW THE PROCEDURES IN

DoD 5200.22-M, INDUSTRIAL SECURITY MANUAL, SECTION 11-19

OR DoD 5200.1-R, INFORMATION SECURITY PROGRAM REGULATION,
CHAPTER IX. FOR UNCLASSIFIED, LIMITED DOCUMENTS, DESTROY
BY ANY METHOD THAT WILL PREVENT DISCLOSURE OF CONTENTS
OR RECONSTRUCTION OF THE DOCUMENT.

DISCLAIMER

THE FINDINGS IN THIS REPORT ARE NOT TO BE CONSTRUED
AS AN OFFICIAL DEPARTMENT OF THE ARMY POSITION
UNLESS SO DESIGNATED BY OTHER AUTHORIZED DOCUMENTS.

TRADE NAMES

USE OF TRADE NAMES OR MANUFACTURERS IN THIS REPORT
DOES NOT CONSTITUTE AN OFFICIAL ENDORSEMENT OR
APPROVAL OF THE USE OF SUCH COMMERCIAL HARDWARE
OR SOFTWARE.

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per res

ponse, including the time for reviewing instructions, searching existing data sources,

gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway,

Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork

Reduction Project (0704-0188), Washington, DC 20503

1.AGENCY USE ONLY 2. REPORT DATE
December 2014

3. REPORT TYPE AND DATES COVERED
Final

4. TITLE AND SUBTITLE

Use of Unified Modeling Language (UML) in Model-Based

Development (MBD) for Safety-Critical Applications

5. FUNDING NUMBERS

6. AUTHOR(S)

Susan M. Bonne and Jason K. Rupert

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Commander, U.S. Army Research, Development, and
Engineering Command

ATTN: RDMR-BAV

Redstone Arsenal, AL 35898-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

TR-RDMR-BA-14-01

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

A

13. ABSTRACT (Maximum 200 Words)
One of the key assumptions behind most Model-Base

d Development (MBD) efforts is the selection of

Unified Modeling Language (UML) for the design language. While popular, more than 90 percent of all MBD
efforts choose UML. This choice is often taken for granted. Typically, no trade studies are provided to support
the choice of UML, especially the evaluation of UML traits that would make it adequate for use in MBD for

safety-critical applications. Given that UML is selected

for MBD, this report seeks to look at some of UML’s

traits in light of safety related expectations. Moreover, this report recommends practices for using UML on
safety-critical applications and makes an appeal to the MBD community for additional suggested safe practices.

14. SUBJECT TERMS

Software, Unified Modeling Language (UML), Model, Safety Critical, Flight

Critical

15. NUMBER OF PAGES

78

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

SAR

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

i/ii (Blank)

TABLE OF CONTENTS

Page

INTRODUCTION ...ttt st e e e anae e nreeasee e 1
BACKGROUND. ...ttt sttt e et ennee e 2
AL MO 2
B. Model-Based DeVElOPMENTc.oiiiiiiiiiiie e 3
C. Unified Modeling LangUAaQEcooiiiiiiiiiniiiee e 3
D. Safety and Safety-Critical SOftwareccccoeiiiiiiei e, 7
APPLICATION ...ttt e ettt et et e e nneeaneeaneeas 9
A. Unified Modeling Language in Model-Based Development 9
B. Models in Model-Based Developmentcoocveeiiieiiiieeiiiee e 9
UNIFIED MODELING LANGUAGE IN MODEL-BASED

DEVELOPMENT FOR SAFETY-CRITICAL APPLICATIONS..........cccevu.... 11
N 0] 01 o o OO PP R UPPPR 11
B. SUQQESIEA PraCtiCeScciuiiiiiiieiiiie et 12
CONCLUSION . ..ottt e nneeenes 18
REFERENCES. ...ttt sttt e nnee e 20
LIST OF ABBREVIATIONS, ACRONYMS, AND SYMBOLS............cceeuneen. 26
APPENDIX: USING UNIFIED MODELING LANGUAGE IN

MODEL-BASED DEVELOPMENT FOR
SAFETY-CRITICAL APPLICATIONSccooiiieieeiieeiee i, A-1

Figure

LIST OF ILLUSTRATIONS

Title Page

UMVL Diagram OVErVIEW [21]......ccceiierieiieieesiesee e esie e e se e sa e see e e 4
(O 1 T D= Vo =1 o PSPPSR 5
State Maching DIiagram...........cccovveiiiiieiieie e re e 5
Constraints Added to State Machine Diagramcccocevvevenienenie e 6
Boehm Curve [36]: Relative Cost to Fix Error Versus Phase in Which

EXTOr DELECTEAc.eiiiiiiciieieee e 8
SysML Requirements and Traceability Using <<satisfy>>.......ccccvviinnnnnnn 14
NFP Note Attached to Class Diagramcccoeveiieiiiiieiie i 15
Safety-Critical UML Profile ... 18

I. INTRODUCTION

Unified Modeling Language (UML) appears to be ubiquitous with software design for
efforts requiring minimal maturity to programs with mandatory regulatory rigor [1]. On
programs using Agile processes [2, 3] where minimal formal documentation is mandated, UML
is highlighted as a good communication tool to use between all stakeholders. UML also
continues to gain a foothold in larger scale programs where spiral, waterfall, mature Agile [4], or
other mature practices are used, for example, Rational Unified Process (RUP) [5]. Beyond that,
UML is used in safety-critical applications from the automotive to medical industries and flight
critical fields from manned to unmanned applications. Moreover, college and university courses
use UML to help teach software and system design principles, as shown in Reference 6. Thus, it
IS easy to see that there is something easily accessible and appealing about representing design
elements using graphical symbols.

With the growth of Model-Based Development (MBD), especially with the ability to
generate code from the design, the software life cycle will make great use of UML. UML will be
used to represent system models, subsystem models, and even some low-level models. When
thinking about a waterfall software life cycle, both the early and middle steps in the software life
cycles could be represented by models, for example, systems and high-level requirements
development phases. Although not fully realized today, the direction seems to be to produce
fewer stacks of paper documents and have the model be the artifact or be able to be used to
produce the artifacts. Naturally, this produces fewer stand-alone paper artifacts and makes
greater use of a centralized model. For example, with MBD, a stand-alone system requirements
document will exist as a System Modeling Language (SysML) model. SysML is a UML profile.
A SysML model could then be used to automatically produce the appropriate system level
artifacts, for example, System Subsystem Design Document (SSDD).

The use of MBD and UML must meet the needs of the safety and flight certification
authorities. MBD must work with certification authorities to show equivalency between MBD
artifacts and those artifacts expected by certification authorities. Additionally, MBD must be
able to demonstrate rigor and maturity by producing artifacts required for the appropriate
certifying authority. For example, most safety authorities will require some demonstration of bi-
direction traceability, showing that standards were followed and verification and validation was
accomplished. This report lists some concerns with using UML in safety-critical environments,
and some concerns about UML’s ability to meet the needs of certification authorities. However,
the report also provides some suggested practices to address those concerns. Recognizing that
this report is not a comprehensive list of good practices, this report makes an appeal to the MBD
community for additional suggested practices and considerations for the use of UML in safety-
critical applications. While safety-critical terminology is used throughout this report, the
concepts presented are also applicable to flight critical applications. In order to help facilitate
access to the material presented in this report, a briefing package was assembled and is provided
in the appendix.

1. BACKGROUND
A. Model

What are models? The definition of models is as varied as the subjects being
represented by them. The use of models varies from the highly abstract computational
intensive to intricate representations of complex physical phenomena. Likewise, there are
definitions of the term model to justify each of those uses being called a model. For the
purpose of this report, two definitions of model are presented. The first is provided by Radio
Technical Commission for Aeronautics (RTCA) and found in Reference 7. Reference 8 provides
the following definition of model:

“An abstract representation of a given set of aspects of a system that is used for
analysis, verification, simulation, code generation or any combination thereof. A model should
be unambiguous, regardless of its level of abstraction” [8].

Moreover, to be unambiguous, the model should provide sufficient detail to describe
and verify the desired response to both normal and abnormal stimuli.

The RTCA definition was provided because this report targets the use of UML models
in safety-critical environments. RTCA provides forums that help produce guidance materials for
avionics, specifically performance standards and considerations for avionics equipment
certification. Most notable for this report is that RTCA is shepherding the generation and update
of RTCA Document (DO) 178.

Likewise, for the context of this report, a definition of model provided by the Object
Management Group® (OMG®) is equally valuable. Unfortunately, the definition of model
provided by OMG® seems to vary from source to source [9, 10, 11], so the following one from
Reference 9 has been selected:

“Models in the context of the [Model Driven Architecture] MDA Foundation Model
are instances of [Meta-Object Facility] MOF" metamodels and therefore consist of model
elements and links between them. This required MOF compliance enables the automated
transformations on which MDA is built. UML compliance, although common, is not a
requirement for MDA models. (This means, for example, that a suitable development process
based on OMG’s Common Warehouse Metamodel [CWM] can be MDA-compliant, since CWM
is based on MOF.)” [9].

It is unfair to judge the RTCA definition against the OMG® definition, but they should
be compared. RTCA provides a descriptive definition, while OMG® provides a prescriptive
definition. For OMG®, in order to be considered a model, it must be founded on MOF ™. Note
that the MOF " specification is managed by OMG® [12] and is also an international standard
[13]. A full explanation of MOF™ is beyond the scope of this report (the specification is 88
pages), but it can be summarized this way: MOF " is the architecture underlying MBD and thus
UML.

B. Model-Based Development
For this report, an applicable definition of MBD is provided in RTCA DO-331 [8]:

“A technology in which models represent software requirements and/or software
design descriptions to support the development and verification process.”

Note that this definition acknowledges that requirements and designs are represented
within the model, but it is curious that this definition is limited to “software requirements and/or
software design” [8] being represented in the model. It is speculated that the limitation to only
software is due to the hierarchy of avionic specifications, that is, SAE ARP4754A [14] and SAE
ARPA4761 [15] address system level avionics concerns.

In order to push the discussion of MBD further, a discussion of the architecture used
within MBD is necessary. Again, refer to OMG® [1]:

“The MDA is a new way of developing applications and writing specifications,
based on a platform-independent model (PIM) of the application or specification's business
functionality and behavior. A complete MDA specification consists of a definitive
platform-independent base model, plus one or more platform-specific models (PSM) and
sets of interface definitions, each describing how the base model is implemented on a different
middleware platform. A complete MDA application consists of a definitive PIM, plus one or
more PSMs and complete implementations, one on each platform that the application developer
decides to support” [1].

Moreover,

“Any modeling language used in MDA must be described in terms of the MOF
language, to enable the metadata to be understood in a standard manner, which is a precondition
for any ability to perform automated transformations” [1].

Unfortunately, the concept of the PIM and PSM are a bit different than the concept of
specification and design model discussed in RTCA DO-331. A specification model represents a
high-level view of the software component. This can be independent of the Hardware (HW),
like a PIM, or it can include details of the target HW. For RTCA DO-331, the design model
provides the low-level requirements for a software component, while a PSM may include the
details for a software component or the whole system. These differences pose some challenges
when comparing the expectations within RTCA DO-331 with the Model Driven Architecture
(MDA®) approaches laid out by OMG®. The formal MBD/MDA® definitions provided by
RTCA and OMG® are important, but it can also be described as the following:

“Model-driven development is simply the notion that we can construct a model of a
system that we can then transform into the real thing” [16].

C. Unified Modeling Language

UML is a General Purpose Modeling Language (GPML) that uses a set of graphic
notations to specify, constrain, and document visual models. Like the MDA®, UML is managed

by OMG® and is an International Organization for Standardization (ISO) standard. OMG® UML
is described in References 17 through 20.

The Object Constraint Language (OCL) specification is most applicable to the topics
covered in this report. However, both the infrastructure and superstructure documents indicate
the following UML trait:

“Not all of its modeling capabilities are necessarily useful in all domains or
applications. This suggests that the language should be structured modularly, with the ability to
select only those parts of the language that are of direct interest” [17].

OCL brings a formal constraint language to UML expressions. The constraints added
by OCL are invariant conditions and do not have side effects, that is, they cannot alter the
executing state or values of the model. For example, for the Ground Control Station (GCS) to
specify a precondition constraint that the number of Unmanned Air Vehicles (UAVs) under
control must be greater than or equal to 1 has the following syntax: self.NumControlUA >= 1.
Mature UML tools treat the OCL as a query language and thus make queries on the UML model.
Being a formal language by design, OCL lacks some of the ambiguities associated with natural
languages, so it can be used to clearly describe required safety guard conditions and exit
threshold inhibits.

Most people do not immediately think about OCL when considering UML. Most
people think diagrams, which, as shown in Figure 1, are divided into two major categories:
structural (also known as static) or behavioral (also known as dynamic).

Diagram
1]
Structure Behaviour
Diagram Diagram
-3
l l |]
Class Component Object Activity Use Case
Diagram Diagram Diagram Diagram Diagram
Profile C&%@?girge Deployment | Package Interaction Msatt:aIEﬁ]e
Diagram Diagram Diagram Diagram Diagram Diagram
[I — |
Sequence || Communication lgt\?erra\fcig\?vn Timing
Notation: UML| Diagram Diagram Diagram Diagram

Figure 1. UML Diagram Overview [21]

For the purpose of this report, only one example from each category is discussed.
From the static diagram category, the class diagram is discussed, and from the dynamic category,
the state machine diagram is discussed. Despite only representing static features, as shown in
Figure 2, a class diagram can show the following features: attributes (with type, visibility, and
default), operations (with input and return type), inheritance, and associations. Extensive

explanation of all of the features of the class diagram are beyond the scope of this report;
however, there are extensive introductory and expert discussions available [22, 23].

ControlStation
-ID : unsigned int UA
-Type : CSType -owner -fleet |-ID : int
-NumControlUA : unsigned int -Type : UAType
+getCSID() : unsigned int 1 0. % +controlUA() : bool
+getType() : CSType . +releaseUA() : bool
+controlUA(in UAID : int) : bool +getUAID() : int
+getNumUAControlled() : unsigned int
«enumeration»
«enumeration» UAType
CSType +BigRotaryWing
+BigFixedWing
Shelt
:Tasleir +SmallFixedWing
+Airborne +SmallRotaryWing

Figure 2. Class Diagram

In Figure 2, the ControlStation class has three attributes (ID, Type, and

NumControlUA) and four operations (getCSID, getType, controlUA, and
getNumUAControlled). Likewise, notice that each attribute has an indicated type, for

example, Type is a CSType, which is an enumeration. UML does not require that all types be

listed for attributes, that is, unspecified types are allowed.

Figure 3 presents a simple example of a state machine diagram of a

ControlStation switching between control and monitor states. The black dot indicates the
initial transition. Once in the monitor state, the ControlStation can remain in that state or
transition to the control state. Then, from the control state, the ControlStation can remain

there or transition back to the monitor state.

Monitor

Control

Monitor

Control

Figure 3. State Machine Diagram

Constraints can be added to clarify the class and state machine diagrams. Consider the
additional natural language requirement placed on the class diagram shown in Figure 2: A
ControlStation (owner) shall control three or fewer UAV. To capture that constraint in
UML, the following OCL code would be added to the model:

context: ControlStation
inv: self.NumControlUA<=3 or self.fleet->size<=3

Likewise, OCL could be used to specify that all UAVs controlled by the
ControlStation are BigFixedWing UAVS:

context: ControlStation
inv: self.fleet->forAll(av.Type=#BigFixedWing)

In the previous OCL code, context indicates the elements (for example, the class),
inv indicates the invariant statement, and self indicates the current context.

Likewise, as shown in Figure 4, constraints can be added to a state machine. For
even a simple example, the constraints necessary to capture the appropriate level precision
become involved. For example, the ControlStation can only transition to the control state
if the NumControlUA is greater than zero. Moreover, once in the control state, the
ControlStation can reduce the number of UAVs controlled by calling requestReleaseUA
or control an additional UAV by calling requestControlUA. Then, the NumControlUA value
is either reduced or increased, respectively. For either of those cases, the NumControlUA, as
shown in the square brackets, is checked against the appropriate guard condition, that is, greater
than zero or less than or equal to three, respectively.

requestControlUA()==true Request_Release/
[NumControlUA>@] reqguestsReleaseUA()==true
NumControlUA--;
Control [NumCantrolUA>@]
Monitor]/ /[Control
Check Monit .

[NumCa n'Er‘olUA::G] Monitor equest_tontrol/
[NumControlUA==8] requestControlUA{)==true

NumCantrolUA++;

[NumControlUA<=3]

Figure 4. Constraints Added to State Machine Diagram

Extensibility, as described in the OMG® UML superstructure, is one of the key
characteristics of UML Version 2. As with previous versions of UML, UML Version 2 still
allows the use of tagged values, constraints, and stereotypes as a standard extension mechanism
(also known as standard stereotypes). Tagged values capture additional information from
administrative (for example, process details) or to architectural (for example, details to help with
PIM to PSM translations) and can be attached to various UML graphical elements. While most
UML extensions will take advantage of the standard extensions, other core UML extensions can

be made by modifying the underlying MOF ™. One way to take advantage of the standard
extension is to develop a UML profile.

UML profiles are analogous to spoken language dialects. For example, Cajun is a
dialect of North American English. UML profiles can be composed of a namespace and limiting
or expanded list of stereotype names, modeling conventions, constraints, tagged values, and
other UML conventions. Profiles are created to tailor the GPML features of UML so that the
language is targeted at a specific domain of users. For example, SysML is targeted at systems
engineers.

While revisions of UML continue to enhance the precision of the syntax, semantics,
and definitions, there still exist some cases where language constraints, extensions, and best
practices are necessary to qualify UML to be used in safety-critical environments.

D. Safety and Safety-Critical Software

The field of safety is wide, and there are numerous definitions of safety. Reference 24
uses the following definition:

“Safety is defined as the freedom from those conditions [hazards] that can cause death,
injury, illness, damage to or loss of equipment or property, or environmental harm” [25].

According to MIL-STD-882E, a hazard is defined as follows:

“A real or potential condition that could lead to an unplanned event or series of events
(i.e. mishap) resulting in death, injury, occupational illness, damage to or loss of equipment or
property, or damage to the environment” [26].

Next, MIL-STD-882E defines a safety-critical item, either software or HW, as the
following:

“Hardware or software that has been determined through analysis to potentially
contribute to a hazard with catastrophic or critical mishap potential” [26].

Further, National Aeronautics and Space Administration (NASA) Standard (STD)
8719.13B states that safety-critical software resides in a safety-critical system and has at least
one of the following characteristics:

“Provides controls or mitigations for a hazard

Controls safety critical functions

Processes safety critical functions

Detects and reports, or takes corrective action, if the system reaches a specific
hazardous state

Mitigates damage if a hazard occurs

¢ Resides on the same system (processor) as safety critical software AND is
NOT partitioned from non-essential software” [27].

Once software is identified as being safety critical, depending on the industry, various
regulations and guidance material must be followed. In general, that material requires an
elevated rigor in the software life cycle process. One example of elevated rigor is that a
requirement for software life cycle standards be established and followed and proof
(artifacts) be provided that the standards were followed. For example, RTCA DO-178C [7],
NASA-STD-8719.13B [27], and International Electrotechnical Commission (IEC) 61508
(specifically, Parts 3 [28] and 7 [29]) all require coding standards. Because government and
industry software safety guidance requires the existence of coding standards, various coding
standards have emerged: Joint Strike Fighter (JSF), C++ coding standard [30]; Motor Industry
Software Reliability Association (MISRA), C [31] and C++ [32] standards; and Jet Propulsion
Laboratory (JPL), Institutional Coding Standard for the C Programming Language [33].

Unfortunately, a coding standard alone in a safety-critical software life cycle has
several weaknesses, especially in the context of MBD:

e Verification against coding standards occurs after software development, so the
application of the coding standard and verification of the accurate application
of the standard come too late in the software life cycle. As noted by multiple
studies and reports [34, 35], the later in the software life cycle issues are
identified, the more costly they are to fix. For example, some studies have
shown costs rise exponentially, as shown in Figure 5, with time [36, 37].

e Typical coding standards only address concerns that are discovered by static
analysis of the code. That is, typical coding standards capture criteria that
could be checked during manual peer reviews (if the reviews are rigorous).
For example, coding standards do not address logical errors or other coding
weaknesses that are caught during dynamic analysis or rigorous testing.

e Typically, the coding standard does not specifically address error handling,
fault detection, traceability, or verification.

/ /
2 /
S /
—_——
> S 2 S oo
0& (,,\QO (_’Ob «0" «@é ¢°
& R % @ &
<& & <& <
o\?‘* Q@ N R
<& 4‘2}0 dp
o€ \s

Figure 5. Boehm Curve [36]: Relative Cost to Fix Error Versus Phase
in Which Error Detected

Given those weaknesses, requirements and design standards, coverage analysis, and
other verification procedures (for example, data and control coupling) are also required for
safety-critical applications. Of these, this report addresses the importance of the requirements
and design standard, where the design standard, as will be discussed in the following sections, is
especially important for safety-critical MBD. With the use of the design standard in MBD, those
weaknesses previously listed can be addressed earlier in the life cycle.

I1l. APPLICATION
A. Unified Modeling Language in Model-Based Development

The implementation of MBD can take various approaches, for example, structural,
behavioral, abstraction, automation, and so forth. In addition to the various approaches, MBD
also does not specify the use of a Domain Specific Modeling Language (DSML) like Simulink®
or a GPML like UML. Of course, in order to be compliant with the OMG® MDA® standard, the
chosen MBD language must be conformant with MOF . Regardless or because of the OMG®
desire for all MDA®/MBD languages to be conformant with MOF ™, it appears that UML is
becoming the de facto MBD language. OMG® states the following on the MDA® FAQ page:

“Although not formally required [for MBD], UML is still a key enabling technology
for the Model Driven Architecture and the basis for 99% of MDA development projects” [1].

Without finding anything to the contrary, it is assumed that the previous statement is
also true for safety-critical MBD/MDA® efforts. The reason for the limited use of DSMLs, like
SAE Architecture Analysis and Design Language (AADL), on safety-critical MBD efforts
remains unclear. However, MBD tools like Rhapsody, MagicDraw, or Atego Artisan Studio do
not support AADL and other DSML, which is likely due to lack of market forces. There appear
to be efforts to port AADL to a UML profile, but discussion of the status of those efforts is
beyond the scope of this report [38, 39].

B. Models in Model-Based Development

Given the innate characteristics of UML to be extended, subsetted, and for profiles to
be developed, the application of UML seems to be limited only by the creativity of the software
designer or system architect. However, one limitation of early versions of UML was the ability
to represent requirements. In order to address this limitation and exercise the characteristics of
UML, the International Council on Systems Engineering (INCOSE) established the SysML
profile, which is a UML profile developed by subsetting and extending UML. One of the main
goals of SysML was to establish requirements as “first-class model elements” [40]. Doing this
allowed for the generation of a requirements table, that is, “traceability information for
requirements in a single view” [40].

The SysML profile of UML targets the systems engineering discipline, specifically
Model-Based Systems Engineering (MBSE). Being a systems engineering profile, it
tailors/extends some of the software engineering characteristics of UML. For example, UML
uses DataType, while SysML uses ValueType, which is more neutral. Like UML, SysML has
structure and behavior diagrams. In addition to those types of diagrams, SysML adds the
requirement diagram, which is used to “display text-based requirements, the relationships

between requirements and the other model elements that satisfy, verify, and refine them” [41].
The requirement diagram merges the traditional textual requirement with graphical features of
MBSE, for example, showing traceability between model elements and textual requirements.
Those traces can then be used to “autogenerate requirement traceability and verification matrices
(RTVMs)” [41]. Relationships in requirement diagram are typically shown using one of the
following: containment, trace, derivative, refinement, satisfy, or verify. The satisfy relationship,
that is, «satisfy», shows the linkage from a requirement element to a block element. This
linkage is for illustrative purposes, so it must still be verified.

The MBD/MDA® approach discussed by OMG® involves translations from PIMs to
PSMs, that is, the PIM to PSM translation. The basic meaning behind each of these models is as
follows:

e PIMs—A representation of the system or subsystem or component that is
abstracted from the deployment target.

e PSMs—A representation of the system or subsystem or component that
includes adequate detail for target deployment.

The translation from PIM to PSM involves refinement of the abstract PIM. This
refinement is complete when enough details have been added to the PSM that it can be deployed
on the intended target.

Sometimes during this PIM to PSM translation and during the PSM refinement
process, using UML to represent low-level and algorithmic behavior (business logic) is difficult.
At this point, architects or designers insert code or DSML into UML, for example, Matrix
Laboratory (MATLAB®)/Simulink® or SCADE. This is a known limitation [42], so UML users
should plan accordingly, especially for safety-critical programs. For example, “models are not
used to compute functions, be it numeric (such as factorials) or symbolic (such as text
processing)” [43]. Other examples from other major industry players are the following:

e *“...the developer actually write[s] the code contained in the state machines.
This code provides the “algorithmic details” that actually make the application
work” [44].

e “Behavior code is manually input into the Platform Specific Model (PSM)
using C++” [45].

For safety-critical programs, insertion of behavior code into the model will have to be
monitored very carefully as this is a blending of the design and coding processes. Blending the
two separate software processes must be shown to meet all the appropriate criteria, for example,
transitional criteria between life cycles, traceability of safety-critical requirements, abiding by
both design and coding standards, and verification of the behavior code, design, and low-level
requirements.

10

IV. UNIFIED MODELING LANGUAGE IN MODEL-BASED DEVELOPMENT FOR
SAFETY-CRITICAL APPLICATIONS

Given the extent to which UML is being used and will continue to be used for MBD and
the likelihood of UML being used on safety-critical MBD efforts, the goal of this report is to
provide a short list of initial concerns with UML, start the discussion regarding the development
of suggested practices, and make an appeal to the MBD community for help developing UML
guiding practices for safety-critical applications.

A. Concerns

The following is a list of concerns regarding the use of UML on safety-critical MBD

efforts:

Informal

(0]

(0]

(0]

(0]

“UML is not a methodology, it does not require any formal work
products” [46].

“A UML diagram, such as a class diagram, is typically not refined
enough to provide all the relevant aspects of a specification” [18].

“All models, both PSM and PIM, should be consistent and precise, and
contain as much information as possible about the system. This is
where OCL can be helpful, because UML diagrams alone do not
typically provide enough information” [47].

UML does not enforce rigor or completeness.

Consistency

(0}

“UML cannot fully define the relationships between diagrams. The
diagrams are developed as separate entities that express different
aspects of the software, not as parts of a common construct” [48].
“...the current UML spec really does not restrict graphical formats in
any way -- it simply provides a standard set of notations, but not at the
exclusion of other notations. In other words, there really is no “illegal”
UML graphical syntax” [49].

Extensibility—As previously mentioned, by design, UML is extensible. As
long as the new features are conformant to the standards, they can be added ad
nauseum: stereotypes, elements, graphics, tags, and so forth.

Questionable Behavior—*In UML, active objects have their own thread of
control, and can be regarded as concurrent threads [with possible unintended
safety consequences]. Only extensions of the UML standard, such as the
MARTE [Modeling and Analysis of Real Time and Embedded systems]
profile, provide mechanisms to model detailed information pertaining to
concurrency” [50].

11

Previously mentioned was the lack of a formal way to represent requirements, tag
those requirements as safety critical, and then trace those requirements into high-level and
low-level design. Also mentioned was the weakness with only applying a coding standard
during the software life cycle.

B. Suggested Practices

After listing some concerns with using UML in a safety-critical environment, the
following four sections list some practices for addressing some of those concerns:

Develop and Document UML Design Standards

Select Appropriate Tool Chain

Conduct Reviews, Verification, and Validation

Develop Safety-Critical Profile (Action for the Safety Community)

1. UML Design Standard

The first task is to develop a UML design standard that includes general good
practices as well as formal rules. Within the UML design standard, in accordance with RFC2119
[51], consider using three levels of imperatives for both good practices and rules: shall
(absolute), should (absolute unless justified in particular circumstance), and may (truly optional).
Understandably, the UML design standard may need to be tailored to the individual program, but
a core list of UML specific design standards should be captured.

First, the UML design standard should address good practices. There are some
examples of these in Reference 52, where the first good practice listed is “Apply a subset of
UML relevant to your role.” Likewise, DO-331 Section 11.23 provides a list of good practices
that should be included in a UML design standard, for example, maximum number of models per
diagram. Along these lines, since Object-Oriented (OO) technologies are used in UML MBD,
good OO design principles should be applied: inheritance, polymorphism, abstraction, and so
forth. Additional OO considerations for safety-critical environments are covered in Reference
53. That document and others provide good practices; however, they are not prescriptive enough
to be considered formal rules.

Second, the UML design standard should develop formal binding rules for UML
that shall be followed for all safety-critical applications. Those rules should cover all things
related to the use of UML to represent safety-critical designs from style (for example, graphical
design indicators such as thick red border for all safety critical elements [27]) to classes (for
example, not allowing unbounded multiplicity or anonymous instances for classes) and no
concurrent states for state diagrams.

The rules should specify the approach that should be taken for a UML model to
capture constraints and expressions. According to Reference 54, constraints are “a restriction on
one or more values of (part of) an object-oriented model or system.” Constraints can come as
either informal additions, for example, natural language comment, or as a formal constraint such
as those applied by the OCL. Given the formal declarative nature of OCL which is part of the
UML Specification, it is preferred over the informal nature of natural language comments. The

12

UML design standard rules should detail how invariants, preconditions, and post conditions of
operations should be specified in the model. Use of these rules should help make the UML
diagrams more precise and if properly implemented, reduce some of the UML concerns, as
shown in Figure 4.

Third, the UML design standard should address traceability. NASA-STD-
8719.13B [27], RTCA DO-178C [7], MIL-STD-882E [26], AMCOM 385-17 [55], and other
software safety regulations discuss the importance of traceability, especially the traceability of
safety-critical requirements. “Requirements traceability is defined as the ability to describe and
follow the life of a requirement in both directions, towards its origin or towards its
implementation, passing through all the related specifications” [56]. Note that one of the updates
from RTCA DO-178B [57] to RTCA DO-178C [7] was to clarify the need for bi-directional
traceability artifacts, that is, trace data. Moreover, RTCA DO-331 [8] states that when
MBD/MDA® is used to represent requirements, as with SysML, the modeling standard for the
purpose of this report, the UML design standards, should address rules for representing
requirements and also bi-directional traceability tags or markers. Given that the intent of SysML
is to capture requirements, the UML design standard must address requirements (including
derived requirements) related rules that must be followed in the model. For example, all
requirements should state what the system does. Avoid, unless justifiable, negative requirements
as they are difficult to verify.

e Not allowed—Red shall not be used in standard text. (This does not specify
what color shall be used.)

e Allowed—Red (650 nanometers plus or minus 10 nanometers) shall only
be used for alarm messages.

For some initial guidance on best practices for requirements standards, refer to
Reference 58.

Model requirements may be linked with functional behaviors, so the UML design
standard must identify the method used to link the requirements to the model. This specification
must allow bi-directional trace data to be produced. It must support requirements represented
within or external to the model and textual or graphical requirements. Figure 6 shows an
example of how this trace may look when combining SysML with a UML class diagram.
Certain modeling tools can use the «satisfy» stereotype and produce/output trace data
artifacts. Notice that the «deriveReqt» stereotype is used to indicate derived requirements.
Various modeling tools have ways of addressing external linkages if the requirements are
external to the model. For example, Atego’s Artisan Studio uses SysML to allow the Dynamic
Object-Oriented Requirements System (DOORS®) requirements module to synchronize with the
model. Regardless of the location of the requirements or their format, for safety-critical items,
the UML design standard should address, as appropriate, the method used to trace requirements
from systems to high-level requirements, high-level to low-level requirements, and low-level to
code. Likewise, traceability from requirements to test should also be addressed. Certain
modeling tools can use the «satisfy» stereotype and produce/output trace data artifacts [59].

13

req [package] Requirements [GCS Traceahility]jj

wraquirements
ingle Comtrol

I = @@l
Text = The
system shall

control ocne UA.

gdariveRaqts ..l edideriveRegts

i -
srequirements i urequ1rementw
single Contrel : Single Control

D = 881 i b - ooi
Taxt = The H Text = The system
system chall usatisfyn shall cantrol ane
control one : BigRetaryling UA.
BigFixedWing UA. i
= : 7
i H 1
1 1 H
] i -
[]] H
i 1 H
[| [|
rEFtisfyn mmmm e = memee- asgtisfyn

CentrolStation

-I0 : wnsigned int

-Type : (SType

=NumControlUs : unsigned int

+getCEI0() unsigned int

+getType() @ CiType
+requestControlUA{in WAID : int) : bool
+getiumUAContrelled() - unsigned int
+requestReleaseUadin VAID @ int) : bool

Figure 6. SysML Requirements and Traceability Using <<satisfy>>

Fourth, the UML design standard should address other language semantics, for
example, capture the use of any extensions, unique stereotyping, or non-normative elements. By
design, UML can be extended, so if any extensions are used, those should be described in the
UML design standard. For example, by default, UML 2.1 contains 28 stereotypes. SysML adds
five new stereotypes. Include the appropriate rules to state if any of those stereotypes are
prohibited or new stereotypes are added, for example, «<safetyCritical». Moreover,
document the approach to including Non-Functional Parameters (NFPs) and Non-Functional
Requirements (NFRs) in the model, for example, safety, security, reliability, and performance.
Figure 7 shows how an NFP can be attached to a class diagram.

14

Contralstation

=T+ un=igned int

=Type i C5Type

-NumControlUA : wnsigned int

+EetCSID() : unsigned int

+grtTypel) @ CSType

+requestontrolUsiin UAID : int) : bool

+gethumlAControlled() : wnsigned int

srequestReleaseUsdin UAID : int) : bool
.

"

T

Error Handler: Support stateful failover,
SW Control Category: 1
Severity: Critical

Figure 7. NFP Note Attached to Class Diagram
2. UML MBD Tool Chain Selection

Like the importance of selecting tools for traditional software development for
safety-critical applications, the selection of UML modeling tools is equally important. A full
listing of UML tools or adequate tool qualities is beyond the scope of this report. It is the goal of
this section to reinforce the importance of selecting a mature tool that is appropriate for the
criticality of the target applications. For example, Dia [60], a diagramming tool, may be
appropriate for prototyping efforts. Because it is no longer being maintained (no updates since
2011) and has limited functionality, Dia may not be appropriate for the development of a safety-
critical release candidate.

If multiple MBD/MDA® tools are being used, tool compliance level is very
important. That is, choose tools that support the highest model interchange compliance level, as
defined in the OMG® UML superstructure, infrastructure, and OCL specifications.
Complications may result even if the tool has high compliance, and insurmountable obstacles
may result otherwise.

What follows is a list of other UML MBD tool evaluation criteria to consider:

Support latest and legacy UML versions

Support full UML specification, for example, extensions and OCL.
Provide extensibility interface for user-defined plug-ins

Interface with domain specific models or domain specific languages
Perform inter-diagram consistency verification, that is, verifies consistency
among diagrams

Perform static/structural constraint verification

e Perform dynamic/behavioral constraint verification

e Qualifiable mature tool, for example, according to DO-330 tool
qualification

15

e Produce certifiable code
e Support profiles (for example, support SysML)

Dated UML tool evaluation results are provided in Reference 61.

In addition to applying judicious tool selection criteria, once the selection(s) are
performed, a full description of the MBD tool chain can be produced. That description could be
resident in a Plan for Software Aspects of Certification (PSAC) or Software Development Plan
(SDP). Hopefully, that description also includes a brief discussion of the rationale for the
selection of the tool(s).

3. Reviews, Verification, and Validation

One of the goals of MBD/MDA® is to help reduce the effort required during the
software life cycle (by reducing the number of steps and also level of effort) but not reduce the
robustness of the final product. One of the ways to continue to maintain the rigor associated with
MBD is to conduct model reviews, verification, and validation, especially for MBD for
safety-critical applications. Manual model peer reviews, informal and formal, should be
conducted early and often to catch high-level logical modeling errors before low-level modeling
is begun. For evaluation criteria, model peer reviews should use the good practices design rules
and recommendations in the UML design standards. Manual peer reviews are very effective at
identifying missing good practice techniques and some logical errors, for example, good use of
abstraction, modularity, cohesion, and coupling, which automated static and dynamic model
reviews have difficultly identifying.

In addition to manual peer reviews of the model, conducting automated static and
dynamic review of the model is also recommended. There are numerous techniques that can be
used for both static and dynamic analysis, but checking model consistency is critical. One of the
strengths of UML is the numerous diagrams and various attributes, constraints, stereotypes, and
extensions. Unfortunately, this makes evaluating consistency amongst these various structural
(for example, class diagram) and behavioral (for example, state diagrams) diagrams difficult.
Given that the model is targeted for safety-critical applications, overall model consistency is
critical and must be determined.

In addition to consistency checking, many other UML static and dynamic analysis
techniques exist. Refer to Reference 62 for a list.

Expressions written in the OCL are used to specify integrity constraints of the
model so that OCL constraints can be automatically verified during dynamic analysis.
Moreover, during dynamic analysis, OCL expressions can be entered and evaluated to query
detailed information about a system state.

Discussion of review, verification, and validation would not be complete without
mentioning formal model checking, which is important to the development of software-intensive
systems with safety risks, for example, automotive [63] and medical industry [64]. 1SO 26262
[65] recommends model checking for both Automotive Safety Integrity Level (ASIL) C and D,
the top two risk levels for automotive safety. Model checking is a verification method that

16

automatically and exhaustively checks that a model meets a given specification. According to
NASA-GB-8719.13 [66], model checking checks for the following:

Reachability (Does a system ever reach a certain state?)
Lack-of-deadlock (Is deadlock avoided in the system?)
Safety (Nothing bad ever happens.)

Liveness (Something good eventually happens.)

Due to most UML modeling tools not including formal model checking, to be
checked, UML models must be transformed into formal model checking language. However,
Simulink® Design Verifier" includes some built-in model checker-type capabilities, for example,
formal methods [63].

4. Safety-Critical UML Profile

UML and current UML profiles seem to be ill-equipped to address safety-critical
needs. For example, after some initial evaluation, the MARTE UML profile does not capture
requirements or requirements traceability. As previously mentioned, AADL, currently only a
domain specific language, could augment the MARTE profile. Efforts are underway to develop
an AADL UML profile, but that effort seems to still be immature and is only targeted at the
aviation industry [38, 39].

Although UML profiles are designed to be used together, some deconfliction may
be necessary when identical key words or other similar features are used. For example, SysML
and MARTE both use FlowPort, but the semantics are different [40]. Note that SysML
Version 1.3 deprecates FlowPort, but it was present in SysML Version 1.2.

Moreover, this reference further elaborates on the complexity of possibly
combining the SysML and MARTE profiles. Mitigations to merging UML profiles are
addressed in Reference 67, while difficulties in combining SysML and MARTE are addressed in
Reference 68.

As previously mentioned, OMG® UML superstructure [19] Section 18.1.2 Profile
Design Requirements provide some guidance on the characteristics of UML profiles:

e “Well-formedness,” for example, “constraints that are more constraining
(but consistent with) those in the reference [UML] metamodel” [19] (that
is, only extensions to the metamodel)

Using UML XMI it must be possible to interchange profiles between tools
Reference domain-specific UML libraries

Combine UML profiles and model libraries via extensions

Specialize semantics of standard UML elements, for example, restrict to
single inheritance without having to assign explicit stereotype to each and
every instance

e Profiles can be dynamically applied or retracted from a model

17

A Safety-Critical profile may be formed by extending a current profile (for
example, MARTE), combining some existing profiles (for example, MARTE plus SysML) or
creating a new profile specifically applicable to the safety-critical domain; for example, pieces of
SysML plus pieces of MARTE plus safety and airworthiness extensions and constraints [40].

Figure 8 shows a sketch of the potential design space for a Safety-Critical profile.
Security profiles, for example, UMLSec, are not shown in Figure 8 because too little is known
about them to know which portions of those profiles could be leveraged. Quality of Service
(QoS), which describes signaling speed, maximum turnaround time, data size, and disconnect
threshold, should also be included in the Safety-Critical profile (or individual element
characteristics of that profile could be added as necessary). Some effort is being undertaken to
develop a DO-178 Airworthiness UML profile, but for this report, that work was not evaluated
for adequacy or maturity [69].

Future Profile

New

I -——
| h

% \

UML

MARTE X QoS
New New New
UML

CY055IC

Figure 8. Safety-Critical UML Profile
V. CONCLUSION

This report provided a primer of UML, MBD/MDA®, and safety. Building on that brief
information, a short list of UML’s undesirable traits was provided and some recommended
practices to mitigate those traits was suggested; for example, develop a UML design standard,
select UML tool chain carefully, and conduct peer reviews, verification, and validation. Next, a
sketch was provided for the development of a UML profile for safety-critical applications. Now,
a request for feedback is being made to the safety-critical community using UML to determine
the adequacy of these recommendations. In some cases, not enough constraints were suggested,
while in other cases, the recommendations may be too difficult to address with current
technology. In either situation, feedback and meetings are requested with those in the
safety-critical industry who have used, are using, or planning to use UML for MBD and have
gone, are going, or planning to go through certification or regulatory approval processes,

18

industry/commercial, civilian, or military. Going forward, the desire is to further refine these
recommendations against lessons learned and continue to build a JSF- or MISRA-like standard
for using UML in safety-critical applications. Putting in place those types of standards for UML
will strengthen the case for the use of UML in MBD for safety-critical applications.

Remember that no single rule, practice, or standard alone is going to address making UML
a fit for use on a safety-critical MBD application. Just like coding standards are one small part
of an overall software safety program, UML design practices must be integrated into the whole
software safety and system safety program. Moreover, to have a successful software safety
program, rigorous creative disciplined effort must still be applied by the whole software safety
team during the whole software life cycle. Do not become complacent once another best practice
is produced. It is just one more tool to help have a successful software safety program.

19

10.

11.

12.

13.

14.

REFERENCES

“Model Driven Architecture® (MDA®) FAQ,” Object Management Group® (OMG®),
http://www.omg.org/mda/fag_mda.htm.

Fowler, M. and Highsmith, J., “The Agile Manifesto,” August 2001,
http://www.pmp-projects.org/Agile-Manifesto.pdf.

Fowler, M. “The New Methodology,” December 2005,
http://www.martinfowler.com/articles/newMethodology.html.

Glazer, H. et al., “CMMI or Agile: Why Not Embrace Both!” Technical Note
CMU/SEI-2008-TN-003, November 2008,
http://www.sei.cmu.edu/library/abstracts/reports/08tn003.cfm.

“Rational Unified Process, Best Practices for Software Development Teams,” Rational
Software White Paper, TP026B, Revision November 2001,
http://www.ibm.com/developerworks/rational/library/content/03July/1000/1251/1251 be
stpractices_TP026B.pdf.

Dobolyi, K., “Software Requirements/Design Modeling,” George Mason University
(GMU), http:/mwww.cs.gmu.edu/~kdobolyi/cs321/index.html.

Software Considerations in Airborne Systems and Equipment Certification, Radio
Technical Commission of Aeronautics (RTCA) Document (DO) 178C, RTCA, Inc.,
Washington, DC, December 2012.

Model-Based Development and Verification Supplement to DO-178C and DO-278A,
Radio Technical Commission of Aeronautics (RTCA) Document (DO) 331, RTCA, Inc.,
Washington, DC, December 2012.

“MDA® Specification,” Object Management Group, Inc. (OMG®)
http://www.omg.org/mda/specs.htm#MDAspecSupport.

“Object Management Group Terms and Acronyms,” Object Management Group
(OMG®), http://www.omg.org/gettingstarted/terms_and_acronyms.htm#M.

Mukerji J. and Miller, J., “MDA® Guide Version 1.0.1,” June 2003,
http://www.omg.org/cgi-bin/doc?omg/03-06-01.

“Documents Associated with Meta Object Facility” (MOF™) Version 2.4.1,” Object
Management Group® (OMG®), June 2013, http://www.omg.org/spec/MOF/2.4.1/.

“Meta Object Facility” (MOF) Specification, Version 1.4.1,” Object Management
Group® (OMG®), July 2005, http://www.omg.org/spec/MOF/1SO/19502/PDF.

Guidelines from Development of Civil Aircraft and Systems, SAE ARP4754A, SAE
Aerospace, Warrendale, PA, December 2010.

20

15.

16.

17.

18.

19.

20.

21.

22,

23.
24,
25.

26.

27.

REFERENCES (CONTINUED)

Guidelines and Methods for Conducting the Safety Assessment Process on Civil
Airborne Systems and Equipment,SAE ARP4761, SAE Aerospace, Warrendale, PA,
December 1996.

“Model-Driven Development, IEEE Software,” Institute of Electrical and Electronics
Engineers (IEEE) Computer Society, 2003,
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=01231145.

“Object Management Group® Unified Modeling Language (OMG® UML),”
International Organization for Standardization (ISO)/International Electrotechnical
Commission (IEC) 19505-1:2012(E), Information Technology—Infrastructure, May
2012, http://www.iso.org/iso/catalogue_detail.hntm?csnumber=32624.

“Object Management Group® Object Constraint Language (OMG® OCL),” International
Organization for Standardization (ISO)/International Electrotechnical Commission (IEC)
19507:2012(E), Information Technology, May 2012,

http://www.iso.org/iso/home/store/catalogue _tc/catalogue_detail.htm?csnumber=57306.

“Object Management Group® Unified Modeling Language (OMG® UML),”
International Organization for Standardization (ISO)/International Electrotechnical
Commission (IEC) 19505-2:2012 (E), Information Technology—Superstructure, May
2012, http://www.iso.org/iso/catalogue_detail.hntm?csnumber=52854.

Unified Modeling Language: Diagram Interchange, Volume 2.0, September 2003.

“UML Diagram Overview.svg,” September 2011,
http://en.wikipedia.org/wiki/File:UML_diagrams_overview.svg.

Bell, D., “UML Basics — The Class Diagram,” September 2004
http://www.ibm.com/developerworks/rational/library/content/Rational Edge/sep04/bell/.

Miles, R. and Hamilton, K., Learning UML 2.0, O’Reilly Media, Inc., May 2006.

Rierson, L., Developing Safety-Critical Software, CRC Press, Boca Raton, FL, 2013.

Schulmeyer, G. G., Handbook of Software Quality, Assurance, 4th Edition, Artech
House, Inc., 2008.

“Department of Defense Standard Practice: System Safety,” MIL-STD-882E, May 2012,
http://www.system-safety.org/Documents/MIL-STD-882E.pd.

“NASA Technical Standard: Software Safety Standard,” National Aeronautics and Space
Administration (NASA) Standard (STD) 8719.13B, July 2004,
http://www.hg.nasa.gov/office/codeqg/doctree/871913.htm.

21

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

REFERENCES (CONTINUED)

“Software Requirements, Functional Safety of Electrical/Electronic/Programmable
Electronic Safety-Related Systems,” International Electrotechnical Commission (IEC)
61508-3, 2010.

“Overview of techniques and measures, Functional Safety of Electrical/Electronic/
Programmable Electronic Safety-Related Systems,” International Electrotechnical
Commission (IEC) 61508-7, 2010.

“Joint Strike Fighter Air Vehicle C++ Coding Standards for the System Development and
Demonstration Program,” Document Number 2RDUO00001, Revision C, December 2005,
http://www.stroustrup.com/JSF-AV-rules.pdf.

“MISRA-C: 2004 Guidelines for the Use of the C Language in Critical Systems,” Motor
Industry Software Reliability Association (MISRA), October 2008.

“MISRA-C++: 2008 Guidelines for the Use of the C++ Language in Critical Systems,”
Motor Industry Software Reliability Association (MISRA), July 2008.

“Jet Propulsion Laboratory (JPL) Institutional Coding Standard for the C Programming
Language,” Jet Propulsion Laboratory (JPL) DOCID D-60411, Volume 1.0, March 2009.

Anderson, D., Agile Management of Software Engineering: Applying the Theory of
Constraints for Business Results, Prentice Hall, September 2003.

Adzic, G., “Improving Testing Practices at Google,” December 2009.
http://gojko.net/2009/12/07/improving-testing-practices-at-google/.

Boehm, B. W., “Software Engineering,” International Conference on Software
Engineering (ICSE) Proceedings of the 4th International Conference on Software
Engineering, pp. 11-21, August 1976.

Gutz, S., “Static Analysis IBM Rational Software Analyzer: Getting Started,” April 2008,
https://www.ibm.com/developerworks/rational/library/08/0429 gutzl/.

Faugeére, M. et al., “MARTE: Also an UML Profile for Modeling AADL Applications,”
Engineering Complex Computer Systems, 12th Institute of Electrical and Electronics
Engineers (IEEE) International Conference, pp. 359-364, July 2007.

Faugeére, M. et al., “Executing AADL Models with UML/MARTE,” 14th Institute of
Electrical and Electronics Engineers (IEEE) International Conference on Engineering of
Complex Computer Systems, 20009.

Saadatmand, M. et al., “UML-Based Modeling of Non-Functional Requirements in
Telecommunication Systems,” International Conference on Software Engineering
Advances (ICSEA) 2011: The Sixth International Conference on Software Engineering
Advances, 2011.

22

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

REFERENCES (CONTINUED)

Delligatti, L., SysML Distilled: A Brief Guide to the Systems Modeling Language,
First Edition, Addison-Wesley Professional, December 2013.

“Editing C++ code in Capsule-Based Models,”
http://pic.dhe.ibm.com/infocenter/rsarthlp/v7r5m1/index.jsp?topic=%2Fcom.ibm.xtools.r
sdrt.modeling.code.doc%2Ftopics%2Ftovervieweditingcppcode.html.

Steimann F. and Vollmer, H., “Exploiting Practical Limitations of UML Diagrams for
Model Validation and Execution,” Springer Software and Systems Modeling, Volume 5,
Issue 1, pp. 26-47, April 2006.

Tom Hill, Email concerning the differences between Rhapsody and Rational Software
Architecture, 07 August 2013.

Tom Fox, Correspondence regarding document attachment title, “In Response to Al012
Feedback,” from file GDAIS Responses to Advanced Information (Al) 012
Feedback.docx, 15 August 2012.

D. Bell, “UML Basics: An Introduction to the Unified Modeling Language,” IBM,
June 2003, http://www.ibm.com/developerworks/rational/library/769.html.

Warmer, J. and Klepp, A., The Object Constraint Language: Getting Your Models Ready
for MDA®, Addison-Wesley, September 2003.

de Niz, D., “Diagrams and Languages for Model-Based Software Engineering of
Embedded Systems: UML and AADL,” Software Engineering Institute, Carnegie
Mellon University, December 2007,
http://www.sei.cmu.edu/library/assetsftUML_AADL_Comparison.pdf.

Grady Booch, “Software Architecture, Software Engineering, and Renaissance Jazz,
Microsoft and Domain Specific Languages,” December 2004,
https://www.ibm.com/developerworks/community/blogs/gradybooch/entry/microsoft_an
d_domain_specific_languages?lang=en.

Shousha, M. et al., “A UML/MARTE Model Analysis Method for Detection of Data
Races in Concurrent Systems,” Proceeding Models 2009, Proceedings of the

12th International Conference on Model Driven Engineering Languages and Systems,
pp. 47-61, 2009,
http://simula.no/research/se/publications/Simula.SE.645/simula_pdf file.

Bradner, S., “Key Words for Use in RFCs to Indicate Requirement Levels,” Harvard
University, March 1997, http://www.ietf.org/rfc/rfc2119.txt.

Silingas, D., “Best Practices for Applying UML, Part 1,” No Magic Inc.,

http://www.magicdraw.com/files/whitepapers/Best_Practices_for_Applying_ UML_Partl
.pdf.

23

53.

54.

55.

56.

57.

58.

59.

60.
61.

62.

63.

REFERENCES (CONTINUED)

Object-Oriented Technology and Related Technigues Supplement to DO-178C and
DO-278A, Radio Technical Commission for Aeronautics (RTCA) Document (DO) 332,
RTCA, Inc., Washington, DC, December 1992.

Warmer J. and Kleppe, A., The Object Constraint Language: Getting Your Models
Ready for MDA®, Second Edition, Addison-Wesley Professional, September 2003.

“AMCOM Software System Safety Policy,” AMCOM 385-17, AMCOM Software
System Safety Policy, United States (U.S.) Army Aviation and Missile Command,
Redstone Arsenal, AL, March 2008.

Letelier, P., “A Framework for Requirements Traceability in UML-based Projects,”
Proceedings of First International Workshop on Traceability in Emerging Forms of
Software Engineering, pp. 32-41, 2002,

Software Considerations in Airborne Systems and Equipment Certification, Radio
Technical Commission of Aeronautics (RTCA) Document (DO) 178B, RTCA, Inc.,
Washington, DC, December 1992.

“IEEE Recommended Practice for Software Requirements” Institute of Electrical and
Electronics Engineers (IEEE) Standard (STD) 830-1998, Specifications,
International Standard Book Number (ISBN) 0-7381-0332-2, New York, NY,
October 1998.

Balmelli, L., “An Overview of the Systems Modeling Language for Products and
Systems Development,” Journal of Object Technology, Volume 6, Number 6, July 2007,
http://www.jot.fm/issues/issue_2007_07/article5/.

“Dia,” https://wiki.gnome.org/Apps/Dia.

Merilinna, J. and Matinlassi, M., “Evaluation of UML Tools for Model-Driven
Architecture,” 11th Nordic Workshop on Programming and Software Development Tools
and Techniques Nordic Workshop on Programming Environment Research (NWPER)
2004, page 155-162, Turku, Finland, August 2004,
http://www.neone.fi/research/Evaluation_of UML_Tools_for_Model-
Driven_Architecture.pdf.

Soeken, M. et al., “Verifying Dynamic Aspects of UML Models,” Design, Automation
and Test in Europe Conference And Exhibition, March 2011, http://www.date-
conference.com/proceedings/PAPERS/2011/DATE11/PDFFILES/09.3_1.PDF.

Ali, S. and Sulyman, M., “Applying Model Checking for Verifying the Functional
Requirements of a Scania’s Vehicle Control System,” School of Innovation, Design, and
Engineering Mélardalen University, Vasteras, Sweden, September 2012,
http://www.diva-portal.org/smash/get/diva2:558435/FULLTEXTO1.

24

64.

65.

66.

67.

68.

69.

REFERENCES (CONCLUDED)

Daw, Z. et al., “Formal Verification of Software-Based Medical Devices Considering
Medical Guidelines,” International Journal of Computer Assisted Radiology and Surgery,

Engineering in Medicine and Biology (EMB)-Laboratory, University of Applied
Sciences—Mannheim, Baden-Wurttemberg, Germany, July 2013.

“Road Vehicles—Functional Safety—~Part 6: Product Development at the Software
Level,” International Organization for Standardization (1SO) 26262-6:2011, November
2011, http://www.iso.org/iso/catalogue_detail?csnumber=51362.

“NASA Software Safety Guidebook,” National Aeronautics and Space Administration
(NASA) Guide Book (GB) 8719.13, NASA Technical Standard, March 2004,
http://www.hq.nasa.gov/office/codeqg/doctree/871913.pdf.

Noyrit, F. et al., “Consistent Modeling Using Multiple UML Profiles,” Model Driven
Engineering Languages and Systems, 13th International Conference, Models 2010,
Proceedings, Part 1, Oslo, Norway, pp. 392-406, October 2010.

Espinoza, H. et al., “Challenges in Combining SysML and MARTE for Model-Based
Design of Embedded Systems,” Model Driven Architecture—Foundations and
Applications, 5th European Conference, ECMDA-FA 2009 Enschede, Netherlands,
pp. 98-113, June 2009.

Zoughbi, G. et al., “A UML Profile for Developing Airworthiness-Compliant (RTCA
DO-178B) Safety-Critical Software,” Model-Driven Engineering Languages and
Systems, Lecture Notes in Computer Science, Volume 4,735, pp. 574-588, 2007.

25

0 *
AADL
ASIL
CSID
CSType
CWM
DO
DOORS®
DSML
GB

GCS
GPML
HW

ID

IEC
INCOSE
int

ISO

JPL

JSF
MARTE
MATLAB®
MBD
MBSE
MDA®
MISRA
MOF"
NASA
NFP
NFR
OCL

LIST OF ABBREVIATIONS, ACRONYMS, AND SYMBOLS

zero or more

Architecture Analysis and Design Language
Automotive Safety Integrity Level

Control Station Identification

Control Station Type

Common Warehouse Metamodel

Document

Dynamic Object-Oriented Requirements System®
Domain Specific Modeling Language

Guide Book

Ground Control Station

General Purpose Modeling Language
Hardware

Identification

International Electrotechnical Commission
International Council on Systems Engineering
Integer

International Organization for Standardization
Jet Propulsion Laboratory

Joint Strike Fighter

Modeling and Analysis of Real Time and Embedded
Matrix Laboratory®

Model-Based Development

Model-Based Systems Engineering

Model Driven Architecture®

Motor Industry Software Reliability Association
Meta-Object Facility ™

National Aeronautics and Space Administration
Non-Functional Parameter

Non-Functional Requirement

Object Constraint Language

26

LIST OF ABBREVIATIONS, ACRONYMS, AND SYMBOLS (CONCLUDED)

OMG® Object Management Group®

00 Object-Oriented

PIM Platform-Independent Model

PSAC Plan for Software Aspects of Certification
PSM Platform-Specific Model

QoS Quiality of Service

RTCA Radio Technical Commission of Aeronautics
RTVM Requirement Traceability and Verification Matrix
RUP Rational Unified Process

SDP Software Development Plan

SRS Software Requirements Specification

STD Standard

SW Software

SysML System Modeling Language

UA, UAV Unmanned Air Vehicle

UAID Unmanned Air Vehicle Identification

UML Unified Modeling Language

27

APPENDIX A
USING UNIFIED MODELING LANGUAGE IN MODEL-BASED DEVELOPMENT
FOR SAFETY-CRITICAL APPLICATIONS

Using Unified Modeling Language in
Model Based Development for
Safety-Critical Applications

Sue Bonne Jason Rupert
UAS SW Airworthiness Lead SW Airworthiness Engineer

AV Division, SED AMRDEC, RDECOM APT Research
susan.bonne@us.army.mil jason.k.rupert@us.army.mil

DISCLAIMER: Reference herein to any specific commercial, private or public products, process, or service by trade name, trademark,
manufacturer, or otherwise, does not constitute or imply its endorsement, recommendation, or favoring by the United States Government.
The appearance of hyperlinks does not constitute endorsement by the Department of Defense or the U.S. Army or the web site or the
information, products or services contained therein. The views and opinions expressed herein are strictly those of the authors and do not
represent or reflect those of the United States Government. The viewing of the presentation by the Government shall not be used as a
basis of advertising.

1-13-00800 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited 1

A-1

Goal

Discuss topics and considerations for using the Unified Modeling Language (UML) in
Model Based Development (MBD) for Safety-Critical Applications

BLUF: No “silver bullet” — requires creative disciplined effort

Agenda
e Background UML in Safety-Critical Applications
— What is a model? — Some UML Concerns
— What is model based — Suggested Practices
development? « UML Design Standards
— Whatis UML? * UML MBD tool(s) chain selection
— What is safety and Safety-Critical o Safety/Airworthiness UML Profile
SW*? — Reviews, Verification and
* *Also applies to airworthiness Validation of UML Models
* Application e Conclusions & Wrap-up
— Models in MBD e Backup material
— UMLin MBD e References
— Safety to SW

Caveat: This briefing only focuses on the use of UML in MBD. Should your MBD effort use a different
general purpose modeling language (GPML) or domain specific language (DSL), similar
recommendations would apply to its use, especially for safety-critical or flight critical efforts.

1-13-00800 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited 2

A-2

What are models?

Computational

Image Credit: NASA

m age Credit;

Supercomputer Model of Stock

Market High Frequency Trading Physical
Team Run Production Model T,

RPSit = B1 + B20BPit + B3SLGit + BANL + eit h = CPdt = 7 (T2 — Tl)

RPSit = number of runs produced by team i in 5 I

season t y Mathematical model ~1895

OBPit = on-base percentage of team i in season t.

. . . Enthalpy or total heat

SLGit = slugging percentage of team i in season t. of superheated steam [1]

NLi = dummy variable =1 if teamiisin the P

National League, O otherwise. R. T. Kent, Kent’s Mechanical Engineers’ Handbook: Power,

eit = random error for team i in season t. Eleventh Edition, John Wiley & Sons, New York NY, 1937.

* Range from Baseball Team Performance Models (a.k.a., Money Ball) to CFD (Computational Fluid Dynamics)
using domain specific modeling languages (DSML) to general purpose modeling languages (GPML)

1-13-00800 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited 3

A-3

Model

e RTCA DO-331 Model Based Development and Verification Supplement to DO-178C and
DO-278A

“An abstract representation of a given set of aspects of a system that is used for analysis,
verification, simulation, code generation or any combination thereof. A model should be
unambiguous, regardless of its level of abstraction.”

* Note 1: If the representation is a diagram that is ambiguous in its interpretation, this is not considered a

model
* Note 2: The “given set of aspects of a system” may contain all aspects of the system or only a subset.”

e Object Management Group (OMG®)
“Models in the context of the [Model Driven Architecture] MDA Foundation Model are instances of
[Meta-Object Facility] MOF™ metamodels and therefore consist of model elements and links
between them." This required MOF compliance enables the automated transformations on which
MDA is built. UML compliance, although common, is not a requirement for MDA models. (This
means, for example, that a suitable development process based on OMG's Common Warehouse
Metamodel can be MDA-compliant, since CWM is based on MOF.)”
(http://www.omg.org/mda/specs.htm#MDAspecSupport)

(Rl
- *‘#""—h = E = —2=
- e = =
& e M- E'"'= a;:. —— =

OBJECT MANAGEMENT GROUP
7-13-00800 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited

A-4

Model Based Development (MBD)

e RTCA, DO-331 Model Based Development and Verification Supplement to DO-178C
and DO-278A

— “Atechnology in which models represent software requirements and/or software design
descriptions to support the development and verification process.”

 Model Driven Architecture (MDA) is related to MBD

— OMG?® (http://www.omg.org/mda/fag mda.htm#what%20is%20mda)

* “The MDA is a new way of developing applications and writing specifications, based on a platform-
independent model (PIM) of the application or specification's business functionality and behavior. A
complete MDA specification consists of a definitive platform-independent base model, plus one or
more platform-specific models (PSM) and sets of interface definitions, each describing how the base
model is implemented on a different middleware platform. A complete MDA application consists of a
definitive PIM, plus one or more PSMs and complete implementations, one on each platform that the
application developer decides to support. ”

* Any modeling language used in MDA must be described in terms of the MOF language, to enable the
metadata to be understood in a standard manner, which is a precondition for any ability to perform
automated transformations.

“Model-driven development is simply the notion that we can construct a model of a system that we
can then transform into the real thing.” Model-Driven Development, IEEE Software, Published by the
IEEE Computer Society, 0740-7459, 2003.

1-13-00800 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited

A-5

What is UML? o= g

e Unified Modeling Language™ (UML) is a general purpose modeling
language (GPML) that uses a set of graphic notations to specify, constrain
and document visual models

e UML is managed by the OMG and is an I1SO standard

* One key UML 2.x Specifications (of M
fou r) Stereotype o o
— Object Constraint Language (OCL)
{ cnt } [Mechanisms _’ con?“;:éms
* Formal language lacks some of the Consirant ’
ambiguities associated with natural
Ianguages Unlleed Modeling OCL
 Defines invariant rules for model T{;fv,} ? Conatraint
element, so, for example could be used Languaae
to clearly describe required safety _
guard conditions and exit threshold - i

inhibits
* The “Big Six Diagrams" of UML fall into ‘ ‘ l

two categories ‘ ———
g. ?I 43—_| %_O db (Interactions
— Static/structural: Use Case, Class (7 E e g N~
. 8 Lase State Machine
and Composite Structure . Deployment package dagram A agram
. . - ass Component lagram diagram lagram

— Dynamic/behavioral: Activity, diagram dia‘;mm ?

Sequence and State Machine (or

State Dlagrams) “UML 2.0 Interactions with OCL/RT Constraints”, Daniel Calegari Garcia, 2007.

http://www.fing.edu.uy/inco/pedeciba/bibliote/tesis/tesis-calegari.pdf

1-13-00800 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited 6

A-6

Two Separate Examples of UML

 Example 1: UA Control Station Ownership

ControlStation

-ID : unsigned int UA «enumeration»
V) | «enumeration» | |-Type : CSType _ . _ownerfleet |-Ip - int UAType
Vg CSType -NumControlUA : unsigned int _Type : UAType +BigRotaryWing
(q0) +Shelter +getCSID() : unsigned int - +BigFixedWing
— +grantControl() : bool . -

+Tablet +getType() : CSType 1 9..* + tRel () : bool +SmallFixedWing

U +Airborne +requestControlUA(in UAID : int) : bool +gr‘iBAI§(§a?e‘ t. 00 +SmallRotaryWing

+getNumUAControlled() : unsigned int ge il

+requestReleaseUA(in UAID : int) : bool

un

UA = unmanned aircraft = multiplicity; i.e., 0 to n, where n is a bunch

 Example 2: Control Station State Transition

)

-

L

o

(© Control

E Monitor Control
Q

o+

!

Ve Monitor

7-13-00800 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited

A-7

What is Safety and Safety-Critical SW?

o Safety

“freedom from those conditions [hazard] that can cause death, injury, illness, damage to or
loss of equipment or property, or environmental harm”, Handbook of Software Quality
Assurance, Chapter 9 Software Safety and Its Relation to Software Quality Assurance,
(Schulmeyer)

e Hazard (MIL-STD-882E)

— Avreal or potential condition that could lead to an unplanned event or series of events (i.e.
mishap) resulting in death, injury, occupational illness, damage to or loss of equipment or
property, or damage to the environment.

o Safety-Critical SW (MIL-STD-882E)

— Software that has been determined through analysis to potentially contribute to a hazard with
catastrophic or critical mishap potential

* Provides controls or mitigations for a hazard

e Controls safety-critical functions

* Processes safety-critical functions

e Detects and reports, or takes corrective action, if the system reaches a specific hazardous state
e Mitigates damage if a hazard occurs

* Resides on the same system (processor) as safety-critical software AND is NOT partitioned from non-
essential software

Airworthiness and SW Airworthiness is not explicitly addressed here, but the principles presented here
are also applicable to flight critical environments.

1-13-00800 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited

A-8

Applications

1-13-00800 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited

A-9

UML in MBD

e “Although not formally required [for MBD], UML*
is still a key enabling technology for the Model
Driven Architecture and the basis for 99% of MDA
development projects.”, OMG MDA FAQ

{

* Code Generation**, “round tripping”, and
Verification & Validation

*What about SAE Architecture Analysis and Design Language (AADL)? Primarily, AADL is a unique standalone DSL.
Efforts have been made to extend MARTE Profile to map to AADL, but adequate discussion of that effort is beyond
the scope of this presentation.

** Code Generation Clarification: Code generation is a bit of a misnomer since the developer still actually writes the
behavior code in the model. This code provides the "algorithmic details" that actually make the application work.
Thus, appropriate low level requirements and design details are necessary for this hand-written behavior code that is
included in the model.

1-13-00800 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited 10

A-10

Models in MBD

e System Models

— SysML Profile; i.e., UML Profile* developed by subsetting and
extending UML

e Requirements are included as “first-class model elements”, UML-
Based Modeling of Non-Functional Requirements in
Telecommunication Systems, M. Saadatmand, et al., 2011

* Requirements table; i.e., “traceability information for requirements in
a single view” (See above reference)

* PIMs and PSMs

* Low Level Models
— Due to some of the inadequacies of UML, some choose to
integrate Domain Specific Models (DSMs) with UML models
* MatLab®/Simulink®
 SCADE

*UML Profiles are analogous to dialects; e.g., Cajun is a dialect of North American English. UML Profiles can be
composed of a namespace and a list of stereotype names, modeling conventions, constraints and tagged values.

1-13-00800 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited 11

A-11

Applications of Safety to SW

e Example Guiding Documents

— Objectives, Activities, Artifacts (e.g., Plans and Standards) and Processes
» |EEE 12207/IEC 61508
e 882E/385-17
* ARP4754/D0-178C
* NASA-STD-8719.13B/C /
+ 150 26262 /

e Coding Standards /

— JPL Institutional Coding Standard for =
the C Programming Language | | —

— MISRA for Cand C++ & & ®
— JSF for C++ &€ 0 & o
— C/C++ Coding Standard <

Recommendations for [EC 61508
— Others (e.g., CERT)

* Weakness of Coding Standards
— Come late in the SW Lifecycle (especially for MBD)
* The later in the SW Lifecycle issues are caught and identified the more costly to fix (see Boehm Curve)

— Don’t address requirements and design verification and traceability issues (although they
should, as required by DO-178C and also DO-178C requires Requirement Standards as well)

— Most of the time only address static analysis concerns, not logical errors

Boehm Curve: relative cost to fix error
verse phase in which error detected

Apply Safety early in the SW lifecycle

1-13-00800 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited 12

A-12

T-13-00800

UML in MBD For Safety-Critical
Applications

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited

A-13

13

Some UML Concerns

¢ Informal

— “UMLis not a methodology, it does not require any formal work products”, UML basics: An
introduction to the Unified Modeling Language

— “A UML diagram, such as a class diagram, is typically not refined enough to provide all the
relevant aspects of a specification.” OMG Object Constraint Language (OCL) Specification,
Version 2.2, Section 7.2, http://www.omg.org/spec/OCL/2.2/

— “All models, both PSM and PIM, should be consistent and precise, and contain as much
information as possible about the system. This is where OCL can be helpful, because UML
diagrams alone do not typically provide enough information.” The object constraint language:
getting your models ready for MDA. J. Warmer & A. Klepp, Addison-Wesley 2003.

* Consistency

— “UML cannot fully define the relationships between diagrams. The diagrams are developed as
separate entities that express different aspects of the software, not as parts of a common
construct.” Diagrams and Languages for Model-Based Software Engineering of Embedded
Systems: UML and AADL, Dionisio de Niz, CMU SEl, 2007.

— “the current UML spec really does not restrict graphical formats in any way -- it simply
provides a standard set of notations, but not at the exclusion of other notations. In other
words, there really is no "illegal" UML graphical syntax.” Grady Booch [2004]

e Questionable Behavior

“In UML, active objects have their own thread of control, and can be regarded as concurrent
threads . Only extensions of the UML standard, such as the MARTE profile, provide
mechanisms to model detailed information pertaining to concurrency.” A UML/MARTE Model
Analysis Method for Detection of Data Races in Concurrent Systems

1-13-00800 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited

A-14

14

T-13-00800

Some Considerations for UML in MBD
For Safety-Critical Applications

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited

A-15

15

Some Suggested Practices for using UML in a Safety-

Critical MBD Application

e UML Design Standards (in addition to Requirements and Coding Standards)
— Address good practices
— Address model constraints and expressions
— Address traceability, especially for safety-critical requirements

— Address extensions, stereotyping, and non-functional parameters
(NFPs/tagging)

« UML MBD tool(s) chain selection
— Diagram consistency verification; i.e., verifies consistency among diagrams
— Static/structural and Dynamic/behavioral verification
— Constraint verification
— Tool Qualification & Output Certification
e (Future) Safety/Airworthiness UML Profile*
— Stereotypes
— Constraints

*Isn’t there already MARTE? Yes. But MARTE does not consider Safety-Critical concerns;
e.g., traceability, or full use of constraints.

1-13-00800 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited

A-16

UML Design Standards Capture Good Practices

e To-dos and not to-dos; i.e., which UML constructs should always be done or avoided

e Examples

— Graphical design indicators

* Place a thick red border on safety-critical design elements (NASA-STD-8719.13B)
— For class diagrams

e Multiplicity (must be explicitly limited)

* Anonymous instances (allowed or not)

» Displaying attributes and operations/functions (to show or not to show)

* Inheritance, polymorphism, abstraction, etc. (See DO-332 for other Object Oriented Programming
concepts that must be addressed)

— For state diagrams/charts (link provided by Ed Mayer, IBM)

* No concurrent states; i.e., more than one state can be active at once; e.g., hierarchical state machine
(HSM)

* Do not use multiple entries and exits
e Composite/nested substates (specify how many levels of nesting)
* Compound transitions
e DO-331 Sec.11.23 provides a list of good practices that should be included in a
Software Model Standard; e.g., maximum number of models per diagram, etc.

For more on state diagrams also see: http://www.statesoft.org/statemachinegenerator.html and
http://sce.uhcl.edu/helm/rationalunifiedprocess/process/modguide/md stadm.htm

1-13-00800 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited

A-17

17

UML Design Standards Capture Constrains

e Constraints — “a restriction on one or more values of (part
of) an object-oriented model or system” The object
constraint language: getting your models ready for MDA.
2003.

— Informal; e.g., natural language

— Formal; e.g., Object Constraint Language (OCL)

* A declarative language, which is part of the UML Specification, for
describing rules that apply to UML models. (from “The Object
Constrain Language”)

— “you access an attribute, call a function, or select objects from a collection”

* OCL is used to specify invariants of objects and preconditions and
postconditions of operations.

 Makes UML (class) diagrams more precise.

e (Good) Unintended consequence: potentially can be used as a analysis
or query language

OCL can be used to help specify the PIM to PSM transformation, “Implementing
UML model transformations for MDA”, Staron, M. and Kuzniarz, L., 2004

1-13-00800 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited 18

A-18

Class

State Machine

T-13-00800

Two Separate Examples with Constraints

 Example 1: UA Control Station Ownership

“A ControlStation owner shall control 3 or fewer UA.”:
context ControlStation

 Example 2: Control Station State Transition

requestControlUA()==true

[NumControlUA>Q]
Control

Controlstation inv: self.NumControlUA<=3

-ID : unsigned int UA
-Type : CSType) . -ownerfleet [-ID : int
-NumControlUA : unsigned int

CSID0) - it -Type : UAType
+ge : unsigned in -
reetType() : CSTpe N R e e
+requestControlUA(in UAID : int) : bool +getUAID() . ;;t'
+getNumUAControlled() : unsigned int g :
+requestReleaseUA(in UAID : int) : bool

Request Release/

requestsReleaseUA()==true

Monitor

Control

Check _Monito
[NumControlUA==0]

Monitor

[NumControlUA==0]

A-19

NumControlUA--;
[NumControlUA>Q]

equest_Control/

requestControlUA()==true

NumControlUA++;

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited [NumControlUA<=3] 19

UML Design Standards Capture Traceability

 What is Requirements Traceability?

T-13-00800

— “Requirements traceability is defined as the ability to describe and follow the
life of a requirement in both directions, towards its origin or towards its
implementation, passing through all the related specifications.” A Framework
for Requirements Traceability in UML-based Projects, Letelier, P.

— RTCA DO-331 Model Based Development and Verification Supplement to DO-
178C and DO-278A

MB.5.5 “When using model-based development, identification of requirements as per
the method defined in the Software Model Standards [e.g., the UML Design Standards]
should be used for bi-directional traceability. Means for this traceability should also be
defined in the Software Model Standards.”

MB.5.5“Since functional requirements are implemented using combinations of model
elements, these combinations should therefore be used for bi-directional traceability.”
MBA.11.23 states that the SW Model Standard should state the “method to be used to
identify and delimit the derived requirements contained in the model and the method to
provide derived requirements to the system process, including the system safety
assessment process”

Note: IEEE 12207/1EC 61508 and 882E/385-17 call for a similar level of traceability.

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited 20

A-20

Products and Systems Development “,
International Business Machine (IBM), Research Division, T.J.Watson Center.

T-13-00800

UML Design Standards Capture Traceability

e Requirements traceability is not part of
UML

e But (limited and still not formal)
traceability can be added through the use
of the OMG’s SysML Profile

e Using SysML constructs enter the
requirements and in a hierarchical fashion
deconstruct them to the appropriate level

e Trace the those requirements to the
appropriate UML Model element(s)

* SysML Requirements tables

Note: Various modeling and requirements
management tools have product specific (non-UML)
ways of implementing this approach. However, some;
e.g., Atego’s Artisan Studio, use SysML to “allows
users to take a DOORS requirements module and
synchronize it into the model.”

Example from “An Overview of the Systems Modeling Language for

2007.

A-21

req [package] Requirements [GCS Traceability]

«requirement»
Single Control

ID = 001
Text = The
system shall

control one UA.

-«deriveReqt»-—-

«requirement»
Single Control

ID = 001

Text = The
system shall
control one
BigFixedWing UA.

«satisfy»

L«deriveReqt»m

«requirement»
Single Control

ID = 001

Text = The system
shall control one
BigRotaryWing UA.

Laurent Balmelli, Ph.D., Manager,

«satisfy»——m

o «satisfy»

ControlStation

-ID : unsigned int
-Type : CSType
-NumControlUA :

unsigned int

+getCSID() : unsigned int
+getType() : CSType

+getNumUAControlled() :

+requestControlUA(in UAID :
unsigned int
+requestReleaseUA(in UAID :

int) : bool

int) : bool

ME
SYSTEMS
MODELING
LANGUAGE L

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited

watse %

21

UML Designh Standards Capture Other Normative
and Non-normative Notations

* Informal; e.g., natural language

— For example, allowable use of the notes
element

— Capture rationale for design decisions
e Extensions (normative and non-normative);

ControlStation
e.g., stereotypes -ID : unsigned int
. -Type : CSType
e UML 2.1 contains 28 stereotypes -NumControlUA : unsigned int
.y tCSID : i d int
 Unique profiles most likely will add additional e ropo() | Conybned dn
profiles; e.g., <<OS>>, <<database system>>, +f‘eg;esltjf\gntzolgﬁl\<i'z)UAID =,intg ; bool
+gethNum ontrolle . unsigned 1n
<< tool generated>> and <<custom code>> rrequestReleaseUA(in UAID : int) : bool
— For example, SysML adds 5 stereotypes: S
<<conform>>, <<view>>, <<viewpoint>>,

<<rat|0na|e>> and <<pr0b|em>> SW Control Category: 1
 Rules for tagged value attributes on an severity: e
added stereotype
* Non-functional parameters (NFPs); e.g.,
safety, security, reliability, and performance

— Address how are NFPs are to be described
and attached to UML model elements

Error Handler: Support stateful failover. ET

1-13-00800 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited

A-22

UML MBD tool(s) chain selection

* Assure UML and OCL interchange level

— Supports highest model interchange compliance level, as defined in the OMG UML Superstructure
specification (see UML v. 2.4.1, Chapter 2)

— Same for OCL
e Example UML MBD Tool Evaluation Criteria

— Announced UML version?

— Support full UML specification; e.g., extensions and OCL?

— Provide extensibility interface for user defined plug-ins?

— Interface with Domain Specific Models or Domain Specific Languages?

— Perform inter-diagram consistency verification; i.e., verifies consistency among diagrams?
— Perform static/structural constraint verification?

— Perform dynamic/behavioral constraint verification?

— Is the tool qualifiable; e.g., according to DO-330 Tool Qualification?

— Does the tool produce certifiable code?

* Some tool evaluation results are provided in the following

“Evaluation of UML Tools for Model-Driven Architecture”, page 155-162, 11th Nordic Workshop on
Programming and Software Development Tools and Techniqgues NWPER'2004 held in Turku, Finland, August
17-20, 2004.

Listing or endorsing specific tools or approaches, or evaluation of specific tool capabilities is
beyond the scope of this briefing.

1-13-00800 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited 23

A-23

T-13-00800

Review, Verification and Validation
of the UML

Similar to the reviews, verification and validation of
coding/programming; e.g., automated static analysis

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited
A-24

24

Reviews, Verification and Validation of UML
Suggested Practices

Peer Reviews (informal and formal to catch errors before they are
implemented and make use of good practices)
— Design abides by the UML Design Standards; e.g., traceability

— Look for things not easily found by automated reviews; e.g., good use of
abstraction, modularity, cohesion, and coupling

Analysis of static and dynamic view of UML model*

e Verifying Consistency

— Consistency amongst static and dynamic views

* For example, constraints in the UML class diagram are being followed in the state
charts/diagrams

— Consistency amongst the many views

*Please don’t ask me to explain these. Reference papers to these techniques can be provided.

Reviews, verification and validation processes should be explained and documented within the SW Lifecycle
Planning Materials; e.g., Software Development Plan, or Plan for Software Aspects of Certification (PSAC).

T-13-00800

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited

A-25

25

UML Suggested Practices: Model Checking

 Model checking is a verification method that automatically and
exhaustively checks that a model meets a given specification

* NASA Software Safety Guidebook, NASA-GB-8719.13, 2004.

— reachability (does as system ever reach a certain state)

— lack-of-deadlock (is deadlock avoided in the system)
— safety (nothing bad ever happens)
— liveness (something good eventually happens)

e Within UML tools model checking is limited
— Export from UML tools to other dedicated model checking tools

— Hopefully UML tools will rise to the occasion as done with MATLAB/Simulink
Design Verifier*
* Include formal methods

— Disappointing to see UML tools lag behind DSL tools

* Reference: “Applying Model Checking for Verifying The Functional Requirements of a
Scania’s Vehicle Control System”, September, 2012

1-13-00800 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited 26

A-26

T-13-00800

Safety/Airworthiness UML Profile

Extend or combine current profile(s) or create a new profile applicable to the Safety-
Critical and Airworthiness Domain; e.g., pieces of SysML + pieces of MARTE + Safety &
Airworthiness extensions & constraints.

Reference: “UML-Based Modeling of Non-Functional Requirements in
Telecommunication Systems”, M. Saadatmand et al. ICSEA 2011 : The Sixth
International Conference on Software Engineering Advances, 2011.

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited 27

A-27

Characteristics of a UML Profile

e Object Management Group Unified Modeling Language
(OMG UML), Superstructure, ISO/IEC 19505-2:2012(E)

e Section 18.1.2 ISO/IEC 19505-2:2012(E) Profile Design
Requirements

— “Well-formedness”; e.g., “constraints that are more constraining
(but consistent with) those in the reference [UML] metamodel”
(that is, only extensions to the metamodel)

— Using UML XMI it must be possible to interchange profiles
between tools

— Reference domain-specific UML libraries
— Combine UML profiles and model libraries via extensions

— Specialize semantics of standard UML elements; e.g., restrict to
single inheritance without having to assign explicit stereotype to
each and every instance

— Profiles can be dynamically applied or retracted from a model

1-13-00800 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited 28

A-28

T-13-00800

(Future) Safety/Airworthiness UML Profile

Future Profile

New
In UML extensions are an association | N —
relationship that indicates the |~ ‘ \
properties of the metaclasss. Thus, | ~ N\
qguotes are used in the figure to indicate JF ~ |-
natural language definition is implied. . /

UML

http://www.uml-diagrams.org/profile-diagrams.html#stereotype

VARTI | SysM QoS
NFP = non-functional parameters New New New
UML
Figure shows a sketch of how this might look w

Cv-05500

AADL Profile still seems to be under development

Not enough is known about Security Profiles; e.g., UMLSec, to endorse one over another (Same
comment applies to QoS Profile)

Some known deficiencies with basic UML and MARTE have already been discussed

Some effort is being undertake to develop DO-178 Airworthiness UML Profile, but it was not
evaluated for adequacy or maturity. For example, reference: “A UML Profile For Developing
Airworthiness-Compliant (RTCA DO-178B) Safety-Critical Software”, Gregory Zoughbi, Thesis,
Carleton University, 2006.

Recall: No “silver bullet” — requires creative disciplined effort

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited 29

A-29

T-13-00800

Wrapping Up
“With great power there must also come great responsibility.”

— Voltaire via Uncle Ben (Spiderman)

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited

A-30

30

Conclusions

* Due to some of UML’s characteristics as a
powerful general purpose modeling language
measures are necessary for it to be used in
safety-critical MBD applications

— Example measures:
e Develop UML Design Standards

 Choose adequate tool chain
e Review, verify and validate UML Models

e Upon taking those measures, and properly
planning for the use of MBD in the SW
Lifecycle, the use of UML should be possible

1-13-00800 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited 31

A-31

T-13-00800

Backup

Other information

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited

A-32

32

NATIONAL DEFENSE INDUSTRIAL ASSOCIATION

EUEVERN

MBE Roadmap

STRENGTH THROUGH INDUSTRY & TECHNOLOGY

Model-Based Engineering / Business Practice Maturity

Institutionalized
MBE across all
stakeholders /
Full MB
Acquisition

Reference: Final Report Model Based Engineering
(MBE) Subcommittee, Jeff Bergenthal
(Subcommittee Lead) , NDIA Systems Engineering
Division, M&S Committee, February 2011

Understand
the big
picture —
Ability to
integrate
modeling in
all domains

Mature Collaborative Foundation
unifying modeling domains
across the extended Enterprise

Distributed & Secure model repositories crossing

Defined MBE theory, ontology, formalisms

Well defined

MBE / Mixed

Traditional +
MB Acquisition

Matured MBE methods & metrics,
Integrated System/HW/SW

Ad Hoc MBE /
Document
Centric -
Traditional
Acquisition

Emerging MBE
standards

2010

A-33

Architecture model integrated with
Simulation, Analysis, Visualization

multiple domains

Cognizant of
modeling in
adjacent
domains

MBE Workforce Maturity

Note: This report does not
include safety-critical or
airworthiness domain(s)

Practice
modeling
within a
domain
2025

Source: INCOSE MBSE Roadmap

Requirements Traceability

e |EEE standard 830-1984 [19] states that:

— A software requirements specification is traceable if (i) the origin of each of its
requirements is clear and if (ii) it facilitates the referencing of each
requirement in future development or enhancement documentation

e RTCA DO-178 B/C, Section 5.5 “bi-directional” trace data
— “between the system allocated to software and high-level requirements”
— “between the high-level requirements and low-level requirements (and
architectural design decisions)”

* Also, “when low-level requirements or software architecture are pressed by a Design
Model, this model should conform to the Software Model Standards and be traceable,
verifiable, and consistent.” DO-331 Sec. 5.2.2

* “When high-level requirements are expressed by a Specification Model, this objective
also aims at ensuring that no low-low level requirement traces to model elements that
do not represent high-level requirements.” DO-331 Sec. 6.3.2 (f)

— “between the low-level requirements and source code”

* “When low-level requirements are expressed by a Design Model, this objective also aims
at ensuring that no Source Code traces to model elements that do not represent low-
level requirements.” DO-331 Sec. 6.3.4 (e)

1-13-00800 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited

A-34

35

Coverage Analysis

* RTCA DO-178 B/C, Section 6.4.4.1 For
structural coverage: “test cases exist for each
software requirement”

 Model Coverage Analysis DO-331 Section 6.7

— |f MBD with a Design Model is used, then both
Model Coverage and Structural Coverage are
required

— Model Coverage should be performed using
requirements-based verification using
requirements from which the Design Model was
developed

1-13-00800 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited 36

A-35

More UML Details

e “UML is a key enabling technology for Software
Developers and Software Engineers who seek
to transition from traditional, human-intensive,
code-centric software development processes
to Model-Driven Development (MDD)
processes that are requirements-driven and
architecture-centric.” UML FAQ

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited 37

A-36

SysML Profile

* Managed by OMG
(http://www.omgsysml.org/)

e SysML Block Definition Diagram (BDD) is
equivalent to the Class Diagram in UML

State Machines

Interactions
Use cases

Requirerments
Parametrics

Allocation

Laurent Balmelli: “An Overview of the Systems Modeling Language
for Products and Systems Development”, in Journal of Object
Technology, vol. 6, no. 6, July-August 2007, pp. 149-177
http://www.jot.fm/issues/issue 2007 07/article5

VN

Activities

1-13-00800 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited

A-37

38

Additional References

e “A UML Profile For Developing Airworthiness-
Compliant (RTCA DO-178B) Safety-Critical
Software”, Gregory Zoughbi, Thesis, Carleton
University, 2006.

e “Model-Driven User Requirements
Specification using SysML”, Journal of Software,
VOL. 3, NO. 6, JUNE 2008.

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited 39

A-38

T-13-00800

USE: A Tool for Verifying and Validating UML

USE (UML Specification Environment)
available at: http://www.db.informatik.uni-bremen.de/projects/USE/

A tool for validating OCL specifications

— The developer can create test cases and check if the specified
constraints are satisfied for these test cases

— USE checks the test cases with respect to invariants and pre- post-
conditions

There are special USE commands for creating and manipulating
object diagrams that can be accumulated in command files
There is some support for automated testing

— USE has a snapshot sequence language and a snapshot generator

— The snapshot sequence language enables the user to write high level
implementations for the user defined operations, so that they can be
tested

See “CIS 771: Software Specifications”, Lecture 11: Introduction to OCL & USE

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited

A-39

40

Analysis of static view of UML model*

Consistency, independence, and consequences

— M. Gogolla, M. Kuhlmann, and L. Hamann, “Consistency, Independence and Consequences in UML and OCL
Models,” in TAP, ser. Lecture Notes in Computer Science, C. Dubois, Ed., vol. 5668. Springer, 2009, pp. 90—
104.

Enumerative methods

— M. Gogolla, F. B"uttner, and M. Richters, “USE: A UML-based specification environment for validating UML
and OCL,” Science of Computer Programming, vol. 69, no. 1-3, pp. 27-34, 2007.

Theorem provers

— M. Kyas, H. Fecher, F. S. de Boer, J. Jacob, J. Hooman, M. van der Zwaag, T. Arons, and H. Kugler, “Formalizing
UML Models and OCL Constraints in PVS,” Electronic Notes in Theoretical Computer Science, vol. 115, pp.
39-47, 2005.

Constraint-Satisfaction-Problem (CSP) solvers

—). Cabot, R. Claris’o, and D. Riera, “Verification of UML/OCL Class Diagrams using Constraint Programming,”
Apr. 2008, pp. 73—-80.

Boolean satisfiability (SAT)

— M. Soeken, R. Wille, M. Kuhlmann, M. Gogolla, and R. Drechsler, “Verifying UML/OCL models using Boolean
satisfiability,” in Design, Automation and Test in Europe. IEEE Computer Society, 2010, pp. 1341-1344.

*List is from “Verifying Dynamic Aspects of UML Models”, Soeken, M. ; Wille, R. ; Drechsler, R., Design, Automation

& Test in Europe Conference & Exhibition 2011, Digital Object Identifier : 10.1109/DATE.2011.5763177

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited 41

A-40

Analysis of dynamic view of UML model*

e Abstract State Machines (ASMs)

— “A Toolset for Supporting UML Static and Dynamic
Model Checking”, W. Shen, K. Compton, J.
Huggins, Proceeding COMPSAC '02 Proceedings of
the 26th International Computer Software and
Applications Conference on Prolonging Software
Life: Development and Redevelopment, Pages
147-152, IEEE Computer Society Washington, DC,
USA 2002.

*List is from “Verifying Dynamic Aspects of UML Models”, Soeken, M. ; Wille, R. ; Drechsler, R., Design, Automation
& Test in Europe Conference & Exhibition 2011, Digital Object Identifier : 10.1109/DATE.2011.5763177

1-13-00800 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited 42

A-41

“From UML diagrams to behavioural source

code” (Thesis) 2007

e “Generation of behavioural source code can be
done by means of UML behaviour diagrams.
However, UML tools do not support the
generation of source code from these diagrames,
because (1) there is no one to one mapping
between behaviour descriptions and the source
code, (2) behaviour does not always have to
appear in source code as explicit statements, (3)
behaviour diagram can be implemented in
different ways, and (4) the mapping between
structure and behaviour diagrams is not always
clear.”

1-13-00800 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited 43

A-42

* “A modeling language simply defines a grammar—
a set of rules that determines whether a given
model is well-formed or ill-formed. Those rules do
not dictate how and when to use the language to
create a model; they stop short of dictating any
particular modeling method.” [SysML Distilled: A
Brief Guide to the Systems Modeling Language]

* Dr. Frederick Brooks, Jr. in The Design of Design
(Boston: Addison-Wesley, 2010), “Constraints are
friends.” (p. 127).

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited

A-43

45

INITIAL DISTRIBUTION LIST

Defense Systems Information
Analysis Center

SURVICE Engineering Company

4695 Millennium Drive
Belcamp, MD 21017

Defense Technical Information Center
8725 John J. Kingman Rd., Suite 0944

Fort Belvoir, VA 22060-6218

AMSAM-L

RDMR
RDMR-CSI

RDMR-AEV

RDMR-BAV

APT Research, Inc.
4950 Research Park
Huntsville, AL 35805

oTC

7501 South Memorial Parkway
Suite 109

Huntsville, AL 35802

Ms. Jessica Owens
jessica.owens@dsiac.org

Mr. Jack L. Rike
jackie.l.rike.civ@dtic.mil

Ms. Anne C. Lanteigne
hay.k.lanteigne.civ@mail.mil

Mr. Michael K. Gray
michael.k.gray7.civ@mail.mil

Mr. David Hunnicutt
david.a.hunnicutt2.civ@mail.mil

Mr. Josh Preusser
joshua.j.preusser.civ@mail.mil

Mr. John Sims
john.r.sims28.civ@mail.mil

Ms. Susan M. Bonne
susan.m.bonne.civ@mail.mil
Mr Phillip Howard
phillip.howard.civ@mail.mil
Mr. Jonathan C. McNeil
jonathan.c.mcneil.civ@mail.mil

Ms. Rhonda S. Barnes
rhonda.s.barnes6.ctr@mail.mil
Ms. Melissa A. Emery
melissa.a.emery6.ctr@mail.mil
Mr. Jason K. Rupert
jason.K.rupert.ctr@mail.mil

Mr. Enrique Ramos
enrique.ramos2.ctr@mail.mil

Dist-1

Copies
Electronic

Electronic

Electronic

Electronic

Electronic
Electronic

Electronic
Electronic

Electronic

Electronic/Hardcopy

Electronic

Electronic

Electronic

Electronic

Electronic

Electronic

INITIAL DISTRIBUTION LIST (CONCLUDED)

Copies
PPT Solutions Ms. Amy E. Stratz Electronic
4825 University Square amy.e.stratz.ctr@mail.mil
Suite 6

Huntsville, AL 35816

Dist-2

