New approaches to maximizing thermo-oxidation resistance of polycyanurate networks

Among thermosetting resins, polycyanurate networks (derived from cyanate ester monomers) offer excellent flame, smoke, and toxicity characteristics along with enhanced thermo-oxidative stability compared to epoxy resins. Recent structure-property investigations in polycyanurate networks have revealed new insights into the relationship between the chemical moieties found in the networks and the corresponding levels of thermo-oxidative resistance. In particular, it appears that the presence of methyl groups next to tertiary or quaternary carbons has a decidedly negative impact on thermo-oxidative stability during TGA heating ramp tests. In the case of silicon-containing cyanate esters, thermo-oxidative stability can be improved significantly by the incorporation of silicon only in cases where either a large portion of the chemical repeat unit is formed from inorganic groups, or the thermo-oxidative stability of the carbon-containing analog is relatively poor compared to other organic polycyanurate networks.
NEW APPROACHES TO MAXIMIZING THERMO-OXIDATION RESISTANCE OF POLYCYANurate NETWORKS

13 August 2014

Andrew J. Guenthner1, Matthew C. Davis2, Vandana Vij3, Gregory R. Yandek1, Kevin R. Lamison3, Josiah T. Reams3, Timothy S. Haddad3, Joseph M. Mabry1

1Aerospace Systems Directorate, Air Force Research Laboratory
2Naval Air Warfare Center, Weapons Division
3ERC Incorporated
Ph: 661/275-5769; e-mail: andrew.guenthner@us.af.mil

DISTRIBUTION A: Approved for public release; distribution is unlimited.
Outline

• Role of Bridge Type:
 – Avoid Ethylidene and Isopropylidene Bridges!

• Role of Si
 – High Inorganic Content Needed to Match the Gains from Proper Selection of Bridge Type

• Bio-based Materials
 – Resveratrol-based CE Delivers Exceptional Thermal Stability and Fire Resistance

Acknowledgements: Strategic Environmental Research and Development Program (SERDP); Air Force Office of Scientific Research (AFOSR) – program support; PWG Team Members!
Cyanate Esters for Next-Generation Aerospace Systems

Glass Transition Temperature
200 – 400 °C (dry)
150 – 300 °C (wet)

Resin Viscosity Suitable for Filament Winding / RTM

Compatible with Thermoplastic Tougheners and Nanoscale Reinforcements

Onset of Weight Loss:
> 400 °C with High Char Yield

Good Flame, Smoke, & Toxicity Characteristics

Low Water Uptake with Near Zero Coefficient of Hygroscopic Expansion

High T_g

Ease of Processing

Resistance to Harsh Environments

Δ
Thermo-mechanical versus Thermo-chemical Stability

- The more rigid the network, the higher the thermo-mechanical stability (i.e. softening point for a given network structure).
- Many networks cannot achieve their maximum possible thermo-mechanical stability because at the high temperatures needed for cure, chemical bonds break (i.e. thermochemical stability is limited).
- Typically, adding flexible chemical linkages (such as aliphatic groups) to the chemical structure of a monomer will reduce the rigidity, facilitating the achievement of full cure, but at the expense of thermo-chemical stability.

Goertzen, W. K.; Kessler, M. R. Composites: Part A 2007 38, 779–7, Fig. 6, for blends of EX1551 / EX1510 – catalyst.

Needed: a flexible chemical linkage that enables full cure of cyanate esters at acceptable temperature-catalyst combinations while maintaining the desirable chemical degradation characteristics (both rates and char yields) of rigid systems.
TGA of Cyanate Esters

• TGA provides a simple tool to assess onset temperatures, rates, and char yields associated with the decomposition of cyanate ester networks.
• A reasonably slow TGA scan also drives all cyanate ester systems close to the maximum possible extent of conversion (via \textit{in-situ} cure) at the point where decomposition begins.

Cyanurate rings de-polymerize; cyanate esters break down and generate volatiles

Further breakdown is a multi-step process, with char yield at 600 °C particularly sensitive to the onset of combustion of the aromatic portion.
Cyanate Ester TGA: Methylene versus Ethylidene Segments

- The tricyanate with methylene segments shows delayed onset of degradation, reduced decomposition rates, and very high char yield.
- The tricyanate with ethylidene segments behaves much like BADCy when taking into account the composition, with slightly earlier aromatic combustion.
Cyanate Ester TGA: Aliphatic versus Aromatic Junctions

The tricyanate with the aliphatic junction (tertiary carbon) also follows the pattern for BADCy, taking into account composition, with a slightly delayed onset of aromatic combustion compared to BADCy.
Segment Flexibility Can Be Tuned Without Affecting Char Yields

1

\[
\begin{align*}
\text{NCO} & \quad \text{OCN} \\
\end{align*}
\]

\(T_G,\text{max} = 320 \, ^\circ\text{C}\)

2

\[
\begin{align*}
\text{NCO} & \quad \text{OCN} \\
\end{align*}
\]

\(T_G,\text{max} = 400 \, ^\circ\text{C}\)

- Note that PT-30 is similar to an oligomeric version of 2.
- Tuneability of \(T_G,\text{max}\) enables full cure to be achieved with a wider range of catalysts under typical processing constraints.
Si-Containing Cyanate Ester Monomers

Catalyzed systems use: 160 ppm Cu(II) as Cu(II)(acac)$_2$ with 2 phr nonylphenol.

All samples were melted, blended, and degassed for 30 min. prior to cure in silicone molds under N$_2$, cure schedule for 1 hr at 150 °C followed by 24 hrs at 210 °C, with ramp rates at 5 °C / min.
General Synthesis for Si-Containing Monomers

1. n-BuLi
 THF / -78 °C
2. SiCl_{n}R_{4-n} (n=1-4)

\[\text{R}_{4-n} \text{Si} \]

\[\text{BrCN} \]
\[\text{Ether} / \text{Et}_{3}\text{N} \]

\[\text{H}_{2} \ (35 \text{ psig}) \]
10\% Pd/C

\[\text{R}_{4-n} \text{Si} \]

• SiMCy is the n=2 case (Si in network segment), n=3 or n=4 produces Si at network junctions.
Si-Containing Cyanate Esters: TGA Data

SiCy-3

- N2: Solid line
- Air: Dashed line

SiCy-3 / LECy 50/50

- N2: Solid line
- Air: Dashed line

ESR-255

- N2: Solid line
- Air: Dashed line

SiCy-4 / LECy 50/50

- N2: Solid line
- Air: Dashed line
Comparative TGA Data for Cyanate Ester Monomers Cured at 210 °C for 24 hours

<table>
<thead>
<tr>
<th>Monomer</th>
<th>Central Atom</th>
<th>f</th>
<th>Purification</th>
<th>T, 5% wt. Loss (in N₂, °C)</th>
<th>T, 5% wt. Loss (in air, °C)</th>
<th>Char Yield (in N₂, 600 °C)</th>
<th>Char Yield (in air, 600 °C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BADCy</td>
<td>C</td>
<td>2</td>
<td>As-Rec’d</td>
<td>402</td>
<td>400</td>
<td>47%</td>
<td>25%</td>
</tr>
<tr>
<td>ESR-255</td>
<td>C</td>
<td>3</td>
<td>As-Rec’d</td>
<td>417</td>
<td>412</td>
<td>67%</td>
<td>59%</td>
</tr>
<tr>
<td>SiMCy</td>
<td>Si</td>
<td>2</td>
<td>As-Synth.</td>
<td>422<sup>a</sup></td>
<td>409<sup>a</sup></td>
<td>43%</td>
<td>50%</td>
</tr>
<tr>
<td>SiCy-3</td>
<td>Si</td>
<td>3</td>
<td>As-Synth.</td>
<td>405</td>
<td>400</td>
<td>55%</td>
<td>50%</td>
</tr>
<tr>
<td>SiCy-3 / LECy</td>
<td>Si / 2</td>
<td></td>
<td>As-Synth.</td>
<td>402</td>
<td>396</td>
<td>63%</td>
<td>56%</td>
</tr>
<tr>
<td>SiCy-4 / LECy</td>
<td>Si / 2</td>
<td></td>
<td>As-Synth.</td>
<td>409</td>
<td>395</td>
<td>70%</td>
<td>53%</td>
</tr>
<tr>
<td>ESR-255 / LECy</td>
<td>C / 2</td>
<td></td>
<td>As-Rec’d</td>
<td>405</td>
<td>406</td>
<td>60%</td>
<td>2%</td>
</tr>
</tbody>
</table>

^a Estimated

- Substitution of Si for C at the bridge only improves char yields when those yields are low. For organic cyanate esters with high char yields, substitution of Si is not helpful.
- Incorporating monomers with greater functionality is most effective at raising char yields in nitrogen.
Siloxane-Containing Cyanate Esters

T(DM)$_3$-Cy

Q(DM)$_4$-Cy

“Soft” inorganic core

Rigid organic periphery

- Higher inorganic content expected to result in better char yields at temperatures over 600 °C.
Siloxy-Containing Cyanate Esters: Glass Transition Temperature

- Both cyanate esters showed a relatively low glass transition temperature for cyanate esters.
- The cyanurate density for these resins is roughly half that of typical cyanate esters.
- The branch point adds some stiffness, but not enough to make up for the long distance between network junctions.
- Further optimization of the cross-link and junction density will be needed to produce cyanate esters with both flexible core regions and high glass transition temperatures.
Siloxane Cyanate Esters: Preliminary TGA Data

![Graph showing mass remaining vs. temperature for N2 gas]

- **Mass Remaining**
- **Temperature (°C)**

- **N2**
- **QDM4**
Fire-Resistant Cyanate Esters From Resveratrol

- Polyphenolic antioxidant used as a dietary supplement
 - Extracted from seaweed, red grapes, red wine

\[
R = -\text{HC} = \text{CH}- , = -\text{CH}_2-\text{CH}_2- \\
(\text{resveratrol}) \\
(dihydro resveratrol)
\]

\[
\text{BrCN} \rightarrow \text{NCO} \\
\text{-HBr}
\]

- 3 HOCN (↑)

\[
\text{Char (65%)} \\
H_c \approx 3 \text{ kJ/g-poly}
\]

Resveratrol cyanate ester*

Resveratrol triazine thermoset resin

Cure at 250°C

Fire

> 450°C

*B.J. Harvey, et. al., SERDP WP-2214 SEED Final Report, U.S. Navy, NAWCWD, China Lake, CA (2011), as presented by R. Lyons at Meeting High Performance Flammability Requirements for Aviation, Seattle, WA , April 2-3, 2014
Fire Smart Versus Current 65/65 Polymers

- BPT CE
- Resveratrol CE
- BPC CE
- BPC Polycarbonate
- Polyamideimide (PAI)
- PTFE
- Polybenzimidazole (PBI)
- Polyimide (PI)
- PBO
- BPT polyarylate
- NOMEX
- BHDB arylate
- BHDB polyphosphonate
- FEP
- BPT polyphosphonate
- PVC
- Polyetherimide (PEI)

Easy to Process (Liquid or Melt)
Difficult to Process (scintering, dilute solutions or strong acids)

Heat Release Capacity, η_c (J/g-K)

As presented by R. Lyons at Meeting High Performance Flammability Requirements for Aviation, Seattle, WA, April 2-3, 2014

DISTRIBUTION A: Approved for public release; distribution is unlimited.
Summary

- The short-term chemical stability of cyanurate networks appears to be optimal when segments and junctions containing tertiary or quaternary carbons are avoided (based on empirical observation but supported by studies in polycarbonate).

- Using combinations of methylene and phenylene junctions and spacers in cyanurate networks, the T_G-conversion characteristics can be tuned to match processing constraints without sacrificing thermochemical stability.

- Incorporation of inorganic Si or siloxane moieties in cyanate esters is only helpful for thermo-chemical stability at very high temperatures and when a large portion of the monomer consists of inorganic moieties.

- Cyanate esters based on resveratrol show good short-term thermo-oxidation resistance as well as very promising fire resistance characteristics based on preliminary investigations to date.
Propulsion - the technology that enables the warfighter to reach out and touch anyone, anywhere in the world — and beyond.

The Air Force Research Laboratory’s Propulsion Directorate - the nation’s premier organization to create and transition technology for military propulsion and power systems since the dawn of powered flight.