

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

ENERGY-EFFICIENT UNDERWATER SURVEILLANCE
BY MEANS OF HYBRID AQUACOPTERS

by

Chase H. Dillard

December 2014

Thesis Co-Advisors: Vladimir Dobrokhodov
 Kevin Jones

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 12. REPORT DATE I 3. REPORT TYPE AND DATES COVERED
December 20 14 Master 's Thesis

4. TITLE AND SUBTITLE
ENERGY-EFFICIENT UNDERWATER SURVEILLANCE BY MEANS OF
HYBRID AQUACOPTERS

6. AUTHOR(S) Chase H. Dillard

7. PERFORMING ORGANIZATION NA:i\tiE (S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Consortium for Robotics and Unmanned Systems Education and Research
Monterey, CA 93943-5000

5. FUNDING NUMBERS
RWG2Y

8. PERFORi\tiiNG ORGANIZATION
REPORT NUMBER

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES TI1e views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Govemment. IRB protocol mnnber __ N/A __ .

12a. DISTRIBUTION I AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

13. ABSTRACT (maximum 200 words)

12b. DISTRIBUTION CODE
A

This thesis develops algorithms in support of a prototype hybrid air-water quadcopter platform: the "AquaQuad." We
consider the scenario in which AquaQuads with underwater acoustic sensing capabilities are tracking a submerged
target from the sw-face of the ocean using sparse distributed measurements.

Multiple nonlinear estimation filters are evaluated for the tracking scenario, resulting in the selection of the
unscented Kalman filter (UKF). Geometric positioning effects on estimators are explored through analysis of the
horizontal dilution of precision metric. The UKF is then implemented in real-time on quadrotors using time-difference
of an·ival pseudo-measurements in an instrwnented Vicon lab space.

The AquaQuads will primarily drift, but possess batte1y-limited flight capabilities. To increase on-station
time, we se.ek to maximize use of the environment. In addition to solar energy, we take advantage of ocean cwTents
that traditional autonomous platfonns seek to reject. A novel sampling-based approach for path-planning is therefore
created and lab-tested. The new algorithm, Dead-Reckoning Rapidly-Exploring Random Tree Star (DR-RRT*),
combines the infmite-time optimality guarantees of RRT* with the unique AquaQuad mobility requirements. The
DR-RRT* develops obstacle-free paths to a goal by linking brief flight and energy-efficient drift segments together,
resulting in an energy savings of27 percent over direct flight.

14. SUBJECT TERMS AquaQuad, path planning, rapidly-exploring random tree, unscented Kahnan
filter, nonlinear estimation, time-difference of arrival, dilution of precision

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF TffiS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

15. NUMBER OF
PAGES

155

16. PRICE CODE

20. LIMITATION OF
ABSTRACT

uu
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

THIS PAGE INTENTIONALLY LEFT BLANK

 ii

Approved for public release; distribution is unlimited

ENERGY-EFFICIENT UNDERWATER SURVEILLANCE BY MEANS OF
HYBRID AQUACOPTERS

Chase H. Dillard
Lieutenant, United States Navy

B.S., Penn State University, 2006

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
December 2014

Author: Chase H. Dillard

Approved by: Vladimir Dobrokhodov
Thesis Co-Advisor

Kevin Jones
Thesis Co-Advisor

Garth V. Hobson
Chair, Department of Mechanical and Aerospace Engineering

 iii

THIS PAGE INTENTIONALLY LEFT BLANK

 iv

ABSTRACT

This thesis develops algorithms in support of a prototype hybrid air-water quadcopter

platform: the “AquaQuad.” We consider the scenario in which AquaQuads with

underwater acoustic sensing capabilities are tracking a submerged target from the surface

of the ocean using sparse distributed measurements.

Multiple nonlinear estimation filters are evaluated for the tracking scenario,

resulting in the selection of the unscented Kalman filter (UKF). Geometric positioning

effects on estimators are explored through analysis of the horizontal dilution of precision

metric. The UKF is then implemented in real-time on quadrotors using time-difference of

arrival pseudo-measurements in an instrumented Vicon lab space.

The AquaQuads will primarily drift, but possess battery-limited flight capabilities.

To increase on-station time, we seek to maximize use of the environment. In addition to

solar energy, we take advantage of ocean currents that traditional autonomous platforms

seek to reject. A novel sampling-based approach for path-planning is therefore created

and lab-tested. The new algorithm, Dead-Reckoning Rapidly-Exploring Random Tree

Star (DR-RRT*), combines the infinite-time optimality guarantees of RRT* with the

unique AquaQuad mobility requirements. The DR-RRT* develops obstacle-free paths to

a goal by linking brief flight and energy-efficient drift segments together, resulting in an

energy savings of 27 percent over direct flight.

 v

THIS PAGE INTENTIONALLY LEFT BLANK

 vi

TABLE OF CONTENTS

I. INTRODUCTION..1
A. MOTIVATION ..1
B. THESIS OVERVIEW ...2

II. THE AQUATIC QUADROTOR CONCEPT ...5
A. AQUAQUAD OVERVIEW ..5
B. SUBMERGED TARGET TRACKING WITH SURFACE-BASED

PLATFORMS ..8
1. Impact of Ocean Acoustics and Relevant Assumptions8
2. The AquaQuad Advantage..12

C. AQUAQUAD ENERGY REQUIREMENTS ..13
D. UTILIZATION OF ENVIRONMENTAL ENERGY16
E. POTENTIAL MEASUREMENT TYPES ...18

1. Bearing Measurements ..19
2. Range Measurements...20
3. Time Difference of Arrival ..22

III. TRACKING METHODS FOR SUBMERGED TARGETS27
A. KALMAN FILTER BASICS ..27
B. FORMULATION OF THE NONLINEAR ESTIMATION PROCESS ...31
C. EXTENDED KALMAN FILTER ..33
D. UNSCENTED KALMAN FILTER ..37
E. COMPARISON OF EXTENDED AND UNSCENTED KALMAN

FILTER PERFORMANCE ..41

IV. ENERGY-EFFICIENT PERSISTENT SURVEILLANCE47
A. DILUTION OF PRECISION AS AN OPTIMIZATION METRIC48

1. HDOP for Bearing-Only Measurement Tracking51
2. HDOP for Range-Only Measurement Tracking53
3. HDOP for TDOA Measurement Tracking54
4. Optimal Sensor Placement for HDOP ...56

B. RAPIDLY-EXPLORING RANDOM TREE DESCRIPTION59
1. Basic RRT Algorithm Description ...59
2. Base RRT* Algorithm ...62

a. Select Target with Defined Goal Probability63
b. Find Set of Closest Nodes and Determine Minimum Cost

Node ...64
c. Extend Branch in Tree with Obstacle Detection64
d. Rewire Tree ...66
e. Complete the Path and Reaching Goal or after “N”

Iterations..67
C. DEAD RECKONING RRT* ALGORITHM ..67

1. DR-RRT* Overview...69
2. DR-RRT* Objective Function ..71

 vii

V. SIMULATION AND TESTING ...77
A. DR-RRT* ALGORITHM ANALYSIS ..77

1. Single-solution DR-RRT* ..77
2. Multi-solution “Optimality-Seeking” DR-RRT*81
3. DR-RRT* Evaluation Summary ..84

B. TESTING ENVIRONMENT AND CONTROL OVERVIEW84
1. Environment: Center for Autonomous Vehicle Research84
2. Platforms: Parrot AR.Drones ...86
3. Control Structure ...87

C. UNSCENTED KALMAN FILTER TEST ..89
1. Unscented Kalman Filter Scenario...89
2. Unscented Kalman Filter Test Results ...92

D. DR-RRT* PATH FOLLOWING TEST ..97
1. DR-RRT* Path-Following Scenario ...98
2. DR-RRT* Path-Following Test Results ...100

VI. CONCLUSIONS AND FUTURE WORK ...105
A. UNSCENTED KALMAN FILTER ALGORITHM105
B. DR-RRT* ALGORITHM ...106
C. FUTURE WORK ...107

1. Propulsion ...107
2. Controls ...108
3. Power Conversion and Storage...108

APPENDIX A. ACOUSONDE TECHNICAL SPECIFICATIONS109

APPENDIX B. UNSCENTED KALMAN FILTER MATLAB CODE111

APPENDIX C. DEAD-RECKONING RAPIDLY-EXPLORING RANDOM TREE
STAR CODE ..117

LIST OF REFERENCES ..131

INITIAL DISTRIBUTION LIST ...135

 viii

LIST OF FIGURES

Figure 1. AquaQuad concept showing solar cells and hydrophone6
Figure 2. AquaQuad concept showing watertight enclosure and flexible cable7
Figure 3. AquaQuad distributed sensor network concept ...8
Figure 4. Environmental variations and the resultant sound speed profile, from [4]9
Figure 5. Basic ray tracing in a continuously stratified medium, from [4]10
Figure 6. Sound speed profile displaying a surface layer, from [4]11
Figure 7. Estimated mixed layer depths (in meters) in the South China Sea, from [5] ...12
Figure 8. Gaussian-style distribution of available solar energy as a function of the

time of day ...14
Figure 9. Experimentally obtained figure of merit as a function of disk loading for a

variety of multi-rotor and helicopter platforms, compared with actuator
disk theory. ...15

Figure 10. Shallow Water Analysis and Forecast System product, displaying regional
ocean current vectors overlaying a sea surface temperature heat map [9].17

Figure 11. Path planning concept that utilizes predicted ocean current fields to
minimize flight time in reaching a desired final position18

Figure 12. Bearing-only sensor two-dimensional geometric configuration20
Figure 13. Interference patterns visualized as striations in a spectrogram plot of

acoustic intensity, from [13] ..21
Figure 14. Circle of Apollonius used in determining source position, from [13]22
Figure 15. AcousondeTM acoustic sensor utilized in time difference of arrival

experiment..23
Figure 16. Normalized pressure amplitude and corresponding frequency of an up-

sweep signal; visualized as rising frequency over time in the second plot24
Figure 17. Cross-correlation of the received pressure measurement of two underwater

acoustic sensors, A042 and A020, representing the time difference of
arrival of ~1.75 sec. ...24

Figure 18. Cyclic process of the Kalman filter, with its primary equations shown,
after [17]...31

Figure 19. Monte Carlo distribution of the polar-to-Cartesian transformation of a
target at position (0,1) with zero-mean Gaussian measurements, from [19] ...33

Figure 20. Cyclic process of the Extended Kalman filter, with its primary equations
shown, after [17] ..34

Figure 21. Extended Kalman filter (EKF) algorithm utilized for bearing-only
measurement tracking simulation, after [17] ...36

Figure 22. Mean and covariance propagation for Monte Carlo sampling, EKF
linearization, and the unscented transformation, from [20]38

Figure 23. Unscented Kalman filter (UKF) algorithm utilized for bearing-only
measurement tracking simulation, after [20]. ..39

Figure 24. SIMULINK model for bearing-only tracking simulation, using an
unscented Kalman filter and point-mass kinematics41

 ix

Figure 25. Relative positions of four AquaQuads and a target submarine in
SIMULINK simulation ..42

Figure 26. Estimated submarine position using bearing-only measurements and an
extended Kalman filter ...43

Figure 27. EKF residuals in a bearing-only measurement tracking scenario44
Figure 28. Estimated submarine position using bearing-only measurements and an

unscented Kalman filter ...44
Figure 29. UKF residuals in a bearing-only measurement tracking scenario45
Figure 30. GPS pseudoranges and their associated area of uncertainty under different

geometric satellite configurations, from [18] ...49
Figure 31. XY plane representation of three sensors taking range and bearing

measurements with respect to a target, in red, from [23].................................52
Figure 32. Overhead (left) and three-dimensional view (right) of TDOA HDOP

variations due to the movement of a single sensor ..55
Figure 33. Variation in dilution of precision for the case of TDOA measurements

with respect to increasing Range and number of sensors, “n”, from [24]56
Figure 34. Range-only measurement: Minimizing solutions to HDOP-optimal

placement of eight sensors with an evenly spaced initial condition (left)
and clustered initial condition (right) ...57

Figure 35. Bearing-only measurement: Minimizing solutions to HDOP-optimal
placement of eight sensors with an evenly spaced initial condition (left)
and clustered initial condition (right) ...58

Figure 36. Rapidly-exploring random tree pseudocode, from [22]60
Figure 37. Path generated by a basic RRT algorithm through a fixed obstacle field61
Figure 38. Initialization step of an RRT algorithm defining fixed obstacles, ocean

current and the Start and Goal positions ..63
Figure 39. Early stages of RRT algorithm implementation showing the pseudo-

random target selection step (Note: presented path not a function of ocean
current) ...64

Figure 40. RRT algorithm showing obstacle free extension in red to pseudo-randomly
selected target state (Note: presented path not a function of ocean current) ...65

Figure 41. Visual display of RRT* rewire step, from [28] ...66
Figure 42. Final RRT path through a fixed obstacle field (Note: presented path not a

function of ocean current) ..67
Figure 43. Comparison of the DR-RRT* algorithm utilized in this thesis with a

generic RRT* algorithm. ...68
Figure 44. Drifting phase of the DR-RRT* algorithm with fixed obstacles, just prior

to flight. ..69
Figure 45. Hopping phase of the DR-RRT* algorithm with fixed obstacles. Flight

path shown as green arc from one drifting path to a new one.70
Figure 46. DR-RRT* algorithm with fixed obstacles. Final path is shown in magenta.

Evaluated flight paths are represented as green arcs. Evaluated drift paths
are represented as back lines. ...71

Figure 47. Value of the objective function element “Dist2Goal” with adjusted
Quadrotor position in the configuration space ...72

 x

Figure 48. Value of the objective function element “HDOP” for Bearing-only
measurements with adjusted Quadrotor position in the configuration space ..73

Figure 49. Improper rewire behavior exhibited with excessive weighting on solar
energy term of cost function in DR-RRT* algorithm74

Figure 50. Successful paths (shown in magenta) obtained from a Monte Carlo
simulation conducted using the DR-RRT* algorithm with a fixed obstacle
field ..78

Figure 51. Energy expenditure and computation time of 1,000 runs of the DR-RRT*
algorithm. Direct flight baseline is shown in red in the top figure and
represents flying the straight-line distance between Start and Goal points80

Figure 52. Successful paths (shown in magenta) obtained from a Monte Carlo
simulation conducted using the optimality-seeking DR-RRT* algorithm
with a fixed obstacle field. Candidate paths omitted.82

Figure 53. Energy expenditure and computation time of 1,000 runs of the optimality-
seeking DR-RRT* algorithm. Direct flight baseline is shown in red in the
top figure and represents flying the straight-line distance between Start
and Goal points ..83

Figure 54. Vicon instrumented laboratory in the Naval Postgraduate School’s Center
for Autonomous Vehicle Research ..85

Figure 55. Two of the CAVR lab’s Vicon cameras (far left), reflectors affixed to a
quadrotor shroud (center) and the Vicon Workstation (far right)86

Figure 56. Parrot AR.Drone quadrotor utilized for testing purposes87
Figure 57. Communications overview for testing in the CAVR laboratory87
Figure 58. Block diagram of SIMULINK control implementation for AR.Drone

quadrotors ..89
Figure 59. General scenario overview for the UKF tracking test showing the position

of sensors and the target (ocean current vectors not utilized in CAVR lab)90
Figure 60. TDOA pseudo-measurement generation and signal routing for lab testing

of the unscented Kalman filter ...91
Figure 61. Physical setup of the CAVR lab test for the UKF tracking of a target

(helmet, in red) ...92
Figure 63. UKF estimated position overlaid on the actual target track94
Figure 64. UKF residual in estimating position of moving target.....................................94
Figure 65. Initial convergence of UKF position residual and covariance with

screenshot of lab demo displaying the heading of each quadrotor pointing
towards the estimated position of the target ..95

Figure 68. Position swapping scenario for the DR-RRT* path following test with
ocean current vectors used to program simulated drifting behavior into the
AR.Drone quadrotors ...98

Figure 69. Initialization phase of the DR-RRT* path-following lab test99
Figure 70. Result of DR-RRT* algorithm run for two quadrotors swapping positions

in the presence of simulated ocean current and an obstacle field100
Figure 71. Final path from DR-RRT* algorithm run for two quadrotors swapping

positions in the presence of simulated ocean current and an obstacle field...101

 xi

Figure 72. Plotted position overlay of Quad #1 and #2 following at DR-RRT*
generated path in the lab test ..102

Figure 73. Screenshot of DR-RRT* path-following lab test showing a change in
altitude indicative of a hopping segment ...102

Figure 74. Close up view of the actual position of Quad #2 along the DR-RRT* path
during the lab test ...103

 xii

LIST OF TABLES

Table 1. Energy budget for the AquaQuad concept. Energy consumers are shown in
red. Solar energy shown in black is the mean value of a 24-hour period.16

Table 2. Comparison of the mean square error of an EKF and a UKF, using
bearing-only measurements in a tracking scenario ..46

Table 3. Gain terms applied in cost function of DR-RRT* algorithm with
justifications for usage ...75

Table 4. Summary of Monte Carlo simulation results contrasting a single-solution
DR-RRT* algorithm with that obtained by an optimality-seeking DR-
RRT*. Percent improvement based upon a direct flight comparison.84

 xiii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiv

LIST OF ACRONYMS AND ABBREVIATIONS

AUV autonomous unmanned vehicle

BOT bearing-only tracking

CAVR Center for Autonomous Vehicle Research

DL disk loading

DOP dilution of precision

DR-RRT* dead-reckoning rapidly-exploring random tree star

EKF extended Kalman filter

FOM figure of merit

GDOP geometric dilution of precision

GRV Gaussian random variable

HDOP horizontal dilution of precision

KF Kalman filter

LBL long baseline

MLD mixed layer depth

MPPT maximum power point tracking

NREL National Renewable Energy Laboratory

PI proportional-integral

PID proportional-integral-derivative

PRM probabilistic roadmap

RRT rapidly-exploring random tree

RRT* rapidly-exploring random tree star

SWAFS Shallow Water Analysis and Forecast System

TDOA time-difference of arrival

UDP user datagram protocol

UERE user equivalent range error

UKF unscented Kalman filter

USBL ultra short baseline

UT unscented transformation

VTOL vertical takeoff and landing

 xv

THIS PAGE INTENTIONALLY LEFT BLANK

 xvi

ACKNOWLEDGMENTS

I would like to first thank my cherished wife for her love and understanding

during this process and also my two wonderful daughters who always enjoyed talking

about and seeing the “flying robots.” Their passion for learning drives my own.

I’d also like to acknowledge and thank Drs. Doug Horner and Noel DuToit for an

invaluable experience learning about and operating unmanned underwater vehicles in

some truly amazing environments.

Thank you to my co-advisor Dr. Kevin Jones for his help with aerospace concepts

previously unfamiliar to me, and thank you to fellow student Matteo Monari for saving

me untold hours of work in the CAVR laboratory with his assistance.

Lastly, I am deeply indebted to my advisor Dr. Vladimir Dobrokhodov for his

tireless guidance and wisdom. It has truly been an honor and a pleasure.

 xvii

THIS PAGE INTENTIONALLY LEFT BLANK

 xviii

I. INTRODUCTION

A. MOTIVATION

Undersea dominance is a core mission area for the United States Navy. Despite

our high level of sophistication and experience in anti-submarine warfare, prosecution of

increasingly quiet submarines continues to be an open problem. The use of force

multipliers like unmanned and autonomous vehicles can aid the Navy greatly and are

representative of our historical efforts to be on the leading edge of technology. These

platforms have the potential to conduct a wide variety of missions, providing tremendous

operational flexibility, power projection, and intelligence gathering capability.

An autonomous unmanned vehicle (AUV) can be more broadly described as a

robot. One definition of a robot is a goal-oriented machine that can sense, plan and act

[1]. Each of these three core capabilities of sensing, planning, and acting is dependent

upon the other. Sensing the environment leads to understanding it, and this is critical for

planning. Once the plan is made, the robot must be directed to act on it. Much research

has been conducted by control system engineers to develop sophisticated feedback

algorithms, which typically direct this action through rejection of disturbances in the

environment. This can come at a tremendous cost in energy expenditure.

Independent of their usage, one of the issues with all AUVs is that constrained

onboard energy supply limits their operational endurance. This fundamentally restricts

their ability to conduct sustained missions and requires greater human involvement in

their operation. We seek a new solution to this challenge, one that views environmental

disturbances as energy and incorporates them into the planning process while maintaining

focus upon the overall mission objectives.

For a sea-going platform, one of these primary disturbances is ocean current. Yet

there is significant motive power within it that can be utilized, and examples of this exist

in nature. The acorn worm, a primitive organism once thought to exist only in shallow

water, has recently been observed intentionally changing its buoyancy in order to rise into

an advantageous deep-sea ocean current for transportation between feeding sites [2].

 1

Consider also the yeti crab, whose prevalence in the Southern Ocean is attributed to the

rapid conveyance afforded to their short-lived larvae by the Antarctic Circumpolar

Current [3]. It is these biologic underpinnings that provide insight into the solution to our

problem.

B. THESIS OVERVIEW

This thesis develops algorithms with wide applicability in support of a prototype

hybrid air-water quadcopter platform: the “AquaQuad.” We consider the scenario in

which a flock of AquaQuads with underwater acoustic sensing capabilities are tracking a

submerged target from the surface of the ocean using sparse distributed measurements.

The measurements are assumed to be either time-stamped or perfectly synchronous. The

group behavior is cooperative, as each member can leverage the significant

communication capability (update rate, rich content, and distance) available to surface-

based platforms.

The measurements taken by the AquaQuads can be in the form of range, bearing

or time-difference of arrival (TDOA), depending upon the sensor and signal processing

equipment used. These are common nonlinear measurements whose analytic solution

would contain significant error. To overcome this, multiple nonlinear estimation filters

are objectively evaluated in simulation to determine their suitability for the tracking

scenario. The dependency of the estimation process on the quadrotors’ geometric

positioning is also explored through analysis of the horizontal dilution of precision

(HDOP); a metric that is directly related to a more general Cramer-Rao bound. An

unscented Kalman filter (UKF) is then implemented in real-time on quadrotors estimating

the position and velocity of an object using TDOA pseudo-measurements in the

instrumented Vicon lab space of the Naval Postgraduate School’s Center for Autonomous

Vehicle Research (CAVR).

Due to our objective of minimizing energy at the path planning stage and the

projected constrained battery capacity, the AquaQuads will primarily drift while

conducting their surveillance mission, but have limited flight capabilities for periodic

repositioning. To increase on-station time we seek to maximize the use of energy present

 2

in the environment. In addition to photovoltaic cells that incorporate solar energy, we

take advantage of ocean currents that traditional autonomous platforms simply act

against. A novel sampling-based approach is created for path planning based upon the

existing rapidly-exploring random tree star (RRT*) approach. The new algorithm, titled

dead-reckoning rapidly-exploring random tree star (DR-RRT*), combines the infinite-

time optimality guarantees of RRT* with the unique mobility capabilities of the

AquaQuad.

The DR-RRT* develops obstacle-free paths to a goal by linking brief flight and

energy-efficient drift segments together with the objective of reducing required flight

time down to short hops. It also incorporates HDOP in the planning process to ensure

path feasibility for the tracking scenario. Near-optimal paths can be found that are still

computationally feasible for onboard microcontroller implementation. A Monte Carlo

experiment is conducted to develop statistics on the energy saved by this method

compared to direct flight. Paths created by the DR-RRT* are then followed by flying

quadrotors programmed with simulated drifting behavior, and the results are analyzed.

 3

THIS PAGE INTENTIONALLY LEFT BLANK

 4

II. THE AQUATIC QUADROTOR CONCEPT

A. AQUAQUAD OVERVIEW

The AquaQuad was born from the vision of integrating a number of existing

technologies for propulsion, energy harvesting, signal processing, and communication

into a single platform for tracking underwater targets. In doing so, we can create a novel,

significantly more capable system, which may revolutionize existing missions and reveal

new applications.

From a hardware standpoint, it is desirable to have a low-cost vehicle that is

highly controllable, agile, and simple to maintain. Quadrotors possess all of these

qualities. Rapid advances in wireless mesh communication and the minimal production

cost of multicopters facilitate the use of multiple quadrotors, which opens the door to

cooperative and swarm behaviors over a broad spectrum of missions. They have

relatively high efficiency for vertical takeoff and landing (VTOL) platforms and can

precisely control their attitude with motor speed changes. The brushless motors in each

rotor have essentially no wear parts and are tolerant of wet environments. This makes

them highly reliable with only four moving parts (quad-rotor configuration) and a rapidly

growing commercial market for cheap parts and supplies.

The projected configuration of each AquaQuad includes photovoltaic cells affixed

to the surface for absorbing electrical energy during daylight hours. They will also have

an acoustic sensor that is connected to the underside of the platform. Figure 1 displays a

rendering of this concept.

 5

Figure 1. AquaQuad concept showing solar cells and hydrophone

Adaptation of a quadrotor to the proposed aquatic scenario requires some

modifications. Parts of the vehicle must be encased in a water-tight enclosure to protect

sensitive avionics components, and the NPS team is working to create an in-house

version for future testing. Figure 2 shows an example of such an enclosure. The ocean

environment is very dynamic, so the design of the AquaQuad must incorporate positive

buoyancy and unconditional stability. The pendulum-like nature of the hydrophone

attachment can assist with this self-righting behavior, in addition to the outrigger-style

stability afforded by the rotor arms. The sensor itself is anticipated to be suspended from

a flexible, retractable or fixed cable, the length of which could conceivably allow for

acoustic searches inside of and below oceanic layers.

 6

Figure 2. AquaQuad concept showing watertight enclosure and flexible cable

Once several of these AquaQuads are designed, they can be employed as a

distributed sensor network. Figure 3 displays a drawing of this capability, the underlying

concept of which is reflected in the rest of this work. The use of several dispersed sensors

carries with it great operational flexibility, since they can be arranged and configured to

maximize the group capability. Track of a target can be maintained using a single sensor,

but the position error is greatly reduced by increasing the number of platforms sharing

their individual measurements. This improves the accuracy of the final position estimate

that can be used for weapon placement or for handoff to a more traditional ASW asset

like a manned submarine, highlighting their implicit “force multiplier” capability.

 7

Figure 3. AquaQuad distributed sensor network concept

B. SUBMERGED TARGET TRACKING WITH SURFACE-BASED
PLATFORMS

The use of surface-based (vice underwater) platforms for tracking submerged

contacts has some major benefits but also carries with it some limitations. These

limitations are principally related to the sensor’s ability to identify acoustic signals in the

ocean environment. Therefore some assumptions need to be made in their use.

1. Impact of Ocean Acoustics and Relevant Assumptions

In their current conceptual configuration, the AquaQuads have a potentially

restricted ability to track deep-water acoustic signals. This is dependent upon the

environmental conditions that exist in the operating area, and a brief discussion of these

effects follow. In a generic sense, sound emitted from an underwater source consists of

one or more pressure disturbances. These disturbances are mathematically modeled as

waves propagating outwards from the source. Ray theory [4] provides a means of

visualizing these waves and predicting their paths of travel by connecting lines normal to

the direction of propagation between the wave fronts.

The paths that the rays follow are largely affected by the gradient of sound speed

in the medium it is traveling through. Sound speed in the ocean is typically approximated

 8

by a function of temperature, salinity and depth. Although there are many equations to

relate these variables, one version is given in Equation (II.1) adapted from [4]

2 31449.2 4.6 0.055 0.00029 (1.34 0.010)(35) 0.016c T T T T S z= + − + + − − +

(II.1)

where T = temperature (oC), S = salinity (ppt), and z = depth (m). Through a simple

analysis of Equation (II.1) it can be seen that sound speed increases whenever

temperature, depth, or salinity increase. When combining the effects of these three

variables, one can create a profile like that shown in Figure 4 from [4].

Figure 4. Environmental variations and the resultant sound speed profile, from

[4]

The sound speed profile on the far right of Figure 4 exhibits a very typical pattern.

As depth increases down the y-axis, there is a sharp decrease in temperature

corresponding to the drop-off in sunlight penetration. The net effect of this temperature

drop is a minimum in sound speed. Proceeding deeper, the pressure effects from depth

begin to dominate, and the sound speed increases to a maximum.

With a sound speed profile known or assumed, it is possible to predict the paths

the rays will take utilizing Snell’s law, shown in Equation (II.2). This law states that the

ratio between the ray’s angle from the vertical axis and the sound speed at its point of

departure are fixed.

 9

1 2

1 2

sin()sin() sin() ... n

nc c c
θθ θ

= =
 (II.2)

Therefore, if we know the sound speed at two different points and we make an

assumption on the initial angle of departure, we can easily calculate the final angle the

ray will make. When conducting this process repeatedly in a piecewise manner, the path

of the ray can be approximated. Figure 5 from [4] shows the resulting plot of a ray tracing

routine and in particular highlights the tendency for sound rays to bend towards areas of

lower sound speed. This behavior focuses much of the sound energy into an axis

corresponding to a sound speed minimum in the profile.

Figure 5. Basic ray tracing in a continuously stratified medium, from [4]

If the object we are attempting to track is operating at or near the deep-water

sound speed minimum, it is likely that the majority of its sound energy will not be

received by our sensors near the surface. Conceptually, this effect can be mitigated by

utilizing AquaQuads equipped with variable depth sensor payloads; however we focus

our attention instead on targets within the surface layer or “mixed layer” shown at the top

of Figure 6 from [4]. The surface layer has a nearly uniform temperature distribution as a

result of the mixing effects from wind forces and is a common phenomenon found

throughout the world’s oceans. Sound speed increases gradually with depth in the surface

layer until it reaches the seasonal thermocline, often resulting in a local sound speed

 10

minimum at the surface. Much of the sound energy produced within this layer will

therefore propagate through it as the rays bend upward towards the surface, are reflected

off of it, and the cycle repeats.

Figure 6. Sound speed profile displaying a surface layer, from [4]

The position of the surface layer, also known as the “mixed layer depth” (MLD),

in a water column varies widely, but for comparison purposes Figure 7 shows a plot of

the MLDs in the South China Sea from [5]. This figure shows depths on the order of 40

meters (131 feet). Sound energy generated within the mixed layer will propagate

throughout it, and so we make the assumption that our target is relatively shallow.

 11

Figure 7. Estimated mixed layer depths (in meters) in the South China Sea,

from [5]

In addition to this assumption’s acoustic foundation, it also has an operational

foundation. The majority of nations with undersea-capable navies utilize diesel-electric

submarines. These submarines are often operated in the littoral regions, are required to

recharge their batteries regularly with their diesel engines for extended periods of time

(“snorkel”) and must come shallow to do so. Snorkeling in particular is a noisy evolution

that puts a large amount of sound energy into the mixed layer where the AquaQuad

sensors will be present.

2. The AquaQuad Advantage

Despite their potential deep-water limitations, AquaQuads possess significant

advantages when compared to their subsurface counterparts. At their most basic level,

collaborative behaviors require communication, and underwater communications are

inherently difficult and limited in range. The AquaQuad’s position above the waterline

facilitates air-based communication, allowing them to not be similarly encumbered. This

is critical for collective maintenance of the target position estimate and dynamic

repositioning of the individual platforms in order to achieve group objectives.

 12

Knowledge of the location of each sensor in the flock is also vital to the accuracy

of the Kalman filter target position estimate. Lacking an active acoustic long baseline

(LBL) or ultra-short baseline (USBL) location system, undesirable for a covert

application, the uncertainty of the position of an underwater vehicle grows with time,

requiring it to break contact for a GPS fix. Conversely, each of the AquaQuad platforms

is receiving continuous GPS signals. While drifting, the GPS can also provide an

approximation of the regional ocean current. When shared between multiple sensors, this

provides an update to the ocean current map that the flock will be using to minimize

energy expenditure, improving the overall solution.

The use of quadrotors also allows for rapid repositioning at speeds higher than

those typically seen in underwater platforms. This helps to ensure greater continuous

coverage of the target being tracked and facilitates maintaining closer proximity to the

moving target. Flight, however, carries a significant cost in energy consumption. This is a

traditional constraint in autonomous vehicles and one we seek to overcome with the use

of our hybrid platform.

C. AQUAQUAD ENERGY REQUIREMENTS

The use of the term “hybrid” when referring to the AquaQuad describes its ability

to float on the surface of the ocean or, leveraging its VTOL capability, fly for

repositioning. Our challenge then becomes one of maximizing on-station time by

managing the finite battery capacity, and we approach this by first making some

assumptions regarding the onboard energy budget.

Our first assumption is that the only source of energy replenishment will be via

solar radiance. The prototype utilizes an array of 20 SunPower research-grade E60

monocrystalline silicon cells with an advertised efficiency of just over 24 percent. The

array area of an envisioned prototype platform is roughly 0.3m2, yielding an ideal power

output of about 73W. More important however is the amount of useable solar radiation in

a 24 hour period. According to the National Renewable Energy Laboratory (NREL)

PVWatts calculator, for the Lake Nacimiento, California (CA) area (a potential test site),

the daily solar radiation peaks at 8.45kWh/m2 in June and falls to 2.56kWh/m2 in

 13

December, for a horizontal array. With the given array size of 0.3m2, this corresponds to

608Wh in June and 184Wh in December. It should be noted that the actual solar radiation

available will be time-of-day dependent and would likely follow a near-Gaussian curve

like that shown in Figure 8, where integrating the area under the curve provides the

energy available in a day. For the purposes of this thesis, we take the average of the two

solar radiation values to arrive at approximately 400Wh of solar energy available in a 24-

hour period. In order to prevent exhaustion of the onboard battery, 400Wh then becomes

the amount of energy we have available for communications, sensors and flight.

Figure 8. Gaussian-style distribution of available solar energy as a function of

the time of day

Were the AquaQuads directed to fly continuously, solar energy could not alone

sustain them. In a VTOL platform, the power required for flight is high, whereas the

surface area available for photovoltaic cells is small. While hovering, the typical

definition for propulsive efficiency fails so instead a figure of merit (FOM) can be used.

In this case, we use grams of thrust per Watt (g/W) of electrical power as the FOM,

which is plotted against disk loading in Figure 9. Disk loading (DL) is the weight of the

vehicle divided by the area covered by the rotors, and from actuator disk theory it has an

approximately inverse relationship with FOM [6]. The larger the FOM is, the greater the

weight that can be lifted for a given Watt of power.

 14

Figure 9. Experimentally obtained figure of merit as a function of disk loading

for a variety of multi-rotor and helicopter platforms, compared with
actuator disk theory.

The black line representing actuator disk theory in Figure 9 only considers waste

momentum, ignoring all other losses. Due to mechanical, aerodynamic, and other losses

in a real-world platform, this makes this theoretical bound a physical limit that can never

truly be achieved. Consider the S800 hex-rotor aircraft [7] with a flying mass of 6kg.

From Figure 9, the S800 requires 720W to operate or roughly 17,280Wh for 24 hours of

flight. Even assuming the S800 received the maximum June solar radiation of

8.45kWh/m2, the required array area would be approximately 8.5 square meters, therefore

extended quadrotor flight is clearly not a possibility utilizing solar energy alone.

For a notional design of the AquaQuad platform, we estimate a weight of 2kg

with a 10g/W FOM, corresponding to 200W of power required for flight. In addition,

several other electrical loads exist that need to be accounted for. The first is a 5W base

load estimate to keep critical systems in an active status. We also anticipate a 10W draw

for intermittent sensing and communications. When considered over a 24-hour period,

this results in 120Wh of base energy consumption and approximately 60Wh from the

sensing load (since this equipment is not required at all times). Referring back to our

original assumption that battery capacity will reflect available solar energy, starting out

0

5

10

10 100 1000 10000
Disk Loading (N/m^2)

FO
M

 (g
ra

m
s/

W
at

t)

Ideal
Ideal (50%)
ideal (35%)
MD500 helicopter
AH64 Helicopter
Gaui 330 quadrotor
ArduCopter quadrotor
S800 advertised
DJI F550 measured

 15

with 400Wh yields 220Wh available for flight, corresponding to approximately one hour

of flight time per day. This energy budged is tabulated in Table 1.

Table 1. Energy budget for the AquaQuad concept. Energy consumers are shown in
red. Solar energy shown in black is the mean value of a 24-hour period.

D. UTILIZATION OF ENVIRONMENTAL ENERGY

With the limit on flight time so imposed, the AquaQuad requires additional means

of repositioning itself to meet group objectives. To this end, we utilize the disturbances

inherent to the operating environment. We do this by incorporating our understanding of

prevailing ocean currents into the planning process. This allows us to intelligently plan

periods where flight is required, while otherwise maximizing the amount of time being

spent in a low-energy drift mode.

While drifting, the AquaQuads’ motion will be almost entirely driven by the

ocean surface currents that exist in their location. Due to their low profile, the wind

effects are expected to be minimal. Each AquaQuad will be provided with an initial

ocean current map based upon modeling software. As an example of such an application,

consider the U.S. Navy’s Shallow Water Analysis and Forecast System (SWAFS). It is a

near real-time three-dimensional analysis and prediction tool that incorporates in situ

measurements within an ocean forecast model commonly referred to as the Princeton

model [8]. The unclassified resolution of the SWAFS model varies by region but can go

as low as 1 nautical mile (nm). Figure 10 displays a low-resolution version of SWAFS’

output with the type of current vector arrow overlay we are primarily concerned with.

Power Time Energy
Base 5W 24hrs 120Wh

Sensing & Comms 10W 6hrs 60Wh
Flight 200W 1.1hrs 220Wh
Solar - 24hrs 400Wh

 16

Figure 10. Shallow Water Analysis and Forecast System product, displaying

regional ocean current vectors overlaying a sea surface temperature
heat map [9].

By discretizing the data from these models into specific geographic cells, we can

predict an AquaQuad’s motion in that space. This prediction is understandably subject to

the uncertainty of the map it is based upon; however the AquaQuad has the ability to

communicate the true ocean current at its location for update by a host. This host can

exist either at a remote ground high performance computing facility or as a local drifting

AquaQuad equipped with long haul communication capability. With a preliminary

understanding of the drift behavior expected from an AquaQuad placed in any starting

location, we can use this information to search for the best combination of drift and flight
 17

sequences that reaches a goal position. A concept of the desired behavior is shown in

Figure 11, which displays a series of short flight “hops” that terminate in a drift to a final

desired location.

Figure 11. Path planning concept that utilizes predicted ocean current fields to

minimize flight time in reaching a desired final position

The drifting steps in Figure 11 not only reduce energy expenditure from

restricting flight time, they also incorporate energy gain from the solar cells during

daylight hours. This planning process can be conducted near-optimally and will be

described in Chapter IV.

E. POTENTIAL MEASUREMENT TYPES

Within our target position estimation filter, we will use one of three typical

acoustic measurements from a target: bearing, range, or time-difference of arrival

(TDOA). Each of these measurement types requires a specific sensing unit and processor

to turn the raw pressure disturbances into a quantity that is relatable to the target position.

Passive acoustic sensors are of particular importance to our application. Since a drifting

AquaQuad with a passive hydrophone emits no sound energy into the environment, the

chance of counter-detection is low. The battery power required to operate a passive

 18

system is also significantly less than that required for active systems [10], leading to

greater possible time on station. As the specific source of the measurement is not the

primary focus of this thesis, we instead detail the fundamental equations that relate the

measurement to our state and briefly describe some current methods of obtaining these

measurements. These equations will be utilized within a generalized Kalman filter

architecture as a means of predicting the next incoming measurement for comparison and

are all a function of the Cartesian target position estimate x̂ and ŷ .

1. Bearing Measurements

The bearing sensed by the AquaQuad is relative to the position of the platform

itself (i.e., the quadrotor is at the center of a local coordinate system and the target

position is defined relative to it). The bearing-only nonlinear measurement equation is

simply

1 ˆ

tan
ˆ

i
i

i

y y
x x

θ −  −
=  −  (II.3)

where yi and xi denote the position of the ith AquaQuad under consideration. For

implementation in MATLAB, the use of the atan2 function is recommended, as it is the

four-quadrant inverse tangent function that wraps the resultant bearing in radians from

[,]π π− . Figure 12 illustrates the geometric configuration of these sensors in a two-

dimensional XY plane using the notation from Equation (II.3).

 19

Figure 12. Bearing-only sensor two-dimensional geometric configuration

The measurement of the bearing of a signal is a basic but important task in

underwater acoustics. In order to measure it, the properties of the impinging wave front

must be sampled by a multi-sensor array, which takes advantage of the array’s

directionality [11]. Suspension of an array beneath the AquaQuad platform is possible but

challenging due to payload restrictions on weight. Nevertheless, the bearings-only

tracking (BOT) scenario is ubiquitous in target estimation problems and will help to

illustrate important concepts in later chapters.

2. Range Measurements

The nonlinear measurement equation for range is the Cartesian coordinate

distance equation, again defined with respect to the position of the quadrotor being

analyzed.

2 2ˆ ˆ() ()i i ir x x y y= − + −

 (II.4)

Some interesting work has been conducted by [12] and [13] in determining the

range of an underwater source, by using so-called waveguide invariant theory. When

 20

looking at a spectrum of broadband energy (intensity) from a contact, one can see

interference patterns due to the differences in sound propagation.

Figure 13. Interference patterns visualized as striations in a spectrogram plot of

acoustic intensity, from [13]

In both papers, the slope of the interference pattern is described as a function of

frequency and range, as

f f
r r

β∂
=

∂ (II.5)

The symbol β is the waveguide invariant, where the term “invariant” comes

from the fact that, although the equation is unique to each mode pair, the numerical value

of β will remain approximately the same. In [12], it is given the default value of 1.

Simply solving the above equation for range r then provides the desired formula.

The slope of the interference pattern itself is dependent upon the frequency and

range “window” that is being looked in. Thus, [12] takes the simplistic approach of

measuring multiple windows and averaging the resultant range estimation. The authors of

[12] also go into detail regarding the 2-D discrete Fourier transform process that is used

to estimate the slope of the interference pattern automatically through image processing.

Range estimates using this method are described as accurate within 25 percent in
 21

simulation for source ranges between 500–2,200 meters and frequencies between 350 and

700 Hz [12].

The authors of [13] take a different approach to range estimation, explicitly taking

into account multiple sensors. One received signal from a sensor is selected as a reference

signal. The other sensors then have their received signal scaled to match the reference.

The amount of scaling that is required to overlay the signals is said to be equal to a fixed

ratio of range between the sensors and the source. This ratio will be constant even as the

physical ranges themselves are changing. The position of the source is determined

through the use of time delay estimation methods and the geometry seen in the circle of

Apollonius, which follows.

Figure 14. Circle of Apollonius used in determining source position, from [13]

Range estimates using this method are described as accurate within seven percent in

simulation for source ranges between 400–2,000 meters and frequencies between 50 and

750 Hz [13].

3. Time Difference of Arrival

The time difference of arrival (TDOA) measurement is constructed from the

difference between the times when two sensors, separated by some distance, receive the

same signal. This value is derived from the basic relation that time is equal to distance

divided by speed, the equation for which is

 22

()2 21 ˆ ˆ() ()i i ix x y y

c
τ = − + −

 (II.6)

where c represents the speed of sound in water from Equation (II.1). When Equation

(II.6) is extended to a time difference between two sensors denoted i and j, the TDOA

measurement of Equation (II.7) from [14] is the result.

()2 2 2 21 ˆ ˆ ˆ ˆ() () () ()ij i j i i j jx x y y x x y y

c
τ τ τ= − = − + − − − + −

 (II.7)

Equation (II.7) represents the half-hyperbola whose foci are the sensors

themselves [14]. When multiple measurements are obtained, these hyperbolas cross and

correspond to the position of the target.

Determining the time delay requires cross-correlation of the received signals. As

an example of this process, consider Figure 16 and Figure 17. The data in these plots was

collected in an August 2014 NPS experiment where two AcousondeTM acoustic sensors

[15] (see its technical specification in the Appendix A), a lightweight (approximately

262g) and portable data logging device, received a sweep signal in the Monterey Bay.

Figure 15. AcousondeTM acoustic sensor utilized in time difference of arrival

experiment

Once the sweep time was identified from the frequency display on the bottom of

Figure 16, the signals were cross-correlated in Figure 17. The resultant lag in the cross-

 23

correlation plot represents the TDOA measurement, with the sign convention

representative of which sensor received the signal first.

Figure 16. Normalized pressure amplitude and corresponding frequency of an

up-sweep signal; visualized as rising frequency over time in the
second plot

Figure 17. Cross-correlation of the received pressure measurement of two

underwater acoustic sensors, A042 and A020, representing the time
difference of arrival of ~1.75 sec.

 24

It is worth noting that discrimination of like signals received by two sensors is greatly

improved with the use of a sweep, where the change in frequency is very apparent. The

use of other signals can make the time-delay estimation much more complex.

 25

THIS PAGE INTENTIONALLY LEFT BLANK

 26

III. TRACKING METHODS FOR SUBMERGED TARGETS

Consider the AquaQuad scenario, where four sensors are using a single

measurement type to track a submarine. Like all sensors, the measurements obtained by

the AquaQuads will be corrupted by noise and often bias as well. Errors also exist when

predicting the future state of the submarine, in what is formally referred to as the process

model but can be understood in this case as a dead reckoning solution for submarine

motion. If the system of equations that relate the measurements to the position of the

target were to be solved analytically, these errors would not be accounted for, and the

accuracy of the uncorrected position estimate would suffer accordingly. This is a

common estimation problem, and the broad solution to it can be found in Kalman

filtering architecture.

A. KALMAN FILTER BASICS

The Kalman filter (KF) is used to recursively estimate a set of states from a linear

system by weighting the difference between a measurement and its expected value. The

algorithm seeks optimality by minimizing a covariance matrix describing the error of the

state estimate. Many derivations and examples of linear Kalman filters exist, so this

thesis will not delve into them further. The interested reader should consult [16] for an

excellent treatment of the KF and its subsequent variations. There are many symbols and

terms that are common to all Kalman filters, so we will describe these components next

in their discrete time form. The KF is often derived in continuous time and applied in

discrete time. This is because Kalman filters are usually derived and analyzed in

continuous form and then implemented on a digital computer, where a discrete time step

is required [16].

First, we assume we have a vector x that describes the state of our system. In this

thesis, the state vector being estimated is

T

x yx X Y u v a a =   (III.1)

 27

which simply contains the 2 dimensional Cartesian plane coordinate position (X,Y),

component velocities (u,v) and component accelerations (ax, ay). Assuming a standard

state-space representation of a linear system, we then have a linear process model that

relates the future state of the system 1kx + to the current state of the system kx ,

1k k k kx Ax Bu ω+ = + + (III.2)

where the system matrix A advances the state and is subject to the control effort ku

applied to the states by the input matrix B. The term kω is the additive process noise that

inevitably corrupts this future state prediction and must be corrected for in our estimation

problem.

The measurement vector kz follows next. In practice, it is populated by

measurements from the sensors in the system, but it is fundamentally considered a

function of the current state of the system related by the matrix H and once again

corrupted by a noise term, vk.

k k kz Hx v= + (III.3)

To make the measurement vector more intuitive, consider the scenario where a sensor is

able to provide direct measurements of our state variables. In this case, the measurement

matrix H is simply the identity matrix. Otherwise, in the linear case, some transformation

must occur, and the H matrix is the vehicle for that.

The terms kv and kω are assumed to add Gaussian white noise with zero-mean.

Therefore, we use the terms Q for process noise and R for measurement noise to represent

their covariance in the KF, which is obtained using the expected value operator, “E” as

follows.

 28

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

[]

x y

x y

x y

x y

x x x x x x x y

y y y y y x y y

xx xy xu xv xa xa

yx yy yu yv ya ya

ux uy uu uv ua uaT
k k

vx vy vu vv va va

a x a y a u a v a a a a

a x a y a u a v a a a a

Q E

σ σ σ σ σ σ

σ σ σ σ σ σ

σ σ σ σ σ σ
ω ω

σ σ σ σ σ σ

σ σ σ σ σ σ

σ σ σ σ σ σ

 
 
 
 
 

= =  
 
 
 

 


 (III.4)

2 2
11 21
2 2
12 22

[]T
k kR E v v

σ σ
σ σ
 

= =  
  (III.5)

Note that cross-covariance terms populate the off-diagonal elements, and

elements in the R matrix are left as generic entries to facilitate measurement type. The Q

and R matrices are common “tuning knobs” for the Kalman filter, and their values greatly

affect its performance. The R matrix represents the uncertainty in the measurement and

can be initialized using values from a sensor’s specification sheet (e.g., a specific acoustic

USBL sensor has a bearing accuracy of +/- 2.5 degrees, therefore its entry is 2.5o,

converted to radians and squared). Elements of the Q matrix are more complex to

determine directly, so its entries are often adjusted empirically [17].

Next, we consider the KF covariance matrix P. This matrix represents the error of

the filter’s state estimation,

ˆk k ke x x= − (III.6)

which is composed of the difference between the true state kx (unknown) and the

estimated state ˆkx and whose covariance is computed as

 29

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

[]

x y

x y

x y

x y

x x x x x x x y

y y y y y x y y

xx xy xu xv xa xa

yx yy yu yv ya ya

ux uy uu uv ua uaT
k k

vx vy vu vv va va

a x a y a u a v a a a a

a x a y a u a v a a a a

P E e e

σ σ σ σ σ σ

σ σ σ σ σ σ

σ σ σ σ σ σ

σ σ σ σ σ σ

σ σ σ σ σ σ

σ σ σ σ σ σ

 
 
 
 
 

= =  
 
 
 

 


 (III.7)

which shares a similar structure with the Q matrix in Equation (III.4). The difference lies

in the fact that Q represents the noise inherent to predicting the future state of the system,

whereas P represents the error in the filter’s estimate of the current state of the system.

The P matrix is also fundamental to the KF in that the algorithm actively works to

minimize its trace [16], hence minimizing the error in the estimate of the entire state.

Lastly, we discuss the Kalman gain variable Kk. The Kalman gain is that value

which weights the correction of your predicted state estimate 'ˆkx (a priori) in order to

obtain a new estimate ˆkx (a posteriori). The gain is applied to the difference between a

measurement kz and a predicted measurement 'ˆkHx via the equation below.

ˆ ˆ ˆ()k k k k kx x K z Hx′ ′= + − (III.8)

The Kalman gain is calculated as a function of the filter covariance, Pk and measurement

noise R. Therefore when the covariance in the estimate is large, the Kalman gain will also

be large, and the system will tend to pay more attention to the measurements [16].

1()T T

k k kK P H HP H R −′ ′= + (III.9)

All of these equations are used in a cyclic manner, the generic prediction-

correction structure of which is shown in Figure 18.

 30

Figure 18. Cyclic process of the Kalman filter, with its primary equations

shown, after [17]

Beginning with an initial estimate (assumption at zero time) of the state ˆkx and each

covariance matrix P, Q, and R, the future state '
1ˆkx + and future covariance '

1kP + are

predicted in the Projection step and are so annotated with a prime designation. Following

this step, a subscript notation change occurs, since the “k+1” projection is now

considered time “k.” The Kalman gain is then calculated based upon the covariance in the

filter’s estimate '
kP and the covariance in the measurement R. In the update step, a

measurement zk is ingested and compared to the expected measurement 'ˆkHx . The Kalman

gain weights this comparison and adds it to the predicted future state 'ˆkx to make the new

filter estimate ˆkx . Lastly, the covariance matrix Pk is updated, and the cycle begins anew.

B. FORMULATION OF THE NONLINEAR ESTIMATION PROCESS

Several assumptions go into a Kalman filter’s use, but a common one is that the

noise that drives the process and measurement equations is Gaussian. It should be noted

that [16] states, “The Kalman filter is the optimal estimator when the noise is Gaussian,

and it is the optimal linear filter when the noise is not Gaussian.” Therefore if a linear

system has non-Gaussian noise, the Kalman filter is still the optimal choice for

 31

estimation. That being said, we consider the case of Gaussian white noise and focus our

discussion on how nonlinearity affects this.

It is assumed that the state estimate is a Gaussian random variable (GRV) and so

has a defined first and second moment [18]. This is beneficial since these two moments

take a trivial amount of space to store but can be used to describe the system in complex

ways [19]. The linearity of the system (process and the measurement models) ensures that

the Gaussian nature of the random variables is maintained.

When the process or measurement equations are not linear, the optimality of the

KF is no longer guaranteed, and the Gaussian property of the noise propagated through a

nonlinear equation is also no longer guaranteed. In the specific case of bearings-only

tracking, nonlinearity exists in the transformation of bearing measurements into their

corresponding position estimate in Cartesian coordinates. This violates one of the basic

tenants of the KF since after being operated on by the nonlinear measurement equation

the Gaussian nature of the random variables describing the state vector is skewed [1]. To

illustrate this phenomenon, [19] conducted a Monte-Carlo simulation with a hypothetical

sensor that measures the range and bearing of an object. The measurement equation is the

basic polar to Cartesian transformation,

ˆ cos
ˆ sin
x r
y r

θ
θ

   
=   

    (III.10)

which is inherently nonlinear. The true range and bearing value of a target located at a

position of (0,1) was artificially “sampled” several hundred times, with additive zero-

mean Gaussian noise included in each sample of r and θ . When these corrupted

measurements were transformed back into their Cartesian representation and plotted,

Figure 19 from [19] was the result. Note that instead of a circular Gaussian distribution

around the target position, the distribution follows a crescent shaped arc, corresponding

to a band of range error and a spread of bearing error [19].

 32

Figure 19. Monte Carlo distribution of the polar-to-Cartesian transformation of

a target at position (0,1) with zero-mean Gaussian measurements,
from [19]

This type of nonlinearity occurs very commonly in dynamical systems. In order to

overcome this obstacle, yet maintain the elegant structure and power of the KF,

extensions to the algorithm have been created. This thesis investigates two of them with

the goal of developing objective comparison data and determining which is the most

suitable for use on the AquaQuad platform.

C. EXTENDED KALMAN FILTER

The extended Kalman filter (EKF) is a widely used algorithm for nonlinear

estimation [20]. It mitigates nonlinearities in the process and measurement equations

through their linearization. Conceptually, this linearization is conducted to the “first-

order” using the first two terms of the Taylor series expansion, shown for a generic

function f(x).

' '' '''
2 3() () ()() () () () () ...

1! 2! 3!
f a f a f af x f a x a x a x a= + − + − + − +

 (III.11)

 33

The implied assumption is that the linearized statistical properties of the random variable

being estimated are approximately equal to its nonlinear properties [16]. This

approximation breaks down for highly nonlinear systems and can lead to large errors in

the posterior mean and covariance estimates or general filter divergence [20]. Within the

EKF equations, linearization is conducted utilizing a Jacobian matrix of partial

derivatives, the use of which creates its own problems: the Jacobian can often be difficult

to calculate, the reliability of calculating derivatives requires very small sampling time,

the derivatives of noisy signals amplify the power of noise, and there are also some

instances where it does not exist [19]. These limitations set aside, the performance of the

EKF remains acceptable and often excellent for the majority of applications, leading to its

near-ubiquitous use.

The structure of the EKF is very similar to KF and proceeds through the

prediction-correction update process of Figure 20 after [17], which can be compared to

the KF case in Figure 18.

Figure 20. Cyclic process of the Extended Kalman filter, with its primary

equations shown, after [17]

 34

The key difference between Figure 18 and Figure 20 is rooted within the nonlinear state

projection 1ˆ ˆ(, ,0)k k kx f x u+ = and measurement update 'ˆ(,0)
k

h x . These equations force the

creation of linearizing Jacobians for the terms Ak and Wk in the “Projection ahead” step,

Hk in the “Kalman gain” and “Update the Error Covariance” steps, and Vk in the

“Kalman gain” step. The generic structure of this matrix of partial derivatives follows,

from [17].

,

,

ˆ(, 0)

ˆ(, 0)

ˆ(,0)

ˆ(,0)

k k

k k

k

k

i
ij

j x u

i
ij

j x u

i
ij

j x

i
ij

j x

fA
x

fW
w

hH
x

hV
v

δ
δ

δ
δ

δ
δ

δ
δ

=

=

=

=

 (III.12)

A number of variations to the EKF exist, however, the version utilized in this

thesis considers the case of additive noise in the process and measurement model and

otherwise follows a format similar to that in [17]. The specific equations used for a

bearing-only measurement tracking scenario are those presented in Figure 21, where the

state being estimated consists of the target position (xo, yo), component velocity (uo, vo)

and component acceleration (axo ayo). Note the use of the Φ term in the process

equation. This is a common and convenient way of updating the state based upon a first-

order linear differential equation x Ax= whose solution is A te ∆Φ = .

 35

Figure 21. Extended Kalman filter (EKF) algorithm utilized for bearing-only

measurement tracking simulation, after [17]

 36

Initialize with:

[
0

.l
<Tit:G.-

R- :
(:(x Y,. u .. v .. aT,. a_,.,.)' - ~ ,
~ v •• u;",

r ~ ~ -l 1 0 Iii 0 0 0
P. = : rL 0 1 0 01 0 0

(J~. 0 0 0 0 0

["' j]
<I> =

0 0 0 0 0 1

Q = ~· 0 0 0 0 1 0
.. . 0 0 0 0 0 ••

Prediction:

,., c.D ...
xt ,.= txt

lL, = <P~~al~ +Q

MeasLOreonent Updat~:

tan -t~A - .1:'''""10 J
'

[BRG_,, ~·~ X4 - ,\ 1'11\"'1

I (.,) _ BRG,~.n """'"'"' = 1 x, - R B G..,...,] ,..._1,,1,_1

BRG•~"'' ""'"'"'' ·()·. -y.,...,,) tan ~
x1 -x.,...,,

-{j·. - Y,,..,l) -{.~. - x.-..~o)

RNG.,...J, FUVG_,1

0 0 0 ()

,5
11, = - . h(x)l, =

l>x

-{j·. -)'_,.) -(.i, - x- 1.)

RNG,_,. FUVG-',
0 0 0 0

K - P.'H ' (HP'H 1 + Rr' 4-J..t tAk

Estimate and Covariance Update:

;, =.i·; + K, (z,- l,(x; n

~ = (! -KJ!1)~'

D. UNSCENTED KALMAN FILTER

In order to overcome some of the previously stated limitations of the EKF, the

unscented Kalman filter (UKF) was proposed. The UKF omits the linearization step and

uses the true nonlinear functions that describe the process and measurement equations.

This greatly simplifies the complexities that arise when calculating the Jacobian matrices

at each iteration of the filter. The UKF was created on the basis that it is simpler to

transform a single point than an entire probability distribution and that the desired

probability distribution can then be reconstructed after an unscented transformation [16].

The states are still represented as Gaussian random variables, but their normal

distribution is maintained by using a set of specifically designed sample points or “sigma

points” around the estimate in an unscented transformation (UT) [20].

The UT and its sigma points are fundamental to the UKF since they allow us to

create an approximate probability distribution that has not been skewed by nonlinear

functions [19]. The sigma points and the weights associated with them must be chosen

carefully such that the ensemble mean and covariance is a good estimate of the true mean

and covariance [16], and in this case they are selected such that they create a Gaussian

distribution. Figure 22 from [20] compares the effect of this transformation on the

resultant mean and covariance (far right) with that generated from a Monte Carlo

sampling routine (far left), and EKF linearization (center). It is clear that the UT provides

a much closer estimate of the true distribution and does so using relatively few sigma

points in this case.

 37

Figure 22. Mean and covariance propagation for Monte Carlo sampling, EKF

linearization, and the unscented transformation, from [20]

The UKF has several advantages over the EKF, and the authors of [20] define that

it has a similar computational cost that is within one order of magnitude of the linearized

filter. Moreover, the functions with discontinuities for which there is no partial derivative

can be easily spanned by the sigma points, thereby mitigating the EKF requirement of

Jacobian existence at every step [19]. The higher order terms of the Taylor series

expansion in Equation (III.11), which are neglected when using the EKF, are also more

accurately represented in the UKF. Posterior mean and covariance are reportedly

captured in statistical moments up to the third order [20]. From a practical standpoint, the

user can directly substitute the nonlinear process and measurement equations into the

UKF, with no need to calculate the complicated matrices of partial derivatives that the

EKF requires. This makes the UKF a very attractive filter.

Once again, the equations utilized in this thesis have been adapted following the

structure seen in [20], revised for the case of additive noise, presented for the bearing-

only measurement tracking scenario and summarized in Figure 23. The MATLAB

implementation can be seen in Appendix B.

 38

Figure 23. Unscented Kalman filter (UKF) algorithm utilized for bearing-only

measurement tracking simulation, after [20].
 39

lnlttallze wttl''l·

.r .. =(x,. 'I

P. •.. [pi
a • '

'\··]
p• ,

[

u '

Q= ~· 0 l
ITl .•.

Cal ~ula:e we1Qhts lor Sigma pomts·

where L ~ cfif')ension of x

a= le-3 (scaling par ameter)

K = U (secondar y scalinp, parameter, commonly zero J

/)- 2 (describes Gauss1an probabil it y dist ribut ion of x)

wl;h second :erm repeated for I = l, " .,2L

wi:h second term repea<ed for 1 = l , ... ,ZL

Calculate s1pna fl01ms·

<.omu1ued on follow1ng page .

Figure 23 (cont’d) Unscented Kalman filter (UKF) algorithm utilized for bearing-only

measurement tracking simulation, after [20].

 40

E. COMPARISON OF EXTENDED AND UNSCENTED KALMAN FILTER
PERFORMANCE

fu order to evaluate filter perf01mance, both the EKF and UKF were used in

simulation, facilitating the comparison of mean square enor, computation time, and

convergence propetties between the two filters. The simulation was conducted in

SIMULINK under the devised scenario of fom AquaQuads tracking a submerged contact

with bearing-only measmements. Each AquaQuad and the target submarine were

modeled as point masses in SIMULINK. Bearing measmements were detemlined by

simple trigonometry using the known sensing node (quadrotor) and submarine positions.

Band-limited white noise was added to these measmements with a power of lxl04 and

seed numbers that were independent from one another. The SIMULINK model used in

the UKF simulation, closely matched by its EKF countetpatt, is shown in Figme 24,

showing the general setup atld relevant signal routing.

Sensor model

Figme 24.

L T Chase Dillard
Unscented Kalman Filter for Bearing-Only Tracking

SIMULINK model for bearing-only tt·acking simulation, using an
unscented Kalman filter and point-mass kinematics

Figure 25 displays the paths taken by the sensors and targets within the

simulation, without the position estimate fi:om either filter. The AquaQuads f01m a

41

perimeter around the submarine and drift in a circular pattem at speeds substantially less

than that of their quany. The target, meanwhile, originates at the center of the group and

proceeds continuously outward. This changes the relative geomet:Iy of the scenano,

which has impacts that will be considered in following chapters.

.c.
1::
0 z

Figure 25.

BOT of Submarine Using 4 Quadrotors - arcutar Radius
5000

--Quad1
4000 /* -- Quad2 ~

3000
-- Quad3
-- Quad4

2000 0 Target

1000

0

-1000

-2000

-3000

4000 ' '-...w ~

-5000
-5000 4000 -3000 -2000 -1000 0 1000 2000 3000 4000 5000

East

Relative positions of four Aqua Quads and a target submarine in
SIMULINK simulation

Both the EKF and UKF were evaluated under this described scenario, and each

was initialized with the same stru.ting pru.·ameters, namely:

xo 100

Y, 100

Initial estimate, x0 =
Uo 20

• =
Vo 20

0xo 0

a yo 0
(III. B)

• Process noise, Q = diag([10e~ 10e~ 1e~ le-6 1e~ 1e-6
]) (III.14)

42

• Measurement noise, R = diag([Ie~ 1e~ 1e~ le~]) (III.1 5)

Additionally, the CPU time required to nm each scenario was detetmined using the tic

and toe commands in MATLAB. These commands stati and stop an intemal timer at the

beginning and end of each simulation. This provides a metric for comparison of which

filter is more computationally expensive to use.

Figure 26 displays a reduced-scale plot of the EKF's estimated submarine

position laid over top of its actual track. At first glance, it appears to be a good estimate,

and it certainly adheres to the track well. The elapsed time to mn the EKF in this scenario

was 0.851532 seconds.

Figure 26.

Bearings-Only Tracking of Submerged Target Using 4 Quadrotors

--auad1
--auad2
--auad3
--Quad4

0 Target
+ Estimate

-200

400

0 500 1000 1500 2000 2500 3000 3500
East

Estimated submarine position using beating-only measurements and
an extended Kalman filter

A closer look at the plot of residuals (difference between known and estimated

position) in Figure 27 shows a position estimate that never ttuly converges. The velocity

residual approaches zero at approximately 150 seconds.

43

Figure 27.

Difference between actual and EKF estimated position: States [x,y.u,v,ax,ay]T

i _:~~=~::: ~
<l 0 50 100 150 200 250 300 350

lime, seconds

"' Difference between actual and EKF estimated ~oelocity: States [x,y,u,v,ax,ay]T

B :::: :· : : : ~ =~:::% ~
<l 0 50 100 150 200 250 300 350

lime, seconds

EKF residuals in a bea1ing-only measurement tracking scenario

These figures can be directly compared to those generated using the UKF. The

UKF implementation shares many of the same characteristics of the EKF. The filter

estimation overlay of Figure 28 also appears to track the true position of the submarine

well. Elapsed time for the UKF implementation was 1.076891 seconds, which is on par

with the EKF.

.c:
1::
0 z

Figure 28.

1200

1000

800

600

400

200

0

-200

400

~0

~0

0

Bearings-Only Tracking of Submerged Target Using 4 Quadrotors

500 1000 1500
East

2000

--Quad1
--Quad2
--Quad3
--Quad4

0 Target
+ Estimate

2500 3000 3500

Estimated submarine position using bearing-only measurements and
an unscented Kalman filter

44

Once agam, the residual plot displays the truth of the UKF's state estimate.

Compared to Figme 27, the UKF residuals in Figme 29 are significantly smoother, and

there is position and velocity convergence within approximately 75 seconds. This

property of smooth UKF convergence was seen in nearly every comparison nm using the

two filters and appears to speak to the superiority of the UKF.

i'~~·fference bet\Wen actua. ~and UK.F estimated position~~ States [x,y •. u.v,ax,ay~}T

-~ ===~:
Q. -100 L__ __ L..._ _ __JL..._ _ __J __ __J ____L..._ __ ...J.. __ __,_

<l 0 50 100 150 200 250 300 350
lime, seconds

"' Difference bet\Wen actual and UKF estimated l.elocity: States [x,y,u,v,ax,ay}T

i ~p: :1 =~=~ ~
<l 0 50 100 150 200 250 300 350

lime, seconds
T

Figure 29. UKF residuals in a bearing-only measmement tr·acking scenario

In order to analyze the results from Figme 27 and Figme 29 more objectively,

Table 2 displays the mean square enor of the position and velocity state estimates from

each filter in this scenario. The final column of Table 2 represents the difference, or

"delta", in mean square enor when comparing the EKF and UKF simulations. A positive

delta value indicates superiority in the UKF estimate. The te1m "circular perimeter" in the

table heading of Table 2 was used to differentiate the sta1ting geometry of the

AquaQuads with other scenarios that were tested. Those scenarios will not be repeated

here for brevity, but the results were similar: lmder the precepts of the described

simulation, the UKF routinely possessed a greatly reduced mean square enor and

convergence time, as compared to the EKF.

45

Table 2. Comparison of the mean square error of an EKF and a UKF, using
bearing-only measurements in a tracking scenario

EKF
Circular

Perimeter

UKF
Circular

Perimeter

Circular Perimeter
Delta (EKF-UKF)

X, (m)2 765.7431 97.6823 668.0608
Y, (m)2 719.7339 116.8798 602.8541
U, (m/s)2 19.7663 12.4691 7.2972
V, (m/s)2 13.7761 10.2321 3.544M

ea
n

Sq
ua

re
 E

rr
or

 46

IV. ENERGY-EFFICIENT PERSISTENT SURVEILLANCE

With our estimation filter designated, we proceed on towards the other main

component of this thesis: developing a process facilitating persistence of surveillance. At

its fundamental level, this process amounts to path planning and flock coordination. It is

important to note the two major points of emphasis.

First is the energy management component, which can be controlled with path

planning. Planning the motion of a robot is a fundamental problem that has been tackled

in many ways and one of them is with the use of sampling-based algorithms. These

algorithms have a proven ability to quickly explore a given space and develop a path

between the initial and goal state that is free of obstructions. To do so, they randomly

sample points in the state space and attempt to make obstacle-free connections to them

from existing points. This sampling behavior leads to probabilistic completeness: as the

number of iterations increases, the probability of finding a successful path to the goal

approaches one [21]. There are many variations of these algorithms, and the concept is

extremely flexible, allowing us to produce a desired behavior in the paths generated.

For our purposes, we not only seek an obstacle-free path to a goal state, we also

desire optimality in the energy that is expended to achieve it. The control authority

available to the AquaQuad platform is also very limited, so we must address the unique

combination of drifting (dead-reckoning) and flight periods in the planning process. To

these ends, we created a new algorithm specific to the AquaQuad scenario based upon

rapidly-exploring random tree (RRT) [22] that we call dead-reckoning rapidly-exploring

random tree star (DR-RRT*).

While increasing the on-station time of the AquaQuads is integral to their task as

autonomous systems, it cannot come at the expense of their primary mission to track the

target, and therefore this is the other point of emphasis. The authors sought a metric that

could be used to define the quality of the group’s ability to estimate the position of the

target in different geometric configurations. This provides an input to the path planning

 47

process and also contributes a threshold that dictates when repositioning should occur,

requiring flock coordination. We found this metric in the geometric dilution of precision.

A. DILUTION OF PRECISION AS AN OPTIMIZATION METRIC

The concept of dilution of precision (DOP) comes from classical GPS theory,

where it is used as a metric for the quality of a position fix. The number of satellites and

their relative geometry around a receiver play the dominant role in the calculation of this

quantity. The GPS pseudorange measurement in the following discussion is directly

analogous to the underwater range-only measurement for our tracking scenario, but it will

be shown that the nature of DOP is relatable using any measurement.

As a simple example, consider the two dimensional (XY plane) case of two

satellites positioned such that the receiver is between them. The position of the receiver

with respect to one of those satellites can lie anywhere on the circumference of a circle

whose radius is defined using the difference between the sent and received times,

multiplied by the speed of light. With two satellites, an additional circle is generated, and

the intersection points of these circles indicate two possible locations of the receiver.

Three satellites would theoretically eliminate one of those possible locations, leaving the

user with a single estimated (x,y) position. Consider, however, that many errors exist in

determining the range between satellite and receiver. One of these major sources of error

is the difference between the clocks on board the satellite and receiver. If they were to be

off from one another by a single second, that positional error would be on the order of 108

meters based upon the speed of light. Therefore the true range from satellite to receiver

lies inside a bounded region of possible circles, dependent upon the magnitude of the

error. Relative geometry can help shrink this region of uncertainty, as Figure 30 from

[18] portrays very well.

 48

Figure 30. GPS pseudoranges and their associated area of uncertainty under

different geometric satellite configurations, from [18]

Delving deeper into the GPS equations from [18] provides the motivation for

using dilution of precision in this work. Each pseudorange measurement can be modeled

per Equation (IV.1).

 1

2

1
i

i i i i i i i
r r r

fc t c t I T M v
f r rr δ= − + ∆ + + + + +p p

 (IV.1)

The first term in Equation (IV.1) is the norm of the difference between the receiver

position p and the satellite position pi, which in other words is the true (unknown) range

that separates them. The remaining portions of the equation are all error effects that

corrupt the measurement of this true range. Specifically, the next two terms both multiply

the speed of light by the clock errors between source and receiver. The first clock error

rc t∆ is one that we can apply corrections for. The second clock error ic tδ is that residual

portion that we can never precisely provide a correction for in our estimation process.

The last terms correspond to dispersive atmospheric effects, non-dispersive atmospheric

effects, multipath errors, and measurement noise, respectively. Chapter 8 in [18]

discusses these error terms in great detail. All error components are considered

statistically independent, and the square root of their sum of squares is designated the

user equivalent range error (UERE).

Continuing our abbreviated derivation of DOP, [18] provides an iterative

algorithm to minimize the error in the estimation of ˆ ˆ ˆ ˆx̂ X Y Z c t = ∆  , seen in

Equation (IV.2).

 49

(IV.2)

where

A AJ

8/
pk - p

1 Ill\ -Pi ll
Sx

A A 2

8p2 pk - p
1

IIPk -P2

11
H=

Sx
=

8p3 A A3
(IV.3) pk-p

1
Sx IIA-ft3

11
8p4 A A 4

Sx
pk - p

1
ik IIPk -P4

11

is the Jacobian matrix representing the pruiial derivative of the measurement equation

p(x,p;) =liP -p;ll+ c~tr , evaluated at the algorithm's cunent estimate. Of note, this is the

same f01m of the H matrix utilized in the EKF of Chapter III. C. When Equation (IV.2) is

nm to its conclusion, we expect that Sx = xk+1 - xk ~ 0 and therefore

(Hr Hr1 Hr (p - p(xk)) = 0. With some manipulation of related equations and

designating the user equivalent range enor as the vru·iable X , we atTive at Equation

(IV.4).

We then detennine the covru·iance of Equation (IV.4) as follows in Equation (IV.5),

P = E (8x8:·,/)

= (HrHr!cr2

(IV.4)

(IV.5)

where CJ
2

is the variance of the UERE. Equation (IV.5) shows that the covru1ance of the

GPS pseudorange problem is a product of the geometric relative positioning encapsulated

in the H matrix and the collective measurement enor found in the UERE vru·iance te1m.

The quantity (HT Hr1 magnifies the UERE in estimating the position of the receiver,

50

and so we isolate this term and convert it to the more-useful scalar metric known as the

geometric dilution of precision (GDOP). As we are principally concerned with the

Cartesian coordinate estimation of position (x,y), we consider only these elements and so

use the term horizontal dilution of precision (HDOP) seen in Equation (IV.6).

1()THDOP trace H H −=

 (IV.6)

All of the preceding information was presented in the vein of GPS measurements;

however the extension to the AquaQuad scenario is extremely natural. In place of

satellites, we have four quadrotors. Instead of estimating the position of a receiver, we are

estimating the position of a submarine. If we were to use range-only measurements, the

speed of sound in water would replace the speed of light in air. Depending upon the

measurements being used, the equations must be modified slightly. Fortunately, the

concept of HDOP is inherently flexible to our purposes, and the only true alterations are

conducted inside the Jacobian matrix, H. The metric still defines the potential precision

we can achieve in a particular measurement scenario and is therefore incredibly useful in

determining the best and potentially optimal arrangement of our sensors.

1. HDOP for Bearing-Only Measurement Tracking

In order to better utilize HDOP, it is important to understand the fundamental

configurations that will minimize it and therefore improve it. It may be surprising to

discover that, depending on the measurements being obtained, there are varying

relationships between HDOP and range to the target. The authors of [23] provide great

insight into this relationship, using the notation of Figure 31 as a basis.

 51

Figure 31. XY plane representation of three sensors taking range and bearing

measurements with respect to a target, in red, from [23].

Each sensor at (x1...i…n, y1…i…n) in Figure 31 is capable of taking a range (r1…i…n) or

bearing (θ 1...i…n) measurement from the target being tracked, which is represented as a

red square at position (x0, y0). Considering first the case of bearing-only tracking, we

begin with the nonlinear measurement equation

1 ˆ

tan
ˆ

i
i

i

y y
x x

θ −  −
=  −  (IV.7)

whose Jacobian is represented as

0 0

0
2

0
2

[,]

sin()

cos()

i ii

i i
i

i i i

i ix y

y y
r rxH

x x
y r r

θδθ
δ
δθ θ
δ

− − −    
    
    = = =
 −    
          (IV.8)

with the term 2 2() ()i i ir x x y y= − + − . Next, [23] considers the form of the HDOP

equation that includes the measurement covariance term, R, shown in Equation (IV.9).

For comparison purposes, the HDOP variant previously presented in Equation (IV.6)

considers the specific case where R is equal to identity.

 52

(IV.9)

After conducting the matrix operations within Equation (IV.9) symbolically, for a

scenario with only two sensors and with some trigonomeu·ic simplification, we an ive at

the bearings-only u·acking HDOP equation from [23].

(IV.10)

What is significant about Equation (IV.1 0) is that a range te1m shows up explicitly in the

numerator of this equation. For the bearings-only u·acking scenario, HDOP increases and

therefore degrades with increasing range. Also of note is that when the difference in

bearings to the target from sensor 1 and sensor 2 (con esponding to 81 and B2 ,

respectively) are either equal or 180 degrees aprut from one another, there is a singularity.

Therefore, optimality is found in geomeu·ic configurations that place the sensors close to

the tru·get and in locations that make right angles to one another.

2. HDOP for Range-Only Measurement Tracking

Next, we consider the range-only tracking scenru·io whose nonlineru· measurement

equation is simply ri from Equation (II.4), which leads to the Jacobian mau·ix

b1j Xo - xi

bX 1: =[cos(B,)] Hi =
1

=
b1j Yo - Yi sin(Bi)

5y
[Xo ,Yo l

1:
1 (IV.ll)

and produces the symbolically simplified HDOP equation from [23].

(IV.12)

Once agam, we see in Equation (IV.12) that a collinear configuration between two

sensors produces a singularity due to the sine te1m in the denominator. What is different

53

from the bearing-only scenario is the lack of an explicit range term in the numerator. At

first glance, this would lead one to believe that the range-only HDOP equation is not

dependent upon the distance between the sensors and receivers, but this is not observed in

practice. Due to the simplification conducted in [23] leading to the trigonometric

denominator of Equation (IV.12), there is actually a range term buried within it.

Therefore, in the case of range-only measurements, as range increases, the HDOP

improves.

3. HDOP for TDOA Measurement Tracking

While not covered in [23], we conduct a similar HDOP analysis for the TDOA

measurement seen in Equation (II.7). Since the TDOA measurement involves the

difference in range (and therefore time) between sensors and the target, a subscript

notation change is necessary for the range term riT or rjT denoting the range between the

ith or jth sensor and the target T. The Jacobian for one TDOA measurement between two

sensors is seen in Equation (IV.13).

0 0

0 0

0 0

[,]

() ()
() ()

j iij

jT iT j i
i

ij j ij i

jT iTx y

x x x x
r r cos cosxH

sin siny y y y
y r r

δτ
θ θδ

δτ θ θ
δ

− −  −   −   = = =    −−  −   − 
    

 (IV.13)

Rather than determine a closed-form solution for the HDOP equation as seen in

Equations (IV.10) and (IV.12) from [23], we present a simulation exploring its behavior

that is applicable to our scenario. Specifically, we fix the locations of two sensors and a

target while allowing the position of a third sensor to vary over a gridded area. An HDOP

calculation is made at every point in the grid and the results plotted. The result of this plot

is shown in Figure 32 from both an overhead and a three-dimensional perspective. These

views help to illustrate some interesting findings from the analysis. The first is the

overhead view (far left Figure 32) in which we see a fairly uniform low value for HDOP,

punctuated by singularities (exhibited in white) along the line of bearing that connects

QR #1 and QR #2 to the position of the target. The source of these singularities can be

traced to the trigonometric representation of Equation (IV.13). When the angle to the

 54

target iθ is equal to that of jθ , the corresponding element of H in Equation (IV.13) is

zero, therefore the inverse operator of Equation (IV.6) results in a singularity.

Consequently, co-aligning TDOA sensors on the same line of bearing is highly

undesirable.

Figure 32. Overhead (left) and three-dimensional view (right) of TDOA HDOP

variations due to the movement of a single sensor

The rotated three-dimensional view on the far right of Figure 32 shows that local

minimums exist on the Y-axis, however the negative Y-axis is the lesser of the two due to

the large angle separation present there between the sensors. When off the Y-axis, the

HDOP rises. This is due to the reduced angle differential between iθ and jθ .

In our implementation of the TDOA equations we did not observe range

dependence, however work has been conducted in [24] and [25] to analyze this aspect.

The predominant result of the portion of [24] applicable to our purposes is seen in Figure

33, which displays increasing DOP (degraded precision) with range. The source of this

error is described as due to increasing “flatness” of the hyperbolic curves with distance

resulting in an intersection point that becomes less definite [25]. Of additional interest in

Figure 33 is the reduction in DOP (improved precision) as the number of sensors “n”

increases.

 55

Figure 33. Variation in dilution of precision for the case of TDOA

measurements with respect to increasing Range and number of
sensors, “n”, from [24]

In each of the detailed measurement cases (range-only, bearing-only and TDOA),

the dilution of precision provides us a single number that quantifies the potential

precision with which we can track the target. This number is based solely on the relative

location of each AquaQuad, which is known, and the current position estimate of the

target, which is shared. The limited number of inputs and simplicity of the calculation

leads to its repeatability and allows us to intelligently plan the positioning of the

AquaQuads for tracking.

4. Optimal Sensor Placement for HDOP

A logical extension to the preceding discussion of geometry-based HDOP is

answering the question of which sensor configurations minimize the metric. To approach

this, we explored the results that were obtained when minimizing the bearing-only and

range-only HDOP functions with respect to the position of eight sensor nodes.

MATLAB’s fminunc function was evaluated with two sets of initial conditions:

one with nodes evenly spaced around the target, the other clustered in closely around the

target. This was done to explore the solution’s dependency on initial placement of the

sensors. Each scenario was conducted five times to further illustrate the spread of
 56

expected behavior. The results from range-only and bearing-only measurement scenarios

are plotted in Figure 34 and Figure 35 respectively, with dots representing fminunc trial

solutions and triangles representing the function’s final solution.

Figure 34. Range-only measurement: Minimizing solutions to HDOP-optimal

placement of eight sensors with an evenly spaced initial condition
(left) and clustered initial condition (right)

For range-only measurements, the evenly placed arrangement of the sensors is

shown to be near-optimal. In the far left of Figure 34 it can be seen that the solutions held

closely to their initial configuration with respect to the angle between the sensors. A

slight extension in range from the target was observed, and this was expected for a range-

only sensor. In the far right of Figure 34 we see the solvers attempt to enlarge the angle

distribution from the initial clustered configuration while simultaneously maximizing

range from the target. The result is a one-sided distribution of the nodes, as the solutions

that attempt to expand to the opposite side of the target are likely discarded due to their

near-range unsuitability.

 57

Figure 35. Bearing-only measurement: Minimizing solutions to HDOP-optimal

placement of eight sensors with an evenly spaced initial condition
(left) and clustered initial condition (right)

Considering the bearing-only measurement, we see evidence once again that the

even distribution of sensors is nearly optimal in the far left of Figure 35. The intriguing

difference between the two measurement scenarios is that for bearing-only there is

consistently a node that attempts to get as close to the target as possible. This was

somewhat expected due to the projected improvement of HDOP with decreasing range

but also appears to be a tradeoff between the range and angle sensitivities of Equation

(IV.10) as there was routinely only one node chosen to approach the target. The clustered

distribution on the far right of Figure 35 shows a similar behavior, as the target is nearly

covered up by the potential solution nodes.

This analysis highlights the angle separation dependences of both bearing-only

and range-only measurement HDOP and also displayed some unexpected behavior in the

bearing-only scenario. It is important to note that the solution provided by fminunc was

largely dependent upon the initial conditions chosen. In addition, all of the discussions

regarding HDOP assume the sensitivity of each sensor is range-independent. For

example, increasing the distance to the target may improve HDOP with a range-only

measurement, but in the case of ocean acoustics this also increases the transmission loss

experienced by the signal, which may make its receipt by the sensor less probable.
 58

B. RAPIDLY-EXPLORING RANDOM TREE DESCRIPTION

Leading up to this point we have discussed important elements of the thesis:

energy balance, environmental parameters, and estimation filter characteristics. Each of

them can now be integrated together under the realm of path-planning. In his ground

breaking paper, LaValle [22] created the concept of a rapidly-exploring random tree

(RRT), which sought to overcome some of the limitations of existing path-planning

methods. Specifically focusing on a comparison to the probabilistic roadmap (PRM)

approach, [22] points out that PRM algorithms attempt random configurations that must

be connected to one another through the use of local planners. In the case where making

these connections amounts to a nonlinear control problem, the undesirable increased

computational complexity motivated the search for another method. The RRT algorithm

was created to share many of the same advantages as the PRM method, such as minimal

heuristics and limited arbitrary parameters. These features lead to repeatability and

consistency [22]. However, the RRT relaxes the requirement to make a connection

between adjacent states, making the RRT suitable for the nonholonomic and kinodynamic

systems that often arise in robotics and reducing the computations significantly [22].

1. Basic RRT Algorithm Description

The RRT path planning method as described in [22] begins with a metric space X

that can encompass any number of elements, to include variables like the orientation of a

robot or its velocity and acceleration. In the general sense, X is not required to span a

physical space and does not need to exist in only two or three visualizable dimensions. If

a fixed obstacle region exists obsX X⊂ that successful paths cannot pass through, it can

be easily accommodated by the path planning approach. Once again, the concept of an

obstacle is not limited to a physical object blocking a path and extends to any constraint

the user specifies on X. Obstacles are also not explicitly defined in advance to the

algorithm; the RRT only uses Xobs to check for collision when adding new elements to

the tree.

The tree generated by the RRT is made up of vertices (points where connections

are made) and edges (lines connecting adjacent vertices). All of the vertices added to the

 59

tree will exist in Xfree, which in a probabilistic sense is the complement of Xobs. Edges are

created by extension from an existing vertex in the tree towards a target location. This

extension is conducted via integration of a state transition equation (,)x f x u= that

advances the state x with respect to a control input u. In many cases, including ours, Euler

integration is utilized whereby (,)newx x f x u t≈ + ∆ . Upon integration, if new freex X⊂ then

new obsx X⊄ and therefore xnew can be added to the tree T.

To illustrate the mechanics of an RRT, we utilize the original psuedocode seen in

Figure 36 from [22].

Figure 36. Rapidly-exploring random tree pseudocode, from [22]

Consider the simple case of a bounded XY Euclidian geometric plane with

obstacles. The state space being explored is the Cartesian position of the vehicle, [X, Y].

After the user defines a start and goal state, the tree is initialized in Step 1. At each of the

iterations of Step 2, the RRT algorithm randomly selects a point in the plane xrand in Step

3. It then finds the closest existing vertex in the tree xnear in Step 4 (at first iteration this

will simply be the start point). Step 5 then extends an edge in the direction of that random

point. The edge size itself is dictated by the control effort, u, but can be of a fixed size set

by the user in this basic scenario. The algorithm creates the new state xnew in Step 6 and

also checks to see if it impacts an obstacle. If it does not impact an obstacle, the

 60

algorithm moves on to Step 7 and xnew becomes the newest vertex in the tree. Step 8

creates the edge between xnear and xnew. This process repeats until the goal state is

achieved or the number of specified iterations is exceeded. If the goal state is achieved, a

final path is traced out from the start point to the goal whose vertices do not intersect an

obstacle. Figure 37 is an example of the completed product from a basic fixed-step RRT

algorithm, showing the exploration of space and the resultant path through an obstacle

field.

Figure 37. Path generated by a basic RRT algorithm through a fixed obstacle

field

The behavior seen in Figure 37 is representative of some of the RRT’s professed

benefits: the bias towards unexplored space [22] is evident, none of the possible vertices

intersect the obstacles, and a final path through the obstacle field has been found at the

simple algorithm’s conclusion.

From a theoretical standpoint, the RRT has proven probabilistic completeness

[22]; however there are no guarantees on its optimality [26]. This is because the RRT

does not take the “quality of the solution into account” by examining the cost of control

efforts, time, and other metrics [21]. As a result of this, [21] proves that the RRT

converges to a suboptimal solution the majority of the time and introduces the concept of

RRT*, which achieves infinite-time asymptotic optimality. In simple terms, the RRT*

does this by applying a cost to traversing each edge in the tree, while keeping a running
 61

tally of the cumulative cost of using each path in the tree. The asymptotic optimality of

the final path is guaranteed through the use of a rewiring step that looks back through the

tree and reassigns vertices in the tree that grant a lower cumulative cost than their current

configuration.

The RRT* concept suggests an excellent solution to the motion planning problem

faced in the AquaQuad scenario. Asymptotic optimality provides an infinite-time

guarantee on minimal energy expenditure while using the environmental disturbances to

our benefit. The vehicle for crafting this behavior is the RRT*’s cost function, which not

only takes into account the energy balance but also the quality of the flock’s ability to

track the target at each vertex that is contained in an HDOP calculation. Obstacle

avoidance is built in to the algorithm, which will prevent interference from adjacent

AquaQuads, in addition to avoidance of common at-sea obstacles such as islands, buoys,

shipping routes, etc. In addition, these obstacle areas can represent locations of poor

HDOP; any area we do not wish the AquaQuads to enter. Finally, the simplicity of the

RRT facilitates its real-time usage and feasibility of hardware implementation. For this

reason, and using concepts from [21], [22] and [27], we created an RRT* algorithm

specific to our task.

2. Base RRT* Algorithm

This section seeks to describe the big picture steps that our RRT* algorithm uses,

while the actual MATLAB code can be seen in Appendix C. In this discussion, we again

refer to the easy to visualize case where the states being explored are within the XY

plane. This plane is discretized into a number of individual cells, each of which contains

information relevant to that specific location, including but not limited to the presence of

obstacles and the predicted ocean current vector. The map is then initialized with a start

and goal position. A representative example of the initial configuration is shown in

Figure 38. In the following discussion, the trees created are not dependent upon the ocean

current, but this is the style of figure will be used throughout this thesis. The goal position

can be defined by the solution of a higher level operations research task that plans an

optimal sequence of waypoints for a flock of coordinated AquaQuads in a given area of

 62

operation. It can also represent a rapidly sampled point of minimal HDOP. Also of note,

in the following discussion we use the te1m "node" interchangeably with the previously-

used tetm "vettex" and substitute "branch" for "edge."

Figure 38.

a.

~ .. 0.1
E

~ ·;;;
&. ~. 1
.;

~.4

Rapidly Exploring Random Tree (RRl) Algorithm in a Current Field

' '''- --- - --....---,,,,.._ ___ ~
\ ' ' ' ------ ·---·-1 \ ' ''_..._ _________ ·-1
' ' '' '----------- -1

~.5 L..J:........L--l......L....L...i...l..i.....::.........:::<....:>~..:::::,.:::::..::~~=::!:"""'==-==l

~ 5 ~.4 ~.3 ~.2 ~. 1 0 0.1 0.2 0.3 0.4 0.5
J4>os~ion. meters

Initialization step of an RRT algorithm defining fixed obstacles,
ocean cmTent and the Strut and Goal positions

Select Target with Defined Goal Probability

As the first step in om RRT*, a random "target" point Xtgt in the space is selected

from a unif01m probability distribution for analysis. This tru·get is in fact pseudo­

randomly selected, since the user will defme that, for some small percentage of the time

("goal probability"), the tru·get is forced to be the goal position X goal· In this way the tree

is biased towards the goal, which aids in faster convergence time at a small cost in space

exploration. Figme 39 shows a prutially completed tree with the pseudo-random target

plotted.

63

Figure 39.

b.

Rapidly Exploring Random Tree (RRl) Algorithm in a Current Field

0.1 ""-- ...&.:::....- --""-- ----""'------"'"'-------'"""'-- """"'-,_--'
-0.5 -0.45 -0.4 -0.35 -0.3 -0.25 -0.2 -0.15

)(.position, meters

Early stages ofRRT algorithm implementation showing the pseudo­
random target selection step (Note: presented path not a function of

ocean cunent)

Find Set of Closest Nodes and Determine Minimum Cost Node

Once the target is selected, the algorithm must select an existing node in the tree

to extend from. In a basic RRT, it will look at the Cruiesian distance between the tru·get

and all of the cunent nodes in the u·ee and select the closest one. In our RR T*, we select

the closest "N" nodes and evaluate each to detennine which one will result in the

minimum cost, the function for which will be detailed in the next section of this thesis;

for now it is sufficient to say that the best segment con esponds to longer drifting time

along the given ocean cunents. The value for N is defined by the user. Raising the

number of nodes evaluated increases the likelihood of fmding an optimal node but also

increases computation time. The most cost-effective existing node becomes the pru·ent

node.

c. Extend Branch in Tree with Obstacle Detection

With the target and the parent node selected, the algorithm extends a branch from

the parent node in the direction of the tru·get. In a basic RRT, it will be of a fixed step size

(i.e., - 1 meter). In our RRT*, we conduct simple Euler integration of the point-mass

64

kinematics of the vehicle over the time step we specify for the process. Limits can easily

be defined for the control authority available to achieve this extension.

After integration, the position of the point-mass becomes a new candidate node

Xnew · We use the te1m "candidate" node to highlight that the node may not be added to the

tree at this stage. Next, the location of X new is checked to see if it falls within the limits of

a defmed obstacle in the space Xobs · If so, or if the control u required to achieve that point

falls outside of the vehicle's available limits, it is thrown out, and the RRT* starts over

with a new pseudo-random target, Xrgt · If xnew falls within the obstacle-free region X.free, it

is added to the tree T as the newest node and a branch is connected between it and the

parent node, as seen in Figure 40.

Figure 40.

Rapidly Exploring Random Tree (RRl) Algorithm in a Current Field

0.45f--___,,_ ------';!!---~-----. ------ ------

-----. ~et

__..:;;;- ~ ___,....

____. ____.,.- ---
------ --- --- -

0.1
.0.5 .0.45 .0.4 .0.35 .0.3 .0.25

)(.position, meters

RRT algorithm showing obstacle free extension in red to pseudo­
randomly selected target state (Note: presented path not a ftmction of

ocean cunent)

Stored within the tree is a node number that uniquely identifies the newest node,

the number identifying its parent node, the cost of traversing the branch, and the

cumulative cost associated with the path that goes from the Start point to this newest

node.

65

d. Rewire Tree

The rewiring step occurs next, which provides the infinite time optimality

guarantee. In our finite time application, this serves to improve the performance of our

ultimate path. With the newest node now added to the tree, the rewire step selects

existing nearby nodes in the tree that fall within a user-defined radius. If the cumulative

cost of traveling to these nearby nodes could be reduced by reassigning the newest node

as their parent node, it is updated as such and the old branch is discarded in favor of the

new one. This process is very succinctly shown in Figure 41 and quoted from [28].

when a new vertex is added to the tree, it is checked whether vertices that
are already in the tree can be reached at a lower cost through this new
vertex. This is also checked for a number of k nearest neighbors. In
(Figure 41a) the tree is plotted again with the new vertex that has just been
added and its k nearest neighbors. For these three vertices the costs of
connection to the new vertex are given. It can be seen that vertex 6 is
currently reached at a cost of 15, while through the new vertex this vertex
can be reached at a cost of 12 (through vertices 0-1-5-9-6). Since this is
lower than the current cost, the current edge toward vertex 6 is deleted and
a new edge is added. The result is the tree of (Figure 41b). When a new
edge is added to the tree a consequence is that the cost to reach the vertex
that is rewired should be updated as well as the costs of all the child
vertices of this vertex. [28]

Figure 41. Visual display of RRT* rewire step, from [28]

 66

e. Complete the Path and Reaching Goal or after "N" Iterations

After X new is added to the tree, the algorithm checks if this node achieves the goal

state. Typically, success is defined within a certain tolerance (i.e., -lOOcm), which can be

adjusted based on the resolution required. If the goal is not met, and the maximum

number of iterations is not exceeded, the cycle begins anew. When the goal is met, there

are two choices. First, the algorithm can be te1minated and the path from the strut to the

goal state is defmed. Othe1wise, the algorithm can continue sem·ching for more cost­

effective paths until directed to te1minate. Since each node in the tree has its associated

parent node stored alongside it, tracing the final path shown in Figure 42 is conducted by

starting at the node that achieved the goal and working backwm·ds.

Figure 42.

Rapidly Exploring Random Tree (RRT) Algorithm in a Current Field

-0.3

-0.4

-0.5
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

X-pos~ion. meters

Final RRT path through a fixed obstacle field (Note: presented path
not a function of ocem1 cunent)

C. DEAD RECKONING RRT* ALGORITHM

The preceding discussion touches upon many of the concepts that exist in the new

DR-RRT* algorithm. However, om scenm·io required a specific variant that needed to

take into account the limited control and energy available to the AquaQuads. Specifically,

in order to use the oceanic cmTents to the maximum extent possible, we allow for

extended drifting periods where we predict the futme state of the vehicle given the

67

assumed ocean current vector at the node in the tree being analyzed. This is a basic “dead

reckoning” (DR) step and like most DR solutions is a rough estimate whose accuracy is

proportional to that of the ocean current map. That being said, the DR solution is integral

to our algorithm, as the drift paths that are created can be linked via flight with “hop”

steps. Figure 43 illustrates the difference between the DR-RRT* algorithm and a

traditional RRT*.

Figure 43. Comparison of the DR-RRT* algorithm utilized in this thesis with a

generic RRT* algorithm.

The power behind the DR-RRT* algorithm is that it allows for periods where no

control input occurs and hence minimal energy is expended. The bulk of the RRT*

process is dormant during these phases, improving computational efficiency. Despite this

dormancy, the nodes of the tree created while drifting are still used within the RRT*

 68

framework and are essential to it. They represent obstacle-free paths with a defmed cost

associated with tmveling each branch and provide candidate locations to both hop and

rewire from once the RRT* is activated.

1. DR-RRT* Overview

As an introduction to om illusu·ation of the DR-RRT*, Figme 44 displays the path

created dming the first DR phase of the algorithm. Sh01tly after this figme was generated,

the ocean cmrent begins to pull the predicted location of the AquaQuad into the center of

the vortex, away from the red star denoting the goaVfinish.

Figme 44.

Dead Reckoning- Rapidly Exploring Random Tree Star (DR-RRP) Algorithm in a Current Field

sr--r--~~~~~~~~~~~CI~

0

- Current
, .: .. ~,c ... , :' .. T ·I * Start * Finish

2 3 4
)(.position, nautical miles

5

Drifting phase of the DR-RRT* algorithm with fixed obstacles, just
prior to flight.

If it were possible to drift directly to the goal state, this would often be the best

possible path. In lieu of that lmlikely scenario, we implement a mle that verifies a

negative gradient in range to the goal, or when the u·ee intersects an obstacle. Once the

negative gradient is verified for an extended period of time, it activates the primruy

functions of the RRT* contained in the hopping phase.

When conducting the hop phase, the AquaQuad is allowed limited flight time.

Flight is heavily penalized, commensmate with the increased energy expenditme. The

69

direction of that flight is pseudo-randomly selected in the standard RRT* manner, it

originates from the most cost-efficient nearby parent node, and the fmal position of the

AquaQuad is then tested for obstacle presence. The random nature of the flight steps is

important, because it allows us to explore the configuration space and evaluate the cost of

different paths. The final result of a hopping step is shown in Figure 45. A completed hop

step is visualized as a green arc connected by red circles that display takeoff and landing

locales.

0 2 3 4 5
)4>osit ion, nautical miles

Figure 45. Hopping phase of the DR-RRT* algorithm with fixed obstacles.
Flight path shown as green arc from one drifting path to a new one.

Rewiring also occurs in the hopping phase, whereby drifting paths in adjacent

branches can be joined by flight to the newest node if it results in a lower cumulative

cost. In order to preserve the continuity of fmal paths in our version, rewiring is only

allowed on nodes that originate from or te1minate in a hop step. This ensures that control

authority exists for the AquaQuad on the new path. The result of one simulation of the

DR-RRT* algorithm, which te1minates once the Goal point is achieved, is shown in

Figure 46. In this case, the obstacle is located near the center of the ocean cmTent v01tex,

so that many of the black drift paths are unsuitable without flight. The fmal path created

70

by the algorithm is shown in magenta and requires fom periods of flight whose combined

length is less than that required for direct flight.

Dead Reckoning - Rapidly Exploring Random Tree Star (DR-RRT") Algorithm in a Current Field

tJj

..Q!

.E
iii
0

~
«<
c:
c
0
~ s c.

I

>-

Figme 46.

2.

5 r---~~~~~~~~~~~~~~~r-~-r-r-,--

4

3

2

1

0

-1

-2

-3 ..

4

-5
-5

------;;... Current

* Start

* Finish

4 -3 -2 -1 0 2 3 4 5
X-position, nautical miles

DR-RRT* algorithm with fixed obstacles. Final path is shown in
magenta . Evaluated flight paths are represented as green aTcs.

Evaluated drift paths are represented as back lines.

DR-RRT* Objective Function

One of the useful features of the RRT* is that the objective or "cost" function, can

be utilized to shape the paths that are generated to the goal. The use of objective

functions is a common way of combining multiple criteria to be optimized into a

weighted and linearly combined sum. For om pmposes, we desire paths that are energy­

efficient, so we began with the energy balance shown in Equation (IV.14) that is based

upon the discussion in Chapter IT. C.

71

 (IV.14)

We also desire paths that have desirable geometry for the tracking mission (i.e.,

minimal HDOP) and of course those that reach the goal point. The energy terms are a

function of time spent in a drifting or flying state, however the HDOP and distance to

goal terms are a function of position. These computations are conducted in real-time

depending upon the location of the node in the tree being analyzed, however Figure 47

and Figure 48 give a three-dimensional view of how distance to the goal and bearing-only

measurement HDOP change as the position of a generic “QuadRotor #4” changes.

Figure 47. Value of the objective function element “Dist2Goal” with adjusted

Quadrotor position in the configuration space

()

,200
20

1400 ,
24

FlightDist nmFlightEnergy W
kts

SolarEnergy Wh DriftTime hrs
hrs

 =  
 
 =  
 

 72

Figure 48. Value of the objective function element “HDOP” for Bearing-only

measurements with adjusted Quadrotor position in the configuration
space

The HDOP values in Figure 48 are of particular interest, as it can be seen that for

bearing-only measurements (see Figure 32 for the case of TDOA measurements), a

singularity exists when QuadRotor #4 is directly on top of the target. In addition, a ridge

of high HDOP is present that spans from the location of QuadRotor #1 to QuadRotor #3.

This is a visual indication of the degradation in HDOP due to co-alignment between

sensors, see discussion in Chapter IV.A.1.

With the terms for HDOP and distance to the goal (Dist2Goal) now included, we

normalized all components and scaled each of the terms with a gain Ki as seen in

Equation (IV.15).

 73

 (IV.15)

Note the negative sign associated with the solar energy term K4 of Equation (IV.15). This

is to account for the energy gain associated with drifting. Longer drifting periods

minimize the cost of travel and create a desirable bias towards the selection of these

paths.

One of the common issues with the use of objective functions is that they are very

sensitive to weighting and this can have effects upon their optimality [29]. Therefore,

determination of the magnitude of each Ki term was conducted empirically. Some

interesting results were generated during these trials. Specifically, if the K4 term was too

large, Equation (IV.15) became a decreasing function with distance traveled. This had

undesirable side effects during the Rewire step, where loops were made in the final path

that did not reach the goal. Figure 49 illustrates this behavior with generic values for the

cumulative cost at each point of consideration.

Figure 49. Improper rewire behavior exhibited with excessive weighting on

solar energy term of cost function in DR-RRT* algorithm

1 2

3 4

4

1

2 ...

1

o

o

t t

MAX MAXt

MAX MAX

i
i

HDOP Dist GoalJ K K
HDOP Dist

FlightEnergy SolarEnergyK K dt
FlightEnergy SolarEnergy

where K

+∆

=

   
= +   

   

   
+ −   

   

=

∫

∑

 74

Drifting from Point 1 in Figure 49, there is an accumulation of negative cost

associated with absorbed solar energy that drops the cumulative cost of reaching Point 2

down to “4.” At this point, the algorithm determines a Hop is necessary (due to

increasing distance to the Goal point or obstacle impact), and flight is allowed to Point 3

at an additional cost of +2. At this point, as described in Section IV.B.2, the DR-RRT*

looks to rewire with a nearby node in the tree. Point 4 is improperly selected for rewire

since flight raises the cumulative cost of obtaining this point to only “8”, which is less

than that obtained by drifting from Point 1 to Point 4 at the onset. It can be seen that this

creates an infinite loop from 2-3-4-2 that does not reach the goal.

Table 3 shows the final Ki terms selected for our DR-RRT* and the qualitative

justifications for their selection. In addition, it should be stated that during drift paths the

K3 term is switched to zero as no flight occurs in these phases and once again that the

cost function of Equation (IV.15) has a negative sign associated with K4. The MATLAB

implementation of the DR-RRT* code can be found in Appendix C.

Table 3. Gain terms applied in cost function of DR-RRT* algorithm with
justifications for usage

Value Associated Term Justification
K 4 0.005 Solar Energy In Small value to maintain cost an increasing function with distance traveled
K 3 0.95 Flight Energy Out Large value to heavily penalize flight
K 2 0.0225 Distance To Goal Bias towards paths which grow towards the goal
K 1 0.0225 HDOP Bias towards paths with minimal HDOP for improved tracking

 75

THIS PAGE INTENTIONALLY LEFT BLANK

 76

V. SIMULATION AND TESTING

The algorithms created in this thesis were designed with the ultimate goal in mind

that they will be fielded on the future AquaQuad. To that end, we seek to explore the

real-time implementation of the UKF and DR-RRT* concepts in live testing. We also

require some validation of the DR-RRT*’s professed energy-efficiency benefits for the

AquaQuad. This chapter details those steps and their results.

All simulations were conducted utilizing MathWorks’ MATLAB and SIMULINK

software utilizing a Dell Optiplex 790 desktop computer with 4 GB RAM and an Intel

Core i7-2600 processor operating at 3.40 GHz with a Windows 7 64-bit operating

system. All testing was conducted at the Naval Postgraduate School’s Center for

Autonomous Vehicle Research in Monterey, CA.

A. DR-RRT* ALGORITHM ANALYSIS

The RRT*’s guarantees on optimality are tied to the concept of infinite time. In

the finite-time world application, optimality is sought but not guaranteed. The RRT* can

terminate once a solution is found, or it can continue to find paths that further minimize

the objective function. This comes at the cost of computation time, whereas it may be

preferable to find a rapid “good enough” solution instead. A simple question is then: How

much is “good enough”?

1. Single-solution DR-RRT*

To explore the gains obtained by running the DR-RRT* beyond its initial solution

point, we needed to first gather some statistics on the single-solution algorithm. To do

this, we used a Monte Carlo approach where the data from 1,000 simulations was

collected for analysis.

An initial obstacle set was randomly generated and then fixed in place for future

simulations to ensure consistency. The goal probability (defined in Chapter IV.B.2) was

set at 0.05, so the finish point was selected as the random target for flight approximately

5 percent of the time. The positions of three other AquaQuads were simulated at (2.5,

 77

2.5), (2.5, -2.5) and (-2.5, -2.5) respectively as inputs to the HDOP calculation. At the

algorithm’s conclusion sequential flight segments were combined.

Four of the successful trees are displayed in Figure 50. Once again, the black lines

represent unsuccessful drift paths, and the green arcs represent unsuccessful “hop” steps

of limited flight. At the algorithms conclusion, sequential hop segments were joined into

a single period of flight. The final successful path is shown in magenta. The four trees

shown are useful to highlight some expected tendencies of the DR-RRT*.

Figure 50. Successful paths (shown in magenta) obtained from a Monte Carlo

simulation conducted using the DR-RRT* algorithm with a fixed
obstacle field

Given the vortex ocean current flow, it was anticipated that successful paths

would not be generated from the lower left-hand quadrant. In these regions the current

 78

flow drives the AquaQuad away from the goal, which is undesirable from both a

conceptual and mathematical standpoint, since these paths maximize the Dist2Goal term

of the objective function and force hop steps. This behavior is evident in Figure 50, as all

successful paths occur towards the right of the obstacle; a region where ocean current

tends to drive the AquaQuad towards the finish. Another trend of interest is the tendency

for the AquaQuad to often fly directly to the goal once the tree crosses the x-axis into the

negative y region. All ocean current vectors drive away from the Goal in this location, so

the algorithm aggressively hops and ultimately strikes the finish marker.

The primary data points of interest from the Monte Carlo simulation are the

energy expended in the successful path and the time it took to run the algorithm to its

conclusion. These values were stored at the completion of every tree that reached the

Goal and are displayed in Figure 51.

 79

I!?
100

_,:
:::
~ 80

"2-
:!3 60
>-
e>
~
w
l::
.21 u:

800
<II

~
0

E 600

Figure 51.

Flight Energy Expended Using a DR-RRT" Path Planner

• DR-RRT"

- - Direct Flight

•
• • • •

• •

100 200 300 400 500 600 700 800 900 1000
Simulation Number

DR-RRT" Computation Time

• • •
• • • • •

100 200 300 400 500 600 700 800 900 1000
Simulation Number

Energy expenditure and computation time of 1,000 1uns of the DR­
RRT* algorithm. Direct flight baseline is shown in red in the top

figure and represents flying the straight-line distance between Sta1t
and Goal points

The red line at the top of Figure 51 represents the 49 .5Wh of energy that would be

expended in direct flight between the Start and Goal positions. Overall, the results of the

simulation were very positive. The mean energy value of the sample set was 38.69Wh

with a standard deviation of 6.81Wh, an improvement of approximately 22 percent.

Computation time was sh01t, with a mean value and standard deviation of 190ms and

90ms, respectively.

It can be seen in the top p01tion of Figure 51 that relatively infrequently the DR­

RRT* found paths that utilized more energy than that consumed during direct flight. In

application, the algorithm could be forced to lllll again. An altemative viewpoint is that

since traversing the DR-RRT* paths take several hours of time, a staggered approach to

80

flight may be more desirable. During that time the AquaQuad will be contributing

measurements to the tracking scenario and absorbing solar energy during daylight hours,

and the path it is following will be obstacle-free. Conversely if the AquaQuad were to fly

directly to the goal point its drifting status would be unregulated without further planning.

This raises the risk of impacting an obstacle or drifting to areas of poor HDOP.

2. Multi-solution “Optimality-Seeking” DR-RRT*

With the statistics from the single-solution DR-RRT* determined, we then seek a

qualitative and quantitative comparison to the result of a DR-RRT* simulation that is

allowed to run far past its initial solution. In doing so, the algorithm will continue to find

new paths to the goal while rewiring existing paths in order to make the final path closer

to optimal. We use the term “optimality-seeking” for this evaluation, and we expect that

the minimum-cost path from the optimality-seeking DR-RRT* will improve upon the

mean value of the single-solution DR-RRT* energy consumption at the expense of

computation time.

We again utilized a Monte Carlo approach to develop statistics, collecting data

from 1000 simulations of the optimality-seeking DR-RRT*. Each simulation was allowed

to run for 25,000 iterations and the successful paths to the goal were aggregated. The path

with the minimum energy expenditure that reached the goal was selected, the flight

energy expended on that path and computation time recorded, and a new simulation was

conducted. Four of the successful trees are displayed in Figure 52.

 81

Figure 52. Successful paths (shown in magenta) obtained from a Monte Carlo

simulation conducted using the optimality-seeking DR-RRT*
algorithm with a fixed obstacle field. Candidate paths omitted.

Unlike Figure 50, Figure 52 does not have the candidate paths drawn, only the

final solutions. Once again, we combine sequential hop segments in our final path into a

single period of flight (this behavior is evident in the top left tree of Figure 52). Figure 52

does share many of the same characteristics as its single-solution counterpart, namely the

bias in the path towards beneficial ocean current vectors. The true depiction of its

proposed benefit comes from the underlying data that is seen in Figure 53.

 82

I!! 100
.c.
..!.
iii
~ 80
-g
rn

60 :J
>-
~
Q)
r:::
w
E
.!2>
u:::

rn 8000
0
Q)
rn
E 7000
Q)
E
i= 6000 r:::
0

~ 1 5000
E
0

(.)
4000

0

Figure 53.

Flight Energy Expended Using an Optimality-Seeking DR-RRT* Path Planner

•

• Optimality-Seeking
--Direct Flight

100 200 300 400 500 600 700 800 900 1000
Simulation Number

Computation lime Required For DR-RRT* Path Planner

• Optimality-Seeking I

• •

100 200 300 400 500 600 700 800 900 1000
Simulation Number

Energy expenditure and computation time of 1,000 1uns of the
optimality-seeking DR-RRT* algorithm. Direct flight baseline is

shown in red in the top figure and represents flying the straight-line
distance between Stmi and Goal points

Once again, the solid red line signifies the 49.5Wh of energy expended in direct

flight. Ofpmiicular interest is the fact that none of the 1,000 simulations produced a path

that used more energy than direct flight. The mean energy value of the optimality-seeking

DR-RRT* sample set was 36.26Wh with a standard deviation of 3.93Wh. This is an

improvement of27 percent over direct flight but only six percent over the single-solution

DR-RRT*. This energy efficiency came at a small price, as the mean computation time

for the sample set was almost five seconds: 4,964msec with a standm·d deviation of

18.12msec, an increase in the mean of almost 2,500 percent over the single-solution DR­

RRT*.

83

3. DR-RRT* Evaluation Summary

Table 4 provides a summary of the pertinent data points collected in the Monte

Carlo analysis of the DR-RRT*. The benefit from running the algorithm beyond its initial

solution point is irrefutable, but these gains must be weighed against the computational

cost. The value of computation time is user-dependent and linked to the microprocessor

the code is being implemented upon.

Table 4. Summary of Monte Carlo simulation results contrasting a single-solution
DR-RRT* algorithm with that obtained by an optimality-seeking DR-
RRT*. Percent improvement based upon a direct flight comparison.

B. TESTING ENVIRONMENT AND CONTROL OVERVIEW

This section discusses the environment, platforms, and control structure that we

used to explore real-time implementation of our algorithms. Despite being evaluated

under slightly different scenarios, these elements were common to the testing of both the

UKF and DR-RRT* concepts and are therefore summarized here.

1. Environment: Center for Autonomous Vehicle Research

Testing was conducted in the lab space of the Center for Autonomous Vehicle

Research (CAVR). This space is instrumented with a Vicon motion tracking system [30]

that provides high resolution position (x, y, z) and orientation (roll, pitch, yaw) estimates

of objects in the camera’s cumulative frame of reference.

Mean
Standard
Deviation

Improvement over
Direct Flight† Mean

Standard
Deviation

Improvement over
Direct Flight†

Energy, Wh 38.69 6.81 22% 36.26 3.93 27%
Computation

Time, msec 190 90 - 4964 18 -

†Direct flight utilizes 49.5Wh of energy flying directly to goal point

Single-Solution DR-RRT* Optimality-Seeking DR-RRT*

 84

Figure 54. Vicon instrumented laboratory in the Naval Postgraduate School’s
Center for Autonomous Vehicle Research

To determine the pose of objects in the field, Vicon utilizes several optical

cameras mounted at high points in the lab space. Each of these cameras (far left of Figure

55), has rings of LED strobe lights surrounding the lens that cycle at a high frequency.

The light produced by the strobe is reflected off of markers affixed to objects in the field

of view (center of Figure 55), filtered through the lens and captured by a light sensitive

plate behind it [30]. This data is transmitted to a workstation PC (far right of Figure 55)

for reconstruction.

 85

Figure 55. Two of the CAVR lab’s Vicon cameras (far left), reflectors affixed

to a quadrotor shroud (center) and the Vicon Workstation (far right)

The object data produced by the Vicon Workstation is sent via an Ethernet router

to the user’s personal computer and can be ingested into SIMULINK via User Datagram

Protocol (UDP). For our purposes, the Vicon system facilitates testing of the UKF and

DR-RRT* algorithms in real-time through pseudo-measurements and control inputs that

are derived from the positions of all players in the field of view.

2. Platforms: Parrot AR.Drones

With the AquaQuads under construction, we required a proven commercial

substitute for testing, and Parrot’s AR.Drone platform is just that. The internal sensors on

board of the AR.Drone record and wirelessly transmit body velocity (u, v, w), orientation

(roll, pitch, yaw), altitude (z), and remaining battery life. Of perhaps larger importance is

their ability to also accept commands wirelessly, allowing them to be controlled with a

high degree of authority.

 86

Figure 56. Parrot AR.Drone quadrotor utilized for testing purposes

3. Control Structure

The overarching control scheme for the AR.Drones is depicted in Figure 57,

which highlights the flow of communications. The position and orientation of each

quadrotor was provided from the Vicon system at a frequency of 100Hz. This was used

as an input to the master laptop, which took the current state of the quadrotors and

produced control inputs to them at a frequency of 1Hz.

Figure 57. Communications overview for testing in the CAVR laboratory

Control commands for the quadrotors were produced utilizing proportional-

integral (PI) and proportional-integral-derivative (PID) controllers within the SIMULINK
 87

environment that sought to minimize the error between the state of the quadrotor and a

reference signal.

Vicon provides the position of the quadrotor within the camera’s frame of

reference. Commands provided to the AR.Drones needed to be translated into their fixed

body frame of reference whose origin is located at the center of the quadrotor itself. The

interested reader should consult Chapter 2 of either [1] or [18] for a full treatment of

reference frames and translation between them. For our purposes, translation between our

two right-handed coordinated frames is conducted using a direction cosine matrix of the

form

b c

b b c
c

b c

x x
y R y
z z

   
   =   
      

 (V.1)

where c represents the camera frame, b represents the body frame and

1 0 0 cos(0 sin(cos(sin(0
0 cos(sin(0 1 0 sin(cos(0

sin(cos(sin(0 cos(0 0 1

b
c R

θ θ ψ ψ
φ φ ψ ψ
φ φ θ θ

))) −)     
     =) −)))     
     )) −))     

 (V.2)

with φ , θ and ψ representing roll, pitch, and yaw respectively.

The block diagram representing the SIMULINK control system is shown in

Figure 58. The AR.Drone accepts heading rate ψ , roll angle φ , pitch angle θ , and

vertical velocity ZV commands. The PI and PID controllers take heading and position

references and subtracts the current state of the quadrotor to produce an error term. This

signal is then sent through raw (no alteration of error term) proportional, derivative, or

integrated channels, each multiplied by empirically-determined gains to produce the

desired commands. Of note, the velocity of the quadrotors utilized in the PID controller

was determined by taking the derivative of the Vicon position signal and then utilizing a

low-pass filter to remove the higher frequency oscillations, thereby smoothing it. The

primary style of implementation for all controllers is feed-back, complemented with a

feed-forward controller in the case of roll and pitch commands.

 88

Figure 58. Block diagram of SIMULINK control implementation for AR.Drone

quadrotors

The Trajectory Planner in Figure 58 is left as a generic entity that was modified

depending upon the test being conducted and will be discussed in the following sections.

C. UNSCENTED KALMAN FILTER TEST

The first test conducted in the CAVR lab was designed to evaluate the UKF-based

tracking algorithm on the quadrotors. We present the envisioned at-sea scenario that the

test is founded upon, provide some relevant implementation details, and then discuss its

results.

1. Unscented Kalman Filter Scenario

In the UKF test scenario, AquaQuads with TDOA measurement capabilities are

surrounding a target that is undergoing random motion. This target behavior differentiates

it from the linear motion simulated in the EKF/UKF comparison of Chapter III.E. For this

purpose, we placed each of three quadrotors in a Y-shaped configuration around the

object to be tracked in the center. The basic setup is shown in Figure 59.

 89

Figure 59. General scenario overview for the UKF tracking test showing the

position of sensors and the target (ocean current vectors not utilized
in CAVR lab)

In this test the ocean current vectors were not utilized, however each of the

searcher quadrotors was commanded to hold its position at an altitude of two meters in

order to simulate a floating AquaQuad. The quadrotors were also commanded to change

their heading to point in the direction of the estimated position. When the heading of each

quadrotor and the target location aligned, this provided a visual representation of the

filter’s convergence. These commands make up the function of the “Trajectory Planner”

block of Figure 58 for the UKF scenario.

The UKF equations from Figure 23 were modified for TDOA measurements and

incorporated within an embedded MATLAB function block for SIMULINK

implementation. This can be seen in Appendix B. In order to obtain TDOA pseudo-

measurements that would approximate those received by an actual sensor, we took

advantage of the Vicon position data available to the lab. Specifically, at every call to the

UKF the true range between the target and each quadrotor was determined. These ranges

were divided through by a common value for the speed of sound in the ocean (1500m/s)

to produce the time in seconds that it would take a signal to arrive at the AquaQuad.

These three separate reception times were then subtracted from one another to produce a

time-difference of arrival value ijτ , as discussed in Equation (II.7). Lastly, band-limited

white noise was added to the measurements with a power of 10-8, incorporating error into
 90

the measurement that the UKF would need to filter out in the estimation process. The

SIMULINK implementation is shown in Figure 60.

Figure 60. TDOA pseudo-measurement generation and signal routing for lab

testing of the unscented Kalman filter

The structures of the TDOA pseudo-measurements that emerge from the “Time

Difference” block of Figure 60, just before noise addition, take the form of Equation

(V.3) for ingestion by the UKF.

 91

12 1 2

23 2 3

13 1 3

Quad Quad

Quad Quad

Quad Quad

ArrivalTime ArrivalTime
ArrivalTime ArrivalTime
ArrivalTime ArrivalTime

τ

τ

τ

= −

= −

= −
 (V.3)

The physical setup at the CAVR lab consisted of three AR.Drone quadrotors and

a red helmet representing the target to be tracked. The limits of the Vicon camera studio

as-positioned are approximately 8 meters by 8 meters. Yellow markers were placed on

top of the quadrotor shrouds to denote the forward-looking axis of the drone. The target

motion was conducted at random.

Figure 61. Physical setup of the CAVR lab test for the UKF tracking of a target

(helmet, in red)

2. Unscented Kalman Filter Test Results

The lab test of the unscented Kalman filter was conducted several times and the

results from one of those evaluations is detailed. To begin, the UKF was initialized with

the state vector,

ˆ [, , , , ,] [0.5,0.5,0,0,0,0]T

o x yx x y u v a a= = (V.4)

initial covariance,

 92

and noise tenns,

Q = diag([1 Oe6
, 1 Oe6

, 1e6
, 1e6

, 1e6
, 1e6

])

R = diag([1e-6 ,1e-6 ,le-6])

(V.5)

(V.6)

The initial estimated position in the state vector was different from the tme

position of the target, located at [1.2551 , 0.9699] , by approximately 0.9 meters. The

TDOA pseudo-measurements provided to the UKF are shown in Figure 62, with the blue

reference line representing the raw (t:Iue) TDOA measurement before noise addition. The

mean value of the en or injected via white noise was 0.0011 seconds, relating to

approximately 1. 7 meters when multiplied by the speed of smmd.

IDOA UKF - Comparison of Meas. to Meas. with Noise

} ··:~.~;;ir.· ~
-0.01 L------'------'----L.._ __ ..L. -----'-------'-

0 20 40 60 80 100 120
Time, seconds

}~::~l
0 20 40 60 80 100 120

Time, seconds

}~::~l
0 20 40 60 80 100 120

Time, seconds

Figure 62. TDOA pseudo-measurements provided to UKF in real-time with added
noise shown

The results of the test were incredibly interesting, and the overall plots are shown

in Figure 63 and Figure 64. The mean square enor in the position estimate was 0.21

meters and 0.88 meters for the X andY positions, respectively. These values, however,

do not tell the entire tale.

93

Figure 63.

l!l
Q)

tl

3

2

E 0
vi

·~

>- -1

-2

-3

Comparison ofTrue and Estimated Target Position

* * * QR#1

* QR#2

* QR#3
0 Actual

Estimated

2 3 4
X-axis, meters

UKF estimated position overlaid on the actual target track

TDOA UKF - Residual (Estimated -Actual)
25~--~----~----~----~~==~==~

--X residual
--Y residual

20

15

5

-5~---L---~--~---~---L---_J
0 20 40 60 80 100 120

Time, seconds

Figure 64. UKF residual in estimating position of moving target

To explore the results of this test fmi her, it is use:fhl to break it down into smaller

time segments. When the test was first initialized, there is an expected initial overshoot as

94

the filter seeks convergence to the true position of the target. This is evident in the large

initial residual and UKF covariance seen in Figure 65, which pertains to [0,13]t s= .

Convergence occurs rapidly however, within two seconds, and this can also be seen in the

demo screenshot of Figure 65 where all yellow markers representing the heading angle of

each quadrotor are pointing towards the helmet.

Figure 65. Initial convergence of UKF position residual and covariance with

screenshot of lab demo displaying the heading of each quadrotor
pointing towards the estimated position of the target

Following this convergence, the helmet is donned and the target moves towards

the center of the quadrotors. Once again, as seen in Figure 66 from [13,55]t s= (with the

scale enlarged to show detail), there is minimal divergence in the estimated position.

 95

Figure 66. Continued convergence of estimated target location after first repositioning

of helmet

It is after this point in time where the position estimate of the UKF begins to have

larger overshoots in convergence. This error is clear in the overlay of Figure 63 and in the

residuals of Figure 64 from [55,120]t s= , as the estimated position swings away from the

true position, takes time to meet the actual position of the target and then slowly draws

away.

The reason for the roughly one meter offset in residual appears to be directly tied

to HDOP. Consider Figure 67, which shows HDOP and the residual as a function of

equivalent timestamps. There is a direct correspondence between the peaks in HDOP and

those in the residual. This further highlights the importance of including HDOP in the

path-planning mission. It has a large impact on the quality of the ultimate estimated

position.

 96

Figure 67. TDOA UKF residual peaks compared with the horizontal dilution of

precision at equivalent times

Of additional note, the minimum value for HDOP in the test was observed at

around the 55 second mark of Figure 67, corresponding to when the target is located near

the origin. This configuration maximizes the angles between the searching quadrotors,

thereby minimizing Equation (IV.13).

In general, the results of the UKF test were very encouraging. Position estimates

were excellent under favorable searcher geometry. The sporadic stop-and-start nature of

the target’s motion presents a challenge to the estimator when HDOP is large. Once it has

converged around a static position with negligible velocity, the effects of a sudden

change in the position of the target (as determined via the measurements) have a

characteristic rise time and overshoot, and this is exacerbated with relatively poor

dilution of precision.

D. DR-RRT* PATH FOLLOWING TEST

The next test conducted in the CAVR lab was to evaluate the paths produced by

the DR-RRT* algorithm and the ability of the quadrotors to follow them. Again, we

 97

present the envisioned at-sea scenario that the test is founded upon, provide some

relevant implementation details, and discuss the results.

1. DR-RRT* Path-Following Scenario

We considered the scenario of two AquaQuads that are tasked to reposition

themselves in order to maintain an ostensibly favorable initial geometric configuration.

The vortex ocean current pattern that we have utilized throughout this thesis continuously

draws the AquaQuads towards the center in simulation, making potential station-keeping

in this environment expensive from an energy consumption standpoint. Therefore, the

AquaQuads are directed to swap positions by following DR-RRT* paths.

Figure 68. Position swapping scenario for the DR-RRT* path following test

with ocean current vectors used to program simulated drifting
behavior into the AR.Drone quadrotors

In order to approximate the drifting and hopping behavior of the prototype

AquaQuads, it was necessary to make some modifications to the “Trajectory Planner”

block of Figure 58. Initial attempts at forcing the AR.Drone quadrotors to drift in air

currents generated by a fan were hampered by the proprietary Parrot software that

includes disturbance rejection when in a hovering state (i.e., the AR.Drone actively

fought against the air flow). Drifting was instead simulated with a “rabbit-following”

technique. At a 1Hz frequency, the position of the quadrotor was used to define the ocean

current in its vicinity via a lookup table. This ocean current velocity was used to create a

 98

waypoint, which was placed at one dead-reckoned time period away. At the next period,

the position of the quadrotor was evaluated to determine if it fell within a watch circle

radius around the waypoint; if so, another waypoint was generated in the same manner.

While following a drift path, the CAVR quadrotors were commanded to fly at an altitude

of one meter. When hopping, its altitude was raised to two meters and the quadrotor was

allowed to rapidly fly to the terminal location of the hop. In this way, the hops were

immediately visible to an observer.

At this point it is important to note that, like the envisioned AquaQuad

implementation it is based upon, the drift behavior of the AR.Drone is independent of the

DR-RRT* path. We place the quadrotor at the starting location of the DR-RRT* tree,

after which errors from external disturbances and regional ocean current approximations

are free to build. This is expected from a drifting platform. Path-specific position

commands are only provided to the quadrotor when it reaches a hopping location. Flight

steps that terminate at a defined location act to reset the drifting errors.

The map used within the DR-RRT* algorithm and the trajectory planner block is

shown in Figure 69 alongside of a screenshot of the physical quadrotors in their starting

locations for the video recorded demo.

Figure 69. Initialization phase of the DR-RRT* path-following lab test

 99

2. DR-RRT* Path-Following Test Results

The same DR-RRT* algorithm was run for each quadrotor simultaneously,

incorporating the initialization plot of Figure 69 and considering the starting position of

one the goal point of the other. Once a successful path to the goal was found, the script

terminated. This resulted in the trees of Figure 70, with Quad #1 on the left and Quad #2

on the right.

Figure 70. Result of DR-RRT* algorithm run for two quadrotors swapping

positions in the presence of simulated ocean current and an obstacle
field

It was anticipated that this scenario would result in opposing trees with similar

shapes, driven by the symmetry of the ocean current in which they operate. This was

indeed the case, as both trees find drift paths towards the origin and simply fly to the

finish once the opposing ocean current is no longer beneficial. Figure 71 removes all of

the branches analyzed in the tree for clarity and presents the final path that each

quadrotor must follow.

 100

Figure 71. Final path from DR-RRT* algorithm run for two quadrotors

swapping positions in the presence of simulated ocean current and an
obstacle field

With the paths so designated, the quadrotors in the lab were directed to follow

them. Figure 72 displays the overlay of each quadrotor’s position along the path sampled

at 1Hz by the Vicon system represented as red plus signs. The overarching result of the

test is that both quadrotors made it to their respective goal successfully by following the

DR-RRT* path. Figure 73 shows two screenshots of the test illustrating hopping

segments. The astute observer may note that Quad #1’s Vicon position in Figure 72

occasionally falls within the limits of the obstacle, despite the fact the DR-RRT* path

does not. This is a common issue with RRT’s in that they often consider the path-

follower to be a point mass with negligible dimension. A simple solution to this problem

is to enlarge the obstacle size by a safety factor (not shown) in the planning process. One

additional note is that the gaps in quadrotor position that visibly correspond to hop

segments are in fact a function of the increased speed of the quadrotors during these

segments, resulting in far fewer 1Hz samples for plotting. Therefore some of the position

updates in Figure 72 which fall either on obstacles or in mid-hop do not necessarily

represent erroneous drifting behavior.

 101

Figure 72. Plotted position overlay of Quad #1 and #2 following at DR-RRT*

generated path in the lab test

Figure 73. Screenshot of DR-RRT* path-following lab test showing a change in

altitude indicative of a hopping segment

To explore the result of the test further, we focus upon Quad #2, as it highlights

some interesting behavior. Figure 74 shows the initial path taken by Quad #2. Again,

gaps in position markers are a visual indication of hopping behavior. This is useful for the

reader, but is a byproduct of the relatively short flight length as compared to the sampling

frequency for position.

 102

Figure 74.

Quad #2.: Real-lime DR-RRT" Path Following

~Current * Quad #2. Start

-1

-1 -0.5 0 0.5 1.5
Xoposition, meters

Close up view of the actual position of Quad #2 along the DR-RRT*
path during the lab test

It is evident from Figure 74 that the position of Quad #2 does not exactly match

the path planned by the DR-RRT*. This behavior is precisely what we anticipated. The

paths were created assuming a perfect dead-reckoned solution in simulation. However,

even in our relatively disturbance-free lab environment, there was still a noticeable effect

from interaction between the propeller wash of each quadrotor. In addition, the location

of the AR.Drone after hopping was unregulated with respect to the drifting segments of

the DR-RRT* path; therefore the quadrotor was free to drift in whatever cmTent vector it

found itself in. Exactly like its envisioned real-world implementation.

At eve1y sampling interval, the trajectory planner block of Figure 58 would check

the position of the quadrotor and detennine if it fell within a watch circle radius of a

hopping location. If so, it would execute the hop segment. The size of the watch circle

must be designed with the expected drifting en or in mind. If the circle is too large,

excessive flight time and energy expenditure will be the result. If the circle is too small,

the drifter may miss it and stray far from the path, forcing the platf01m to re-plan a new

path. In light of our energy focus, the conservative approach is to en towards a smaller

watch circle at the cost of potential re-planning.

103

THIS PAGE INTENTIONALLY LEFT BLANK

 104

VI. CONCLUSIONS AND FUTURE WORK

In this thesis, we provide an overview of the prototype AquaQuad platform and

the capabilities it is being built to possess as a major force multiplier. Driving the purpose

of the AquaQuad is to perform target position estimation, and the quality of the flock’s

solution will directly impact either weapon effectiveness for submarine prosecution or

behavior analysis for marine mammal research. Meanwhile, the goal of providing these

estimates autonomously over a large time scale is fundamentally and near-universally

limited by the existing battery capacity available to AUVs. These aspects of the

envisioned mission motivated the efforts contained in this work to design and evaluate

two major algorithms that support the AquaQuad in the conduct of sustained, energy-

efficient surveillance.

A. UNSCENTED KALMAN FILTER ALGORITHM

 The first contribution adapted the existing unscented Kalman filter (UKF)

framework to the task of estimating the state of a target utilizing distributed nonlinear

measurements. The UKF was created, simulated and evaluated for quality incorporating

several different measurement types. The result of this analysis displayed its excellent

performance characteristics. In a bearing-only tracking scenario there was a near order of

magnitude difference in mean square position error as compared to the extended Kalman

filter.

Within the framework of nonlinear estimation, the horizontal dilution of precision

(HDOP) was explored as a metric for which to base the precision available to the

estimator as a function of sensor geometric positioning. The value of HDOP was seen to

be dependent upon range and orientation; however the specific proportionality was

shown to be tied directly to the measurement type.

The UKF was then implemented in real-time on quadrotors in the Center for

Autonomous Vehicle Research (CAVR) laboratory to track a target undergoing non-

uniform motion. The position estimate of the real-time UKF was excellent under

favorable geometry, while unfavorable (high HDOP) conditions resulted in greater filter

 105

convergence time to the true position of the target. This behavior highlighted the

importance of regulating the position of the sensor platforms to accomplish group

objectives.

Limitations on the results of our UKF implementation exist due to expected

variation in filter performance depending upon the values chosen by the user for process,

measurement, and initial Kalman filter covariance. The measurement covariance in

particular relates to actual sensor performance, which is controlled in our simulation and

testing through the use of pseudo-measurements. In addition, these pseudo-measurements

are provided at a consistent frequency, whereas acoustic emissions from targets are

expected to be intermittent.

B. DR-RRT* ALGORITHM

The second contribution of this thesis built upon current sampling-based methods

in the construct of a new and novel tool for path-planning: the Dead-Reckoning Rapidly-

Exploring Random Tree Star (DR-RRT*) algorithm. The DR-RRT* takes the infinite-

time optimality guarantees of the RRT* and incorporates limitations on AquaQuad

control authority designed to reduce expenditure of stored energy.

A Monte Carlo experiment was conducted to develop objective statistics for the

energy that was consumed using DR-RRT* paths. The result was a mean energy savings

of 22 percent over the energy that would have been expended flying directly to the goal.

When the DR-RRT* was allowed to run beyond its initial solution, that savings increased

to 27 percent at the expense of several seconds of additional computation time. Each of

the paths that were created was furthermore guaranteed to be obstacle-free and

incorporated an evaluation of HDOP at every branch to reduce the occurrence of poor

geometry with respect to the nonlinear estimation process.

Finally, the paths generated by the DR-RRT* were successfully followed by two

flying quadrotors in the CAVR lab. Each programmed to simulate drifting behavior in the

air; the quadrotors exchanged initial positions with a series of unregulated drifts and

directed hops as projected in the path provided to them.

 106

Limitations of the DR-RRT* method will be based upon the assumptions made in

the creation of the paths: most importantly the ocean current distribution that the

algorithm is initialized with. Live updates of local current flow and periodic re-planning

can assist in minimizing the error between prediction and reality.

C. FUTURE WORK

In our work, the concept of harvesting solar energy is presented using a 24-hour

average of solar radiation as a baseline. To ensure persistence in the battle space, a more

complex representation of available solar energy must be used based upon location, angle

of incidence, and most importantly time of day. These variables can be incorporated into

the DR-RRT* planning framework to better approximate the expected energy balance. A

global flock planner can then be designed that takes into account the projected battery life

of each AquaQuad and selects elements for repositioning based upon it.

This thesis has also briefly detailed the signal processing approaches used to

obtain measurements of a target’s location in the ocean. The actual sensor employed and

the specific signal processing techniques utilized must be constructed and tested for

implementation on the AquaQuad. The UKF code provided can then be tuned for the

sensor in use, adjusted to account for gaps in time between measurements and fielded in

an aquatic environment.

Physical construction of the AquaQuad is ongoing, and as such there is much

work to be done in the following realms:

1. Propulsion

Optimization of the motor and propeller combination can greatly increase the

performance of the quadrotor. The ocean environment is dynamic and highly corrosive;

therefore improvements to prevent long and short-term fouling of exposed parts will have

a large effect upon longevity of the platform at sea.

 107

2. Controls

Employment of the sensor beneath the AquaQuad will produce varying forces and

moments when repositioning. Modified control laws for slung loads can be investigated

to account for this.

3. Power Conversion and Storage

Battery selection is being finalized, yet integration of the solar array on board the

AquaQuad is incomplete. Studies regarding battery life-cycle analysis, photovoltaic

device maximum power point tracking (MPPT), and surface treatments for antifouling of

the solar cells can be conducted.

 108

APPENDIX A. ACOUSONDE TECHNICAL SPECIFICATIONS

 109

ACOUSOND8TM
LOW-POWER H YDROPH

MAGNETIC SWITCH v"lvrnr\c;:::.c
(ON UNDERSIDE)

LENGTH 22.1 011 (8. 7 in) WEIGHT IN AIR 262 g (9.2 oz) W~'{/ery
VOLUME 172 ml WEIGHT IN SEAWATER 86 g (3 0 oz)

TheAcousonde TM is a self-contained underwater
acoustic recorder comprising one or, optionally, two
hydrophones, sensors for attitude, orientation, depth
and temperature, a digital recorder, and a field­
replaceable battery. Attached to a subject with
suction cups or other means, the Acousonde mea­
sures the subject's sound environment as well as
potentially associated behavior.

In addition to its primary mission as a tool for
assessing the impact of noise on marine wildlife,
the Acousonde can be used to study vocalization
behavior of the tagged subject. The instrument
may also be applied as an autonomous recorder
suspended from a cable, placed on the seafloor,
or housed in a robotic or remotely-operated vehicle.

SPECIFICATlONS, ACOUSONDE 3A UNDERWATER ACOUSTIC RECORDER
Maximum operating depth (fixed build option) 500 m (-500m suffix) / 1000 m (-1km) 12000 m (-2km) /3000 m (-3km)
Maximum continuous acoustic sampling rate 232 kHz
Anti-alias filter, low-power (LP) channel 8-pole elliptic, adjustable (automatic) up to 9.2 kHz maximum
Anti-alias filter, high-frequency (HF) channel 6-pole linear phase, fixed
3-dB anti-alias cutoff 9.2 kHz (LP chan max): 42kHz (HF chan)
22-dBanti-aliascutoff 11.1 kHz (LPchan max): 100 kHz (HFchan)
3-dB high-pass cutoff 22 Hz (LP chan): 20 Hz/1 kHz/10 kHz (HF chan, fixed, customer spec)
Unamplified raw ceramic sensiti\Aty, re 1 VlpPa -201 dB (LP chan hydrophone) & -204 dB (HF chan hydrophone)
Saturation atO-dB gain, re 1 pPa zero-peak 187 dB (LP chan) & 176 dB (HF chan)
Aroustic gains, selectable at deployment 0 or +20 dB
Aroustic sampl ing resolution 1 6 bits
Auxiliary sampling rate Up to 800Hz (3D tilt), 40 Hz (3D compass), 10Hz (depth, temp)
Auxiliary sampling resolution 16 bits [except 10 bits for tilt)
Auxiliary sampl ing channels Depth (pressure), internal temperature,

3D tilt, 3D compass
Tot"' storage capacity (primary & spare)
Maxirnurn duration if sampling< 26kHz
Maximum measured data download rate

64GB, 128GB max (at sample rates < 26kHz, battery limits storage)
6-14 days depending on temperature and if aux sampling "'so active
3 .3 GB/hour via MiaoUSB connector Decemb~ 201 S

A rmwQre &Jpport for some specJffcatJons, p erlormQnce Qnd/or funct/onQf/ty mow be pendfng, see current re/eQse notes. fi.ltQ subject to c /JQnge wfthocrt not ice.

HOME PAGE http://www.acousonde.com ~ The AcousondeTM is rnade by
TECH QUESTIONS tech@acousonde.com Acoustimetrics, a brand of

SALES acousonde @cetaceanresearch.com Greeneridge Sciences, Inc.

_L

THIS PAGE INTENTIONALLY LEFT BLANK

 110

APPENDIX B. UNSCENTED KALMAN FILTER MATLAB CODE

function [Estimate, Residual, HDOP, NewP] =
fcn(SensorPosition,Measurement,PriorEstimate,PriorP)

%========INFO========
%LT Chase Dillard
%UKF Code for Bearing-Only Tracking
%11/26/2014

%Implemented in SIMULINK within a MATLAB function block
%Version: MATLAB R2014A
%Based upon: E. A. Wan and R. van der Merwe,
% “The Unscented Kalman Filter for Nonlinear
% Estimation,” IEEE, 2000.

%Inputs: SensorPosition - (x,y) position of the 3 bearing sensors
% Format: [x1,x2,x3,y1,y2,y3]
% Measurement - bearing to target in radians
% PriorEstimate - previous UKF state estimate (req’s unit delay)
% PriorP - previous UKF covariance (req’s unit delay)

%Outputs: Estimate - UKF estimate of target’s (x,y,u,v,ax,ay)’
% Residual - Delta b/w expected and actual measurement. Optional.
% HDOP - Horizontal dilution of precision for BOT. Optional.
% NewP - updated UKF covariance
%====================

%UKF Parameters
n=length(PriorEstimate); %number of states
deltat = 0.005; %time step, seconds
Q = 1e-6*diag([10 10 1 1 1 1]); %process noise
R = diag([0.001^2, 0.001^2, 0.001^2]); %measurement noise

%Conduct UKF
L=numel(PriorEstimate); %number of states
m=numel(Measurement); %number of measurements
alpha=1e-3; %spread of the sigma points
ki=0; %second scaling parameter ~0
beta=2; %prob dist of x, Gaussian
lambda=alpha^2*(L+ki)-L; %scaling factor
c=L+lambda; %scaling factor
Wm=[lambda/c 0.5/c+zeros(1,2*L)]; %weights for means
Wc=Wm;
Wc(1)=Wc(1)+(1-alpha^2+beta); %weights for covariance
c=sqrt(c);

%Determine sigma points
P = PriorP;
A = c*chol(P)’;
Y = PriorEstimate(:,ones(1,numel(PriorEstimate)));

 111

X = [PriorEstimate Y+A Y-A]; %sigma points around x

%Unscented transformation of process
L=size(X,2);
x1=zeros(n,1);
X1=zeros(n,L);
for k=1:L % propagation of sigma points through process fcn
 X1(:,k)=X(:,k)+[X(3,k)*deltat; X(4,k)*deltat; 0; 0; 0; 0];
 x1=x1+Wm(k)*X1(:,k); % weighted average
end
X2=X1-x1(:,ones(1,L));
P1=X2*diag(Wc)*X2’+Q; % weighted outer-product

%Unscented transformation of measurements
L=size(X1,2);
z1=zeros(m,1);
Z1=zeros(m,L);
for k=1:L % propagation of sigma points through nonlinear bearing fcn
 Z1(:,k)=atan2(X1(2,k)-SensorPosition(4:6),X1(1,k)-
SensorPosition(1:3));
 z1=z1+Wm(k)*Z1(:,k); % weighted average
end
Z2=Z1-z1(:,ones(1,L));
P2=Z2*diag(Wc)*Z2’+R; % weighted outer-product

%Final Calculations
P12=X2*diag(Wc)*Z2’; %transformed cross-covariance
K=P12*inv(P2); %Kalman gain calculation
Residual = Measurement-z1; %Residual for plotting
x=x1+K*(Measurement-z1); %state update
P=P1-K*P12’; %covariance update

%Parameters for dilution of precision calculation
R1=(x(2)-SensorPosition(4))^2+(x(1)-SensorPosition(1))^2;
R2=(x(2)-SensorPosition(5))^2+(x(1)-SensorPosition(2))^2;
R3=(x(2)-SensorPosition(6))^2+(x(1)-SensorPosition(3))^2;

%H matrix for HDOP calculation
H_HDOP = [-(x(2)-SensorPosition(4))/R1, (x(1)-SensorPosition(1))/R1;
 -(x(2)-SensorPosition(5))/R2, (x(1)-SensorPosition(2))/R2;
 -(x(2)-SensorPosition(6))/R3, (x(1)-SensorPosition(3))/R3];

%Outputs
HDOP = sqrt(trace(inv(H_HDOP’*H_HDOP)));
NewP = P;
Estimate = x;
Resid = Residual;

 112

function [Estimate, Residual, HDOP, NewP] =
fcn(SensorPosition,Measurement,PriorEstimate,PriorP)

%========INFO========
%LT Chase Dillard
%UKF Code for Time-Difference of Arrival Tracking
%11/26/2014

%Implemented in SIMULINK within a MATLAB function block
%Version: MATLAB R2014A
%Based upon: E. A. Wan and R. van der Merwe,
% “The Unscented Kalman Filter for Nonlinear
% Estimation,” IEEE, 2000.

%Inputs: SensorPosition - (x,y) position of the 3 TDOA sensors
% Format: [x1,y1,x2,y2,x3,y3]
% Measurement - TDOA measurement in seconds, specifically:
% Tau12 (Diff b/w arrival time of Sensor 1 and 2)
% Tau23 (Diff b/w arrival time of Sensor 2 and 3)
% Tau13 (Diff b/w arrival time of Sensor 1 and 3)
% PriorEstimate - previous UKF state estimate (req’s unit delay)
% PriorP - previous UKF covariance (req’s unit delay)

%Outputs: Estimate - UKF estimate of target’s (x,y,u,v,ax,ay)’
% Residual - Delta b/w expected and actual measurement. Optional.
% HDOP - Horizontal dilution of precision for TDOA. Optional.
% NewP - updated UKF covariance
%====================

%UKF Parameters
n=length(PriorEstimate); %number of states
deltat = 0.005; %time step, seconds
Q = 1e-6*diag([10 10 1 1 1 1]); %process noise
R = diag([0.001^2, 0.001^2, 0.001^2]); %measurement noise
C = 1500; %Ocean Sound Speed, m/s

%Conduct UKF
L=numel(PriorEstimate); %number of states
m=numel(Measurement); %number of measurements
alpha=1e-3; %spread of the sigma points
ki=0; %second scaling parameter ~0
beta=2; %prob dist of x; Gaussian
lambda=alpha^2*(L+ki)-L; %scaling factor
c=L+lambda; %scaling factor
Wm=[lambda/c 0.5/c+zeros(1,2*L)]; %weights for means
Wc=Wm;
Wc(1)=Wc(1)+(1-alpha^2+beta); %weights for covariance
c=sqrt(c);

%Determine sigma points
P = PriorP;
A = c*chol(P)’;
Y = PriorEstimate(:,ones(1,numel(PriorEstimate)));
X = [PriorEstimate Y+A Y-A]; %sigma points around x

 113

%Unscented transformation of process
L=size(X,2);
x1=zeros(n,1);
X1=zeros(n,L);
for k=1:L %propagation of sigma points through process fcn
 X1(:,k)=X(:,k)+[X(3,k)*deltat; X(4,k)*deltat; 0; 0; 0; 0];
 x1=x1+Wm(k)*X1(:,k); % weighted average
end
X2=X1-x1(:,ones(1,L));
P1=X2*diag(Wc)*X2’+Q; % weighted outer-product

%Unscented transformation of measurements
L=size(X1,2);
z1=zeros(m,1);
Z1=zeros(m,L);
for k=1:L %propagation of sigma points through nonlinear TDOA fcn
 Z1(:,k)=(1/C)*[sqrt((X1(1,k)-SensorPosition(1))^2+(X1(2,k)-
SensorPosition(2))^2)-sqrt((X1(1,k)-SensorPosition(3))^2+(X1(2,k)-
SensorPosition(4))^2); %Time delay b/w buoys 1 & 2
 sqrt((X1(1,k)-SensorPosition(3))^2+(X1(2,k)-
SensorPosition(4))^2)-sqrt((X1(1,k)-SensorPosition(5))^2+(X1(2,k)-
SensorPosition(6))^2); %Time delay b/w buoys 2 & 3
 sqrt((X1(1,k)-SensorPosition(1))^2+(X1(2,k)-
SensorPosition(2))^2)-sqrt((X1(1,k)-SensorPosition(5))^2+(X1(2,k)-
SensorPosition(6))^2)]; %Time delay b/w buoys 1 & 3
 z1=z1+Wm(k)*Z1(:,k); % weighted average
end
Z2=Z1-z1(:,ones(1,L));
P2=Z2*diag(Wc)*Z2’+R; % weighted outer-product

%Final Calculations
P12=X2*diag(Wc)*Z2’; %transformed cross-covariance
K=P12*inv(P2); %Kalman gain calculation
Residual = Measurement-z1; %Residual for plotting
x=x1+K*(Measurement-z1); %state update
P=P1-K*P12’; %covariance update

%Calculate range between target estimate and sensors for TDOA HDOP
R1T=sqrt((x(2)-SensorPosition(2))^2+(x(1)-SensorPosition(1))^2);
R2T=sqrt((x(2)-SensorPosition(4))^2+(x(1)-SensorPosition(3))^2);
R3T=sqrt((x(2)-SensorPosition(6))^2+(x(1)-SensorPosition(5))^2);

%H matrix for TDOA HDOP calculation
H_HDOP = 1/C*[(SensorPosition(3)-x(1))/R2T - (SensorPosition(1)-
x(1))/R1T, (SensorPosition(4)-x(2))/R2T - (SensorPosition(2)-x(2))/R1T;
 (SensorPosition(5)-x(1))/R3T - (SensorPosition(3)-x(1))/R2T,
(SensorPosition(6)-x(2))/R3T - (SensorPosition(4)-x(2))/R2T;
 (SensorPosition(5)-x(1))/R3T - (SensorPosition(1)-x(1))/R1T,
(SensorPosition(6)-x(2))/R3T - (SensorPosition(2)-x(2))/R1T];

%Outputs
HDOP = sqrt(trace(inv(H_HDOP’*H_HDOP)));

 114

NewP = P;
Estimate = x;
Resid = Residual;

 115

THIS PAGE INTENTIONALLY LEFT BLANK

 116

 APPENDIX C. DEAD-RECKONING RAPIDLY-EXPLORING
RANDOM TREE STAR CODE

%========INFO========

%LT Chase Dillard
%Dead-Reckoning Rapidly-Exploring Random Tree Star (DR-RRT*) Algorithm
%11/26/2014

%Requires the following custom MATLAB functions (included in Appendix):
% HDOP_Calc.m
% DR_RRTstar_Extend.m
% CellFinder.m

%Implemented in MATLAB. Version: MATLAB R2012b
%Based upon: S. Karaman and E. Frazzoli, “Optimal kinodynamic motion
% planning using incremental sampling-based methods,” in
% 49th IEEE Conference on Decision and Control,
% Atlanta, GA, 2010.

%====================

%% Create map space
clc;
clear all;
clf;

% Produce ocean current parameters and create map
[x1, x2] = meshgrid(-.5:0.05:0.5, -.5:.05:.5); %Sampling mesh of points
x1d = -x1 - 2 *x2 .*x1.^2+x2; %Equations defining vector field
x2d = -x1-x2;
SF = 10000; %Scaling Factor for map adjustment
x1 = SF.*x1; x2 = SF.*x2; %Scaling up map space
figure(1) %Plot the vector field
quiver(x1,x2,x1d, x2d,1,’Color’,’b’);
title(‘Dead Reckoning – Rapidly-Exploring Random Tree Star (DR-RRT*)
Algorithm in a Current Field’)
hold on;
axis tight;

% Other map parameters
GridSpace = length(x1); %One-sided dimension of grid
space
ObstacleSpace = zeros(GridSpace,GridSpace); %Establish obstacle
space grid for later population
MapLength = 0.5*(x1(GridSpace, GridSpace) - x1(1,1)); %Half of one-
sided dimension of X
xlimits = [x1(1,1) x1(GridSpace, GridSpace)]; %X limits of map
ylimits = [x2(1,1) x2(GridSpace, GridSpace)]; %Y limits of map
MaxDistance = sqrt((2*MapLength)^2+(2*MapLength)^2); %Max distance
possible for AquaQuads to travel. Used in cost fcn.

117

% Generate and plot obstacles
ObstaclePlot=[];
try
 for i=1:2;
 xObs = round(abs(GridSpace.*rand(1))); %X-coordinate of
random obstacle
 yObs = round(abs(GridSpace.*rand(1))); %Y-coordinate of
random obstacle
 wObs= round(abs(0.2*GridSpace.*rand(1))); %Width of random
obstacle
 hObs= round(abs(0.2*GridSpace.*rand(1))); %Height of random
obstacle
 ObstaclePlot = [ObstaclePlot; xObs yObs wObs hObs]; %Maintaining
obstacle position for later plotting
 ObstacleSpace(yObs:yObs+hObs,xObs:xObs+wObs)=1; %Filling
obstacles spaces with “1”
 rectangle(‘Position’, [-0.55*SF+(xObs)*0.05*SF 0.55*SF-
(yObs+hObs)*0.05*SF (wObs+1)*0.05*SF (hObs+1)*0.05*SF], ‘FaceColor’,
‘black’); %Plotting rectangle
 end
catch
 display(‘Error producing obstacles. Try again.’)
end

%% RRT Parameters

% Establish Standard User-Defined RRT Parameters
iterations = 10000; %Establish desired number of iterations
Start = [-4*SF/10 4*SF/10]; %Start Point
Finish = [3*SF/10 -3*SF/10]; %Final Goal Point
GoalProbability = 0.05; %Forces selection of Goal Point as Target
with a fixed probabilty
distThresh = 100; %Maximum distance to define success at goal
N = 5; %Number of Nearest nodes to Target to evaluate
dt = 60; %Time delta to integrate kinematics across, seconds
RewireRadius = SF/4; %Radius to look for nearest neighbors in
rewire step

% Establish Other RRT Parameters
Tree = [1 Start 1 0 0 0]; %Establishes Tree as [Node#,
x, y, Parent#, Branch Cost, Cumulative Cost, HopIndicator]
MaxFlightTime = 2; %Max desired flight time, minutes;
HopDistance = (20*2000)*(MaxFlightTime/60); %Maximum hopping
distance = (20 knots * X hours of flight), meters.
MaxHDOP = 9000; %Max HDOP possible in scenario.
Used in cost fcn. ASSUMED.
Quad2 = [5000 5000]; Quad3 = [5000 -5000]; %Positions of other
players on the perimeter
Quad4 = [-5000 -5000]; Sensors = [Quad2 Quad3 Quad4];
Sub = [(Finish(1) + 100) (Finish(2) + 100)]; %Sub position offset
to prevent singularity at Goal

 118

plothandle = []; %Handle for line plots of each
vertex. Enables deletion of vertices during Rewire.

% Plot initial and terminal positions
hold on
plot(Start(1),Start(2),’gp’,’MarkerSize’,14,’MarkerFaceColor’,’g’)
hold on
plot(Finish(1),Finish(2),’rp’,’MarkerSize’,14,’MarkerFaceColor’,’r’)
set(gca,’XTickLabel’,{‘-2.5’,’-2’,’-1.5’,’-1’,’-
.5’,’0’,’.5’,’1’,’1.5’,’5’,’2.5’})
set(gca,’YTickLabel’,{‘-2.5’,’-2’,’-1.5’,’-1’,’-
.5’,’0’,’.5’,’1’,’1.5’,’5’,’2.5’})
xlabel(‘X-position, nautical miles’)
ylabel(‘Y-position, nautical miles’)
grid on

%Cost function
% eta_solar = 0.24; %Solar cell efficiency, percent
% array_area = 0.3; %Solar cell area on AquaQuad, meters
solar_energy = 400; %Solar energy, calc’d offline as
(AvgRadiation*efficiency*array_area), Watt-hours in a 24-hr period
flight_power = 200; %Power required for flight, Watt
FlightEnergyMax = flight_power*(MaxFlightTime/60); %Energy req’d for
maximum time of flight
SolarEnergyMax = solar_energy/24/3600; %Maximum solar energy possible
every second. NOTE: THIS ESSENTIALLY UNDOES THE WHOLE POINT OF THIS
CALCULATION

%Cost function gain terms
K1 = 0.0225; %Associated term is normalized HDOP
K2 = 0.0225; %Associated term is normalized Dist2Goal
K3 = 0.95; %Associated term converts 200W power used for 2 min
of flight. Gain makes this term “0.9” to dominate
K4 = 0.005; %Associated term is solar energy

%% Run DR-RRT* Loop

tic
for i = 1:iterations;

 % Dead reckon position
 [Cell, V, vx, vy] = CellFinder(Tree(end,2:3), x1, x2, x1d, x2d);
 NewBranch = DR_RRTstar_Extend(xlimits, ylimits, Tree(end,2:3), ‘DR’,
V, vx, vy, dt, x1, x2, ObstacleSpace);

 % Add dead reckoning position to Tree and plot it
 if ~isempty(NewBranch)

 %Determine cost of new branch
 Dist2Goal = sqrt((Finish(1)-NewBranch(1))^2+(Finish(2) -
NewBranch(2))^2);
 HDOP = HDOP_Calc(NewBranch,Sub,Sensors);
 flight_time = 0; %Drifting phase, no flight
 119

 Cost = (K1*(HDOP/MaxHDOP) + K2*(Dist2Goal/MaxDistance) +
K3*((flight_power*(flight_time/60))/FlightEnergyMax) -
K4*(solar_energy/24/3600/SolarEnergyMax))*dt;

 % Add new branch to the tree
 tlength = size(Tree,1); %Size of tree before element
addition
 Tree(tlength+1,1) = tlength+1; %Assigns number as newest node
 Tree(tlength+1,2) = NewBranch(1); %New Node X-position in tree
 Tree(tlength+1,3) = NewBranch(2); %New Node Y-position in tree
 Tree(tlength+1,4) = Tree(tlength,1); %Keeps track of parent
 Tree(tlength+1,5) = Cost; %Cost of branch
 Tree(tlength+1,6) = Tree(tlength,6) + Cost; %Cumulative Cost of
Family (Path)
 Tree(tlength+1,7) = 0; %Indicator variable for Hopping
behavior added

 % Plot new branch
 figure(1);
 plothandle(length(Tree)) = plot([Tree(tlength,2) NewBranch(1)],
[Tree(tlength,3) NewBranch(2)],’k’);

 % If branch got close enough to the Goal, terminate script
 if (sqrt((NewBranch(1)-Finish(1))^2+(NewBranch(2)-Finish(2))^2) <
distThresh)
 display(‘Success!’)
 Success = 1; %Indicator variable
 break
 end

 % Evaluate for negative gradient in distance to the Goal
 if exist(‘LastDist2Goal’,’var’)
 RangeGradient = (LastDist2Goal - Dist2Goal)/dt;
 end
 LastDist2Goal = sqrt((Finish(1)-NewBranch(1))^2+(Finish(2) -
NewBranch(2))^2);

 end

 % Iterate counter for Dist2Goal gradient <= .1 or unsuccessful branch
 if i ~=1 && (RangeGradient <= .1 || isempty(NewBranch));
 Counter = Counter + 1;
 else
 Counter = 0;
 end

 % If Dist2Go gradient is < .1 for greater than 10 iterations, Hop.
 if Counter >= 10;
 Hop = 1; % Hop indicator for plotting
 Counter = 0; % Resets counter

 % Pseudo-randomly select Target point in grid space
 RandomNumber = rand;
 if RandomNumber < GoalProbability

 120

 Target = Finish;
 elseif RandomNumber > GoalProbability
 Target = random(‘Uniform’,-1,1,1,2) * MapLength;
 end

 % Find the ID of closest nodes
 NodeDistances = sqrt((Tree(:,2)-Target(1)).^2+(Tree(:,3)-
Target(2)).^2);
 [Distance, ClosestNodeNum] = sort(NodeDistances);

 % Determine optimal node of “N” closest points
 try
 for j = 1:N;
 NearNode = Tree(ClosestNodeNum(j),2:3);
 Dist2Goal = sqrt((Finish(1)-NearNode(1))^2+(Finish(2) -
NearNode(2))^2);
 HDOP = HDOP_Calc(NearNode,Sub,Sensors);
 flight_time = MaxFlightTime; %Nominal minutes of flight
required
 J(j) = (K1*(HDOP/MaxHDOP) + K2*(Dist2Goal/MaxDistance) +
K3*((flight_power*(flight_time/60))/FlightEnergyMax) -
K4*(solar_energy/24/3600/SolarEnergyMax))*dt;
 end
 catch %This statement prevents error when less than “N” branches
in tree
 end

 % Select minimum cost & corresponding optimal node
 [~,I]=min(J);
 OptimalNode = Tree(ClosestNodeNum(I),2:3);
 Dist2Goal = sqrt((Finish(1)-OptimalNode(1))^2+(Finish(2) -
OptimalNode(2))^2);

 % Conduct hop maneuver to Target (or Goal, if close)
 if Dist2Goal <= HopDistance; %If Goal is in range, fly to
Finish.
 NewBranch = Finish;
 flight_time = MaxFlightTime; %Nominal minutes of flight required
 Cost =
(Dist2Goal/HopDistance)*K3*((flight_power*(flight_time/60))/FlightEnerg
yMax);
 else
 V = HopDistance/dt; %Forcing velocity to account for longer
flight time than sim timestep
 NewBranch = DR_RRTstar_Extend(xlimits, ylimits, OptimalNode,
Target, V, vx, vy, dt, x1, x2, ObstacleSpace);
 flight_time = MaxFlightTime; %Nominal minutes of flight required
 Cost = K3*((flight_power*(flight_time/60))/FlightEnergyMax);
 end

 % Add new branch and Rewire the tree.
 if ~isempty(NewBranch);
 tlength = size(Tree,1); %Size of tree before
element addition

 121

 Tree(tlength+1,1) = tlength+1; %Assigns number as
newest node
 Tree(tlength+1,2) = NewBranch(1); %New Node X-position
in tree
 Tree(tlength+1,3) = NewBranch(2); %New Node Y-position
in tree
 Tree(tlength+1,4) = ClosestNodeNum(I); %Keeps track of
parent
 Tree(tlength+1,5) = Cost; %Cost of branch
 Tree(tlength+1,6) = Tree(ClosestNodeNum(I),6) + Cost;
%Cumulative Cost of Family (Path)
 Tree(tlength+1,7) = 1; %Indicator variable for
Hopping behavior added

 % Plot flight arc.
 figure(1);
 Xa = [OptimalNode(1) mean([OptimalNode(1) NewBranch(1)])
NewBranch(1)]; %[Start Intermediate End]
 Ya = [OptimalNode(2) mean([OptimalNode(2) NewBranch(2)])+1e3
NewBranch(2)]; %[Start Intermediate End]
 t = 1:numel(Xa);
 ts = linspace(min(t),max(t),numel(Xa)*10);
 xx = spline(t,Xa,ts); yy = spline(t,Ya,ts); %
Create close mesh of points
 plothandle(length(Tree)) = plot(xx,yy,’g’); % Plot
flight curve
 plot([OptimalNode(1) NewBranch(1)],[OptimalNode(2)
NewBranch(2)],’or’) % Plot endpoints for reference

 % If branch got close enough to the target, terminate script
 if i ~= 1 && (sqrt((NewBranch(1)-Finish(1))^2+(NewBranch(2)-
Finish(2))^2) < distThresh ||...
 (NewBranch(1) == Finish(1) && NewBranch(2) == Finish(2)))
 display(‘Success!’)
 Success = 1; %Indicator variable
 break
 end

 % Rewire tree (Makes Newest Node the parent of a Near Node if
lower cost)
 try
 % Find the ID of closest nodes to New Branch
 NodeDistances = sqrt((Tree(1:end-1,2)-
NewBranch(1)).^2+(Tree(1:end-1,3)-NewBranch(2)).^2);
 [Distance, ClosestNodeNum] = sort(NodeDistances); %Sort
distance array from min to max

 for j = 1:N;

 % Evaluate cost function which is proportional to max flight
distance.
 flight_time = MaxFlightTime;

 122

 J(j) =
(Distance(j)/HopDistance)*K3*((flight_power*(flight_time/60))/FlightEne
rgyMax);

 % If cost-effective, within RewireRadius, and already a Hop
point itself (take-off or landing), make Newest Node its parent
 if (Tree(length(Tree),6) + J(j)) < Tree(ClosestNodeNum(j),6)
&& Distance(j) <= RewireRadius && (Tree(ClosestNodeNum(j),7) ~= 0 ||
Tree(Tree(ClosestNodeNum(j),4),7) ~= 0)
 display(‘Rewire Made!’)

 %Reassign parent, update cost
 deltaCost = (Tree(length(Tree),6) + J(j)) -
Tree(ClosestNodeNum(j),6); %Retain cost delta for rewire use
 Tree(ClosestNodeNum(j),4) = Tree(length(Tree),1);
%Replace parent
 Tree(ClosestNodeNum(j),5) = J(j); %Assign new
cost
 Tree(ClosestNodeNum(j),6) = Tree(length(Tree),6) + J(j);
%Replace cumulative cost
 Tree(ClosestNodeNum(j),7) = 1; %Indicator
variable for Hopping behavior added

 %Update plot
 delete(plothandle(ClosestNodeNum(j))) %Deletes
old branch
 Xa = [NewBranch(1) mean([NewBranch(1)
Tree(ClosestNodeNum(j),2)]) Tree(ClosestNodeNum(j),2)]; %[Start
Intermediate End]
 Ya = [NewBranch(2) mean([NewBranch(2)
Tree(ClosestNodeNum(j),3)])+1e3 Tree(ClosestNodeNum(j),3)]; %[Start
Intermediate End]
 t = 1:numel(Xa); ts = linspace(min(t),max(t),numel(Xa)*10);
 xx = spline(t,Xa,ts); yy = spline(t,Ya,ts); %
Create close mesh of points
 plothandle(length(Tree)) = plot(xx,yy,’g--’); % Plot
flight curve
 plot([NewBranch(1) Tree(ClosestNodeNum(j),2)],[NewBranch(2)
Tree(ClosestNodeNum(j),3)],’or’) % Plot endpoints for reference

 %Update cumulative cost for the children
 ChildrenIndex = find(Tree(:,4) == ClosestNodeNum(j));
%Find children of reassigned node
 while ~isempty(ChildrenIndex)
 Tree(ChildrenIndex,6) = Tree(ChildrenIndex, 6) +
deltaCost; %Update children’s new cumulative cost
 ChildrenIndex = find(Tree(:,4) == ChildrenIndex);
 end
 end
 end
 catch %This statement prevents error when less than “N” branches
in tree
 end

 123

 end
 else
 Hop = 0;
 end
end

toc %Outputs computation time for simulation

%If unsuccessful, output statement
if (Success ~= 1 && i == iterations)
 fprintf(‘After %d iterations, goal was not reached...\n’,
iterations);
 legend(‘Current’,’Start’,’Finish’,’Branches’)
end
%% Plot Results & Assemble Final Tree

% Plots final path from Finish back to Start
if exist(‘Success’,’var’),
 PreviousX = Finish(1);
 PreviousY = Finish(2);
 CurrentNode = Tree(length(Tree),:);

 % Backtrack the successful path
 FlightEnergyFinal = 0;
 for k = 1:iterations;

 % Find parent of current node
 ParentNodeID = CurrentNode(4);

 % Plot branch of best path
 if Tree(CurrentNode(1),7) == 0; %Neglects flight arcs
 plot([PreviousX Tree(ParentNodeID,2)],...
 [PreviousY Tree(ParentNodeID,3)], ‘r’, ‘LineWidth’, 2);
 hold on;
 else
 plot([PreviousX Tree(ParentNodeID,2)],...
 [PreviousY Tree(ParentNodeID,3)], ‘r-.’, ‘LineWidth’, 2);
 FlightEnergyFinal = FlightEnergyFinal +
flight_power*(sqrt((Tree(ParentNodeID,2)-
PreviousX)^2+(Tree(ParentNodeID,3) - PreviousY)^2)/2000/20);
 end

 % Change current node to its parent
 CurrentNode = Tree(ParentNodeID,:);
 PreviousX = CurrentNode(2);
 PreviousY = CurrentNode(3);

 % If startpoint was reached, terminate plot script
 if ((PreviousX == Start(1)) && (PreviousY == Start(2)))
 break;
 end
 end

 % Display preliminary information
 124

 fprintf(‘\nNumber of iterations to find solution: %d \n’, i);
 fprintf(‘Cumulative “Cost” of Path: %.3f \n’, Tree(end,6));
 fprintf(‘Energy Used in Path for Flight: %.3f Watt-hours \n’,...
 FlightEnergyFinal);
 fprintf(‘Energy Used in Direct Flight: %.3f Watt-hours \n’,...
 flight_power*(sqrt((Finish(1)-Start(1))^2+...
 (Finish(2) - Start(2))^2)/2000/20)); %Distance converted to nm and
divided by nominal 20kts speed
 fprintf(‘Potential Energy Gain from Solar: %.3f Watt-hours \n’,...
 k*dt*solar_energy/24/3600);
 legend(‘Current’,’Start’,’Finish’,’Branches’)

 % Assembles final tree for aggregation step where combine multiple
hops
 for k = 1:iterations;
 if k ~= 1;
 FinalTree(k,:) = Tree(ParentNodeID,:);
 if ((Tree(ParentNodeID,2) == Start(1)) && (Tree(ParentNodeID,3)
== Start(2)))
 break; % If startpoint was reached, terminate tree assembly
loop
 end
 else
 FinalTree(k,:) = Tree(length(Tree),:);
 end
 ParentNodeID = FinalTree(k,4);
 end
 fprintf(‘Estimated time to traverse path: %.3f hours\n’,
(length(FinalTree)-sum(FinalTree(:,7)))*dt/3600 +
sum(FinalTree(:,7))*MaxFlightTime/60);

 % Aggregates consecutive hops
 k=1;
 for j = 1:length(FinalTree);

 k = k + 1; %Separate counter used due to necessary resizing of
FinalTree
 if k > length(FinalTree) %Ends loop once we reach the end of the
resized FinalTree
 break;
 end
 if FinalTree(k,7) ~= 0 && FinalTree(k-1,7) ~= 0 %If “hop-indicator”
variable is nonzero, indicating flight

 %Reassign parent (Note: Does not recompute individual or
cumulative cost)
 FinalTree(k-1,4) = FinalTree(k+1,1);

 %Remove redundant row from Final Tree
 FinalTree = [FinalTree(1:k-1,:); FinalTree(k+1:end,:)];
 k=k-1; %Roll back counter to account for removal of redundant row
 end
 end

 125

 % Plot the revised path
 fprintf(‘\n Aggregating consecutive hop steps... \n’)
 pause(2)
 FlightEnergyFinalRevised = 0;
 for k = 2:length(FinalTree);

 if FinalTree(k-1,7) == 0; %Plot drift paths
 plot([FinalTree(k,2) FinalTree(k-1,2)],[FinalTree(k,3)
FinalTree(k-1,3)], ‘m’, ‘LineWidth’, 2);
 hold on;
 else %Plot flight arcs
 plot([FinalTree(k-1,2) FinalTree(k,2)],[FinalTree(k-1,3)
FinalTree(k,3)], ‘m-.’, ‘LineWidth’, 2);
 Xa = [FinalTree(k-1,2) mean([FinalTree(k-1,2) FinalTree(k,2)])
FinalTree(k,2)]; %[Start Intermediate End]
 Ya = [FinalTree(k-1,3) mean([FinalTree(k-1,3)
FinalTree(k,3)])+1e3 FinalTree(k,3)]; %[Start Intermediate End]
 t = 1:numel(Xa);
 ts = linspace(min(t),max(t),numel(Xa)*10);
 xx = spline(t,Xa,ts); yy = spline(t,Ya,ts);
% Create close mesh of points
 plot(xx,yy,’m’); % Plot flight
curve
 plot([FinalTree(k-1,2) FinalTree(k,2)],[FinalTree(k-1,3)
FinalTree(k,3)],’or’) % Plot endpoints for reference
 FlightEnergyFinalRevised = FlightEnergyFinalRevised +
flight_power*(sqrt((FinalTree(k,2)-FinalTree(k-1,2))^2+(FinalTree(k,3)-
FinalTree(k-1,3))^2)/2000/20);
 end
 end
 fprintf(‘Energy Used in Path for Flight after Aggregation: %.3f Watt-
hours \n’, FlightEnergyFinalRevised);
 fprintf(‘Energy Used in Direct Flight: %.3f Watt-hours \n’,...
 flight_power*(sqrt((Finish(1)-Start(1))^2+...
 (Finish(2) - Start(2))^2)/2000/20)); %Distance converted to nm and
divided by nominal 20kts speed
end

 126

function [HDOP] = HDOP_Calc(QuadPosition,Sub,Sensors)

%========INFO========

%LT Chase Dillard
%Dead-Reckoning Rapidly-Exploring Random Tree Star (DR-RRT*) Algorithm
%HDOP Function
%11/26/2014

%Implemented in MATLAB. Version: MATLAB R2012b
%Based upon: Chapter 8 of J. A. Farrell, Aided Navigation: GPS with
% High Rate Sensors. New York: McGraw Hill, 2008.

%This function: Calculates the Horizontal Dilution of Precision
%using the assumed postion of the target and the other sensors in the
%group.

%====================

% Import positions of sensors
Quad1=QuadPosition; %Position of the node being analyzed
Quad2=Sensors(1:2); %Position of other players, initialized at start of
DR-RRT*
Quad3=Sensors(3:4);
Quad4=Sensors(5:6);

% Jacobian of nonlinear measurement for bearing-only tracking
R1=(Sub(2)-Quad1(2))^2+(Sub(1)-Quad1(1))^2;
R2=(Sub(2)-Quad2(2))^2+(Sub(1)-Quad2(1))^2;
R3=(Sub(2)-Quad3(2))^2+(Sub(1)-Quad3(1))^2;
R4=(Sub(2)-Quad4(2))^2+(Sub(1)-Quad4(1))^2;

H = [-(Sub(2)-Quad1(2))/R1, (Sub(1)-Quad1(1))/R1;
 -(Sub(2)-Quad2(2))/R2, (Sub(1)-Quad2(1))/R2;
 -(Sub(2)-Quad3(2))/R3, (Sub(1)-Quad3(1))/R3;
 -(Sub(2)-Quad4(2))/R4, (Sub(1)-Quad4(1))/R4];

%H matrix for Range-Only HDOP calculation, based upon GPS pseudorange
model
% H_HDOP = [(x_hat(2)-sensor(2))/sqrt(R1), (x_hat(1)-
sensor(1))/sqrt(R1);
% (x_hat(2)-sensor(4))/sqrt(R2), (x_hat(1)-sensor(3))/sqrt(R2);
% (x_hat(2)-sensor(6))/sqrt(R3), (x_hat(1)-sensor(5))/sqrt(R3);
% (x_hat(2)-sensor(8))/sqrt(R4), (x_hat(1)-sensor(7))/sqrt(R4)];

HDOP = sqrt(trace(inv(H’*H)));

end

 127

function [Cell, V, vx, vy] = CellFinder(TestNode, x1, x2, x1d, x2d)

%========INFO========

%LT Chase Dillard
%Dead-Reckoning Rapidly-Exploring Random Tree Star (DR-RRT*) Algorithm
%Cell Finder Function
%11/26/2014

%Implemented in MATLAB. Version: MATLAB R2012b

%This function: Determines cell placement based upon the (x,y) position
%of a selected test node. Exports the component ocean current velocity
%and speed at that location

%====================

% Determines the grid placement of current node
 for j = 1:2; %Variable switches between grids x1 and x2
 for k = 1:20
 if j == 1 && TestNode(j) >= x1(1,k) && TestNode(j) < x1(1,k+1)
 Cell(2) = k; %Column of x1
 break
 end

 if j == 2 && TestNode(j) >= x2(k,1) && TestNode(j) < x2(k+1,1)
 Cell(1) = k; %Row of x2
 break
 end
 end
 end

 for j = 1:2; %Capture endpoints not accounted for above
 if Cell(j) == 0
 Cell(j) = length(x1);
 end
 end
% Determines the components & magnitude of the ocean current at current
node
vx = x1d(Cell(1),Cell(2));
vy = x2d(Cell(1),Cell(2));
V = sqrt((vx)^2 + (vy)^2);
end

 128

function NewBranch = DR_RRTstar_Extend(xlimits, ylimits, OptimalNode,
Target, V, vx, vy, dt, x1, x2, ObstacleSpace)

%========INFO========

%LT Chase Dillard
%Dead-Reckoning Rapidly-Exploring Random Tree Star (DR-RRT*) Algorithm
%Extend Function
%11/26/2014

%Implemented in MATLAB. Version: MATLAB R2012b

%This function: Extends a branch in the direction of the Target. Checks
to
%see if the endpoint of this branch falls within an obstacle or outside
%the limits of the map. If it does, export NewBranch is empty. If not,
%export NewBranch is an (x,y) position.

%====================

if isnumeric(Target); %Flight extension

 % Use basic trig to determine heading
 Opposite = abs(OptimalNode(1) - Target(1));
 Adjacent = abs(OptimalNode(2) - Target(2));
 Hypotenuse = sqrt((OptimalNode(1)-Target(1))^2+(OptimalNode(2)-
Target(2))^2);
 sinPsi = Opposite/Hypotenuse;
 cosPsi = Adjacent/Hypotenuse;

 % Determine position delta
 dx = V*sinPsi*dt;
 dy = V*cosPsi*dt;

 % Conduct Euler integration of point-mass kinematics
 if (((OptimalNode(1) - Target(1)) < 0) && ((OptimalNode(2) -
Target(2)) < 0))
 NewBranch(1) = (OptimalNode(1) + dx);
 NewBranch(2) = (OptimalNode(2) + dy);

 elseif (((OptimalNode(1) - Target(1)) > 0) && ((OptimalNode(2) -
Target(2)) < 0))
 NewBranch(1) = (OptimalNode(1) - dx);
 NewBranch(2) = (OptimalNode(2) + dy);

 elseif (((OptimalNode(1) - Target(1)) < 0) && ((OptimalNode(2) -
Target(2)) > 0))
 NewBranch(1) = (OptimalNode(1) + dx);
 NewBranch(2) = (OptimalNode(2) - dy);

 else
 NewBranch(1) = (OptimalNode(1) - dx);
 NewBranch(2) = (OptimalNode(2) - dy);

 129

 end

else %Dead-Reckoning extension
 dx = vx*dt;
 dy = vy*dt;
 NewBranch(1) = (OptimalNode(1) + dx);
 NewBranch(2) = (OptimalNode(2) + dy);
end

% Check if it’s not out of bounds
if ((NewBranch(1) > xlimits(2)) || (NewBranch(1) < xlimits(1)) ||
(NewBranch(2) > ylimits(2))) || (NewBranch(2) < ylimits(1))
 NewBranch = [];
end

% Determines the grid placement of current node
if ~isempty(NewBranch)
 for j = 1:2; %Variable switches between grids x1 and x2
 for k = 1:20
 if j == 1 && NewBranch(j) >= x1(1,k) && NewBranch(j) < x1(1,k+1)
 Cell(2) = k; %Column of x1
 break
 end

 if j == 2 && NewBranch(j) >= x2(k,1) && NewBranch(j) < x2(k+1,1)
 Cell(1) = length(x2)+1-k; %Row of x2.
 break
 end
 end
 end

 %Capture endpoints not accounted for above
 for j = 1:2; %Capture endpoints not accounted for above
 if Cell(j) == 0
 Cell(j) = length(x1);
 end
 end

 % Check if that coordinate is not covered by an obstacle
 if (ObstacleSpace(Cell(1),Cell(2)) == 1)
 NewBranch = [];
 end
end
end

 130

LIST OF REFERENCES

[1] P. Corke, Robotics, Vision and Control: Fundamental Algorithms in MATLAB.
Berlin, Germany: Springer, 2011, pp. 3–532.

[2] S. Pappas. (2011, Nov. 15). Newly discovered ‘alien’ sea worms ride the current.
[Online]. Available: http://www.livescience.com/17054-sea-worms-drift-
ocean.html

[3] P. Rincon. (2013, Jun. 18). ‘Hoff’ yeti crab hitched ride on ocean super-highway.
[Online]. Available: http://www.bbc.com/news/science-environment-22952728

[4] H. Medwin and C. S. Clay, Fundamentals of Acoustical Oceanography. San
Diego, CA: Academic Press, 1998, pp. 1–102.

[5] T. Qu, “Role of ocean dynamics in determining the mean seasonal cycle of the
South China Sea surface temperatures,” Journal of Geophysical Research, vol.
106, 2001, pp. 6943–6956.

[6] R. W. Prouty, Helicopter Performance, Stability, and Control, 1st ed. Boston,
MA: PWS Eng, 1986, ch. 1, pp. 1-10.

[7] Spreading Wings S800—Specs. (n.d.) [Online]. Available:
http://www.dji.com/product/spreading-wings-s800/spec.

[8] M. Clifford, C. Horton and J. Schmitz, “SWAFS: Shallow water analysis and
forecast system,” OCEANS ‘94 Oceans Engineering for Today’s Technology and
Tomorrow’s Preservation. Brest, France, 1994.

[9] F. L. Bub. (2011). The Status of Ocean Modeling at the Naval Oceanographic
Office (NAVOCEANO) [Powerpoint]. [Online]. Available:
https://hycom.org/attachments/101_F.Bub.pdf.

[10] I. Gloza, K. Buszman and R. Jozwiak, “Tracking underwater noise sources with
the use of a passive method,” Acta Physica Polonica A, vol. 123, no. 6, 2013, pp.
1090–1093.

[11] E. Dahlberg, A. Lauberts, R. K. Lennartsson, M. J. Levonen and L. Persson,
“Underwater target tracking by means of acoustic and electromagnetic data
fusion,” in Proceedings of the 9th International Conference on Information
Fusion, Florence, Italy, 2006, pp. 1–7.

[12] K. L. Cockrell and H. Schmidt, “Robust passive range estimation using the
waveguide invariant,” J. Acoust. Soc. Am., vol. 127, pp. 2780–2789, Jan., 2010.

 131

[13] S. Chun and K. Kim, “Passive acoustic source tracking using underwater
distributed sensors,” Intl. J. of Dist. Sensor Networks, vol. 2013, Oct. 2013.

[14] T. Dutoit and F. Marques, Applied Signal Processing: A MATLAB-Based Proof of
Concept. New York, NY: Springer, 2009, pp. 198–199.

[15] Acousonde. (n.d.) [Online]. Available:
http://www.acousonde.com/downloads/Acousonde3A_Brochure.pdf

[16] D. Simon, Optimal State Estimation: Kalman, H-Infinity and Nonlinear
Approaches. Hoboken, NJ: John Wiley & Sons, 2006.

[17] G. Welch and G. Bishop, “An introduction to the Kalman filter,” presented at
SIGGRAPH 2001, Los Angeles, CA, 2001.

[18] J. A. Farrell, Aided Navigation: GPS with High Rate Sensors. New York, NY:
McGraw Hill, 2008.

[19] S. J. Julier and J. K. Uhlmann, “Unscented filtering and nonlinear estimation,” in
Proc. of the IEEE, 2004, vol. 92, no. 3, pp. 401–422.

[20] E. A. Wan and R. van der Merwe, “The unscented Kalman filter for nonlinear
estimation,” Oregon Grad. Inst. of Sci. and Tech., Beaverton, OR, 2000.

[21] S. Karaman and E. Frazzoli, “Optimal kinodynamic motion planning using
incremental sampling-based methods,” presented at the 49th IEEE Conf. on
Decision and Cntrl., Atlanta, GA, 2010.

[22] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path planning,”
Iowa State University, Ames, IA, 1998.

[23] C. Yang, E. Blasch and I. Kadar, “Geometric factors in target positioning and
tracking,” presented at the 12th Intl. Conf. on Inf. Fusion, Seattle, WA, 2009.

[24] J. D. Bard and F. M. Ham, “Time difference of arrival dilution of precision and
applications,” IEEE Transactions on Signal Processing, vol. 47, Feb., 1999.

[25] V. Tas, “Optimal Use of TDO Geo-Location Techniques Within the Mountainous
Terrain of Turkey,” M.S. thesis, Dept. Info. Sci., Naval Postgraduate School,
Monterey, CA, 2012.

[26] J. Nasir, F. Islam and Y. Ayaz, “Adaptive rapidly-exploring-random-tree-star
(RRT*)-smart: algorithm characteristics and behavior analysis in complex
environments,” Asia-Pacific J. of Inf. Tech. and Multimedia,
vol. 2, p. 39, Dec, 2013.

 132

[27] D. J. Webb and J. van den Berg. (2012). Kinodynamic RRT*: Optimal motion
planning for systems with linear differential constraints. [Online]. Available:
http://arxiv.org/pdf/1205.5088.pdf.

[28] J. W. Loeve, “Finding time-optimal trajectories for the resonating arm using the
RRT* algorithm,” M.S. thesis, Dept. Mech., Maritime and Mat. Eng., Delft Univ.
of Tech., Delft, Netherlands, 2012.

 [29] A. Lavin, “A pareto optimal D* search algorithm for multiobjective path
planning,” to be presented at IEEE Intl. Conf. on Robotics and Automation,
Seattle, WA, 2015.

[30] P. Tebbutt, J. Wood and M. King. (2002). The Vicon manual. Vicon Motion
Systems, Lake Forest, CA. [Online]. Available:
http://www.biomech.uottawa.ca/english/teaching/apa6905/lectures/vicon_manual
_v1_2.pdf

133

THIS PAGE INTENTIONALLY LEFT BLANK

 134

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

 135

