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ABSTRACT 

This thesis develops algorithms in support of a prototype hybrid air-water quadcopter 

platform: the “AquaQuad.” We consider the scenario in which AquaQuads with 

underwater acoustic sensing capabilities are tracking a submerged target from the surface 

of the ocean using sparse distributed measurements.  

Multiple nonlinear estimation filters are evaluated for the tracking scenario, 

resulting in the selection of the unscented Kalman filter (UKF). Geometric positioning 

effects on estimators are explored through analysis of the horizontal dilution of precision 

metric. The UKF is then implemented in real-time on quadrotors using time-difference of 

arrival pseudo-measurements in an instrumented Vicon lab space.  

The AquaQuads will primarily drift, but possess battery-limited flight capabilities. 

To increase on-station time, we seek to maximize use of the environment. In addition to 

solar energy, we take advantage of ocean currents that traditional autonomous platforms 

seek to reject. A novel sampling-based approach for path-planning is therefore created 

and lab-tested. The new algorithm, Dead-Reckoning Rapidly-Exploring Random Tree 

Star (DR-RRT*), combines the infinite-time optimality guarantees of RRT* with the 

unique AquaQuad mobility requirements. The DR-RRT* develops obstacle-free paths to 

a goal by linking brief flight and energy-efficient drift segments together, resulting in an 

energy savings of 27 percent over direct flight.  

 v 



THIS PAGE INTENTIONALLY LEFT BLANK 

 vi 



TABLE OF CONTENTS 

I. INTRODUCTION........................................................................................................1 
A. MOTIVATION ................................................................................................1 
B. THESIS OVERVIEW .....................................................................................2 

II. THE AQUATIC QUADROTOR CONCEPT ...........................................................5 
A. AQUAQUAD OVERVIEW ............................................................................5 
B. SUBMERGED TARGET TRACKING WITH SURFACE-BASED 

PLATFORMS ..................................................................................................8 
1. Impact of Ocean Acoustics and Relevant Assumptions ...................8 
2. The AquaQuad Advantage................................................................12 

C. AQUAQUAD ENERGY REQUIREMENTS ..............................................13 
D. UTILIZATION OF ENVIRONMENTAL ENERGY ................................16 
E. POTENTIAL MEASUREMENT TYPES ...................................................18 

1. Bearing Measurements ......................................................................19 
2. Range Measurements.........................................................................20 
3. Time Difference of Arrival ................................................................22 

III. TRACKING METHODS FOR SUBMERGED TARGETS ..................................27 
A. KALMAN FILTER BASICS ........................................................................27 
B. FORMULATION OF THE NONLINEAR ESTIMATION PROCESS ...31 
C. EXTENDED KALMAN FILTER ................................................................33 
D. UNSCENTED KALMAN FILTER ..............................................................37 
E. COMPARISON OF EXTENDED AND UNSCENTED KALMAN 

FILTER PERFORMANCE ..........................................................................41 

IV. ENERGY-EFFICIENT PERSISTENT SURVEILLANCE ...................................47 
A. DILUTION OF PRECISION AS AN OPTIMIZATION METRIC .........48 

1. HDOP for Bearing-Only Measurement Tracking ..........................51 
2. HDOP for Range-Only Measurement Tracking .............................53 
3. HDOP for TDOA Measurement Tracking ......................................54 
4. Optimal Sensor Placement for HDOP .............................................56 

B. RAPIDLY-EXPLORING RANDOM TREE DESCRIPTION ..................59 
1. Basic RRT Algorithm Description ...................................................59 
2. Base RRT* Algorithm .......................................................................62 

a. Select Target with Defined Goal Probability .........................63 
b. Find Set of Closest Nodes and Determine Minimum Cost 

Node .........................................................................................64 
c. Extend Branch in Tree with Obstacle Detection ...................64 
d. Rewire Tree .............................................................................66 
e. Complete the Path and Reaching Goal or after “N” 

Iterations..................................................................................67 
C. DEAD RECKONING RRT* ALGORITHM ..............................................67 

1. DR-RRT* Overview...........................................................................69 
2. DR-RRT* Objective Function ..........................................................71 

 vii 



V. SIMULATION AND TESTING ...............................................................................77 
A. DR-RRT* ALGORITHM ANALYSIS ........................................................77 

1. Single-solution DR-RRT* ..................................................................77 
2. Multi-solution “Optimality-Seeking” DR-RRT* ............................81 
3. DR-RRT* Evaluation Summary ......................................................84 

B. TESTING ENVIRONMENT AND CONTROL OVERVIEW .................84 
1. Environment: Center for Autonomous Vehicle Research .............84 
2. Platforms: Parrot AR.Drones ...........................................................86 
3. Control Structure ...............................................................................87 

C. UNSCENTED KALMAN FILTER TEST ..................................................89 
1. Unscented Kalman Filter Scenario...................................................89 
2. Unscented Kalman Filter Test Results .............................................92 

D. DR-RRT* PATH FOLLOWING TEST ......................................................97 
1. DR-RRT* Path-Following Scenario .................................................98 
2. DR-RRT* Path-Following Test Results .........................................100 

VI. CONCLUSIONS AND FUTURE WORK .............................................................105 
A. UNSCENTED KALMAN FILTER ALGORITHM .................................105 
B. DR-RRT* ALGORITHM ...........................................................................106 
C. FUTURE WORK .........................................................................................107 

1. Propulsion .........................................................................................107 
2. Controls .............................................................................................108 
3. Power Conversion and Storage.......................................................108 

APPENDIX A. ACOUSONDE TECHNICAL SPECIFICATIONS ...............................109 

APPENDIX B. UNSCENTED KALMAN FILTER MATLAB CODE ..........................111 

APPENDIX C. DEAD-RECKONING RAPIDLY-EXPLORING RANDOM TREE 
STAR CODE ............................................................................................................117 

LIST OF REFERENCES ....................................................................................................131 

INITIAL DISTRIBUTION LIST .......................................................................................135 

 

 viii 



LIST OF FIGURES 

Figure 1. AquaQuad concept showing solar cells and hydrophone ..................................6 
Figure 2. AquaQuad concept showing watertight enclosure and flexible cable ...............7 
Figure 3. AquaQuad distributed sensor network concept .................................................8 
Figure 4. Environmental variations and the resultant sound speed profile, from [4] ........9 
Figure 5. Basic ray tracing in a continuously stratified medium, from [4] .....................10 
Figure 6. Sound speed profile displaying a surface layer, from [4] ................................11 
Figure 7. Estimated mixed layer depths (in meters) in the South China Sea, from [5] ...12 
Figure 8. Gaussian-style distribution of available solar energy as a function of the 

time of day .......................................................................................................14 
Figure 9. Experimentally obtained figure of merit as a function of disk loading for a 

variety of multi-rotor and helicopter platforms, compared with actuator 
disk theory. .......................................................................................................15 

Figure 10. Shallow Water Analysis and Forecast System product, displaying regional 
ocean current vectors overlaying a sea surface temperature heat map [9]. .....17 

Figure 11. Path planning concept that utilizes predicted ocean current fields to 
minimize flight time in reaching a desired final position ................................18 

Figure 12. Bearing-only sensor two-dimensional geometric configuration ......................20 
Figure 13. Interference patterns visualized as striations in a spectrogram plot of 

acoustic intensity, from [13] ............................................................................21 
Figure 14. Circle of Apollonius used in determining source position, from [13] .............22 
Figure 15. AcousondeTM acoustic sensor utilized in time difference of arrival 

experiment........................................................................................................23 
Figure 16. Normalized pressure amplitude and corresponding frequency of an up-

sweep signal; visualized as rising frequency over time in the second plot ......24 
Figure 17. Cross-correlation of the received pressure measurement of two underwater 

acoustic sensors, A042 and A020, representing the time difference of 
arrival of ~1.75 sec. .........................................................................................24 

Figure 18. Cyclic process of the Kalman filter, with its primary equations shown, 
after [17]...........................................................................................................31 

Figure 19. Monte Carlo distribution of the polar-to-Cartesian transformation of a 
target at position (0,1) with zero-mean Gaussian measurements, from [19] ...33 

Figure 20. Cyclic process of the Extended Kalman filter, with its primary equations 
shown, after [17] ..............................................................................................34 

Figure 21. Extended Kalman filter (EKF) algorithm utilized for bearing-only 
measurement tracking simulation, after [17] ...................................................36 

Figure 22. Mean and covariance propagation for Monte Carlo sampling, EKF 
linearization, and the unscented transformation, from [20] .............................38 

Figure 23. Unscented Kalman filter (UKF) algorithm utilized for bearing-only 
measurement tracking simulation, after [20]. ..................................................39 

Figure 24. SIMULINK model for bearing-only tracking simulation, using an 
unscented Kalman filter and point-mass kinematics .......................................41 

 ix 



Figure 25. Relative positions of four AquaQuads and a target submarine in 
SIMULINK simulation ....................................................................................42 

Figure 26. Estimated submarine position using bearing-only measurements and an 
extended Kalman filter .....................................................................................43 

Figure 27. EKF residuals in a bearing-only measurement tracking scenario ....................44 
Figure 28. Estimated submarine position using bearing-only measurements and an 

unscented Kalman filter ...................................................................................44 
Figure 29. UKF residuals in a bearing-only measurement tracking scenario ...................45 
Figure 30. GPS pseudoranges and their associated area of uncertainty under different 

geometric satellite configurations, from [18] ...................................................49 
Figure 31. XY plane representation of three sensors taking range and bearing 

measurements with respect to a target, in red, from [23].................................52 
Figure 32. Overhead (left) and three-dimensional view (right) of TDOA HDOP 

variations due to the movement of a single sensor ..........................................55 
Figure 33. Variation in dilution of precision for the case of TDOA measurements 

with respect to increasing Range and number of sensors, “n”, from [24] .......56 
Figure 34. Range-only measurement: Minimizing solutions to HDOP-optimal 

placement of eight sensors with an evenly spaced initial condition (left) 
and clustered initial condition (right) ...............................................................57 

Figure 35. Bearing-only measurement: Minimizing solutions to HDOP-optimal 
placement of eight sensors with an evenly spaced initial condition (left) 
and clustered initial condition (right) ...............................................................58 

Figure 36. Rapidly-exploring random tree pseudocode, from [22] ...................................60 
Figure 37. Path generated by a basic RRT algorithm through a fixed obstacle field ........61 
Figure 38. Initialization step of an RRT algorithm defining fixed obstacles, ocean 

current and the Start and Goal positions ..........................................................63 
Figure 39. Early stages of RRT algorithm implementation showing the pseudo-

random target selection step (Note: presented path not a function of ocean 
current) .............................................................................................................64 

Figure 40. RRT algorithm showing obstacle free extension in red to pseudo-randomly 
selected target state (Note: presented path not a function of ocean current) ...65 

Figure 41. Visual display of RRT* rewire step, from [28] ...............................................66 
Figure 42. Final RRT path through a fixed obstacle field (Note: presented path not a 

function of ocean current) ................................................................................67 
Figure 43. Comparison of the DR-RRT* algorithm utilized in this thesis with a 

generic RRT* algorithm. .................................................................................68 
Figure 44. Drifting phase of the DR-RRT* algorithm with fixed obstacles, just prior 

to flight. ............................................................................................................69 
Figure 45. Hopping phase of the DR-RRT* algorithm with fixed obstacles. Flight 

path shown as green arc from one drifting path to a new one. ........................70 
Figure 46. DR-RRT* algorithm with fixed obstacles. Final path is shown in magenta. 

Evaluated flight paths are represented as green arcs. Evaluated drift paths 
are represented as back lines. ...........................................................................71 

Figure 47. Value of the objective function element “Dist2Goal” with adjusted 
Quadrotor position in the configuration space .................................................72 

 x 



Figure 48. Value of the objective function element “HDOP” for Bearing-only 
measurements with adjusted Quadrotor position in the configuration space ..73 

Figure 49. Improper rewire behavior exhibited with excessive weighting on solar 
energy term of cost function in DR-RRT* algorithm ......................................74 

Figure 50. Successful paths (shown in magenta) obtained from a Monte Carlo 
simulation conducted using the DR-RRT* algorithm with a fixed obstacle 
field ..................................................................................................................78 

Figure 51. Energy expenditure and computation time of 1,000 runs of the DR-RRT* 
algorithm. Direct flight baseline is shown in red in the top figure and 
represents flying the straight-line distance between Start and Goal points .....80 

Figure 52. Successful paths (shown in magenta) obtained from a Monte Carlo 
simulation conducted using the optimality-seeking DR-RRT* algorithm 
with a fixed obstacle field. Candidate paths omitted. ......................................82 

Figure 53. Energy expenditure and computation time of 1,000 runs of the optimality-
seeking DR-RRT* algorithm. Direct flight baseline is shown in red in the 
top figure and represents flying the straight-line distance between Start 
and Goal points ................................................................................................83 

Figure 54. Vicon instrumented laboratory in the Naval Postgraduate School’s Center 
for Autonomous Vehicle Research ..................................................................85 

Figure 55. Two of the CAVR lab’s Vicon cameras (far left), reflectors affixed to a 
quadrotor shroud (center) and the Vicon Workstation (far right) ....................86 

Figure 56. Parrot AR.Drone quadrotor utilized for testing purposes ................................87 
Figure 57. Communications overview for testing in the CAVR laboratory .....................87 
Figure 58. Block diagram of SIMULINK control implementation for AR.Drone 

quadrotors ........................................................................................................89 
Figure 59. General scenario overview for the UKF tracking test showing the position 

of sensors and the target (ocean current vectors not utilized in CAVR lab) ....90 
Figure 60. TDOA pseudo-measurement generation and signal routing for lab testing 

of the unscented Kalman filter .........................................................................91 
Figure 61. Physical setup of the CAVR lab test for the UKF tracking of a target 

(helmet, in red) .................................................................................................92 
Figure 63. UKF estimated position overlaid on the actual target track .............................94 
Figure 64. UKF residual in estimating position of moving target.....................................94 
Figure 65. Initial convergence of UKF position residual and covariance with 

screenshot of lab demo displaying the heading of each quadrotor pointing 
towards the estimated position of the target ....................................................95 

Figure 68. Position swapping scenario for the DR-RRT* path following test with 
ocean current vectors used to program simulated drifting behavior into the 
AR.Drone quadrotors .......................................................................................98 

Figure 69. Initialization phase of the DR-RRT* path-following lab test ..........................99 
Figure 70. Result of DR-RRT* algorithm run for two quadrotors swapping positions 

in the presence of simulated ocean current and an obstacle field ..................100 
Figure 71. Final path from DR-RRT* algorithm run for two quadrotors swapping 

positions in the presence of simulated ocean current and an obstacle field...101 

 xi 



Figure 72. Plotted position overlay of Quad #1 and #2 following at DR-RRT* 
generated path in the lab test ..........................................................................102 

Figure 73. Screenshot of DR-RRT* path-following lab test showing a change in 
altitude indicative of a hopping segment .......................................................102 

Figure 74. Close up view of the actual position of Quad #2 along the DR-RRT* path 
during the lab test ...........................................................................................103 

 

 xii 



LIST OF TABLES 

Table 1. Energy budget for the AquaQuad concept. Energy consumers are shown in 
red. Solar energy shown in black is the mean value of a 24-hour period. .......16 

Table 2. Comparison of the mean square error of an EKF and a UKF, using 
bearing-only measurements in a tracking scenario ..........................................46 

Table 3. Gain terms applied in cost function of DR-RRT* algorithm with 
justifications for usage .....................................................................................75 

Table 4. Summary of Monte Carlo simulation results contrasting a single-solution 
DR-RRT* algorithm with that obtained by an optimality-seeking DR-
RRT*. Percent improvement based upon a direct flight comparison. .............84 

 
 

 xiii 



THIS PAGE INTENTIONALLY LEFT BLANK 

 xiv 



LIST OF ACRONYMS AND ABBREVIATIONS 

AUV autonomous unmanned vehicle 

BOT bearing-only tracking 

CAVR Center for Autonomous Vehicle Research 

DL disk loading 

DOP dilution of precision 

DR-RRT* dead-reckoning rapidly-exploring random tree star 

EKF extended Kalman filter 

FOM figure of merit 

GDOP geometric dilution of precision 

GRV Gaussian random variable 

HDOP horizontal dilution of precision 

KF Kalman filter 

LBL long baseline 

MLD mixed layer depth 

MPPT maximum power point tracking 

NREL National Renewable Energy Laboratory 

PI proportional-integral 

PID proportional-integral-derivative 

PRM probabilistic roadmap 

RRT rapidly-exploring random tree 

RRT* rapidly-exploring random tree star 

SWAFS Shallow Water Analysis and Forecast System 

TDOA time-difference of arrival 

UDP user datagram protocol 

UERE user equivalent range error 

UKF unscented Kalman filter 

USBL ultra short baseline 

UT unscented transformation 

VTOL vertical takeoff and landing 

 xv 



THIS PAGE INTENTIONALLY LEFT BLANK 

  

 xvi 



ACKNOWLEDGMENTS 

I would like to first thank my cherished wife for her love and understanding 

during this process and also my two wonderful daughters who always enjoyed talking 

about and seeing the “flying robots.” Their passion for learning drives my own. 

I’d also like to acknowledge and thank Drs. Doug Horner and Noel DuToit for an 

invaluable experience learning about and operating unmanned underwater vehicles in 

some truly amazing environments. 

Thank you to my co-advisor Dr. Kevin Jones for his help with aerospace concepts 

previously unfamiliar to me, and thank you to fellow student Matteo Monari for saving 

me untold hours of work in the CAVR laboratory with his assistance. 

Lastly, I am deeply indebted to my advisor Dr. Vladimir Dobrokhodov for his 

tireless guidance and wisdom. It has truly been an honor and a pleasure. 

 xvii 



THIS PAGE INTENTIONALLY LEFT BLANK 

 

 xviii 



I. INTRODUCTION 

A. MOTIVATION 

Undersea dominance is a core mission area for the United States Navy. Despite 

our high level of sophistication and experience in anti-submarine warfare, prosecution of 

increasingly quiet submarines continues to be an open problem. The use of force 

multipliers like unmanned and autonomous vehicles can aid the Navy greatly and are 

representative of our historical efforts to be on the leading edge of technology. These 

platforms have the potential to conduct a wide variety of missions, providing tremendous 

operational flexibility, power projection, and intelligence gathering capability. 

An autonomous unmanned vehicle (AUV) can be more broadly described as a 

robot. One definition of a robot is a goal-oriented machine that can sense, plan and act 

[1]. Each of these three core capabilities of sensing, planning, and acting is dependent 

upon the other. Sensing the environment leads to understanding it, and this is critical for 

planning. Once the plan is made, the robot must be directed to act on it. Much research 

has been conducted by control system engineers to develop sophisticated feedback 

algorithms, which typically direct this action through rejection of disturbances in the 

environment. This can come at a tremendous cost in energy expenditure.  

Independent of their usage, one of the issues with all AUVs is that constrained 

onboard energy supply limits their operational endurance. This fundamentally restricts 

their ability to conduct sustained missions and requires greater human involvement in 

their operation. We seek a new solution to this challenge, one that views environmental 

disturbances as energy and incorporates them into the planning process while maintaining 

focus upon the overall mission objectives. 

For a sea-going platform, one of these primary disturbances is ocean current. Yet 

there is significant motive power within it that can be utilized, and examples of this exist 

in nature. The acorn worm, a primitive organism once thought to exist only in shallow 

water, has recently been observed intentionally changing its buoyancy in order to rise into 

an advantageous deep-sea ocean current for transportation between feeding sites [2]. 
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Consider also the yeti crab, whose prevalence in the Southern Ocean is attributed to the 

rapid conveyance afforded to their short-lived larvae by the Antarctic Circumpolar 

Current [3]. It is these biologic underpinnings that provide insight into the solution to our 

problem. 

B. THESIS OVERVIEW 

This thesis develops algorithms with wide applicability in support of a prototype 

hybrid air-water quadcopter platform: the “AquaQuad.” We consider the scenario in 

which a flock of AquaQuads with underwater acoustic sensing capabilities are tracking a 

submerged target from the surface of the ocean using sparse distributed measurements. 

The measurements are assumed to be either time-stamped or perfectly synchronous. The 

group behavior is cooperative, as each member can leverage the significant 

communication capability (update rate, rich content, and distance) available to surface-

based platforms.  

The measurements taken by the AquaQuads can be in the form of range, bearing 

or time-difference of arrival (TDOA), depending upon the sensor and signal processing 

equipment used. These are common nonlinear measurements whose analytic solution 

would contain significant error. To overcome this, multiple nonlinear estimation filters 

are objectively evaluated in simulation to determine their suitability for the tracking 

scenario. The dependency of the estimation process on the quadrotors’ geometric 

positioning is also explored through analysis of the horizontal dilution of precision 

(HDOP); a metric that is directly related to a more general Cramer-Rao bound. An 

unscented Kalman filter (UKF) is then implemented in real-time on quadrotors estimating 

the position and velocity of an object using TDOA pseudo-measurements in the 

instrumented Vicon lab space of the Naval Postgraduate School’s Center for Autonomous 

Vehicle Research (CAVR).  

Due to our objective of minimizing energy at the path planning stage and the 

projected constrained battery capacity, the AquaQuads will primarily drift while 

conducting their surveillance mission, but have limited flight capabilities for periodic 

repositioning. To increase on-station time we seek to maximize the use of energy present 
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in the environment. In addition to photovoltaic cells that incorporate solar energy, we 

take advantage of ocean currents that traditional autonomous platforms simply act 

against. A novel sampling-based approach is created for path planning based upon the 

existing rapidly-exploring random tree star (RRT*) approach. The new algorithm, titled 

dead-reckoning rapidly-exploring random tree star (DR-RRT*), combines the infinite-

time optimality guarantees of RRT* with the unique mobility capabilities of the 

AquaQuad.  

The DR-RRT* develops obstacle-free paths to a goal by linking brief flight and 

energy-efficient drift segments together with the objective of reducing required flight 

time down to short hops. It also incorporates HDOP in the planning process to ensure 

path feasibility for the tracking scenario. Near-optimal paths can be found that are still 

computationally feasible for onboard microcontroller implementation. A Monte Carlo 

experiment is conducted to develop statistics on the energy saved by this method 

compared to direct flight. Paths created by the DR-RRT* are then followed by flying 

quadrotors programmed with simulated drifting behavior, and the results are analyzed. 
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II. THE AQUATIC QUADROTOR CONCEPT 

A. AQUAQUAD OVERVIEW 

The AquaQuad was born from the vision of integrating a number of existing 

technologies for propulsion, energy harvesting, signal processing, and communication 

into a single platform for tracking underwater targets. In doing so, we can create a novel, 

significantly more capable system, which may revolutionize existing missions and reveal 

new applications.  

From a hardware standpoint, it is desirable to have a low-cost vehicle that is 

highly controllable, agile, and simple to maintain. Quadrotors possess all of these 

qualities. Rapid advances in wireless mesh communication and the minimal production 

cost of multicopters facilitate the use of multiple quadrotors, which opens the door to 

cooperative and swarm behaviors over a broad spectrum of missions. They have 

relatively high efficiency for vertical takeoff and landing (VTOL) platforms and can 

precisely control their attitude with motor speed changes. The brushless motors in each 

rotor have essentially no wear parts and are tolerant of wet environments. This makes 

them highly reliable with only four moving parts (quad-rotor configuration) and a rapidly 

growing commercial market for cheap parts and supplies.  

The projected configuration of each AquaQuad includes photovoltaic cells affixed 

to the surface for absorbing electrical energy during daylight hours. They will also have 

an acoustic sensor that is connected to the underside of the platform. Figure 1 displays a 

rendering of this concept. 
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Figure 1.  AquaQuad concept showing solar cells and hydrophone 

Adaptation of a quadrotor to the proposed aquatic scenario requires some 

modifications. Parts of the vehicle must be encased in a water-tight enclosure to protect 

sensitive avionics components, and the NPS team is working to create an in-house 

version for future testing. Figure 2 shows an example of such an enclosure. The ocean 

environment is very dynamic, so the design of the AquaQuad must incorporate positive 

buoyancy and unconditional stability. The pendulum-like nature of the hydrophone 

attachment can assist with this self-righting behavior, in addition to the outrigger-style 

stability afforded by the rotor arms. The sensor itself is anticipated to be suspended from 

a flexible, retractable or fixed cable, the length of which could conceivably allow for 

acoustic searches inside of and below oceanic layers. 
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Figure 2.  AquaQuad concept showing watertight enclosure and flexible cable 

Once several of these AquaQuads are designed, they can be employed as a 

distributed sensor network. Figure 3 displays a drawing of this capability, the underlying 

concept of which is reflected in the rest of this work. The use of several dispersed sensors 

carries with it great operational flexibility, since they can be arranged and configured to 

maximize the group capability. Track of a target can be maintained using a single sensor, 

but the position error is greatly reduced by increasing the number of platforms sharing 

their individual measurements. This improves the accuracy of the final position estimate 

that can be used for weapon placement or for handoff to a more traditional ASW asset 

like a manned submarine, highlighting their implicit “force multiplier” capability.  
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Figure 3.  AquaQuad distributed sensor network concept 

B. SUBMERGED TARGET TRACKING WITH SURFACE-BASED 
PLATFORMS 

The use of surface-based (vice underwater) platforms for tracking submerged 

contacts has some major benefits but also carries with it some limitations. These 

limitations are principally related to the sensor’s ability to identify acoustic signals in the 

ocean environment. Therefore some assumptions need to be made in their use.  

1. Impact of Ocean Acoustics and Relevant Assumptions 

In their current conceptual configuration, the AquaQuads have a potentially 

restricted ability to track deep-water acoustic signals. This is dependent upon the 

environmental conditions that exist in the operating area, and a brief discussion of these 

effects follow. In a generic sense, sound emitted from an underwater source consists of 

one or more pressure disturbances. These disturbances are mathematically modeled as 

waves propagating outwards from the source. Ray theory [4] provides a means of 

visualizing these waves and predicting their paths of travel by connecting lines normal to 

the direction of propagation between the wave fronts.  

The paths that the rays follow are largely affected by the gradient of sound speed 

in the medium it is traveling through. Sound speed in the ocean is typically approximated 
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by a function of temperature, salinity and depth. Although there are many equations to 

relate these variables, one version is given in Equation (II.1) adapted from [4] 

 
2 31449.2 4.6 0.055 0.00029 (1.34 0.010 )( 35) 0.016c T T T T S z= + − + + − − +

(II.1) 

where T = temperature (oC), S = salinity (ppt), and z = depth (m). Through a simple 

analysis of Equation (II.1) it can be seen that sound speed increases whenever 

temperature, depth, or salinity increase. When combining the effects of these three 

variables, one can create a profile like that shown in Figure 4 from [4].  

 
Figure 4.  Environmental variations and the resultant sound speed profile, from 

[4] 

The sound speed profile on the far right of Figure 4 exhibits a very typical pattern. 

As depth increases down the y-axis, there is a sharp decrease in temperature 

corresponding to the drop-off in sunlight penetration. The net effect of this temperature 

drop is a minimum in sound speed. Proceeding deeper, the pressure effects from depth 

begin to dominate, and the sound speed increases to a maximum. 

With a sound speed profile known or assumed, it is possible to predict the paths 

the rays will take utilizing Snell’s law, shown in Equation (II.2). This law states that the 

ratio between the ray’s angle from the vertical axis and the sound speed at its point of 

departure are fixed.  
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Therefore, if we know the sound speed at two different points and we make an 

assumption on the initial angle of departure, we can easily calculate the final angle the 

ray will make. When conducting this process repeatedly in a piecewise manner, the path 

of the ray can be approximated. Figure 5 from [4] shows the resulting plot of a ray tracing 

routine and in particular highlights the tendency for sound rays to bend towards areas of 

lower sound speed. This behavior focuses much of the sound energy into an axis 

corresponding to a sound speed minimum in the profile. 

 
Figure 5.  Basic ray tracing in a continuously stratified medium, from [4] 

If the object we are attempting to track is operating at or near the deep-water 

sound speed minimum, it is likely that the majority of its sound energy will not be 

received by our sensors near the surface. Conceptually, this effect can be mitigated by 

utilizing AquaQuads equipped with variable depth sensor payloads; however we focus 

our attention instead on targets within the surface layer or “mixed layer” shown at the top 

of Figure 6 from [4]. The surface layer has a nearly uniform temperature distribution as a 

result of the mixing effects from wind forces and is a common phenomenon found 

throughout the world’s oceans. Sound speed increases gradually with depth in the surface 

layer until it reaches the seasonal thermocline, often resulting in a local sound speed 
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minimum at the surface. Much of the sound energy produced within this layer will 

therefore propagate through it as the rays bend upward towards the surface, are reflected 

off of it, and the cycle repeats. 

  
Figure 6.  Sound speed profile displaying a surface layer, from [4] 

The position of the surface layer, also known as the “mixed layer depth” (MLD), 

in a water column varies widely, but for comparison purposes Figure 7 shows a plot of 

the MLDs in the South China Sea from [5]. This figure shows depths on the order of 40 

meters (131 feet). Sound energy generated within the mixed layer will propagate 

throughout it, and so we make the assumption that our target is relatively shallow. 
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Figure 7.  Estimated mixed layer depths (in meters) in the South China Sea, 

from [5] 

In addition to this assumption’s acoustic foundation, it also has an operational 

foundation. The majority of nations with undersea-capable navies utilize diesel-electric 

submarines. These submarines are often operated in the littoral regions, are required to 

recharge their batteries regularly with their diesel engines for extended periods of time 

(“snorkel”) and must come shallow to do so. Snorkeling in particular is a noisy evolution 

that puts a large amount of sound energy into the mixed layer where the AquaQuad 

sensors will be present.  

2. The AquaQuad Advantage  

Despite their potential deep-water limitations, AquaQuads possess significant 

advantages when compared to their subsurface counterparts. At their most basic level, 

collaborative behaviors require communication, and underwater communications are 

inherently difficult and limited in range. The AquaQuad’s position above the waterline 

facilitates air-based communication, allowing them to not be similarly encumbered. This 

is critical for collective maintenance of the target position estimate and dynamic 

repositioning of the individual platforms in order to achieve group objectives.  
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Knowledge of the location of each sensor in the flock is also vital to the accuracy 

of the Kalman filter target position estimate. Lacking an active acoustic long baseline 

(LBL) or ultra-short baseline (USBL) location system, undesirable for a covert 

application, the uncertainty of the position of an underwater vehicle grows with time, 

requiring it to break contact for a GPS fix. Conversely, each of the AquaQuad platforms 

is receiving continuous GPS signals. While drifting, the GPS can also provide an 

approximation of the regional ocean current. When shared between multiple sensors, this 

provides an update to the ocean current map that the flock will be using to minimize 

energy expenditure, improving the overall solution. 

The use of quadrotors also allows for rapid repositioning at speeds higher than 

those typically seen in underwater platforms. This helps to ensure greater continuous 

coverage of the target being tracked and facilitates maintaining closer proximity to the 

moving target. Flight, however, carries a significant cost in energy consumption. This is a 

traditional constraint in autonomous vehicles and one we seek to overcome with the use 

of our hybrid platform. 

C. AQUAQUAD ENERGY REQUIREMENTS 

The use of the term “hybrid” when referring to the AquaQuad describes its ability 

to float on the surface of the ocean or, leveraging its VTOL capability, fly for 

repositioning. Our challenge then becomes one of maximizing on-station time by 

managing the finite battery capacity, and we approach this by first making some 

assumptions regarding the onboard energy budget. 

Our first assumption is that the only source of energy replenishment will be via 

solar radiance. The prototype utilizes an array of 20 SunPower research-grade E60 

monocrystalline silicon cells with an advertised efficiency of just over 24 percent. The 

array area of an envisioned prototype platform is roughly 0.3m2, yielding an ideal power 

output of about 73W. More important however is the amount of useable solar radiation in 

a 24 hour period. According to the National Renewable Energy Laboratory (NREL) 

PVWatts calculator, for the Lake Nacimiento, California (CA) area (a potential test site), 

the daily solar radiation peaks at 8.45kWh/m2 in June and falls to 2.56kWh/m2 in 
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December, for a horizontal array. With the given array size of 0.3m2, this corresponds to 

608Wh in June and 184Wh in December. It should be noted that the actual solar radiation 

available will be time-of-day dependent and would likely follow a near-Gaussian curve 

like that shown in Figure 8, where integrating the area under the curve provides the 

energy available in a day. For the purposes of this thesis, we take the average of the two 

solar radiation values to arrive at approximately 400Wh of solar energy available in a 24-

hour period. In order to prevent exhaustion of the onboard battery, 400Wh then becomes 

the amount of energy we have available for communications, sensors and flight.  

 
Figure 8.  Gaussian-style distribution of available solar energy as a function of 

the time of day 

Were the AquaQuads directed to fly continuously, solar energy could not alone 

sustain them. In a VTOL platform, the power required for flight is high, whereas the 

surface area available for photovoltaic cells is small. While hovering, the typical 

definition for propulsive efficiency fails so instead a figure of merit (FOM) can be used. 

In this case, we use grams of thrust per Watt (g/W) of electrical power as the FOM, 

which is plotted against disk loading in Figure 9. Disk loading (DL) is the weight of the 

vehicle divided by the area covered by the rotors, and from actuator disk theory it has an 

approximately inverse relationship with FOM [6]. The larger the FOM is, the greater the 

weight that can be lifted for a given Watt of power.  
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Figure 9.  Experimentally obtained figure of merit as a function of disk loading 

for a variety of multi-rotor and helicopter platforms, compared with 
actuator disk theory. 

The black line representing actuator disk theory in Figure 9 only considers waste 

momentum, ignoring all other losses. Due to mechanical, aerodynamic, and other losses 

in a real-world platform, this makes this theoretical bound a physical limit that can never 

truly be achieved. Consider the S800 hex-rotor aircraft [7] with a flying mass of 6kg. 

From Figure 9, the S800 requires 720W to operate or roughly 17,280Wh for 24 hours of 

flight. Even assuming the S800 received the maximum June solar radiation of 

8.45kWh/m2, the required array area would be approximately 8.5 square meters, therefore 

extended quadrotor flight is clearly not a possibility utilizing solar energy alone.  

For a notional design of the AquaQuad platform, we estimate a weight of 2kg 

with a 10g/W FOM, corresponding to 200W of power required for flight. In addition, 

several other electrical loads exist that need to be accounted for. The first is a 5W base 

load estimate to keep critical systems in an active status. We also anticipate a 10W draw 

for intermittent sensing and communications. When considered over a 24-hour period, 

this results in 120Wh of base energy consumption and approximately 60Wh from the 

sensing load (since this equipment is not required at all times). Referring back to our 

original assumption that battery capacity will reflect available solar energy, starting out 
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with 400Wh yields 220Wh available for flight, corresponding to approximately one hour 

of flight time per day. This energy budged is tabulated in Table 1. 

 

Table 1.   Energy budget for the AquaQuad concept. Energy consumers are shown in 
red. Solar energy shown in black is the mean value of a 24-hour period. 

D. UTILIZATION OF ENVIRONMENTAL ENERGY 

With the limit on flight time so imposed, the AquaQuad requires additional means 

of repositioning itself to meet group objectives. To this end, we utilize the disturbances 

inherent to the operating environment. We do this by incorporating our understanding of 

prevailing ocean currents into the planning process. This allows us to intelligently plan 

periods where flight is required, while otherwise maximizing the amount of time being 

spent in a low-energy drift mode.  

While drifting, the AquaQuads’ motion will be almost entirely driven by the 

ocean surface currents that exist in their location. Due to their low profile, the wind 

effects are expected to be minimal. Each AquaQuad will be provided with an initial 

ocean current map based upon modeling software. As an example of such an application, 

consider the U.S. Navy’s Shallow Water Analysis and Forecast System (SWAFS). It is a 

near real-time three-dimensional analysis and prediction tool that incorporates in situ 

measurements within an ocean forecast model commonly referred to as the Princeton 

model [8]. The unclassified resolution of the SWAFS model varies by region but can go 

as low as 1 nautical mile (nm). Figure 10 displays a low-resolution version of SWAFS’ 

output with the type of current vector arrow overlay we are primarily concerned with.  

Power Time Energy
Base 5W 24hrs 120Wh

Sensing & Comms 10W 6hrs 60Wh
Flight 200W 1.1hrs 220Wh
Solar - 24hrs 400Wh
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Figure 10.  Shallow Water Analysis and Forecast System product, displaying 

regional ocean current vectors overlaying a sea surface temperature 
heat map [9]. 

By discretizing the data from these models into specific geographic cells, we can 

predict an AquaQuad’s motion in that space. This prediction is understandably subject to 

the uncertainty of the map it is based upon; however the AquaQuad has the ability to 

communicate the true ocean current at its location for update by a host. This host can 

exist either at a remote ground high performance computing facility or as a local drifting 

AquaQuad equipped with long haul communication capability. With a preliminary 

understanding of the drift behavior expected from an AquaQuad placed in any starting 

location, we can use this information to search for the best combination of drift and flight 
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sequences that reaches a goal position. A concept of the desired behavior is shown in 

Figure 11, which displays a series of short flight “hops” that terminate in a drift to a final 

desired location.  

 
Figure 11.  Path planning concept that utilizes predicted ocean current fields to 

minimize flight time in reaching a desired final position 

The drifting steps in Figure 11 not only reduce energy expenditure from 

restricting flight time, they also incorporate energy gain from the solar cells during 

daylight hours. This planning process can be conducted near-optimally and will be 

described in Chapter IV. 

E. POTENTIAL MEASUREMENT TYPES 

Within our target position estimation filter, we will use one of three typical 

acoustic measurements from a target: bearing, range, or time-difference of arrival 

(TDOA). Each of these measurement types requires a specific sensing unit and processor 

to turn the raw pressure disturbances into a quantity that is relatable to the target position. 

Passive acoustic sensors are of particular importance to our application. Since a drifting 

AquaQuad with a passive hydrophone emits no sound energy into the environment, the 

chance of counter-detection is low. The battery power required to operate a passive 
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system is also significantly less than that required for active systems [10], leading to 

greater possible time on station. As the specific source of the measurement is not the 

primary focus of this thesis, we instead detail the fundamental equations that relate the 

measurement to our state and briefly describe some current methods of obtaining these 

measurements. These equations will be utilized within a generalized Kalman filter 

architecture as a means of predicting the next incoming measurement for comparison and 

are all a function of the Cartesian target position estimate x̂  and ŷ .  

1. Bearing Measurements 

The bearing sensed by the AquaQuad is relative to the position of the platform 

itself (i.e., the quadrotor is at the center of a local coordinate system and the target 

position is defined relative to it). The bearing-only nonlinear measurement equation is 

simply 

 
1 ˆ

tan
ˆ

i
i

i

y y
x x

θ −  −
=  −   (II.3) 

where yi and xi denote the position of the ith AquaQuad under consideration. For 

implementation in MATLAB, the use of the atan2 function is recommended, as it is the 

four-quadrant inverse tangent function that wraps the resultant bearing in radians from 

[ , ]π π− . Figure 12 illustrates the geometric configuration of these sensors in a two-

dimensional XY plane using the notation from Equation (II.3). 
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Figure 12.  Bearing-only sensor two-dimensional geometric configuration 

The measurement of the bearing of a signal is a basic but important task in 

underwater acoustics. In order to measure it, the properties of the impinging wave front 

must be sampled by a multi-sensor array, which takes advantage of the array’s 

directionality [11]. Suspension of an array beneath the AquaQuad platform is possible but 

challenging due to payload restrictions on weight. Nevertheless, the bearings-only 

tracking (BOT) scenario is ubiquitous in target estimation problems and will help to 

illustrate important concepts in later chapters. 

2. Range Measurements 

The nonlinear measurement equation for range is the Cartesian coordinate 

distance equation, again defined with respect to the position of the quadrotor being 

analyzed.  

 
2 2ˆ ˆ( ) ( )i i ir x x y y= − + −

 (II.4) 

Some interesting work has been conducted by [12] and [13] in determining the 

range of an underwater source, by using so-called waveguide invariant theory. When 
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looking at a spectrum of broadband energy (intensity) from a contact, one can see 

interference patterns due to the differences in sound propagation.  

 
Figure 13.  Interference patterns visualized as striations in a spectrogram plot of 

acoustic intensity, from [13] 

In both papers, the slope of the interference pattern is described as a function of 

frequency and range, as 

 
f f
r r

β∂
=

∂  (II.5) 

The symbol β  is the waveguide invariant, where the term “invariant” comes 

from the fact that, although the equation is unique to each mode pair, the numerical value 

of β will remain approximately the same. In [12], it is given the default value of 1. 

Simply solving the above equation for range r then provides the desired formula. 

The slope of the interference pattern itself is dependent upon the frequency and 

range “window” that is being looked in. Thus, [12] takes the simplistic approach of 

measuring multiple windows and averaging the resultant range estimation. The authors of 

[12] also go into detail regarding the 2-D discrete Fourier transform process that is used 

to estimate the slope of the interference pattern automatically through image processing. 

Range estimates using this method are described as accurate within 25 percent in 
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simulation for source ranges between 500–2,200 meters and frequencies between 350 and 

700 Hz [12].  

The authors of [13] take a different approach to range estimation, explicitly taking 

into account multiple sensors. One received signal from a sensor is selected as a reference 

signal. The other sensors then have their received signal scaled to match the reference. 

The amount of scaling that is required to overlay the signals is said to be equal to a fixed 

ratio of range between the sensors and the source. This ratio will be constant even as the 

physical ranges themselves are changing. The position of the source is determined 

through the use of time delay estimation methods and the geometry seen in the circle of 

Apollonius, which follows.  

 
Figure 14.  Circle of Apollonius used in determining source position, from [13] 

Range estimates using this method are described as accurate within seven percent in 

simulation for source ranges between 400–2,000 meters and frequencies between 50 and 

750 Hz [13].  

3. Time Difference of Arrival 

The time difference of arrival (TDOA) measurement is constructed from the 

difference between the times when two sensors, separated by some distance, receive the 

same signal. This value is derived from the basic relation that time is equal to distance 

divided by speed, the equation for which is 
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( )2 21 ˆ ˆ( ) ( )i i ix x y y

c
τ = − + −

 (II.6) 

where c represents the speed of sound in water from Equation (II.1). When Equation 

(II.6) is extended to a time difference between two sensors denoted i and j, the TDOA 

measurement of Equation (II.7) from [14] is the result. 

 
( )2 2 2 21 ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )ij i j i i j jx x y y x x y y

c
τ τ τ= − = − + − − − + −

 (II.7) 

Equation (II.7) represents the half-hyperbola whose foci are the sensors 

themselves [14]. When multiple measurements are obtained, these hyperbolas cross and 

correspond to the position of the target.  

Determining the time delay requires cross-correlation of the received signals. As 

an example of this process, consider Figure 16 and Figure 17. The data in these plots was 

collected in an August 2014 NPS experiment where two AcousondeTM acoustic sensors 

[15] (see its technical specification in the Appendix A), a lightweight (approximately 

262g) and portable data logging device, received a sweep signal in the Monterey Bay.  

 
Figure 15.  AcousondeTM acoustic sensor utilized in time difference of arrival 

experiment 

Once the sweep time was identified from the frequency display on the bottom of 

Figure 16, the signals were cross-correlated in Figure 17. The resultant lag in the cross-
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correlation plot represents the TDOA measurement, with the sign convention 

representative of which sensor received the signal first.  

 
Figure 16.  Normalized pressure amplitude and corresponding frequency of an 

up-sweep signal; visualized as rising frequency over time in the 
second plot 

 

 
Figure 17.  Cross-correlation of the received pressure measurement of two 

underwater acoustic sensors, A042 and A020, representing the time 
difference of arrival of ~1.75 sec. 
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It is worth noting that discrimination of like signals received by two sensors is greatly 

improved with the use of a sweep, where the change in frequency is very apparent. The 

use of other signals can make the time-delay estimation much more complex.  
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III. TRACKING METHODS FOR SUBMERGED TARGETS 

Consider the AquaQuad scenario, where four sensors are using a single 

measurement type to track a submarine. Like all sensors, the measurements obtained by 

the AquaQuads will be corrupted by noise and often bias as well. Errors also exist when 

predicting the future state of the submarine, in what is formally referred to as the process 

model but can be understood in this case as a dead reckoning solution for submarine 

motion. If the system of equations that relate the measurements to the position of the 

target were to be solved analytically, these errors would not be accounted for, and the 

accuracy of the uncorrected position estimate would suffer accordingly. This is a 

common estimation problem, and the broad solution to it can be found in Kalman 

filtering architecture. 

A. KALMAN FILTER BASICS 

The Kalman filter (KF) is used to recursively estimate a set of states from a linear 

system by weighting the difference between a measurement and its expected value. The 

algorithm seeks optimality by minimizing a covariance matrix describing the error of the 

state estimate. Many derivations and examples of linear Kalman filters exist, so this 

thesis will not delve into them further. The interested reader should consult [16] for an 

excellent treatment of the KF and its subsequent variations. There are many symbols and 

terms that are common to all Kalman filters, so we will describe these components next 

in their discrete time form. The KF is often derived in continuous time and applied in 

discrete time. This is because Kalman filters are usually derived and analyzed in 

continuous form and then implemented on a digital computer, where a discrete time step 

is required [16].  

First, we assume we have a vector x  that describes the state of our system. In this 

thesis, the state vector being estimated is 

 

T

x yx X Y u v a a =    (III.1) 
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which simply contains the 2 dimensional Cartesian plane coordinate position (X,Y), 

component velocities (u,v) and component accelerations (ax, ay). Assuming a standard 

state-space representation of a linear system, we then have a linear process model that 

relates the future state of the system 1kx +  to the current state of the system kx , 

 
1k k k kx Ax Bu ω+ = + +  (III.2) 

where the system matrix A advances the state and is subject to the control effort ku  

applied to the states by the input matrix B. The term kω  is the additive process noise that 

inevitably corrupts this future state prediction and must be corrected for in our estimation 

problem.  

The measurement vector kz  follows next. In practice, it is populated by 

measurements from the sensors in the system, but it is fundamentally considered a 

function of the current state of the system related by the matrix H and once again 

corrupted by a noise term, vk. 

 
k k kz Hx v= +  (III.3) 

To make the measurement vector more intuitive, consider the scenario where a sensor is 

able to provide direct measurements of our state variables. In this case, the measurement 

matrix H is simply the identity matrix. Otherwise, in the linear case, some transformation 

must occur, and the H matrix is the vehicle for that.  

The terms kv and kω  are assumed to add Gaussian white noise with zero-mean. 

Therefore, we use the terms Q for process noise and R for measurement noise to represent 

their covariance in the KF, which is obtained using the expected value operator, “E” as 

follows.  
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Note that cross-covariance terms populate the off-diagonal elements, and 

elements in the R matrix are left as generic entries to facilitate measurement type. The Q 

and R matrices are common “tuning knobs” for the Kalman filter, and their values greatly 

affect its performance. The R matrix represents the uncertainty in the measurement and 

can be initialized using values from a sensor’s specification sheet (e.g., a specific acoustic 

USBL sensor has a bearing accuracy of +/- 2.5 degrees, therefore its entry is 2.5o, 

converted to radians and squared). Elements of the Q matrix are more complex to 

determine directly, so its entries are often adjusted empirically [17]. 

Next, we consider the KF covariance matrix P. This matrix represents the error of 

the filter’s state estimation, 

 
ˆk k ke x x= −  (III.6) 

which is composed of the difference between the true state kx  (unknown) and the 

estimated state ˆkx  and whose covariance is computed as 
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which shares a similar structure with the Q matrix in Equation (III.4). The difference lies 

in the fact that Q represents the noise inherent to predicting the future state of the system, 

whereas P represents the error in the filter’s estimate of the current state of the system. 

The P matrix is also fundamental to the KF in that the algorithm actively works to 

minimize its trace [16], hence minimizing the error in the estimate of the entire state. 

Lastly, we discuss the Kalman gain variable Kk. The Kalman gain is that value 

which weights the correction of your predicted state estimate 'ˆkx  (a priori) in order to 

obtain a new estimate ˆkx  (a posteriori). The gain is applied to the difference between a 

measurement kz  and a predicted measurement 'ˆkHx via the equation below.  

 
ˆ ˆ ˆ( )k k k k kx x K z Hx′ ′= + −  (III.8) 

The Kalman gain is calculated as a function of the filter covariance, Pk and measurement 

noise R. Therefore when the covariance in the estimate is large, the Kalman gain will also 

be large, and the system will tend to pay more attention to the measurements [16]. 

 
1( )T T

k k kK P H HP H R −′ ′= +  (III.9) 

All of these equations are used in a cyclic manner, the generic prediction-

correction structure of which is shown in Figure 18.  
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Figure 18.  Cyclic process of the Kalman filter, with its primary equations 

shown, after [17] 

Beginning with an initial estimate (assumption at zero time) of the state ˆkx  and each 

covariance matrix P, Q, and R, the future state '
1ˆkx +  and future covariance '

1kP +  are 

predicted in the Projection step and are so annotated with a prime designation. Following 

this step, a subscript notation change occurs, since the “k+1” projection is now 

considered time “k.” The Kalman gain is then calculated based upon the covariance in the 

filter’s estimate '
kP  and the covariance in the measurement R. In the update step, a 

measurement zk is ingested and compared to the expected measurement 'ˆkHx . The Kalman 

gain weights this comparison and adds it to the predicted future state 'ˆkx to make the new 

filter estimate ˆkx . Lastly, the covariance matrix Pk is updated, and the cycle begins anew. 

B. FORMULATION OF THE NONLINEAR ESTIMATION PROCESS  

Several assumptions go into a Kalman filter’s use, but a common one is that the 

noise that drives the process and measurement equations is Gaussian. It should be noted 

that [16] states, “The Kalman filter is the optimal estimator when the noise is Gaussian, 

and it is the optimal linear filter when the noise is not Gaussian.” Therefore if a linear 

system has non-Gaussian noise, the Kalman filter is still the optimal choice for 
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estimation. That being said, we consider the case of Gaussian white noise and focus our 

discussion on how nonlinearity affects this.  

It is assumed that the state estimate is a Gaussian random variable (GRV) and so 

has a defined first and second moment [18]. This is beneficial since these two moments 

take a trivial amount of space to store but can be used to describe the system in complex 

ways [19]. The linearity of the system (process and the measurement models) ensures that 

the Gaussian nature of the random variables is maintained.  

When the process or measurement equations are not linear, the optimality of the 

KF is no longer guaranteed, and the Gaussian property of the noise propagated through a 

nonlinear equation is also no longer guaranteed. In the specific case of bearings-only 

tracking, nonlinearity exists in the transformation of bearing measurements into their 

corresponding position estimate in Cartesian coordinates. This violates one of the basic 

tenants of the KF since after being operated on by the nonlinear measurement equation 

the Gaussian nature of the random variables describing the state vector is skewed [1]. To 

illustrate this phenomenon, [19] conducted a Monte-Carlo simulation with a hypothetical 

sensor that measures the range and bearing of an object. The measurement equation is the 

basic polar to Cartesian transformation, 

 

ˆ cos
ˆ sin
x r
y r

θ
θ

   
=   

     (III.10) 

which is inherently nonlinear. The true range and bearing value of a target located at a 

position of (0,1) was artificially “sampled” several hundred times, with additive zero-

mean Gaussian noise included in each sample of r and θ . When these corrupted 

measurements were transformed back into their Cartesian representation and plotted, 

Figure 19 from [19] was the result. Note that instead of a circular Gaussian distribution 

around the target position, the distribution follows a crescent shaped arc, corresponding 

to a band of range error and a spread of bearing error [19]. 
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Figure 19.  Monte Carlo distribution of the polar-to-Cartesian transformation of 

a target at position (0,1) with zero-mean Gaussian measurements, 
from [19] 

This type of nonlinearity occurs very commonly in dynamical systems. In order to 

overcome this obstacle, yet maintain the elegant structure and power of the KF, 

extensions to the algorithm have been created. This thesis investigates two of them with 

the goal of developing objective comparison data and determining which is the most 

suitable for use on the AquaQuad platform. 

C. EXTENDED KALMAN FILTER 

The extended Kalman filter (EKF) is a widely used algorithm for nonlinear 

estimation [20]. It mitigates nonlinearities in the process and measurement equations 

through their linearization. Conceptually, this linearization is conducted to the “first-

order” using the first two terms of the Taylor series expansion, shown for a generic 

function f(x). 

 

' '' '''
2 3( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ...

1! 2! 3!
f a f a f af x f a x a x a x a= + − + − + − +

 (III.11) 
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The implied assumption is that the linearized statistical properties of the random variable 

being estimated are approximately equal to its nonlinear properties [16]. This 

approximation breaks down for highly nonlinear systems and can lead to large errors in 

the posterior mean and covariance estimates or general filter divergence [20]. Within the 

EKF equations, linearization is conducted utilizing a Jacobian matrix of partial 

derivatives, the use of which creates its own problems: the Jacobian can often be difficult 

to calculate, the reliability of calculating derivatives requires very small sampling time, 

the derivatives of noisy signals amplify the power of noise, and there are also some 

instances where it does not exist [19]. These limitations set aside, the performance of the 

EKF remains acceptable and often excellent for the majority of applications, leading to its 

near-ubiquitous use.  

The structure of the EKF is very similar to KF and proceeds through the 

prediction-correction update process of Figure 20 after [17], which can be compared to 

the KF case in Figure 18.  

 
Figure 20.  Cyclic process of the Extended Kalman filter, with its primary 

equations shown, after [17] 

 34 



The key difference between Figure 18 and Figure 20 is rooted within the nonlinear state 

projection 1ˆ ˆ( , ,0)k k kx f x u+ =  and measurement update 'ˆ( ,0)
k

h x . These equations force the 

creation of linearizing Jacobians for the terms Ak and Wk in the “Projection ahead” step, 

Hk in the “Kalman gain” and “Update the Error Covariance” steps, and Vk in the 

“Kalman gain” step. The generic structure of this matrix of partial derivatives follows, 

from [17]. 
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 (III.12)

 

A number of variations to the EKF exist, however, the version utilized in this 

thesis considers the case of additive noise in the process and measurement model and 

otherwise follows a format similar to that in [17]. The specific equations used for a 

bearing-only measurement tracking scenario are those presented in Figure 21, where the 

state being estimated consists of the target position (xo, yo), component velocity (uo, vo) 

and component acceleration (axo ayo). Note the use of the Φ  term in the process 

equation. This is a common and convenient way of updating the state based upon a first-

order linear differential equation x Ax=  whose solution is A te ∆Φ = . 
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Figure 21.  Extended Kalman filter (EKF) algorithm utilized for bearing-only 

measurement tracking simulation, after [17] 
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D. UNSCENTED KALMAN FILTER 

In order to overcome some of the previously stated limitations of the EKF, the 

unscented Kalman filter (UKF) was proposed. The UKF omits the linearization step and 

uses the true nonlinear functions that describe the process and measurement equations. 

This greatly simplifies the complexities that arise when calculating the Jacobian matrices 

at each iteration of the filter. The UKF was created on the basis that it is simpler to 

transform a single point than an entire probability distribution and that the desired 

probability distribution can then be reconstructed after an unscented transformation [16]. 

The states are still represented as Gaussian random variables, but their normal 

distribution is maintained by using a set of specifically designed sample points or “sigma 

points” around the estimate in an unscented transformation (UT) [20].  

The UT and its sigma points are fundamental to the UKF since they allow us to 

create an approximate probability distribution that has not been skewed by nonlinear 

functions [19]. The sigma points and the weights associated with them must be chosen 

carefully such that the ensemble mean and covariance is a good estimate of the true mean 

and covariance [16], and in this case they are selected such that they create a Gaussian 

distribution. Figure 22 from [20] compares the effect of this transformation on the 

resultant mean and covariance (far right) with that generated from a Monte Carlo 

sampling routine (far left), and EKF linearization (center). It is clear that the UT provides 

a much closer estimate of the true distribution and does so using relatively few sigma 

points in this case. 
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Figure 22.  Mean and covariance propagation for Monte Carlo sampling, EKF 

linearization, and the unscented transformation, from [20] 

The UKF has several advantages over the EKF, and the authors of [20] define that 

it has a similar computational cost that is within one order of magnitude of the linearized 

filter. Moreover, the functions with discontinuities for which there is no partial derivative 

can be easily spanned by the sigma points, thereby mitigating the EKF requirement of 

Jacobian existence at every step [19]. The higher order terms of the Taylor series 

expansion in Equation (III.11), which are neglected when using the EKF, are also more 

accurately represented in the UKF. Posterior mean and covariance are reportedly 

captured in statistical moments up to the third order [20]. From a practical standpoint, the 

user can directly substitute the nonlinear process and measurement equations into the 

UKF, with no need to calculate the complicated matrices of partial derivatives that the 

EKF requires. This makes the UKF a very attractive filter. 

Once again, the equations utilized in this thesis have been adapted following the 

structure seen in [20], revised for the case of additive noise, presented for the bearing-

only measurement tracking scenario and summarized in Figure 23. The MATLAB 

implementation can be seen in Appendix B. 
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Figure 23.  Unscented Kalman filter (UKF) algorithm utilized for bearing-only 

measurement tracking simulation, after [20]. 
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Figure 23 (cont’d) Unscented Kalman filter (UKF) algorithm utilized for bearing-only 

measurement tracking simulation, after [20]. 
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E. COMPARISON OF EXTENDED AND UNSCENTED KALMAN FILTER 
PERFORMANCE 

fu order to evaluate filter perf01mance, both the EKF and UKF were used in 

simulation, facilitating the comparison of mean square enor, computation time, and 

convergence propetties between the two filters. The simulation was conducted in 

SIMULINK under the devised scenario of fom AquaQuads tracking a submerged contact 

with bearing-only measmements. Each AquaQuad and the target submarine were 

modeled as point masses in SIMULINK. Bearing measmements were detemlined by 

simple trigonometry using the known sensing node (quadrotor) and submarine positions. 

Band-limited white noise was added to these measmements with a power of lxl04 and 

seed numbers that were independent from one another. The SIMULINK model used in 

the UKF simulation, closely matched by its EKF countetpatt, is shown in Figme 24, 

showing the general setup atld relevant signal routing. 

Sensor model 

Figme 24. 

L T Chase Dillard 
Unscented Kalman Filter for Bearing-Only Tracking 

SIMULINK model for bearing-only tt·acking simulation, using an 
unscented Kalman filter and point-mass kinematics 

Figure 25 displays the paths taken by the sensors and targets within the 

simulation, without the position estimate fi:om either filter. The AquaQuads f01m a 
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perimeter around the submarine and drift in a circular pattem at speeds substantially less 

than that of their quany. The target, meanwhile, originates at the center of the group and 

proceeds continuously outward. This changes the relative geomet:Iy of the scenano, 

which has impacts that will be considered in following chapters. 

.c. 
1:: 
0 z 

Figure 25. 
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Relative positions of four Aqua Quads and a target submarine in 
SIMULINK simulation 

Both the EKF and UKF were evaluated under this described scenario, and each 

was initialized with the same stru.ting pru.·ameters, namely: 

xo 100 

Y, 100 

Initial estimate, x0 = 
Uo 20 

• = 
Vo 20 

0xo 0 

a yo 0 
(III. B) 

• Process noise, Q = diag([10e~ 10e~ 1e~ le-6 1e~ 1e-6
]) (III.14) 
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• Measurement noise, R = diag([Ie~ 1e~ 1e~ le~]) (III.1 5) 

Additionally, the CPU time required to nm each scenario was detetmined using the tic 

and toe commands in MATLAB. These commands stati and stop an intemal timer at the 

beginning and end of each simulation. This provides a metric for comparison of which 

filter is more computationally expensive to use. 

Figure 26 displays a reduced-scale plot of the EKF's estimated submarine 

position laid over top of its actual track. At first glance, it appears to be a good estimate, 

and it certainly adheres to the track well. The elapsed time to mn the EKF in this scenario 

was 0.851532 seconds. 

Figure 26. 

Bearings-Only Tracking of Submerged Target Using 4 Quadrotors 

--auad1 
--auad2 
--auad3 
--Quad4 

0 Target 
+ Estimate 

-200 

400 

0 500 1000 1500 2000 2500 3000 3500 
East 

Estimated submarine position using beating-only measurements and 
an extended Kalman filter 

A closer look at the plot of residuals (difference between known and estimated 

position) in Figure 27 shows a position estimate that never ttuly converges. The velocity 

residual approaches zero at approximately 150 seconds. 
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Figure 27. 

Difference between actual and EKF estimated position: States [x,y.u,v,ax,ay]T 
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EKF residuals in a bea1ing-only measurement tracking scenario 

These figures can be directly compared to those generated using the UKF. The 

UKF implementation shares many of the same characteristics of the EKF. The filter 

estimation overlay of Figure 28 also appears to track the true position of the submarine 

well. Elapsed time for the UKF implementation was 1.076891 seconds, which is on par 

with the EKF. 
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Figure 28. 
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Once agam, the residual plot displays the truth of the UKF's state estimate. 

Compared to Figme 27, the UKF residuals in Figme 29 are significantly smoother, and 

there is position and velocity convergence within approximately 75 seconds. This 

property of smooth UKF convergence was seen in nearly every comparison nm using the 

two filters and appears to speak to the superiority of the UKF. 

i'~~·fference bet\Wen actua. ~and UK.F estimated position~~ States [x,y •. u.v,ax,ay~}T 

-~ ===~: 
Q. -100 L__ __ L..._ _ __JL..._ _ __J __ __J ____ ....L..._ __ ...J.. __ __,_ 

<l 0 50 100 150 200 250 300 350 
lime, seconds 

"' Difference bet\Wen actual and UKF estimated l.elocity: States [x,y,u,v,ax,ay}T 

i ~p: :1 =~=~ ~ 
<l 0 50 100 150 200 250 300 350 

lime, seconds 
T 

Figure 29. UKF residuals in a bearing-only measmement tr·acking scenario 

In order to analyze the results from Figme 27 and Figme 29 more objectively, 

Table 2 displays the mean square enor of the position and velocity state estimates from 

each filter in this scenario. The final column of Table 2 represents the difference, or 

"delta", in mean square enor when comparing the EKF and UKF simulations. A positive 

delta value indicates superiority in the UKF estimate. The te1m "circular perimeter" in the 

table heading of Table 2 was used to differentiate the sta1ting geometry of the 

AquaQuads with other scenarios that were tested. Those scenarios will not be repeated 

here for brevity, but the results were similar: lmder the precepts of the described 

simulation, the UKF routinely possessed a greatly reduced mean square enor and 

convergence time, as compared to the EKF. 

45 



 

Table 2.   Comparison of the mean square error of an EKF and a UKF, using 
bearing-only measurements in a tracking scenario 

EKF
Circular 

Perimeter

UKF
Circular 

Perimeter

Circular Perimeter
Delta (EKF-UKF)   

 
 

X, (m)2 765.7431 97.6823 668.0608
Y, (m)2 719.7339 116.8798 602.8541
U, (m/s)2 19.7663 12.4691 7.2972
V, (m/s)2 13.7761 10.2321 3.544M

ea
n 
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IV. ENERGY-EFFICIENT PERSISTENT SURVEILLANCE 

With our estimation filter designated, we proceed on towards the other main 

component of this thesis: developing a process facilitating persistence of surveillance. At 

its fundamental level, this process amounts to path planning and flock coordination. It is 

important to note the two major points of emphasis.  

First is the energy management component, which can be controlled with path 

planning. Planning the motion of a robot is a fundamental problem that has been tackled 

in many ways and one of them is with the use of sampling-based algorithms. These 

algorithms have a proven ability to quickly explore a given space and develop a path 

between the initial and goal state that is free of obstructions. To do so, they randomly 

sample points in the state space and attempt to make obstacle-free connections to them 

from existing points. This sampling behavior leads to probabilistic completeness: as the 

number of iterations increases, the probability of finding a successful path to the goal 

approaches one [21]. There are many variations of these algorithms, and the concept is 

extremely flexible, allowing us to produce a desired behavior in the paths generated. 

For our purposes, we not only seek an obstacle-free path to a goal state, we also 

desire optimality in the energy that is expended to achieve it. The control authority 

available to the AquaQuad platform is also very limited, so we must address the unique 

combination of drifting (dead-reckoning) and flight periods in the planning process. To 

these ends, we created a new algorithm specific to the AquaQuad scenario based upon 

rapidly-exploring random tree (RRT) [22] that we call dead-reckoning rapidly-exploring 

random tree star (DR-RRT*). 

While increasing the on-station time of the AquaQuads is integral to their task as 

autonomous systems, it cannot come at the expense of their primary mission to track the 

target, and therefore this is the other point of emphasis. The authors sought a metric that 

could be used to define the quality of the group’s ability to estimate the position of the 

target in different geometric configurations. This provides an input to the path planning 
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process and also contributes a threshold that dictates when repositioning should occur, 

requiring flock coordination. We found this metric in the geometric dilution of precision. 

A. DILUTION OF PRECISION AS AN OPTIMIZATION METRIC 

The concept of dilution of precision (DOP) comes from classical GPS theory, 

where it is used as a metric for the quality of a position fix. The number of satellites and 

their relative geometry around a receiver play the dominant role in the calculation of this 

quantity. The GPS pseudorange measurement in the following discussion is directly 

analogous to the underwater range-only measurement for our tracking scenario, but it will 

be shown that the nature of DOP is relatable using any measurement.  

As a simple example, consider the two dimensional (XY plane) case of two 

satellites positioned such that the receiver is between them. The position of the receiver 

with respect to one of those satellites can lie anywhere on the circumference of a circle 

whose radius is defined using the difference between the sent and received times, 

multiplied by the speed of light. With two satellites, an additional circle is generated, and 

the intersection points of these circles indicate two possible locations of the receiver. 

Three satellites would theoretically eliminate one of those possible locations, leaving the 

user with a single estimated (x,y) position. Consider, however, that many errors exist in 

determining the range between satellite and receiver. One of these major sources of error 

is the difference between the clocks on board the satellite and receiver. If they were to be 

off from one another by a single second, that positional error would be on the order of 108 

meters based upon the speed of light. Therefore the true range from satellite to receiver 

lies inside a bounded region of possible circles, dependent upon the magnitude of the 

error. Relative geometry can help shrink this region of uncertainty, as Figure 30 from 

[18] portrays very well. 
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Figure 30.  GPS pseudoranges and their associated area of uncertainty under 

different geometric satellite configurations, from [18] 

Delving deeper into the GPS equations from [18] provides the motivation for 

using dilution of precision in this work. Each pseudorange measurement can be modeled 

per Equation (IV.1). 

 1

2

1
i

i i i i i i i
r r r

fc t c t I T M v
f r rr δ= − + ∆ + + + + +p p

 (IV.1) 

The first term in Equation (IV.1) is the norm of the difference between the receiver 

position p and the satellite position pi, which in other words is the true (unknown) range 

that separates them. The remaining portions of the equation are all error effects that 

corrupt the measurement of this true range. Specifically, the next two terms both multiply 

the speed of light by the clock errors between source and receiver. The first clock error 

rc t∆  is one that we can apply corrections for. The second clock error ic tδ  is that residual 

portion that we can never precisely provide a correction for in our estimation process. 

The last terms correspond to dispersive atmospheric effects, non-dispersive atmospheric 

effects, multipath errors, and measurement noise, respectively. Chapter 8 in [18] 

discusses these error terms in great detail. All error components are considered 

statistically independent, and the square root of their sum of squares is designated the 

user equivalent range error (UERE).  

Continuing our abbreviated derivation of DOP, [18] provides an iterative 

algorithm to minimize the error in the estimation of ˆ ˆ ˆ ˆx̂ X Y Z c t = ∆  , seen in 

Equation (IV.2). 
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(IV.2) 
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is the Jacobian matrix representing the pruiial derivative of the measurement equation 

p(x,p;) =liP -p;ll+ c~tr , evaluated at the algorithm's cunent estimate. Of note, this is the 

same f01m of the H matrix utilized in the EKF of Chapter III. C. When Equation (IV.2) is 

nm to its conclusion, we expect that Sx = xk+1 - xk ~ 0 and therefore 

(Hr Hr1 Hr (p - p(xk)) = 0. With some manipulation of related equations and 

designating the user equivalent range enor as the vru·iable X , we atTive at Equation 

(IV.4). 

We then detennine the covru·iance of Equation (IV.4) as follows in Equation (IV.5), 

P = E ( 8x8:·,/) 

= (HrHr!cr2 

(IV.4) 

(IV.5) 

where CJ
2 

is the variance of the UERE. Equation (IV.5) shows that the covru1ance of the 

GPS pseudorange problem is a product of the geometric relative positioning encapsulated 

in the H matrix and the collective measurement enor found in the UERE vru·iance te1m. 

The quantity (HT Hr1 magnifies the UERE in estimating the position of the receiver, 
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and so we isolate this term and convert it to the more-useful scalar metric known as the 

geometric dilution of precision (GDOP). As we are principally concerned with the 

Cartesian coordinate estimation of position (x,y), we consider only these elements and so 

use the term horizontal dilution of precision (HDOP) seen in Equation (IV.6). 

 
1( )THDOP trace H H −=

 (IV.6) 

All of the preceding information was presented in the vein of GPS measurements; 

however the extension to the AquaQuad scenario is extremely natural. In place of 

satellites, we have four quadrotors. Instead of estimating the position of a receiver, we are 

estimating the position of a submarine. If we were to use range-only measurements, the 

speed of sound in water would replace the speed of light in air. Depending upon the 

measurements being used, the equations must be modified slightly. Fortunately, the 

concept of HDOP is inherently flexible to our purposes, and the only true alterations are 

conducted inside the Jacobian matrix, H. The metric still defines the potential precision 

we can achieve in a particular measurement scenario and is therefore incredibly useful in 

determining the best and potentially optimal arrangement of our sensors.  

1. HDOP for Bearing-Only Measurement Tracking 

In order to better utilize HDOP, it is important to understand the fundamental 

configurations that will minimize it and therefore improve it. It may be surprising to 

discover that, depending on the measurements being obtained, there are varying 

relationships between HDOP and range to the target. The authors of [23] provide great 

insight into this relationship, using the notation of Figure 31 as a basis. 
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Figure 31.  XY plane representation of three sensors taking range and bearing 

measurements with respect to a target, in red, from [23]. 

Each sensor at (x1...i…n, y1…i…n) in Figure 31 is capable of taking a range (r1…i…n) or 

bearing (θ 1...i…n) measurement from the target being tracked, which is represented as a 

red square at position (x0, y0). Considering first the case of bearing-only tracking, we 

begin with the nonlinear measurement equation  
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whose Jacobian is represented as 
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with the term 2 2( ) ( )i i ir x x y y= − + − . Next, [23] considers the form of the HDOP 

equation that includes the measurement covariance term, R, shown in Equation (IV.9). 

For comparison purposes, the HDOP variant previously presented in Equation (IV.6) 

considers the specific case where R is equal to identity. 
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(IV.9) 

After conducting the matrix operations within Equation (IV.9) symbolically, for a 

scenario with only two sensors and with some trigonomeu·ic simplification, we an ive at 

the bearings-only u·acking HDOP equation from [23]. 

(IV.10) 

What is significant about Equation (IV.1 0) is that a range te1m shows up explicitly in the 

numerator of this equation. For the bearings-only u·acking scenario, HDOP increases and 

therefore degrades with increasing range. Also of note is that when the difference in 

bearings to the target from sensor 1 and sensor 2 ( con esponding to 81 and B2 , 

respectively) are either equal or 180 degrees aprut from one another, there is a singularity. 

Therefore, optimality is found in geomeu·ic configurations that place the sensors close to 

the tru·get and in locations that make right angles to one another. 

2. HDOP for Range-Only Measurement Tracking 

Next, we consider the range-only tracking scenru·io whose nonlineru· measurement 

equation is simply ri from Equation (II.4), which leads to the Jacobian mau·ix 

b1j Xo - xi 

bX 1: =[ cos(B,)] Hi = 
1 

= 
b1j Yo - Yi sin( Bi) 

5y 
[Xo ,Yo l 

1: 
1 (IV.ll) 

and produces the symbolically simplified HDOP equation from [23]. 

(IV.12) 

Once agam, we see in Equation (IV.12) that a collinear configuration between two 

sensors produces a singularity due to the sine te1m in the denominator. What is different 
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from the bearing-only scenario is the lack of an explicit range term in the numerator. At 

first glance, this would lead one to believe that the range-only HDOP equation is not 

dependent upon the distance between the sensors and receivers, but this is not observed in 

practice. Due to the simplification conducted in [23] leading to the trigonometric 

denominator of Equation (IV.12), there is actually a range term buried within it. 

Therefore, in the case of range-only measurements, as range increases, the HDOP 

improves.  

3. HDOP for TDOA Measurement Tracking 

While not covered in [23], we conduct a similar HDOP analysis for the TDOA 

measurement seen in Equation (II.7). Since the TDOA measurement involves the 

difference in range (and therefore time) between sensors and the target, a subscript 

notation change is necessary for the range term riT or rjT denoting the range between the 

ith or jth sensor and the target T. The Jacobian for one TDOA measurement between two 

sensors is seen in Equation (IV.13).  

 

0 0

0 0

0 0

[ , ]

( ) ( )
( ) ( )

j iij

jT iT j i
i

ij j ij i

jT iTx y

x x x x
r r cos cosxH

sin siny y y y
y r r

δτ
θ θδ

δτ θ θ
δ

− −  −   −   = = =    −−  −   − 
    

 (IV.13) 

Rather than determine a closed-form solution for the HDOP equation as seen in 

Equations (IV.10) and (IV.12) from [23], we present a simulation exploring its behavior 

that is applicable to our scenario. Specifically, we fix the locations of two sensors and a 

target while allowing the position of a third sensor to vary over a gridded area. An HDOP 

calculation is made at every point in the grid and the results plotted. The result of this plot 

is shown in Figure 32 from both an overhead and a three-dimensional perspective. These 

views help to illustrate some interesting findings from the analysis. The first is the 

overhead view (far left Figure 32) in which we see a fairly uniform low value for HDOP, 

punctuated by singularities (exhibited in white) along the line of bearing that connects 

QR #1 and QR #2 to the position of the target. The source of these singularities can be 

traced to the trigonometric representation of Equation (IV.13). When the angle to the 

 54 



target iθ is equal to that of jθ , the corresponding element of H in Equation (IV.13) is 

zero, therefore the inverse operator of Equation (IV.6) results in a singularity. 

Consequently, co-aligning TDOA sensors on the same line of bearing is highly 

undesirable. 

 
Figure 32.  Overhead (left) and three-dimensional view (right) of TDOA HDOP 

variations due to the movement of a single sensor  

The rotated three-dimensional view on the far right of Figure 32 shows that local 

minimums exist on the Y-axis, however the negative Y-axis is the lesser of the two due to 

the large angle separation present there between the sensors. When off the Y-axis, the 

HDOP rises. This is due to the reduced angle differential between iθ  and jθ .  

In our implementation of the TDOA equations we did not observe range 

dependence, however work has been conducted in [24] and [25] to analyze this aspect. 

The predominant result of the portion of [24] applicable to our purposes is seen in Figure 

33, which displays increasing DOP (degraded precision) with range. The source of this 

error is described as due to increasing “flatness” of the hyperbolic curves with distance 

resulting in an intersection point that becomes less definite [25]. Of additional interest in 

Figure 33 is the reduction in DOP (improved precision) as the number of sensors “n” 

increases. 
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Figure 33.  Variation in dilution of precision for the case of TDOA 

measurements with respect to increasing Range and number of 
sensors, “n”, from [24] 

In each of the detailed measurement cases (range-only, bearing-only and TDOA), 

the dilution of precision provides us a single number that quantifies the potential 

precision with which we can track the target. This number is based solely on the relative 

location of each AquaQuad, which is known, and the current position estimate of the 

target, which is shared. The limited number of inputs and simplicity of the calculation 

leads to its repeatability and allows us to intelligently plan the positioning of the 

AquaQuads for tracking.  

4. Optimal Sensor Placement for HDOP 

A logical extension to the preceding discussion of geometry-based HDOP is 

answering the question of which sensor configurations minimize the metric. To approach 

this, we explored the results that were obtained when minimizing the bearing-only and 

range-only HDOP functions with respect to the position of eight sensor nodes.  

MATLAB’s fminunc function was evaluated with two sets of initial conditions: 

one with nodes evenly spaced around the target, the other clustered in closely around the 

target. This was done to explore the solution’s dependency on initial placement of the 

sensors. Each scenario was conducted five times to further illustrate the spread of 
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expected behavior. The results from range-only and bearing-only measurement scenarios 

are plotted in Figure 34 and Figure 35 respectively, with dots representing fminunc trial 

solutions and triangles representing the function’s final solution. 

 
Figure 34.  Range-only measurement: Minimizing solutions to HDOP-optimal 

placement of eight sensors with an evenly spaced initial condition 
(left) and clustered initial condition (right) 

For range-only measurements, the evenly placed arrangement of the sensors is 

shown to be near-optimal. In the far left of Figure 34 it can be seen that the solutions held 

closely to their initial configuration with respect to the angle between the sensors. A 

slight extension in range from the target was observed, and this was expected for a range-

only sensor. In the far right of Figure 34 we see the solvers attempt to enlarge the angle 

distribution from the initial clustered configuration while simultaneously maximizing 

range from the target. The result is a one-sided distribution of the nodes, as the solutions 

that attempt to expand to the opposite side of the target are likely discarded due to their 

near-range unsuitability. 
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Figure 35.  Bearing-only measurement: Minimizing solutions to HDOP-optimal 

placement of eight sensors with an evenly spaced initial condition 
(left) and clustered initial condition (right) 

Considering the bearing-only measurement, we see evidence once again that the 

even distribution of sensors is nearly optimal in the far left of Figure 35. The intriguing 

difference between the two measurement scenarios is that for bearing-only there is 

consistently a node that attempts to get as close to the target as possible. This was 

somewhat expected due to the projected improvement of HDOP with decreasing range 

but also appears to be a tradeoff between the range and angle sensitivities of Equation 

(IV.10) as there was routinely only one node chosen to approach the target. The clustered 

distribution on the far right of Figure 35 shows a similar behavior, as the target is nearly 

covered up by the potential solution nodes. 

This analysis highlights the angle separation dependences of both bearing-only 

and range-only measurement HDOP and also displayed some unexpected behavior in the 

bearing-only scenario. It is important to note that the solution provided by fminunc was 

largely dependent upon the initial conditions chosen. In addition, all of the discussions 

regarding HDOP assume the sensitivity of each sensor is range-independent. For 

example, increasing the distance to the target may improve HDOP with a range-only 

measurement, but in the case of ocean acoustics this also increases the transmission loss 

experienced by the signal, which may make its receipt by the sensor less probable. 
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B. RAPIDLY-EXPLORING RANDOM TREE DESCRIPTION 

Leading up to this point we have discussed important elements of the thesis: 

energy balance, environmental parameters, and estimation filter characteristics. Each of 

them can now be integrated together under the realm of path-planning. In his ground 

breaking paper, LaValle [22] created the concept of a rapidly-exploring random tree 

(RRT), which sought to overcome some of the limitations of existing path-planning 

methods. Specifically focusing on a comparison to the probabilistic roadmap (PRM) 

approach, [22] points out that PRM algorithms attempt random configurations that must 

be connected to one another through the use of local planners. In the case where making 

these connections amounts to a nonlinear control problem, the undesirable increased 

computational complexity motivated the search for another method. The RRT algorithm 

was created to share many of the same advantages as the PRM method, such as minimal 

heuristics and limited arbitrary parameters. These features lead to repeatability and 

consistency [22]. However, the RRT relaxes the requirement to make a connection 

between adjacent states, making the RRT suitable for the nonholonomic and kinodynamic 

systems that often arise in robotics and reducing the computations significantly [22].  

1. Basic RRT Algorithm Description 

The RRT path planning method as described in [22] begins with a metric space X 

that can encompass any number of elements, to include variables like the orientation of a 

robot or its velocity and acceleration. In the general sense, X is not required to span a 

physical space and does not need to exist in only two or three visualizable dimensions. If 

a fixed obstacle region exists obsX X⊂  that successful paths cannot pass through, it can 

be easily accommodated by the path planning approach. Once again, the concept of an 

obstacle is not limited to a physical object blocking a path and extends to any constraint 

the user specifies on X. Obstacles are also not explicitly defined in advance to the 

algorithm; the RRT only uses Xobs to check for collision when adding new elements to 

the tree.  

The tree generated by the RRT is made up of vertices (points where connections 

are made) and edges (lines connecting adjacent vertices). All of the vertices added to the 

 59 



tree will exist in Xfree, which in a probabilistic sense is the complement of Xobs. Edges are 

created by extension from an existing vertex in the tree towards a target location. This 

extension is conducted via integration of a state transition equation ( , )x f x u=  that 

advances the state x with respect to a control input u. In many cases, including ours, Euler 

integration is utilized whereby ( , )newx x f x u t≈ + ∆ . Upon integration, if new freex X⊂ then 

new obsx X⊄  and therefore xnew can be added to the tree T. 

To illustrate the mechanics of an RRT, we utilize the original psuedocode seen in 

Figure 36 from [22].  

 
Figure 36.  Rapidly-exploring random tree pseudocode, from [22] 

Consider the simple case of a bounded XY Euclidian geometric plane with 

obstacles. The state space being explored is the Cartesian position of the vehicle, [X, Y]. 

After the user defines a start and goal state, the tree is initialized in Step 1. At each of the 

iterations of Step 2, the RRT algorithm randomly selects a point in the plane xrand in Step 

3. It then finds the closest existing vertex in the tree xnear in Step 4 (at first iteration this 

will simply be the start point). Step 5 then extends an edge in the direction of that random 

point. The edge size itself is dictated by the control effort, u, but can be of a fixed size set 

by the user in this basic scenario. The algorithm creates the new state xnew in Step 6 and 

also checks to see if it impacts an obstacle. If it does not impact an obstacle, the 
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algorithm moves on to Step 7 and xnew becomes the newest vertex in the tree. Step 8 

creates the edge between xnear and xnew. This process repeats until the goal state is 

achieved or the number of specified iterations is exceeded. If the goal state is achieved, a 

final path is traced out from the start point to the goal whose vertices do not intersect an 

obstacle. Figure 37 is an example of the completed product from a basic fixed-step RRT 

algorithm, showing the exploration of space and the resultant path through an obstacle 

field. 

 
Figure 37.  Path generated by a basic RRT algorithm through a fixed obstacle 

field 

The behavior seen in Figure 37 is representative of some of the RRT’s professed 

benefits: the bias towards unexplored space [22] is evident, none of the possible vertices 

intersect the obstacles, and a final path through the obstacle field has been found at the 

simple algorithm’s conclusion.  

From a theoretical standpoint, the RRT has proven probabilistic completeness 

[22]; however there are no guarantees on its optimality [26]. This is because the RRT 

does not take the “quality of the solution into account” by examining the cost of control 

efforts, time, and other metrics [21]. As a result of this, [21] proves that the RRT 

converges to a suboptimal solution the majority of the time and introduces the concept of 

RRT*, which achieves infinite-time asymptotic optimality. In simple terms, the RRT* 

does this by applying a cost to traversing each edge in the tree, while keeping a running 
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tally of the cumulative cost of using each path in the tree. The asymptotic optimality of 

the final path is guaranteed through the use of a rewiring step that looks back through the 

tree and reassigns vertices in the tree that grant a lower cumulative cost than their current 

configuration.  

The RRT* concept suggests an excellent solution to the motion planning problem 

faced in the AquaQuad scenario. Asymptotic optimality provides an infinite-time 

guarantee on minimal energy expenditure while using the environmental disturbances to 

our benefit. The vehicle for crafting this behavior is the RRT*’s cost function, which not 

only takes into account the energy balance but also the quality of the flock’s ability to 

track the target at each vertex that is contained in an HDOP calculation. Obstacle 

avoidance is built in to the algorithm, which will prevent interference from adjacent 

AquaQuads, in addition to avoidance of common at-sea obstacles such as islands, buoys, 

shipping routes, etc. In addition, these obstacle areas can represent locations of poor 

HDOP; any area we do not wish the AquaQuads to enter. Finally, the simplicity of the 

RRT facilitates its real-time usage and feasibility of hardware implementation. For this 

reason, and using concepts from [21], [22] and [27], we created an RRT* algorithm 

specific to our task. 

2. Base RRT* Algorithm 

This section seeks to describe the big picture steps that our RRT* algorithm uses, 

while the actual MATLAB code can be seen in Appendix C. In this discussion, we again 

refer to the easy to visualize case where the states being explored are within the XY 

plane. This plane is discretized into a number of individual cells, each of which contains 

information relevant to that specific location, including but not limited to the presence of 

obstacles and the predicted ocean current vector. The map is then initialized with a start 

and goal position. A representative example of the initial configuration is shown in 

Figure 38. In the following discussion, the trees created are not dependent upon the ocean 

current, but this is the style of figure will be used throughout this thesis. The goal position 

can be defined by the solution of a higher level operations research task that plans an 

optimal sequence of waypoints for a flock of coordinated AquaQuads in a given area of 
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operation. It can also represent a rapidly sampled point of minimal HDOP. Also of note, 

in the following discussion we use the te1m "node" interchangeably with the previously-

used tetm "vettex" and substitute "branch" for "edge." 

Figure 38. 
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Initialization step of an RRT algorithm defining fixed obstacles, 
ocean cmTent and the Strut and Goal positions 

Select Target with Defined Goal Probability 

As the first step in om RRT*, a random "target" point Xtgt in the space is selected 

from a unif01m probability distribution for analysis. This tru·get is in fact pseudo­

randomly selected, since the user will defme that, for some small percentage of the time 

("goal probability"), the tru·get is forced to be the goal position X goal· In this way the tree 

is biased towards the goal, which aids in faster convergence time at a small cost in space 

exploration. Figme 39 shows a prutially completed tree with the pseudo-random target 

plotted. 
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Figure 39. 
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random target selection step (Note: presented path not a function of 

ocean cunent) 

Find Set of Closest Nodes and Determine Minimum Cost Node 

Once the target is selected, the algorithm must select an existing node in the tree 

to extend from. In a basic RRT, it will look at the Cruiesian distance between the tru·get 

and all of the cunent nodes in the u·ee and select the closest one. In our RR T*, we select 

the closest "N" nodes and evaluate each to detennine which one will result in the 

minimum cost, the function for which will be detailed in the next section of this thesis; 

for now it is sufficient to say that the best segment con esponds to longer drifting time 

along the given ocean cunents. The value for N is defined by the user. Raising the 

number of nodes evaluated increases the likelihood of fmding an optimal node but also 

increases computation time. The most cost-effective existing node becomes the pru·ent 

node. 

c. Extend Branch in Tree with Obstacle Detection 

With the target and the parent node selected, the algorithm extends a branch from 

the parent node in the direction of the tru·get. In a basic RRT, it will be of a fixed step size 

(i.e., - 1 meter). In our RRT*, we conduct simple Euler integration of the point-mass 
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kinematics of the vehicle over the time step we specify for the process. Limits can easily 

be defined for the control authority available to achieve this extension. 

After integration, the position of the point-mass becomes a new candidate node 

Xnew · We use the te1m "candidate" node to highlight that the node may not be added to the 

tree at this stage. Next, the location of X new is checked to see if it falls within the limits of 

a defmed obstacle in the space Xobs · If so, or if the control u required to achieve that point 

falls outside of the vehicle's available limits, it is thrown out, and the RRT* starts over 

with a new pseudo-random target, Xrgt · If xnew falls within the obstacle-free region X.free, it 

is added to the tree T as the newest node and a branch is connected between it and the 

parent node, as seen in Figure 40. 

Figure 40. 
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Stored within the tree is a node number that uniquely identifies the newest node, 

the number identifying its parent node, the cost of traversing the branch, and the 

cumulative cost associated with the path that goes from the Start point to this newest 

node. 

65 



d. Rewire Tree 

The rewiring step occurs next, which provides the infinite time optimality 

guarantee. In our finite time application, this serves to improve the performance of our 

ultimate path. With the newest node now added to the tree, the rewire step selects 

existing nearby nodes in the tree that fall within a user-defined radius. If the cumulative 

cost of traveling to these nearby nodes could be reduced by reassigning the newest node 

as their parent node, it is updated as such and the old branch is discarded in favor of the 

new one. This process is very succinctly shown in Figure 41 and quoted from [28]. 

when a new vertex is added to the tree, it is checked whether vertices that 
are already in the tree can be reached at a lower cost through this new 
vertex. This is also checked for a number of k nearest neighbors. In 
(Figure 41a) the tree is plotted again with the new vertex that has just been 
added and its k nearest neighbors. For these three vertices the costs of 
connection to the new vertex are given. It can be seen that vertex 6 is 
currently reached at a cost of 15, while through the new vertex this vertex 
can be reached at a cost of 12 (through vertices 0-1-5-9-6). Since this is 
lower than the current cost, the current edge toward vertex 6 is deleted and 
a new edge is added. The result is the tree of (Figure 41b). When a new 
edge is added to the tree a consequence is that the cost to reach the vertex 
that is rewired should be updated as well as the costs of all the child 
vertices of this vertex. [28] 

 
Figure 41.  Visual display of RRT* rewire step, from [28] 
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e. Complete the Path and Reaching Goal or after "N" Iterations 

After X new is added to the tree, the algorithm checks if this node achieves the goal 

state. Typically, success is defined within a certain tolerance (i.e., -lOOcm), which can be 

adjusted based on the resolution required. If the goal is not met, and the maximum 

number of iterations is not exceeded, the cycle begins anew. When the goal is met, there 

are two choices. First, the algorithm can be te1minated and the path from the strut to the 

goal state is defmed. Othe1wise, the algorithm can continue sem·ching for more cost­

effective paths until directed to te1minate. Since each node in the tree has its associated 

parent node stored alongside it, tracing the final path shown in Figure 42 is conducted by 

starting at the node that achieved the goal and working backwm·ds. 

Figure 42. 
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C. DEAD RECKONING RRT* ALGORITHM 

The preceding discussion touches upon many of the concepts that exist in the new 

DR-RRT* algorithm. However, om scenm·io required a specific variant that needed to 

take into account the limited control and energy available to the AquaQuads. Specifically, 

in order to use the oceanic cmTents to the maximum extent possible, we allow for 

extended drifting periods where we predict the futme state of the vehicle given the 
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assumed ocean current vector at the node in the tree being analyzed. This is a basic “dead 

reckoning” (DR) step and like most DR solutions is a rough estimate whose accuracy is 

proportional to that of the ocean current map. That being said, the DR solution is integral 

to our algorithm, as the drift paths that are created can be linked via flight with “hop” 

steps. Figure 43 illustrates the difference between the DR-RRT* algorithm and a 

traditional RRT*. 

 
Figure 43.  Comparison of the DR-RRT* algorithm utilized in this thesis with a 

generic RRT* algorithm. 

The power behind the DR-RRT* algorithm is that it allows for periods where no 

control input occurs and hence minimal energy is expended. The bulk of the RRT* 

process is dormant during these phases, improving computational efficiency. Despite this 

dormancy, the nodes of the tree created while drifting are still used within the RRT* 
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framework and are essential to it. They represent obstacle-free paths with a defmed cost 

associated with tmveling each branch and provide candidate locations to both hop and 

rewire from once the RRT* is activated. 

1. DR-RRT* Overview 

As an introduction to om illusu·ation of the DR-RRT*, Figme 44 displays the path 

created dming the first DR phase of the algorithm. Sh01tly after this figme was generated, 

the ocean cmrent begins to pull the predicted location of the AquaQuad into the center of 

the vortex, away from the red star denoting the goaVfinish. 

Figme 44. 
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Drifting phase of the DR-RRT* algorithm with fixed obstacles, just 
prior to flight. 

If it were possible to drift directly to the goal state, this would often be the best 

possible path. In lieu of that lmlikely scenario, we implement a mle that verifies a 

negative gradient in range to the goal, or when the u·ee intersects an obstacle. Once the 

negative gradient is verified for an extended period of time, it activates the primruy 

functions of the RRT* contained in the hopping phase. 

When conducting the hop phase, the AquaQuad is allowed limited flight time. 

Flight is heavily penalized, commensmate with the increased energy expenditme. The 
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direction of that flight is pseudo-randomly selected in the standard RRT* manner, it 

originates from the most cost-efficient nearby parent node, and the fmal position of the 

AquaQuad is then tested for obstacle presence. The random nature of the flight steps is 

important, because it allows us to explore the configuration space and evaluate the cost of 

different paths. The final result of a hopping step is shown in Figure 45. A completed hop 

step is visualized as a green arc connected by red circles that display takeoff and landing 

locales. 

0 2 3 4 5 
)4>osit ion, nautical miles 

Figure 45. Hopping phase of the DR-RRT* algorithm with fixed obstacles. 
Flight path shown as green arc from one drifting path to a new one. 

Rewiring also occurs in the hopping phase, whereby drifting paths in adjacent 

branches can be joined by flight to the newest node if it results in a lower cumulative 

cost. In order to preserve the continuity of fmal paths in our version, rewiring is only 

allowed on nodes that originate from or te1minate in a hop step. This ensures that control 

authority exists for the AquaQuad on the new path. The result of one simulation of the 

DR-RRT* algorithm, which te1minates once the Goal point is achieved, is shown in 

Figure 46. In this case, the obstacle is located near the center of the ocean cmTent v01tex, 

so that many of the black drift paths are unsuitable without flight. The fmal path created 
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by the algorithm is shown in magenta and requires fom periods of flight whose combined 

length is less than that required for direct flight. 

Dead Reckoning - Rapidly Exploring Random Tree Star (DR-RRT") Algorithm in a Current Field 
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DR-RRT* algorithm with fixed obstacles. Final path is shown in 
magenta . Evaluated flight paths are represented as green aTcs. 

Evaluated drift paths are represented as back lines. 

DR-RRT* Objective Function 

One of the useful features of the RRT* is that the objective or "cost" function, can 

be utilized to shape the paths that are generated to the goal. The use of objective 

functions is a common way of combining multiple criteria to be optimized into a 

weighted and linearly combined sum. For om pmposes, we desire paths that are energy­

efficient, so we began with the energy balance shown in Equation (IV.14) that is based 

upon the discussion in Chapter IT. C. 
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  (IV.14) 

We also desire paths that have desirable geometry for the tracking mission (i.e., 

minimal HDOP) and of course those that reach the goal point. The energy terms are a 

function of time spent in a drifting or flying state, however the HDOP and distance to 

goal terms are a function of position. These computations are conducted in real-time 

depending upon the location of the node in the tree being analyzed, however Figure 47 

and Figure 48 give a three-dimensional view of how distance to the goal and bearing-only 

measurement HDOP change as the position of a generic “QuadRotor #4” changes.  

 
Figure 47.  Value of the objective function element “Dist2Goal” with adjusted 

Quadrotor position in the configuration space 
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Figure 48.  Value of the objective function element “HDOP” for Bearing-only 

measurements with adjusted Quadrotor position in the configuration 
space 

The HDOP values in Figure 48 are of particular interest, as it can be seen that for 

bearing-only measurements (see Figure 32 for the case of TDOA measurements), a 

singularity exists when QuadRotor #4 is directly on top of the target. In addition, a ridge 

of high HDOP is present that spans from the location of QuadRotor #1 to QuadRotor #3. 

This is a visual indication of the degradation in HDOP due to co-alignment between 

sensors, see discussion in Chapter IV.A.1.  

With the terms for HDOP and distance to the goal (Dist2Goal) now included, we 

normalized all components and scaled each of the terms with a gain Ki as seen in 

Equation (IV.15). 
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  (IV.15) 

Note the negative sign associated with the solar energy term K4 of Equation (IV.15). This 

is to account for the energy gain associated with drifting. Longer drifting periods 

minimize the cost of travel and create a desirable bias towards the selection of these 

paths.  

One of the common issues with the use of objective functions is that they are very 

sensitive to weighting and this can have effects upon their optimality [29]. Therefore, 

determination of the magnitude of each Ki term was conducted empirically. Some 

interesting results were generated during these trials. Specifically, if the K4 term was too 

large, Equation (IV.15) became a decreasing function with distance traveled. This had 

undesirable side effects during the Rewire step, where loops were made in the final path 

that did not reach the goal. Figure 49 illustrates this behavior with generic values for the 

cumulative cost at each point of consideration.  

 
Figure 49.  Improper rewire behavior exhibited with excessive weighting on 

solar energy term of cost function in DR-RRT* algorithm 
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Drifting from Point 1 in Figure 49, there is an accumulation of negative cost 

associated with absorbed solar energy that drops the cumulative cost of reaching Point 2 

down to “4.” At this point, the algorithm determines a Hop is necessary (due to 

increasing distance to the Goal point or obstacle impact), and flight is allowed to Point 3 

at an additional cost of +2. At this point, as described in Section IV.B.2, the DR-RRT* 

looks to rewire with a nearby node in the tree. Point 4 is improperly selected for rewire 

since flight raises the cumulative cost of obtaining this point to only “8”, which is less 

than that obtained by drifting from Point 1 to Point 4 at the onset. It can be seen that this 

creates an infinite loop from 2-3-4-2 that does not reach the goal.  

Table 3 shows the final Ki terms selected for our DR-RRT* and the qualitative 

justifications for their selection. In addition, it should be stated that during drift paths the 

K3 term is switched to zero as no flight occurs in these phases and once again that the 

cost function of Equation (IV.15) has a negative sign associated with K4. The MATLAB 

implementation of the DR-RRT* code can be found in Appendix C.  

 

Table 3.   Gain terms applied in cost function of DR-RRT* algorithm with 
justifications for usage 

Value Associated Term Justification
K 4 0.005 Solar Energy In Small value to maintain cost an increasing function with distance traveled
K 3 0.95 Flight Energy Out Large value to heavily penalize flight
K 2 0.0225 Distance To Goal Bias towards paths which grow towards the goal
K 1 0.0225 HDOP Bias towards paths with minimal HDOP for improved tracking
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V. SIMULATION AND TESTING 

The algorithms created in this thesis were designed with the ultimate goal in mind 

that they will be fielded on the future AquaQuad. To that end, we seek to explore the 

real-time implementation of the UKF and DR-RRT* concepts in live testing. We also 

require some validation of the DR-RRT*’s professed energy-efficiency benefits for the 

AquaQuad. This chapter details those steps and their results. 

All simulations were conducted utilizing MathWorks’ MATLAB and SIMULINK 

software utilizing a Dell Optiplex 790 desktop computer with 4 GB RAM and an Intel 

Core i7-2600 processor operating at 3.40 GHz with a Windows 7 64-bit operating 

system. All testing was conducted at the Naval Postgraduate School’s Center for 

Autonomous Vehicle Research in Monterey, CA.  

A. DR-RRT* ALGORITHM ANALYSIS 

The RRT*’s guarantees on optimality are tied to the concept of infinite time. In 

the finite-time world application, optimality is sought but not guaranteed. The RRT* can 

terminate once a solution is found, or it can continue to find paths that further minimize 

the objective function. This comes at the cost of computation time, whereas it may be 

preferable to find a rapid “good enough” solution instead. A simple question is then: How 

much is “good enough”?  

1. Single-solution DR-RRT* 

To explore the gains obtained by running the DR-RRT* beyond its initial solution 

point, we needed to first gather some statistics on the single-solution algorithm. To do 

this, we used a Monte Carlo approach where the data from 1,000 simulations was 

collected for analysis.  

An initial obstacle set was randomly generated and then fixed in place for future 

simulations to ensure consistency. The goal probability (defined in Chapter IV.B.2) was 

set at 0.05, so the finish point was selected as the random target for flight approximately 

5 percent of the time. The positions of three other AquaQuads were simulated at (2.5, 
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2.5), (2.5, -2.5) and (-2.5, -2.5) respectively as inputs to the HDOP calculation. At the 

algorithm’s conclusion sequential flight segments were combined.  

Four of the successful trees are displayed in Figure 50. Once again, the black lines 

represent unsuccessful drift paths, and the green arcs represent unsuccessful “hop” steps 

of limited flight. At the algorithms conclusion, sequential hop segments were joined into 

a single period of flight. The final successful path is shown in magenta. The four trees 

shown are useful to highlight some expected tendencies of the DR-RRT*.  

 
Figure 50.  Successful paths (shown in magenta) obtained from a Monte Carlo 

simulation conducted using the DR-RRT* algorithm with a fixed 
obstacle field 

Given the vortex ocean current flow, it was anticipated that successful paths 

would not be generated from the lower left-hand quadrant. In these regions the current 

 78 



flow drives the AquaQuad away from the goal, which is undesirable from both a 

conceptual and mathematical standpoint, since these paths maximize the Dist2Goal term 

of the objective function and force hop steps. This behavior is evident in Figure 50, as all 

successful paths occur towards the right of the obstacle; a region where ocean current 

tends to drive the AquaQuad towards the finish. Another trend of interest is the tendency 

for the AquaQuad to often fly directly to the goal once the tree crosses the x-axis into the 

negative y region. All ocean current vectors drive away from the Goal in this location, so 

the algorithm aggressively hops and ultimately strikes the finish marker.  

The primary data points of interest from the Monte Carlo simulation are the 

energy expended in the successful path and the time it took to run the algorithm to its 

conclusion. These values were stored at the completion of every tree that reached the 

Goal and are displayed in Figure 51.  
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Figure 51. 

Flight Energy Expended Using a DR-RRT" Path Planner 

• DR-RRT" 

- - Direct Flight 

• 
• • • • 

• • 

100 200 300 400 500 600 700 800 900 1000 
Simulation Number 

DR-RRT" Computation Time 

• • • 
• • • • • 

100 200 300 400 500 600 700 800 900 1000 
Simulation Number 

Energy expenditure and computation time of 1,000 1uns of the DR­
RRT* algorithm. Direct flight baseline is shown in red in the top 

figure and represents flying the straight-line distance between Sta1t 
and Goal points 

The red line at the top of Figure 51 represents the 49 .5Wh of energy that would be 

expended in direct flight between the Start and Goal positions. Overall, the results of the 

simulation were very positive. The mean energy value of the sample set was 38.69Wh 

with a standard deviation of 6.81Wh, an improvement of approximately 22 percent. 

Computation time was sh01t, with a mean value and standard deviation of 190ms and 

90ms, respectively. 

It can be seen in the top p01tion of Figure 51 that relatively infrequently the DR­

RRT* found paths that utilized more energy than that consumed during direct flight. In 

application, the algorithm could be forced to lllll again. An altemative viewpoint is that 

since traversing the DR-RRT* paths take several hours of time, a staggered approach to 
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flight may be more desirable. During that time the AquaQuad will be contributing 

measurements to the tracking scenario and absorbing solar energy during daylight hours, 

and the path it is following will be obstacle-free. Conversely if the AquaQuad were to fly 

directly to the goal point its drifting status would be unregulated without further planning. 

This raises the risk of impacting an obstacle or drifting to areas of poor HDOP.  

2. Multi-solution “Optimality-Seeking” DR-RRT* 

With the statistics from the single-solution DR-RRT* determined, we then seek a 

qualitative and quantitative comparison to the result of a DR-RRT* simulation that is 

allowed to run far past its initial solution. In doing so, the algorithm will continue to find 

new paths to the goal while rewiring existing paths in order to make the final path closer 

to optimal. We use the term “optimality-seeking” for this evaluation, and we expect that 

the minimum-cost path from the optimality-seeking DR-RRT* will improve upon the 

mean value of the single-solution DR-RRT* energy consumption at the expense of 

computation time.  

We again utilized a Monte Carlo approach to develop statistics, collecting data 

from 1000 simulations of the optimality-seeking DR-RRT*. Each simulation was allowed 

to run for 25,000 iterations and the successful paths to the goal were aggregated. The path 

with the minimum energy expenditure that reached the goal was selected, the flight 

energy expended on that path and computation time recorded, and a new simulation was 

conducted. Four of the successful trees are displayed in Figure 52.  
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Figure 52.  Successful paths (shown in magenta) obtained from a Monte Carlo 

simulation conducted using the optimality-seeking DR-RRT* 
algorithm with a fixed obstacle field. Candidate paths omitted. 

Unlike Figure 50, Figure 52 does not have the candidate paths drawn, only the 

final solutions. Once again, we combine sequential hop segments in our final path into a 

single period of flight (this behavior is evident in the top left tree of Figure 52). Figure 52 

does share many of the same characteristics as its single-solution counterpart, namely the 

bias in the path towards beneficial ocean current vectors. The true depiction of its 

proposed benefit comes from the underlying data that is seen in Figure 53. 
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Figure 53. 

Flight Energy Expended Using an Optimality-Seeking DR-RRT* Path Planner 

• 

• Optimality-Seeking 
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Computation lime Required For DR-RRT* Path Planner 

• Optimality-Seeking I 

• • 
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Simulation Number 

Energy expenditure and computation time of 1,000 1uns of the 
optimality-seeking DR-RRT* algorithm. Direct flight baseline is 

shown in red in the top figure and represents flying the straight-line 
distance between Stmi and Goal points 

Once again, the solid red line signifies the 49.5Wh of energy expended in direct 

flight. Ofpmiicular interest is the fact that none of the 1,000 simulations produced a path 

that used more energy than direct flight. The mean energy value of the optimality-seeking 

DR-RRT* sample set was 36.26Wh with a standard deviation of 3.93Wh. This is an 

improvement of27 percent over direct flight but only six percent over the single-solution 

DR-RRT*. This energy efficiency came at a small price, as the mean computation time 

for the sample set was almost five seconds: 4,964msec with a standm·d deviation of 

18.12msec, an increase in the mean of almost 2,500 percent over the single-solution DR­

RRT*. 
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3. DR-RRT* Evaluation Summary 

Table 4 provides a summary of the pertinent data points collected in the Monte 

Carlo analysis of the DR-RRT*. The benefit from running the algorithm beyond its initial 

solution point is irrefutable, but these gains must be weighed against the computational 

cost. The value of computation time is user-dependent and linked to the microprocessor 

the code is being implemented upon.  

 

Table 4.   Summary of Monte Carlo simulation results contrasting a single-solution 
DR-RRT* algorithm with that obtained by an optimality-seeking DR-
RRT*. Percent improvement based upon a direct flight comparison. 

B. TESTING ENVIRONMENT AND CONTROL OVERVIEW 

This section discusses the environment, platforms, and control structure that we 

used to explore real-time implementation of our algorithms. Despite being evaluated 

under slightly different scenarios, these elements were common to the testing of both the 

UKF and DR-RRT* concepts and are therefore summarized here. 

1. Environment: Center for Autonomous Vehicle Research  

Testing was conducted in the lab space of the Center for Autonomous Vehicle 

Research (CAVR). This space is instrumented with a Vicon motion tracking system [30] 

that provides high resolution position (x, y, z) and orientation (roll, pitch, yaw) estimates 

of objects in the camera’s cumulative frame of reference. 

Mean
Standard
Deviation

Improvement over 
Direct Flight† Mean

Standard
Deviation

Improvement over 
Direct Flight†

Energy, Wh 38.69 6.81 22% 36.26 3.93 27%
Computation 

Time, msec 190 90 - 4964 18 -

†Direct flight utilizes 49.5Wh of energy flying directly to goal point

Single-Solution DR-RRT* Optimality-Seeking DR-RRT*
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Figure 54.  Vicon instrumented laboratory in the Naval Postgraduate School’s 
Center for Autonomous Vehicle Research  

To determine the pose of objects in the field, Vicon utilizes several optical 

cameras mounted at high points in the lab space. Each of these cameras (far left of Figure 

55), has rings of LED strobe lights surrounding the lens that cycle at a high frequency. 

The light produced by the strobe is reflected off of markers affixed to objects in the field 

of view (center of Figure 55), filtered through the lens and captured by a light sensitive 

plate behind it [30]. This data is transmitted to a workstation PC (far right of Figure 55) 

for reconstruction.  
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Figure 55.  Two of the CAVR lab’s Vicon cameras (far left), reflectors affixed 

to a quadrotor shroud (center) and the Vicon Workstation (far right) 

The object data produced by the Vicon Workstation is sent via an Ethernet router 

to the user’s personal computer and can be ingested into SIMULINK via User Datagram 

Protocol (UDP). For our purposes, the Vicon system facilitates testing of the UKF and 

DR-RRT* algorithms in real-time through pseudo-measurements and control inputs that 

are derived from the positions of all players in the field of view.  

2. Platforms: Parrot AR.Drones 

With the AquaQuads under construction, we required a proven commercial 

substitute for testing, and Parrot’s AR.Drone platform is just that. The internal sensors on 

board of the AR.Drone record and wirelessly transmit body velocity (u, v, w), orientation 

(roll, pitch, yaw), altitude (z), and remaining battery life. Of perhaps larger importance is 

their ability to also accept commands wirelessly, allowing them to be controlled with a 

high degree of authority. 
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Figure 56.  Parrot AR.Drone quadrotor utilized for testing purposes 

3. Control Structure 

The overarching control scheme for the AR.Drones is depicted in Figure 57, 

which highlights the flow of communications. The position and orientation of each 

quadrotor was provided from the Vicon system at a frequency of 100Hz. This was used 

as an input to the master laptop, which took the current state of the quadrotors and 

produced control inputs to them at a frequency of 1Hz.  

 
Figure 57.  Communications overview for testing in the CAVR laboratory 

Control commands for the quadrotors were produced utilizing proportional-

integral (PI) and proportional-integral-derivative (PID) controllers within the SIMULINK 
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environment that sought to minimize the error between the state of the quadrotor and a 

reference signal.  

Vicon provides the position of the quadrotor within the camera’s frame of 

reference. Commands provided to the AR.Drones needed to be translated into their fixed 

body frame of reference whose origin is located at the center of the quadrotor itself. The 

interested reader should consult Chapter 2 of either [1] or [18] for a full treatment of 

reference frames and translation between them. For our purposes, translation between our 

two right-handed coordinated frames is conducted using a direction cosine matrix of the 

form 

 

b c

b b c
c

b c

x x
y R y
z z

   
   =   
      

 (V.1) 

where c represents the camera frame, b represents the body frame and 
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 (V.2) 

with φ , θ  and ψ  representing roll, pitch, and yaw respectively.  

The block diagram representing the SIMULINK control system is shown in 

Figure 58. The AR.Drone accepts heading rate ψ , roll angle φ , pitch angle θ , and 

vertical velocity ZV  commands. The PI and PID controllers take heading and position 

references and subtracts the current state of the quadrotor to produce an error term. This 

signal is then sent through raw (no alteration of error term) proportional, derivative, or 

integrated channels, each multiplied by empirically-determined gains to produce the 

desired commands. Of note, the velocity of the quadrotors utilized in the PID controller 

was determined by taking the derivative of the Vicon position signal and then utilizing a 

low-pass filter to remove the higher frequency oscillations, thereby smoothing it. The 

primary style of implementation for all controllers is feed-back, complemented with a 

feed-forward controller in the case of roll and pitch commands.  
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Figure 58.  Block diagram of SIMULINK control implementation for AR.Drone 

quadrotors 

The Trajectory Planner in Figure 58 is left as a generic entity that was modified 

depending upon the test being conducted and will be discussed in the following sections. 

C. UNSCENTED KALMAN FILTER TEST 

The first test conducted in the CAVR lab was designed to evaluate the UKF-based 

tracking algorithm on the quadrotors. We present the envisioned at-sea scenario that the 

test is founded upon, provide some relevant implementation details, and then discuss its 

results. 

1. Unscented Kalman Filter Scenario 

In the UKF test scenario, AquaQuads with TDOA measurement capabilities are 

surrounding a target that is undergoing random motion. This target behavior differentiates 

it from the linear motion simulated in the EKF/UKF comparison of Chapter III.E. For this 

purpose, we placed each of three quadrotors in a Y-shaped configuration around the 

object to be tracked in the center. The basic setup is shown in Figure 59.  
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Figure 59.  General scenario overview for the UKF tracking test showing the 

position of sensors and the target (ocean current vectors not utilized 
in CAVR lab) 

In this test the ocean current vectors were not utilized, however each of the 

searcher quadrotors was commanded to hold its position at an altitude of two meters in 

order to simulate a floating AquaQuad. The quadrotors were also commanded to change 

their heading to point in the direction of the estimated position. When the heading of each 

quadrotor and the target location aligned, this provided a visual representation of the 

filter’s convergence. These commands make up the function of the “Trajectory Planner” 

block of Figure 58 for the UKF scenario.  

The UKF equations from Figure 23 were modified for TDOA measurements and 

incorporated within an embedded MATLAB function block for SIMULINK 

implementation. This can be seen in Appendix B. In order to obtain TDOA pseudo-

measurements that would approximate those received by an actual sensor, we took 

advantage of the Vicon position data available to the lab. Specifically, at every call to the 

UKF the true range between the target and each quadrotor was determined. These ranges 

were divided through by a common value for the speed of sound in the ocean (1500m/s) 

to produce the time in seconds that it would take a signal to arrive at the AquaQuad. 

These three separate reception times were then subtracted from one another to produce a 

time-difference of arrival value ijτ , as discussed in Equation (II.7). Lastly, band-limited 

white noise was added to the measurements with a power of 10-8, incorporating error into 
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the measurement that the UKF would need to filter out in the estimation process. The 

SIMULINK implementation is shown in Figure 60.  

 
Figure 60.  TDOA pseudo-measurement generation and signal routing for lab 

testing of the unscented Kalman filter 

The structures of the TDOA pseudo-measurements that emerge from the “Time 

Difference” block of Figure 60, just before noise addition, take the form of Equation 

(V.3) for ingestion by the UKF. 
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The physical setup at the CAVR lab consisted of three AR.Drone quadrotors and 

a red helmet representing the target to be tracked. The limits of the Vicon camera studio 

as-positioned are approximately 8 meters by 8 meters. Yellow markers were placed on 

top of the quadrotor shrouds to denote the forward-looking axis of the drone. The target 

motion was conducted at random.  

 
Figure 61.  Physical setup of the CAVR lab test for the UKF tracking of a target 

(helmet, in red)  

2. Unscented Kalman Filter Test Results 

The lab test of the unscented Kalman filter was conducted several times and the 

results from one of those evaluations is detailed. To begin, the UKF was initialized with 

the state vector,  

 
ˆ [ , , , , , ] [0.5,0.5,0,0,0,0]T

o x yx x y u v a a= =  (V.4)
 

initial covariance, 

 92 



and noise tenns, 

Q = diag([1 Oe6
, 1 Oe6

, 1e6
, 1e6

, 1e6
, 1e6

]) 

R = diag([1e-6 ,1e-6 ,le-6]) 

(V.5) 

(V.6) 

The initial estimated position in the state vector was different from the tme 

position of the target, located at [1.2551 , 0.9699] , by approximately 0.9 meters. The 

TDOA pseudo-measurements provided to the UKF are shown in Figure 62, with the blue 

reference line representing the raw (t:Iue) TDOA measurement before noise addition. The 

mean value of the en or injected via white noise was 0.0011 seconds, relating to 

approximately 1. 7 meters when multiplied by the speed of smmd. 

IDOA UKF - Comparison of Meas. to Meas. with Noise 
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Figure 62. TDOA pseudo-measurements provided to UKF in real-time with added 
noise shown 

The results of the test were incredibly interesting, and the overall plots are shown 

in Figure 63 and Figure 64. The mean square enor in the position estimate was 0.21 

meters and 0.88 meters for the X andY positions, respectively. These values, however, 

do not tell the entire tale. 
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Figure 63. 
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Figure 64. UKF residual in estimating position of moving target 

To explore the results of this test fmi her, it is use:fhl to break it down into smaller 

time segments. When the test was first initialized, there is an expected initial overshoot as 
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the filter seeks convergence to the true position of the target. This is evident in the large 

initial residual and UKF covariance seen in Figure 65, which pertains to [0,13]t s= . 

Convergence occurs rapidly however, within two seconds, and this can also be seen in the 

demo screenshot of Figure 65 where all yellow markers representing the heading angle of 

each quadrotor are pointing towards the helmet. 

 
Figure 65.  Initial convergence of UKF position residual and covariance with 

screenshot of lab demo displaying the heading of each quadrotor 
pointing towards the estimated position of the target 

Following this convergence, the helmet is donned and the target moves towards 

the center of the quadrotors. Once again, as seen in Figure 66 from [13,55]t s=  (with the 

scale enlarged to show detail), there is minimal divergence in the estimated position.  
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Figure 66.  Continued convergence of estimated target location after first repositioning 

of helmet 

It is after this point in time where the position estimate of the UKF begins to have 

larger overshoots in convergence. This error is clear in the overlay of Figure 63 and in the 

residuals of Figure 64 from [55,120]t s= , as the estimated position swings away from the 

true position, takes time to meet the actual position of the target and then slowly draws 

away. 

The reason for the roughly one meter offset in residual appears to be directly tied 

to HDOP. Consider Figure 67, which shows HDOP and the residual as a function of 

equivalent timestamps. There is a direct correspondence between the peaks in HDOP and 

those in the residual. This further highlights the importance of including HDOP in the 

path-planning mission. It has a large impact on the quality of the ultimate estimated 

position.  
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Figure 67.  TDOA UKF residual peaks compared with the horizontal dilution of 

precision at equivalent times 

Of additional note, the minimum value for HDOP in the test was observed at 

around the 55 second mark of Figure 67, corresponding to when the target is located near 

the origin. This configuration maximizes the angles between the searching quadrotors, 

thereby minimizing Equation (IV.13).  

In general, the results of the UKF test were very encouraging. Position estimates 

were excellent under favorable searcher geometry. The sporadic stop-and-start nature of 

the target’s motion presents a challenge to the estimator when HDOP is large. Once it has 

converged around a static position with negligible velocity, the effects of a sudden 

change in the position of the target (as determined via the measurements) have a 

characteristic rise time and overshoot, and this is exacerbated with relatively poor 

dilution of precision. 

D. DR-RRT* PATH FOLLOWING TEST 

The next test conducted in the CAVR lab was to evaluate the paths produced by 

the DR-RRT* algorithm and the ability of the quadrotors to follow them. Again, we 

 97 



present the envisioned at-sea scenario that the test is founded upon, provide some 

relevant implementation details, and discuss the results. 

1. DR-RRT* Path-Following Scenario 

We considered the scenario of two AquaQuads that are tasked to reposition 

themselves in order to maintain an ostensibly favorable initial geometric configuration. 

The vortex ocean current pattern that we have utilized throughout this thesis continuously 

draws the AquaQuads towards the center in simulation, making potential station-keeping 

in this environment expensive from an energy consumption standpoint. Therefore, the 

AquaQuads are directed to swap positions by following DR-RRT* paths.  

 
Figure 68.  Position swapping scenario for the DR-RRT* path following test 

with ocean current vectors used to program simulated drifting 
behavior into the AR.Drone quadrotors 

In order to approximate the drifting and hopping behavior of the prototype 

AquaQuads, it was necessary to make some modifications to the “Trajectory Planner” 

block of Figure 58. Initial attempts at forcing the AR.Drone quadrotors to drift in air 

currents generated by a fan were hampered by the proprietary Parrot software that 

includes disturbance rejection when in a hovering state (i.e., the AR.Drone actively 

fought against the air flow). Drifting was instead simulated with a “rabbit-following” 

technique. At a 1Hz frequency, the position of the quadrotor was used to define the ocean 

current in its vicinity via a lookup table. This ocean current velocity was used to create a 
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waypoint, which was placed at one dead-reckoned time period away. At the next period, 

the position of the quadrotor was evaluated to determine if it fell within a watch circle 

radius around the waypoint; if so, another waypoint was generated in the same manner. 

While following a drift path, the CAVR quadrotors were commanded to fly at an altitude 

of one meter. When hopping, its altitude was raised to two meters and the quadrotor was 

allowed to rapidly fly to the terminal location of the hop. In this way, the hops were 

immediately visible to an observer. 

At this point it is important to note that, like the envisioned AquaQuad 

implementation it is based upon, the drift behavior of the AR.Drone is independent of the 

DR-RRT* path. We place the quadrotor at the starting location of the DR-RRT* tree, 

after which errors from external disturbances and regional ocean current approximations 

are free to build. This is expected from a drifting platform. Path-specific position 

commands are only provided to the quadrotor when it reaches a hopping location. Flight 

steps that terminate at a defined location act to reset the drifting errors.  

The map used within the DR-RRT* algorithm and the trajectory planner block is 

shown in Figure 69 alongside of a screenshot of the physical quadrotors in their starting 

locations for the video recorded demo.  

 
Figure 69.  Initialization phase of the DR-RRT* path-following lab test 

 99 



2. DR-RRT* Path-Following Test Results 

The same DR-RRT* algorithm was run for each quadrotor simultaneously, 

incorporating the initialization plot of Figure 69 and considering the starting position of 

one the goal point of the other. Once a successful path to the goal was found, the script 

terminated. This resulted in the trees of Figure 70, with Quad #1 on the left and Quad #2 

on the right.  

 
Figure 70.  Result of DR-RRT* algorithm run for two quadrotors swapping 

positions in the presence of simulated ocean current and an obstacle 
field 

It was anticipated that this scenario would result in opposing trees with similar 

shapes, driven by the symmetry of the ocean current in which they operate. This was 

indeed the case, as both trees find drift paths towards the origin and simply fly to the 

finish once the opposing ocean current is no longer beneficial. Figure 71 removes all of 

the branches analyzed in the tree for clarity and presents the final path that each 

quadrotor must follow. 
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Figure 71.  Final path from DR-RRT* algorithm run for two quadrotors 

swapping positions in the presence of simulated ocean current and an 
obstacle field 

With the paths so designated, the quadrotors in the lab were directed to follow 

them. Figure 72 displays the overlay of each quadrotor’s position along the path sampled 

at 1Hz by the Vicon system represented as red plus signs. The overarching result of the 

test is that both quadrotors made it to their respective goal successfully by following the 

DR-RRT* path. Figure 73 shows two screenshots of the test illustrating hopping 

segments. The astute observer may note that Quad #1’s Vicon position in Figure 72 

occasionally falls within the limits of the obstacle, despite the fact the DR-RRT* path 

does not. This is a common issue with RRT’s in that they often consider the path-

follower to be a point mass with negligible dimension. A simple solution to this problem 

is to enlarge the obstacle size by a safety factor (not shown) in the planning process. One 

additional note is that the gaps in quadrotor position that visibly correspond to hop 

segments are in fact a function of the increased speed of the quadrotors during these 

segments, resulting in far fewer 1Hz samples for plotting. Therefore some of the position 

updates in Figure 72 which fall either on obstacles or in mid-hop do not necessarily 

represent erroneous drifting behavior.  
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Figure 72.  Plotted position overlay of Quad #1 and #2 following at DR-RRT* 

generated path in the lab test 

 
Figure 73.  Screenshot of DR-RRT* path-following lab test showing a change in 

altitude indicative of a hopping segment 

To explore the result of the test further, we focus upon Quad #2, as it highlights 

some interesting behavior. Figure 74 shows the initial path taken by Quad #2. Again, 

gaps in position markers are a visual indication of hopping behavior. This is useful for the 

reader, but is a byproduct of the relatively short flight length as compared to the sampling 

frequency for position. 
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Figure 74. 

Quad #2.: Real-lime DR-RRT" Path Following 

~Current * Quad #2. Start 

-1 

-1 -0.5 0 0.5 1.5 
Xoposition, meters 

Close up view of the actual position of Quad #2 along the DR-RRT* 
path during the lab test 

It is evident from Figure 74 that the position of Quad #2 does not exactly match 

the path planned by the DR-RRT*. This behavior is precisely what we anticipated. The 

paths were created assuming a perfect dead-reckoned solution in simulation. However, 

even in our relatively disturbance-free lab environment, there was still a noticeable effect 

from interaction between the propeller wash of each quadrotor. In addition, the location 

of the AR.Drone after hopping was unregulated with respect to the drifting segments of 

the DR-RRT* path; therefore the quadrotor was free to drift in whatever cmTent vector it 

found itself in. Exactly like its envisioned real-world implementation. 

At eve1y sampling interval, the trajectory planner block of Figure 58 would check 

the position of the quadrotor and detennine if it fell within a watch circle radius of a 

hopping location. If so, it would execute the hop segment. The size of the watch circle 

must be designed with the expected drifting en or in mind. If the circle is too large, 

excessive flight time and energy expenditure will be the result. If the circle is too small, 

the drifter may miss it and stray far from the path, forcing the platf01m to re-plan a new 

path. In light of our energy focus, the conservative approach is to en towards a smaller 

watch circle at the cost of potential re-planning. 
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VI. CONCLUSIONS AND FUTURE WORK 

In this thesis, we provide an overview of the prototype AquaQuad platform and 

the capabilities it is being built to possess as a major force multiplier. Driving the purpose 

of the AquaQuad is to perform target position estimation, and the quality of the flock’s 

solution will directly impact either weapon effectiveness for submarine prosecution or 

behavior analysis for marine mammal research. Meanwhile, the goal of providing these 

estimates autonomously over a large time scale is fundamentally and near-universally 

limited by the existing battery capacity available to AUVs. These aspects of the 

envisioned mission motivated the efforts contained in this work to design and evaluate 

two major algorithms that support the AquaQuad in the conduct of sustained, energy-

efficient surveillance. 

A. UNSCENTED KALMAN FILTER ALGORITHM 

 The first contribution adapted the existing unscented Kalman filter (UKF) 

framework to the task of estimating the state of a target utilizing distributed nonlinear 

measurements. The UKF was created, simulated and evaluated for quality incorporating 

several different measurement types. The result of this analysis displayed its excellent 

performance characteristics. In a bearing-only tracking scenario there was a near order of 

magnitude difference in mean square position error as compared to the extended Kalman 

filter.  

Within the framework of nonlinear estimation, the horizontal dilution of precision 

(HDOP) was explored as a metric for which to base the precision available to the 

estimator as a function of sensor geometric positioning. The value of HDOP was seen to 

be dependent upon range and orientation; however the specific proportionality was 

shown to be tied directly to the measurement type.  

The UKF was then implemented in real-time on quadrotors in the Center for 

Autonomous Vehicle Research (CAVR) laboratory to track a target undergoing non-

uniform motion. The position estimate of the real-time UKF was excellent under 

favorable geometry, while unfavorable (high HDOP) conditions resulted in greater filter 
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convergence time to the true position of the target. This behavior highlighted the 

importance of regulating the position of the sensor platforms to accomplish group 

objectives. 

Limitations on the results of our UKF implementation exist due to expected 

variation in filter performance depending upon the values chosen by the user for process, 

measurement, and initial Kalman filter covariance. The measurement covariance in 

particular relates to actual sensor performance, which is controlled in our simulation and 

testing through the use of pseudo-measurements. In addition, these pseudo-measurements 

are provided at a consistent frequency, whereas acoustic emissions from targets are 

expected to be intermittent. 

B. DR-RRT* ALGORITHM 

The second contribution of this thesis built upon current sampling-based methods 

in the construct of a new and novel tool for path-planning: the Dead-Reckoning Rapidly-

Exploring Random Tree Star (DR-RRT*) algorithm. The DR-RRT* takes the infinite-

time optimality guarantees of the RRT* and incorporates limitations on AquaQuad 

control authority designed to reduce expenditure of stored energy.  

A Monte Carlo experiment was conducted to develop objective statistics for the 

energy that was consumed using DR-RRT* paths. The result was a mean energy savings 

of 22 percent over the energy that would have been expended flying directly to the goal. 

When the DR-RRT* was allowed to run beyond its initial solution, that savings increased 

to 27 percent at the expense of several seconds of additional computation time. Each of 

the paths that were created was furthermore guaranteed to be obstacle-free and 

incorporated an evaluation of HDOP at every branch to reduce the occurrence of poor 

geometry with respect to the nonlinear estimation process. 

Finally, the paths generated by the DR-RRT* were successfully followed by two 

flying quadrotors in the CAVR lab. Each programmed to simulate drifting behavior in the 

air; the quadrotors exchanged initial positions with a series of unregulated drifts and 

directed hops as projected in the path provided to them.  
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Limitations of the DR-RRT* method will be based upon the assumptions made in 

the creation of the paths: most importantly the ocean current distribution that the 

algorithm is initialized with. Live updates of local current flow and periodic re-planning 

can assist in minimizing the error between prediction and reality. 

C. FUTURE WORK 

In our work, the concept of harvesting solar energy is presented using a 24-hour 

average of solar radiation as a baseline. To ensure persistence in the battle space, a more 

complex representation of available solar energy must be used based upon location, angle 

of incidence, and most importantly time of day. These variables can be incorporated into 

the DR-RRT* planning framework to better approximate the expected energy balance. A 

global flock planner can then be designed that takes into account the projected battery life 

of each AquaQuad and selects elements for repositioning based upon it. 

This thesis has also briefly detailed the signal processing approaches used to 

obtain measurements of a target’s location in the ocean. The actual sensor employed and 

the specific signal processing techniques utilized must be constructed and tested for 

implementation on the AquaQuad. The UKF code provided can then be tuned for the 

sensor in use, adjusted to account for gaps in time between measurements and fielded in 

an aquatic environment. 

Physical construction of the AquaQuad is ongoing, and as such there is much 

work to be done in the following realms: 

1. Propulsion 

Optimization of the motor and propeller combination can greatly increase the 

performance of the quadrotor. The ocean environment is dynamic and highly corrosive; 

therefore improvements to prevent long and short-term fouling of exposed parts will have 

a large effect upon longevity of the platform at sea. 
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2. Controls 

Employment of the sensor beneath the AquaQuad will produce varying forces and 

moments when repositioning. Modified control laws for slung loads can be investigated 

to account for this. 

3. Power Conversion and Storage 

Battery selection is being finalized, yet integration of the solar array on board the 

AquaQuad is incomplete. Studies regarding battery life-cycle analysis, photovoltaic 

device maximum power point tracking (MPPT), and surface treatments for antifouling of 

the solar cells can be conducted.  
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APPENDIX A. ACOUSONDE TECHNICAL SPECIFICATIONS 
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ACOUSOND8TM 
LOW-POWER H YDROPH 

MAGNETIC SWITCH v"lvrnr\c;:::.c 
(ON UNDERSIDE) 

LENGTH 22.1 011 (8. 7 in) WEIGHT IN AIR 262 g (9.2 oz) W~'{/ery 
VOLUME 172 ml WEIGHT IN SEAWATER 86 g (3 0 oz) 

TheAcousonde TM is a self-contained underwater 
acoustic recorder comprising one or, optionally, two 
hydrophones, sensors for attitude, orientation, depth 
and temperature, a digital recorder, and a field­
replaceable battery. Attached to a subject with 
suction cups or other means, the Acousonde mea­
sures the subject's sound environment as well as 
potentially associated behavior. 

In addition to its primary mission as a tool for 
assessing the impact of noise on marine wildlife, 
the Acousonde can be used to study vocalization 
behavior of the tagged subject. The instrument 
may also be applied as an autonomous recorder 
suspended from a cable, placed on the seafloor, 
or housed in a robotic or remotely-operated vehicle. 

SPECIFICATlONS, ACOUSONDE 3A UNDERWATER ACOUSTIC RECORDER 
Maximum operating depth (fixed build option) 500 m (-500m suffix) / 1000 m (-1km) 12000 m (-2km) /3000 m (-3km) 
Maximum continuous acoustic sampling rate 232 kHz 
Anti-alias filter, low-power (LP) channel 8-pole elliptic, adjustable (automatic) up to 9.2 kHz maximum 
Anti-alias filter, high-frequency (HF) channel 6-pole linear phase, fixed 
3-dB anti-alias cutoff 9.2 kHz (LP chan max): 42kHz (HF chan) 
22-dBanti-aliascutoff 11.1 kHz (LPchan max): 100 kHz (HFchan) 
3-dB high-pass cutoff 22 Hz (LP chan): 20 Hz/1 kHz/10 kHz (HF chan, fixed, customer spec) 
Unamplified raw ceramic sensiti\Aty, re 1 VlpPa -201 dB (LP chan hydrophone) & -204 dB (HF chan hydrophone) 
Saturation atO-dB gain, re 1 pPa zero-peak 187 dB (LP chan) & 176 dB (HF chan) 
Aroustic gains, selectable at deployment 0 or +20 dB 
Aroustic sampl ing resolution 1 6 bits 
Auxiliary sampling rate Up to 800Hz (3D tilt), 40 Hz (3D compass), 10Hz (depth, temp) 
Auxiliary sampling resolution 16 bits [except 10 bits for tilt) 
Auxiliary sampl ing channels Depth (pressure), internal temperature, 

3D tilt, 3D compass 
Tot"' storage capacity (primary & spare) 
Maxirnurn duration if sampling< 26kHz 
Maximum measured data download rate 

64GB, 128GB max (at sample rates < 26kHz, battery limits storage) 
6-14 days depending on temperature and if aux sampling "'so active 
3 .3 GB/hour via MiaoUSB connector Decemb~ 201 S 

A rmwQre &Jpport for some specJffcatJons, p erlormQnce Qnd/or funct/onQf/ty mow be pendfng, see current re/eQse notes. fi.ltQ subject to c /JQnge wfthocrt not ice. 

HOME PAGE http://www.acousonde.com ~ The AcousondeTM is rnade by 
TECH QUESTIONS tech@acousonde.com Acoustimetrics, a brand of 

SALES acousonde @cetaceanresearch.com Greeneridge Sciences, Inc. 
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APPENDIX B. UNSCENTED KALMAN FILTER MATLAB CODE 

function [Estimate, Residual, HDOP, NewP] = 
fcn(SensorPosition,Measurement,PriorEstimate,PriorP) 
  
%========INFO======== 
%LT Chase Dillard 
%UKF Code for Bearing-Only Tracking 
%11/26/2014 
  
%Implemented in SIMULINK within a MATLAB function block 
%Version: MATLAB R2014A 
%Based upon:  E. A. Wan and R. van der Merwe, 
%        “The Unscented Kalman Filter for Nonlinear 
%        Estimation,” IEEE, 2000. 
  
%Inputs:  SensorPosition - (x,y) position of the 3 bearing sensors 
%              Format: [x1,x2,x3,y1,y2,y3] 
%      Measurement - bearing to target in radians 
%      PriorEstimate - previous UKF state estimate (req’s unit delay) 
%      PriorP - previous UKF covariance (req’s unit delay) 
  
%Outputs:  Estimate - UKF estimate of target’s (x,y,u,v,ax,ay)’ 
%      Residual - Delta b/w expected and actual measurement. Optional. 
%      HDOP - Horizontal dilution of precision for BOT. Optional. 
%      NewP - updated UKF covariance 
%==================== 
  
  
%UKF Parameters 
n=length(PriorEstimate);        %number of states 
deltat = 0.005;             %time step, seconds 
Q = 1e-6*diag([10 10 1 1 1 1]);    %process noise 
R = diag([0.001^2, 0.001^2, 0.001^2]); %measurement noise 
  
%Conduct UKF 
L=numel(PriorEstimate);       %number of states 
m=numel(Measurement);        %number of measurements 
alpha=1e-3;             %spread of the sigma points 
ki=0;                %second scaling parameter ~0 
beta=2;               %prob dist of x, Gaussian 
lambda=alpha^2*(L+ki)-L;      %scaling factor 
c=L+lambda;             %scaling factor 
Wm=[lambda/c 0.5/c+zeros(1,2*L)];  %weights for means 
Wc=Wm; 
Wc(1)=Wc(1)+(1-alpha^2+beta);    %weights for covariance 
c=sqrt(c); 
  
%Determine sigma points 
P = PriorP;  
A = c*chol(P)’; 
Y = PriorEstimate(:,ones(1,numel(PriorEstimate))); 
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X = [PriorEstimate Y+A Y-A];        %sigma points around x 
  
%Unscented transformation of process 
L=size(X,2); 
x1=zeros(n,1); 
X1=zeros(n,L); 
for k=1:L % propagation of sigma points through process fcn 
  X1(:,k)=X(:,k)+[X(3,k)*deltat; X(4,k)*deltat; 0; 0; 0; 0];  
  x1=x1+Wm(k)*X1(:,k);          % weighted average 
end 
X2=X1-x1(:,ones(1,L)); 
P1=X2*diag(Wc)*X2’+Q;            % weighted outer-product 
  
%Unscented transformation of measurements 
L=size(X1,2); 
z1=zeros(m,1); 
Z1=zeros(m,L); 
for k=1:L % propagation of sigma points through nonlinear bearing fcn 
  Z1(:,k)=atan2(X1(2,k)-SensorPosition(4:6),X1(1,k)-
SensorPosition(1:3)); 
  z1=z1+Wm(k)*Z1(:,k);          % weighted average 
end 
Z2=Z1-z1(:,ones(1,L)); 
P2=Z2*diag(Wc)*Z2’+R;            % weighted outer-product 
  
%Final Calculations 
P12=X2*diag(Wc)*Z2’;            %transformed cross-covariance 
K=P12*inv(P2);               %Kalman gain calculation 
Residual = Measurement-z1;         %Residual for plotting 
x=x1+K*(Measurement-z1);          %state update 
P=P1-K*P12’;                %covariance update 
  
%Parameters for dilution of precision calculation 
R1=(x(2)-SensorPosition(4))^2+(x(1)-SensorPosition(1))^2; 
R2=(x(2)-SensorPosition(5))^2+(x(1)-SensorPosition(2))^2; 
R3=(x(2)-SensorPosition(6))^2+(x(1)-SensorPosition(3))^2; 
  
%H matrix for HDOP calculation 
H_HDOP = [-(x(2)-SensorPosition(4))/R1, (x(1)-SensorPosition(1))/R1; 
     -(x(2)-SensorPosition(5))/R2, (x(1)-SensorPosition(2))/R2; 
     -(x(2)-SensorPosition(6))/R3, (x(1)-SensorPosition(3))/R3]; 
    
%Outputs 
HDOP = sqrt(trace(inv(H_HDOP’*H_HDOP))); 
NewP = P; 
Estimate = x; 
Resid = Residual; 
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function [Estimate, Residual, HDOP, NewP] = 
fcn(SensorPosition,Measurement,PriorEstimate,PriorP) 
  
%========INFO======== 
%LT Chase Dillard 
%UKF Code for Time-Difference of Arrival Tracking 
%11/26/2014 
  
%Implemented in SIMULINK within a MATLAB function block 
%Version: MATLAB R2014A 
%Based upon:  E. A. Wan and R. van der Merwe, 
%        “The Unscented Kalman Filter for Nonlinear 
%        Estimation,” IEEE, 2000. 
  
%Inputs:  SensorPosition - (x,y) position of the 3 TDOA sensors 
%              Format: [x1,y1,x2,y2,x3,y3] 
%      Measurement - TDOA measurement in seconds, specifically: 
%              Tau12 (Diff b/w arrival time of Sensor 1 and 2) 
%              Tau23 (Diff b/w arrival time of Sensor 2 and 3) 
%              Tau13 (Diff b/w arrival time of Sensor 1 and 3) 
%      PriorEstimate - previous UKF state estimate (req’s unit delay) 
%      PriorP - previous UKF covariance (req’s unit delay) 
  
%Outputs:  Estimate - UKF estimate of target’s (x,y,u,v,ax,ay)’ 
%      Residual - Delta b/w expected and actual measurement. Optional. 
%      HDOP - Horizontal dilution of precision for TDOA. Optional. 
%      NewP - updated UKF covariance 
%==================== 
  
%UKF Parameters 
n=length(PriorEstimate);        %number of states 
deltat = 0.005;             %time step, seconds 
Q = 1e-6*diag([10 10 1 1 1 1]);    %process noise 
R = diag([0.001^2, 0.001^2, 0.001^2]); %measurement noise 
C = 1500;                %Ocean Sound Speed, m/s 
  
%Conduct UKF 
L=numel(PriorEstimate);         %number of states 
m=numel(Measurement);          %number of measurements 
alpha=1e-3;               %spread of the sigma points 
ki=0;                  %second scaling parameter ~0 
beta=2;                 %prob dist of x; Gaussian 
lambda=alpha^2*(L+ki)-L;        %scaling factor 
c=L+lambda;               %scaling factor 
Wm=[lambda/c 0.5/c+zeros(1,2*L)];    %weights for means 
Wc=Wm; 
Wc(1)=Wc(1)+(1-alpha^2+beta);      %weights for covariance 
c=sqrt(c); 
  
%Determine sigma points 
P = PriorP;  
A = c*chol(P)’; 
Y = PriorEstimate(:,ones(1,numel(PriorEstimate))); 
X = [PriorEstimate Y+A Y-A];        %sigma points around x 
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%Unscented transformation of process 
L=size(X,2); 
x1=zeros(n,1); 
X1=zeros(n,L); 
for k=1:L %propagation of sigma points through process fcn 
  X1(:,k)=X(:,k)+[X(3,k)*deltat; X(4,k)*deltat; 0; 0; 0; 0]; 
  x1=x1+Wm(k)*X1(:,k);          % weighted average 
end 
X2=X1-x1(:,ones(1,L)); 
P1=X2*diag(Wc)*X2’+Q;            % weighted outer-product 
  
%Unscented transformation of measurements 
L=size(X1,2); 
z1=zeros(m,1); 
Z1=zeros(m,L); 
for k=1:L %propagation of sigma points through nonlinear TDOA fcn 
  Z1(:,k)=(1/C)*[sqrt((X1(1,k)-SensorPosition(1))^2+(X1(2,k)-
SensorPosition(2))^2)-sqrt((X1(1,k)-SensorPosition(3))^2+(X1(2,k)-
SensorPosition(4))^2); %Time delay b/w buoys 1 & 2 
          sqrt((X1(1,k)-SensorPosition(3))^2+(X1(2,k)-
SensorPosition(4))^2)-sqrt((X1(1,k)-SensorPosition(5))^2+(X1(2,k)-
SensorPosition(6))^2); %Time delay b/w buoys 2 & 3 
          sqrt((X1(1,k)-SensorPosition(1))^2+(X1(2,k)-
SensorPosition(2))^2)-sqrt((X1(1,k)-SensorPosition(5))^2+(X1(2,k)-
SensorPosition(6))^2)]; %Time delay b/w buoys 1 & 3 
  z1=z1+Wm(k)*Z1(:,k);          % weighted average 
end 
Z2=Z1-z1(:,ones(1,L)); 
P2=Z2*diag(Wc)*Z2’+R;            % weighted outer-product 
  
%Final Calculations 
P12=X2*diag(Wc)*Z2’;            %transformed cross-covariance 
K=P12*inv(P2);               %Kalman gain calculation 
Residual = Measurement-z1;         %Residual for plotting 
x=x1+K*(Measurement-z1);          %state update 
P=P1-K*P12’;                %covariance update 
  
  
%Calculate range between target estimate and sensors for TDOA HDOP 
R1T=sqrt((x(2)-SensorPosition(2))^2+(x(1)-SensorPosition(1))^2); 
R2T=sqrt((x(2)-SensorPosition(4))^2+(x(1)-SensorPosition(3))^2); 
R3T=sqrt((x(2)-SensorPosition(6))^2+(x(1)-SensorPosition(5))^2); 
     
%H matrix for TDOA HDOP calculation 
H_HDOP = 1/C*[(SensorPosition(3)-x(1))/R2T - (SensorPosition(1)-
x(1))/R1T, (SensorPosition(4)-x(2))/R2T - (SensorPosition(2)-x(2))/R1T; 
       (SensorPosition(5)-x(1))/R3T - (SensorPosition(3)-x(1))/R2T, 
(SensorPosition(6)-x(2))/R3T - (SensorPosition(4)-x(2))/R2T; 
       (SensorPosition(5)-x(1))/R3T - (SensorPosition(1)-x(1))/R1T, 
(SensorPosition(6)-x(2))/R3T - (SensorPosition(2)-x(2))/R1T]; 
    
%Outputs 
HDOP = sqrt(trace(inv(H_HDOP’*H_HDOP))); 
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NewP = P; 
Estimate = x; 
Resid = Residual; 
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 APPENDIX C.  DEAD-RECKONING RAPIDLY-EXPLORING 
RANDOM TREE STAR CODE 

%========INFO======== 

%LT Chase Dillard 
%Dead-Reckoning Rapidly-Exploring Random Tree Star (DR-RRT*) Algorithm 
%11/26/2014 

%Requires the following custom MATLAB functions (included in Appendix): 
%        HDOP_Calc.m 
%        DR_RRTstar_Extend.m 
%        CellFinder.m 

%Implemented in MATLAB. Version: MATLAB R2012b 
%Based upon:  S. Karaman and E. Frazzoli, “Optimal kinodynamic motion 
%        planning using incremental sampling-based methods,” in 
%        49th IEEE Conference on Decision and Control, 
%        Atlanta, GA, 2010. 

%==================== 

%% Create map space 
clc; 
clear all; 
clf; 

% Produce ocean current parameters and create map 
[x1, x2] = meshgrid(-.5:0.05:0.5, -.5:.05:.5); %Sampling mesh of points 
x1d = -x1 - 2 *x2 .*x1.^2+x2;  %Equations defining vector field 
x2d = -x1-x2; 
SF = 10000;  %Scaling Factor for map adjustment 
x1 = SF.*x1; x2 = SF.*x2;  %Scaling up map space 
figure(1)  %Plot the vector field 
quiver(x1,x2,x1d, x2d,1,’Color’,’b’); 
title(‘Dead Reckoning – Rapidly-Exploring Random Tree Star (DR-RRT*) 
Algorithm in a Current Field’) 
hold on; 
axis tight; 

% Other map parameters 
GridSpace = length(x1);  %One-sided dimension of grid 
space 
ObstacleSpace = zeros(GridSpace,GridSpace);       %Establish obstacle 
space grid for later population 
MapLength = 0.5*(x1(GridSpace, GridSpace) - x1(1,1));  %Half of one-
sided dimension of X 
xlimits = [x1(1,1) x1(GridSpace, GridSpace)];      %X limits of map 
ylimits = [x2(1,1) x2(GridSpace, GridSpace)];      %Y limits of map 
MaxDistance = sqrt((2*MapLength)^2+(2*MapLength)^2);  %Max distance 
possible for AquaQuads to travel. Used in cost fcn. 
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% Generate and plot obstacles 
ObstaclePlot=[]; 
try 
  for i=1:2; 
    xObs = round(abs(GridSpace.*rand(1)));       %X-coordinate of 
random obstacle 
    yObs = round(abs(GridSpace.*rand(1)));       %Y-coordinate of 
random obstacle 
    wObs= round(abs(0.2*GridSpace.*rand(1)));     %Width of random 
obstacle 
    hObs= round(abs(0.2*GridSpace.*rand(1)));     %Height of random 
obstacle 
    ObstaclePlot = [ObstaclePlot; xObs yObs wObs hObs]; %Maintaining 
obstacle position for later plotting 
    ObstacleSpace(yObs:yObs+hObs,xObs:xObs+wObs)=1;   %Filling 
obstacles spaces with “1” 
    rectangle(‘Position’, [-0.55*SF+(xObs)*0.05*SF 0.55*SF-
(yObs+hObs)*0.05*SF (wObs+1)*0.05*SF (hObs+1)*0.05*SF], ‘FaceColor’, 
‘black’); %Plotting rectangle 
  end 
catch 
  display(‘Error producing obstacles. Try again.’) 
end 
  
  
%% RRT Parameters 
  
% Establish Standard User-Defined RRT Parameters 
iterations = 10000;       %Establish desired number of iterations 
Start = [-4*SF/10 4*SF/10];   %Start Point 
Finish = [3*SF/10 -3*SF/10];  %Final Goal Point 
GoalProbability = 0.05;     %Forces selection of Goal Point as Target 
with a fixed probabilty 
distThresh = 100;        %Maximum distance to define success at goal 
N = 5;             %Number of Nearest nodes to Target to evaluate 
dt = 60;            %Time delta to integrate kinematics across, seconds 
RewireRadius = SF/4;      %Radius to look for nearest neighbors in 
rewire step 
  
% Establish Other RRT Parameters 
Tree = [1 Start 1 0 0 0];                %Establishes Tree as [Node#, 
x, y, Parent#, Branch Cost, Cumulative Cost, HopIndicator] 
MaxFlightTime = 2;                   %Max desired flight time, minutes; 
HopDistance = (20*2000)*(MaxFlightTime/60);       %Maximum hopping 
distance = (20 knots * X hours of flight), meters. 
MaxHDOP = 9000;                     %Max HDOP possible in scenario. 
Used in cost fcn. ASSUMED. 
Quad2 = [5000 5000]; Quad3 = [5000 -5000];       %Positions of other 
players on the perimeter 
Quad4 = [-5000 -5000]; Sensors = [Quad2 Quad3 Quad4]; 
Sub = [(Finish(1) + 100) (Finish(2) + 100)];      %Sub position offset 
to prevent singularity at Goal 
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plothandle = [];                    %Handle for line plots of each 
vertex. Enables deletion of vertices during Rewire. 
  
  
% Plot initial and terminal positions 
hold on 
plot(Start(1),Start(2),’gp’,’MarkerSize’,14,’MarkerFaceColor’,’g’) 
hold on 
plot(Finish(1),Finish(2),’rp’,’MarkerSize’,14,’MarkerFaceColor’,’r’) 
set(gca,’XTickLabel’,{‘-2.5’,’-2’,’-1.5’,’-1’,’-
.5’,’0’,’.5’,’1’,’1.5’,’5’,’2.5’}) 
set(gca,’YTickLabel’,{‘-2.5’,’-2’,’-1.5’,’-1’,’-
.5’,’0’,’.5’,’1’,’1.5’,’5’,’2.5’}) 
xlabel(‘X-position, nautical miles’) 
ylabel(‘Y-position, nautical miles’) 
grid on 
  
%Cost function 
% eta_solar = 0.24;   %Solar cell efficiency, percent 
% array_area = 0.3;   %Solar cell area on AquaQuad, meters 
solar_energy = 400;   %Solar energy, calc’d offline as 
(AvgRadiation*efficiency*array_area), Watt-hours in a 24-hr period 
flight_power = 200;   %Power required for flight, Watt 
FlightEnergyMax = flight_power*(MaxFlightTime/60); %Energy req’d for 
maximum time of flight 
SolarEnergyMax = solar_energy/24/3600; %Maximum solar energy possible 
every second. NOTE: THIS ESSENTIALLY UNDOES THE WHOLE POINT OF THIS 
CALCULATION 
  
%Cost function gain terms 
K1 = 0.0225;       %Associated term is normalized HDOP 
K2 = 0.0225;       %Associated term is normalized Dist2Goal 
K3 = 0.95;        %Associated term converts 200W power used for 2 min 
of flight. Gain makes this term “0.9” to dominate 
K4 = 0.005;       %Associated term is solar energy 
  
%% Run DR-RRT* Loop 
  
tic 
for i = 1:iterations; 
   
  % Dead reckon position 
  [Cell, V, vx, vy] = CellFinder(Tree(end,2:3), x1, x2, x1d, x2d); 
  NewBranch = DR_RRTstar_Extend(xlimits, ylimits, Tree(end,2:3), ‘DR’, 
V, vx, vy, dt, x1, x2, ObstacleSpace); 
   
  % Add dead reckoning position to Tree and plot it 
  if ~isempty(NewBranch) 
     
    %Determine cost of new branch 
    Dist2Goal = sqrt((Finish(1)-NewBranch(1))^2+(Finish(2) - 
NewBranch(2))^2); 
    HDOP = HDOP_Calc(NewBranch,Sub,Sensors); 
    flight_time = 0;          %Drifting phase, no flight 
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    Cost = ( K1*(HDOP/MaxHDOP) + K2*(Dist2Goal/MaxDistance) + 
K3*((flight_power*(flight_time/60))/FlightEnergyMax) - 
K4*(solar_energy/24/3600/SolarEnergyMax) )*dt; 
     
    % Add new branch to the tree 
    tlength = size(Tree,1);           %Size of tree before element 
addition 
    Tree(tlength+1,1) = tlength+1;       %Assigns number as newest node 
    Tree(tlength+1,2) = NewBranch(1);      %New Node X-position in tree 
    Tree(tlength+1,3) = NewBranch(2);      %New Node Y-position in tree 
    Tree(tlength+1,4) = Tree(tlength,1);    %Keeps track of parent 
    Tree(tlength+1,5) = Cost;          %Cost of branch 
    Tree(tlength+1,6) = Tree(tlength,6) + Cost; %Cumulative Cost of 
Family (Path) 
    Tree(tlength+1,7) = 0;           %Indicator variable for Hopping 
behavior added 
     
    % Plot new branch 
    figure(1); 
    plothandle(length(Tree)) = plot([Tree(tlength,2) NewBranch(1)], 
[Tree(tlength,3) NewBranch(2)],’k’); 
     
    % If branch got close enough to the Goal, terminate script 
    if (sqrt((NewBranch(1)-Finish(1))^2+(NewBranch(2)-Finish(2))^2) < 
distThresh ) 
      display(‘Success!’) 
      Success = 1; %Indicator variable 
      break 
    end 
     
    % Evaluate for negative gradient in distance to the Goal 
    if exist(‘LastDist2Goal’,’var’) 
      RangeGradient = (LastDist2Goal - Dist2Goal)/dt; 
    end 
    LastDist2Goal = sqrt((Finish(1)-NewBranch(1))^2+(Finish(2) - 
NewBranch(2))^2); 
     
  end 
   
  % Iterate counter for Dist2Goal gradient <= .1 or unsuccessful branch 
  if i ~=1 && (RangeGradient <= .1 || isempty(NewBranch)); 
    Counter = Counter + 1; 
  else 
    Counter = 0; 
  end 
   
  % If Dist2Go gradient is < .1 for greater than 10 iterations, Hop. 
  if Counter >= 10; 
    Hop = 1;      % Hop indicator for plotting 
    Counter = 0;    % Resets counter 
     
    % Pseudo-randomly select Target point in grid space 
    RandomNumber = rand; 
    if RandomNumber < GoalProbability 
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      Target = Finish; 
    elseif RandomNumber > GoalProbability 
      Target = random(‘Uniform’,-1,1,1,2) * MapLength; 
    end 
     
    % Find the ID of closest nodes 
    NodeDistances = sqrt((Tree(:,2)-Target(1)).^2+(Tree(:,3)-
Target(2)).^2); 
    [Distance, ClosestNodeNum] = sort(NodeDistances); 
     
    % Determine optimal node of “N” closest points 
    try 
      for j = 1:N; 
        NearNode = Tree(ClosestNodeNum(j),2:3); 
        Dist2Goal = sqrt((Finish(1)-NearNode(1))^2+(Finish(2) - 
NearNode(2))^2); 
        HDOP = HDOP_Calc(NearNode,Sub,Sensors); 
        flight_time = MaxFlightTime;  %Nominal minutes of flight 
required 
        J(j) = ( K1*(HDOP/MaxHDOP) + K2*(Dist2Goal/MaxDistance) + 
K3*((flight_power*(flight_time/60))/FlightEnergyMax) - 
K4*(solar_energy/24/3600/SolarEnergyMax) )*dt; 
      end 
    catch  %This statement prevents error when less than “N” branches 
in tree 
    end 
     
    % Select minimum cost & corresponding optimal node 
    [~,I]=min(J); 
    OptimalNode = Tree(ClosestNodeNum(I),2:3); 
    Dist2Goal = sqrt((Finish(1)-OptimalNode(1))^2+(Finish(2) - 
OptimalNode(2))^2); 
     
    % Conduct hop maneuver to Target (or Goal, if close) 
    if Dist2Goal <= HopDistance;    %If Goal is in range, fly to 
Finish. 
      NewBranch = Finish; 
      flight_time = MaxFlightTime;  %Nominal minutes of flight required 
      Cost = 
(Dist2Goal/HopDistance)*K3*((flight_power*(flight_time/60))/FlightEnerg
yMax); 
    else 
      V = HopDistance/dt;       %Forcing velocity to account for longer 
flight time than sim timestep 
      NewBranch = DR_RRTstar_Extend(xlimits, ylimits, OptimalNode, 
Target, V, vx, vy, dt, x1, x2, ObstacleSpace); 
      flight_time = MaxFlightTime;  %Nominal minutes of flight required 
      Cost = K3*((flight_power*(flight_time/60))/FlightEnergyMax); 
    end 
     
    % Add new branch and Rewire the tree. 
    if ~isempty(NewBranch); 
      tlength = size(Tree,1);                 %Size of tree before 
element addition 
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      Tree(tlength+1,1) = tlength+1;             %Assigns number as 
newest node 
      Tree(tlength+1,2) = NewBranch(1);            %New Node X-position 
in tree 
      Tree(tlength+1,3) = NewBranch(2);            %New Node Y-position 
in tree 
      Tree(tlength+1,4) = ClosestNodeNum(I);         %Keeps track of 
parent 
      Tree(tlength+1,5) = Cost;                %Cost of branch 
      Tree(tlength+1,6) = Tree(ClosestNodeNum(I),6) + Cost;  
%Cumulative Cost of Family (Path) 
      Tree(tlength+1,7) = 1;                 %Indicator variable for 
Hopping behavior added 
       
      % Plot flight arc. 
      figure(1); 
      Xa = [OptimalNode(1) mean([OptimalNode(1) NewBranch(1)]) 
NewBranch(1)];   %[Start Intermediate End] 
      Ya = [OptimalNode(2) mean([OptimalNode(2) NewBranch(2)])+1e3 
NewBranch(2)]; %[Start Intermediate End] 
      t = 1:numel(Xa); 
      ts = linspace(min(t),max(t),numel(Xa)*10); 
      xx = spline(t,Xa,ts); yy = spline(t,Ya,ts);               % 
Create close mesh of points 
      plothandle(length(Tree)) = plot(xx,yy,’g’);               % Plot 
flight curve 
      plot([OptimalNode(1) NewBranch(1)],[OptimalNode(2) 
NewBranch(2)],’or’) % Plot endpoints for reference 
       
      % If branch got close enough to the target, terminate script 
      if i ~= 1 && (sqrt((NewBranch(1)-Finish(1))^2+(NewBranch(2)-
Finish(2))^2) < distThresh ||... 
          (NewBranch(1) == Finish(1) && NewBranch(2) == Finish(2))) 
          display(‘Success!’) 
          Success = 1; %Indicator variable 
          break 
      end 
       
      % Rewire tree (Makes Newest Node the parent of a Near Node if 
lower cost) 
      try 
        % Find the ID of closest nodes to New Branch 
        NodeDistances = sqrt((Tree(1:end-1,2)-
NewBranch(1)).^2+(Tree(1:end-1,3)-NewBranch(2)).^2); 
        [Distance, ClosestNodeNum] = sort(NodeDistances); %Sort 
distance array from min to max 
         
        for j = 1:N; 
           
          % Evaluate cost function which is proportional to max flight 
distance. 
          flight_time = MaxFlightTime; 
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          J(j) = 
(Distance(j)/HopDistance)*K3*((flight_power*(flight_time/60))/FlightEne
rgyMax); 
           
          % If cost-effective, within RewireRadius, and already a Hop 
point itself (take-off or landing), make Newest Node its parent 
          if (Tree(length(Tree),6) + J(j)) < Tree(ClosestNodeNum(j),6) 
&& Distance(j) <= RewireRadius && (Tree(ClosestNodeNum(j),7) ~= 0 || 
Tree(Tree(ClosestNodeNum(j),4),7) ~= 0) 
            display(‘Rewire Made!’) 
             
            %Reassign parent, update cost 
            deltaCost = (Tree(length(Tree),6) + J(j)) - 
Tree(ClosestNodeNum(j),6); %Retain cost delta for rewire use 
            Tree(ClosestNodeNum(j),4) = Tree(length(Tree),1);      
%Replace parent 
            Tree(ClosestNodeNum(j),5) = J(j);              %Assign new 
cost 
            Tree(ClosestNodeNum(j),6) = Tree(length(Tree),6) + J(j);  
%Replace cumulative cost 
            Tree(ClosestNodeNum(j),7) = 1;               %Indicator 
variable for Hopping behavior added 
             
            %Update plot 
            delete(plothandle(ClosestNodeNum(j)))            %Deletes 
old branch 
            Xa = [NewBranch(1) mean([NewBranch(1) 
Tree(ClosestNodeNum(j),2)]) Tree(ClosestNodeNum(j),2)];   %[Start 
Intermediate End] 
            Ya = [NewBranch(2) mean([NewBranch(2) 
Tree(ClosestNodeNum(j),3)])+1e3 Tree(ClosestNodeNum(j),3)];  %[Start 
Intermediate End] 
            t = 1:numel(Xa); ts = linspace(min(t),max(t),numel(Xa)*10); 
            xx = spline(t,Xa,ts); yy = spline(t,Ya,ts);         % 
Create close mesh of points 
            plothandle(length(Tree)) = plot(xx,yy,’g--’);        % Plot 
flight curve 
            plot([NewBranch(1) Tree(ClosestNodeNum(j),2)],[NewBranch(2) 
Tree(ClosestNodeNum(j),3)],’or’) % Plot endpoints for reference 
             
            %Update cumulative cost for the children 
            ChildrenIndex = find(Tree(:,4) == ClosestNodeNum(j));  
%Find children of reassigned node 
            while ~isempty(ChildrenIndex) 
              Tree(ChildrenIndex,6) = Tree(ChildrenIndex, 6) + 
deltaCost; %Update children’s new cumulative cost 
              ChildrenIndex = find(Tree(:,4) == ChildrenIndex); 
            end 
          end 
        end 
      catch  %This statement prevents error when less than “N” branches 
in tree 
      end 
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    end 
  else 
    Hop = 0; 
  end 
end 
  
toc   %Outputs computation time for simulation 
  
%If unsuccessful, output statement 
if (Success ~= 1 && i == iterations) 
  fprintf(‘After %d iterations, goal was not reached...\n’, 
iterations); 
  legend(‘Current’,’Start’,’Finish’,’Branches’) 
end 
%% Plot Results & Assemble Final Tree 
  
% Plots final path from Finish back to Start 
if exist(‘Success’,’var’), 
  PreviousX = Finish(1); 
  PreviousY = Finish(2); 
  CurrentNode = Tree(length(Tree),:); 
   
  % Backtrack the successful path 
  FlightEnergyFinal = 0; 
  for k = 1:iterations; 
     
    % Find parent of current node 
    ParentNodeID = CurrentNode(4); 
     
    % Plot branch of best path 
    if Tree(CurrentNode(1),7) == 0;  %Neglects flight arcs 
      plot([PreviousX Tree(ParentNodeID,2)],... 
        [PreviousY Tree(ParentNodeID,3)], ‘r’, ‘LineWidth’, 2); 
      hold on; 
    else 
      plot([PreviousX Tree(ParentNodeID,2)],... 
        [PreviousY Tree(ParentNodeID,3)], ‘r-.’, ‘LineWidth’, 2); 
      FlightEnergyFinal = FlightEnergyFinal + 
flight_power*(sqrt((Tree(ParentNodeID,2)-
PreviousX)^2+(Tree(ParentNodeID,3) - PreviousY )^2)/2000/20); 
    end 
     
    % Change current node to its parent 
    CurrentNode = Tree(ParentNodeID,:); 
    PreviousX = CurrentNode(2); 
    PreviousY = CurrentNode(3); 
     
    % If startpoint was reached, terminate plot script 
    if ( (PreviousX == Start(1)) && (PreviousY == Start(2)) ) 
      break; 
    end 
  end 
   
  % Display preliminary information 
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  fprintf(‘\nNumber of iterations to find solution: %d \n’, i); 
  fprintf(‘Cumulative “Cost” of Path: %.3f \n’, Tree(end,6)); 
  fprintf(‘Energy Used in Path for Flight: %.3f Watt-hours \n’,... 
    FlightEnergyFinal); 
  fprintf(‘Energy Used in Direct Flight: %.3f Watt-hours \n’,... 
    flight_power*(sqrt((Finish(1)-Start(1))^2+... 
    (Finish(2) - Start(2))^2)/2000/20)); %Distance converted to nm and 
divided by nominal 20kts speed 
  fprintf(‘Potential Energy Gain from Solar: %.3f Watt-hours \n’,... 
    k*dt*solar_energy/24/3600);   
  legend(‘Current’,’Start’,’Finish’,’Branches’) 
   
  % Assembles final tree for aggregation step where combine multiple 
hops 
  for k = 1:iterations; 
    if k ~= 1; 
      FinalTree(k,:) = Tree(ParentNodeID,:); 
      if ((Tree(ParentNodeID,2) == Start(1)) && (Tree(ParentNodeID,3) 
== Start(2))) 
        break;  % If startpoint was reached, terminate tree assembly 
loop 
      end 
    else 
      FinalTree(k,:) = Tree(length(Tree),:); 
    end 
    ParentNodeID = FinalTree(k,4); 
  end 
  fprintf(‘Estimated time to traverse path: %.3f hours\n’, 
(length(FinalTree)-sum(FinalTree(:,7)))*dt/3600 + 
sum(FinalTree(:,7))*MaxFlightTime/60); 
   
  % Aggregates consecutive hops 
  k=1; 
  for j = 1:length(FinalTree); 
     
    k = k + 1; %Separate counter used due to necessary resizing of 
FinalTree 
    if k > length(FinalTree)  %Ends loop once we reach the end of the 
resized FinalTree 
      break; 
    end 
    if FinalTree(k,7) ~= 0 && FinalTree(k-1,7) ~= 0 %If “hop-indicator” 
variable is nonzero, indicating flight 
       
      %Reassign parent (Note: Does not recompute individual or 
cumulative cost) 
      FinalTree(k-1,4) = FinalTree(k+1,1); 
         
      %Remove redundant row from Final Tree 
      FinalTree = [FinalTree(1:k-1,:); FinalTree(k+1:end,:)]; 
      k=k-1; %Roll back counter to account for removal of redundant row 
    end 
  end 
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  % Plot the revised path 
  fprintf(‘\n Aggregating consecutive hop steps... \n’) 
  pause(2) 
  FlightEnergyFinalRevised = 0; 
  for k = 2:length(FinalTree); 
     
    if FinalTree(k-1,7) == 0;  %Plot drift paths 
      plot([FinalTree(k,2) FinalTree(k-1,2)],[FinalTree(k,3) 
FinalTree(k-1,3)], ‘m’, ‘LineWidth’, 2); 
      hold on; 
    else  %Plot flight arcs 
      plot([FinalTree(k-1,2) FinalTree(k,2)],[FinalTree(k-1,3) 
FinalTree(k,3)], ‘m-.’, ‘LineWidth’, 2); 
      Xa = [FinalTree(k-1,2) mean([FinalTree(k-1,2) FinalTree(k,2)]) 
FinalTree(k,2)];    %[Start Intermediate End] 
      Ya = [FinalTree(k-1,3) mean([FinalTree(k-1,3) 
FinalTree(k,3)])+1e3 FinalTree(k,3)];   %[Start Intermediate End] 
      t = 1:numel(Xa); 
      ts = linspace(min(t),max(t),numel(Xa)*10); 
      xx = spline(t,Xa,ts); yy = spline(t,Ya,ts);                       
% Create close mesh of points 
      plot(xx,yy,’m’);                                    % Plot flight 
curve 
      plot([FinalTree(k-1,2) FinalTree(k,2)],[FinalTree(k-1,3) 
FinalTree(k,3)],’or’)     % Plot endpoints for reference 
      FlightEnergyFinalRevised = FlightEnergyFinalRevised + 
flight_power*(sqrt((FinalTree(k,2)-FinalTree(k-1,2))^2+(FinalTree(k,3)-
FinalTree(k-1,3))^2)/2000/20); 
    end 
  end  
  fprintf(‘Energy Used in Path for Flight after Aggregation: %.3f Watt-
hours \n’, FlightEnergyFinalRevised); 
  fprintf(‘Energy Used in Direct Flight: %.3f Watt-hours \n’,... 
    flight_power*(sqrt((Finish(1)-Start(1))^2+... 
    (Finish(2) - Start(2))^2)/2000/20)); %Distance converted to nm and 
divided by nominal 20kts speed 
end 
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function [HDOP] = HDOP_Calc(QuadPosition,Sub,Sensors) 
  
%========INFO======== 
  
%LT Chase Dillard 
%Dead-Reckoning Rapidly-Exploring Random Tree Star (DR-RRT*) Algorithm 
%HDOP Function 
%11/26/2014 
  
%Implemented in MATLAB. Version: MATLAB R2012b 
%Based upon:  Chapter 8 of J. A. Farrell, Aided Navigation: GPS with 
%        High Rate Sensors. New York: McGraw Hill, 2008. 
  
%This function: Calculates the Horizontal Dilution of Precision 
%using the assumed postion of the target and the other sensors in the 
%group. 
  
%==================== 
  
  
% Import positions of sensors 
Quad1=QuadPosition; %Position of the node being analyzed 
Quad2=Sensors(1:2); %Position of other players, initialized at start of 
DR-RRT* 
Quad3=Sensors(3:4); 
Quad4=Sensors(5:6); 
  
% Jacobian of nonlinear measurement for bearing-only tracking 
R1=(Sub(2)-Quad1(2))^2+(Sub(1)-Quad1(1))^2; 
R2=(Sub(2)-Quad2(2))^2+(Sub(1)-Quad2(1))^2; 
R3=(Sub(2)-Quad3(2))^2+(Sub(1)-Quad3(1))^2; 
R4=(Sub(2)-Quad4(2))^2+(Sub(1)-Quad4(1))^2; 
  
H = [-(Sub(2)-Quad1(2))/R1, (Sub(1)-Quad1(1))/R1; 
   -(Sub(2)-Quad2(2))/R2, (Sub(1)-Quad2(1))/R2; 
   -(Sub(2)-Quad3(2))/R3, (Sub(1)-Quad3(1))/R3; 
   -(Sub(2)-Quad4(2))/R4, (Sub(1)-Quad4(1))/R4]; 
  
%H matrix for Range-Only HDOP calculation, based upon GPS pseudorange 
model 
% H_HDOP = [(x_hat(2)-sensor(2))/sqrt(R1), (x_hat(1)-
sensor(1))/sqrt(R1); 
%      (x_hat(2)-sensor(4))/sqrt(R2), (x_hat(1)-sensor(3))/sqrt(R2); 
%      (x_hat(2)-sensor(6))/sqrt(R3), (x_hat(1)-sensor(5))/sqrt(R3); 
%      (x_hat(2)-sensor(8))/sqrt(R4), (x_hat(1)-sensor(7))/sqrt(R4)]; 
  
HDOP = sqrt(trace(inv(H’*H))); 
  
end 
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function [Cell, V, vx, vy] = CellFinder(TestNode, x1, x2, x1d, x2d) 
  
%========INFO======== 
  
%LT Chase Dillard 
%Dead-Reckoning Rapidly-Exploring Random Tree Star (DR-RRT*) Algorithm 
%Cell Finder Function 
%11/26/2014 
  
%Implemented in MATLAB. Version: MATLAB R2012b 
  
%This function: Determines cell placement based upon the (x,y) position 
%of a selected test node. Exports the component ocean current velocity 
%and speed at that location 
  
%==================== 
  
% Determines the grid placement of current node 
  for j = 1:2; %Variable switches between grids x1 and x2 
    for k = 1:20 
      if j == 1 && TestNode(j) >= x1(1,k) && TestNode(j) < x1(1,k+1) 
        Cell(2) = k; %Column of x1 
        break 
      end 
       
      if j == 2 && TestNode(j) >= x2(k,1) && TestNode(j) < x2(k+1,1) 
        Cell(1) = k; %Row of x2 
        break 
      end 
    end 
  end 
  
  for j = 1:2; %Capture endpoints not accounted for above 
    if Cell(j) == 0 
      Cell(j) = length(x1); 
    end 
  end 
% Determines the components & magnitude of the ocean current at current 
node 
vx = x1d(Cell(1),Cell(2)); 
vy = x2d(Cell(1),Cell(2)); 
V = sqrt((vx)^2 + (vy)^2); 
end 
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function NewBranch = DR_RRTstar_Extend(xlimits, ylimits, OptimalNode, 
Target, V, vx, vy, dt, x1, x2, ObstacleSpace) 
  
%========INFO======== 
  
%LT Chase Dillard 
%Dead-Reckoning Rapidly-Exploring Random Tree Star (DR-RRT*) Algorithm 
%Extend Function 
%11/26/2014 
  
%Implemented in MATLAB. Version: MATLAB R2012b 
  
%This function: Extends a branch in the direction of the Target. Checks 
to 
%see if the endpoint of this branch falls within an obstacle or outside 
%the limits of the map. If it does, export NewBranch is empty. If not, 
%export NewBranch is an (x,y) position. 
  
%==================== 
  
if isnumeric(Target);  %Flight extension 
   
  % Use basic trig to determine heading 
  Opposite = abs(OptimalNode(1) - Target(1)); 
  Adjacent = abs(OptimalNode(2) - Target(2)); 
  Hypotenuse = sqrt((OptimalNode(1)-Target(1))^2+(OptimalNode(2)-
Target(2))^2); 
  sinPsi = Opposite/Hypotenuse; 
  cosPsi = Adjacent/Hypotenuse; 
   
  % Determine position delta 
  dx = V*sinPsi*dt; 
  dy = V*cosPsi*dt; 
   
  % Conduct Euler integration of point-mass kinematics 
  if ( ((OptimalNode(1) - Target(1)) < 0) && ((OptimalNode(2) - 
Target(2)) < 0) ) 
    NewBranch(1) = (OptimalNode(1) + dx); 
    NewBranch(2) = (OptimalNode(2) + dy); 
     
  elseif ( ((OptimalNode(1) - Target(1)) > 0) && ((OptimalNode(2) - 
Target(2)) < 0) ) 
    NewBranch(1) = (OptimalNode(1) - dx); 
    NewBranch(2) = (OptimalNode(2) + dy); 
     
  elseif ( ((OptimalNode(1) - Target(1)) < 0) && ((OptimalNode(2) - 
Target(2)) > 0) ) 
    NewBranch(1) = (OptimalNode(1) + dx); 
    NewBranch(2) = (OptimalNode(2) - dy); 
     
  else 
    NewBranch(1) = (OptimalNode(1) - dx); 
    NewBranch(2) = (OptimalNode(2) - dy); 
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  end 
   
else          %Dead-Reckoning extension 
  dx = vx*dt; 
  dy = vy*dt; 
  NewBranch(1) = (OptimalNode(1) + dx); 
  NewBranch(2) = (OptimalNode(2) + dy); 
end 
  
% Check if it’s not out of bounds 
if ( (NewBranch(1) > xlimits(2)) || (NewBranch(1) < xlimits(1)) || 
(NewBranch(2) > ylimits(2))) || (NewBranch(2) < ylimits(1)) 
  NewBranch = []; 
end 
  
% Determines the grid placement of current node 
if ~isempty(NewBranch) 
  for j = 1:2; %Variable switches between grids x1 and x2 
    for k = 1:20 
      if j == 1 && NewBranch(j) >= x1(1,k) && NewBranch(j) < x1(1,k+1) 
        Cell(2) = k; %Column of x1 
        break 
      end 
       
      if j == 2 && NewBranch(j) >= x2(k,1) && NewBranch(j) < x2(k+1,1) 
        Cell(1) = length(x2)+1-k; %Row of x2. 
        break 
      end 
    end 
  end 
   
  %Capture endpoints not accounted for above 
  for j = 1:2; %Capture endpoints not accounted for above 
    if Cell(j) == 0 
      Cell(j) = length(x1); 
    end 
  end 
   
  % Check if that coordinate is not covered by an obstacle 
  if (ObstacleSpace(Cell(1),Cell(2)) == 1) 
    NewBranch = []; 
  end 
end 
end 
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