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ABSTRACT 

Hydrodynamic ram (HRAM) refers to the damage process due to high pressures 

generated when a high-velocity projectile penetrates a compartment or vessel 

containing a fluid. A Finite Element model was developed using MSC Dytran to 

investigate the structural response during the initial phase of HRAM and conduct 

parametric studies on factors that could affect the tank wall response. The 

Lagrangian structural shell elements were coupled to the fluid Euler elements 

using the ALE coupling technique, whereas the projectile was coupled to the fluid 

using the general coupling technique. This study focused mainly on the structural 

back wall response where critical components or main structural members on the 

aircraft could be located. 

Results from this study show that initial shock wave pressure upon 

projectile impact is unlikely to have detrimental effects on the exit wall of tank due 

to its rapid extinction in the fluid. The presence of free surface with lower filling 

levels reduced both the initial shock pressure and subsequent drag phase 

pressure. Projectile mass was found to have a strong effect on the exit wall 

response during the shock phase, but once projectile penetrated the entry wall, 

results for the drag phase for different projectile mass investigated were 

inconclusive. Other factors examined included the tank’s material properties and 

fluid density. Of all the factors being studied, projectile’s velocity was found to 

have the strongest influence on exit wall response and fluid pressures. 

Therefore, the damage to exit wall of the tank could be greatly reduced if the 

entry wall is able to slow the projectile significantly. 



 vi 

THIS PAGE INTENTIONALLY LEFT BLANK 



 vii 

TABLE OF CONTENTS 

I. INTRODUCTION ............................................................................................. 1 
A. BACKGROUND ................................................................................... 1 
B. OBJECTIVES ....................................................................................... 3 

II. UNDERSTANDING HRAM ............................................................................. 5 
A. THE HRAM PHENOMENON ............................................................... 5 

1. The Shock Phase ..................................................................... 6 
2. The Drag Phase ........................................................................ 8 
3. The Cavitation Phase ............................................................ 11 

B. HISTORY AND OVERVIEW OF HRAM SIMULATION ...................... 14 

1. Evolution of Numerical Techniques for HRAM 
Simulation .............................................................................. 14 

2. Overview of Recent HRAM Numerical Simulations ............ 16 
C. FLUID STRUCTURE INTERACTION – DYTRAN.............................. 20 

1. Numerical Solvers ................................................................. 20 
a. Lagrangian Solver ....................................................... 21 
b. Eulerian Solver ............................................................ 22 

2. Coupling Techniques ............................................................ 23 
a. General Coupling ........................................................ 23 
b. ALE Coupling .............................................................. 24 

III. METHODOLOGY AND MODEL DEVELOPMENT ....................................... 27 
A. MODELING PROCEDURES .............................................................. 27 

B. DESCRIPTION OF MODEL ............................................................... 28 
1. Projectile................................................................................. 28 
2. Tank ........................................................................................ 29 
3. Fluid ........................................................................................ 30 
4. Boundary Conditions ............................................................ 31 
5. Location of Tracer Elements ................................................. 33 
6. Material Properties ................................................................ 34 

IV. RESULTS AND DISCUSSION ..................................................................... 35 
A. TANK WALL RESPONSE TO HRAM LOADING .............................. 35 

1. Baseline Model 1 .................................................................... 35 

a. Entry Wall Response .................................................. 36 

b. Left Wall Response ..................................................... 38 
c. Exit Wall Response ..................................................... 41 

2. Baseline Model 2 .................................................................... 46 
a. Entry Wall Response .................................................. 47 
b. Left Wall Response ..................................................... 48 
c. Exit Wall Response ..................................................... 50 

B. PARAMETRIC STUDIES CONDUCTED FOR MODEL 1 AND 
MODEL 2 ........................................................................................... 55 
1. Variation in Fluid Levels........................................................ 56 



 viii 

2. Variation in Projectile Mass .................................................. 57 

3. Variation in Projectile Initial Velocity ................................... 60 
4. Variation in Tank Material Modulus ...................................... 62 
5. Variation in Tank Material Density ....................................... 64 
6. Variation in Fluid Density ...................................................... 66 

V. CONCLUSION AND FUTURE WORK ......................................................... 69 

APPENDIX A. GRAPHS FOR FLUID LEVELS VARIATION .................................. 71 

APPENDIX B. GRAPHS FOR PROJECTILE MASS VARIATION .......................... 87 

APPENDIX C. GRAPHS FOR PROJECTILE VELOCITY VARIATION ................ 105 

APPENDIX D. GRAPHS FOR TANK MATERIAL MODULUS VARIATION ......... 123 

APPENDIX E. GRAPHS FOR TANK MATERIAL DENSITY VARIATION ............ 143 

APPENDIX F. GRAPHS FOR FLUID DENSITY VARIATION ............................... 161 

LIST OF REFERENCES ........................................................................................ 179 

INITIAL DISTRIBUTION LIST ............................................................................... 181 

 



 ix 

LIST OF FIGURES 

Figure 1. Four phases of HRAM phenomenon, from [2]. ..................................... 5 
Figure 2. Extent of tank damage due to HRAM effect, from [5]. .......................... 6 
Figure 3. Spark shadowgraph of pressure wave during the shock phase 

captured in McMillen experiment, from [6]. ........................................... 7 
Figure 4. Top: Pressure of drag phase recorded by transducer P3. Bottom: 

Video image as projectile nears transducer P3, from [8]. ..................... 9 
Figure 5. Drag pressure comparison for different material measured by 

transducer P3, from [8]. ...................................................................... 10 
Figure 6. Pressure time history of spherical tungsten projectile impacting tank 

at 350 m/s, from [8]. ............................................................................ 12 
Figure 7. Experiment setup of spherical projectile impacting aluminum tank, 

from [13]. ............................................................................................ 17 
Figure 8. ALE and SPH simulation of the different phases of HRAM, from 

[13]. .................................................................................................... 18 
Figure 9. Left: Projectile velocity decay time history. Right: Pressure time 

history plot near impact point for 100% filled tube impacted at 900 
m/s, from [13]. .................................................................................... 18 

Figure 10. Top Left: Lagrangian Tank shell element. Top Right: Eight node 
solid Eulerian fluid element. Bottom: Tank and projectile 
dimensions with pressure gage locations, from [14]. .......................... 19 

Figure 11. Lagrangian solver mesh, from [17]. .................................................... 21 
Figure 12. Eulerian solver mesh, from [17]. ......................................................... 22 

Figure 13. General coupling, from [4]. ................................................................. 24 
Figure 14. ALE coupling, from [4]. ....................................................................... 25 
Figure 15. HRAM simulation modeling procedures. ............................................ 27 
Figure 16. Spherical projectile Lagrangian solid element mesh........................... 29 
Figure 17. Left: Lagrangian tank model consisting 9,600 shell elements. Right: 

Lagrangian tank cutaway model. ........................................................ 30 
Figure 18. Left: Eulerian fluid model consisting 64,000 solid hexahedron 

elements. Right: Eulerian fluid cutaway model. .................................. 30 
Figure 19. Schematic of Model 1 and Model 2. ................................................... 31 
Figure 20. Location of tracer elements ................................................................ 33 

Figure 21. Entry Wall X-Displacement (Model 1). ................................................ 36 
Figure 22. Entry Wall X-Velocity (Model 1). ......................................................... 37 

Figure 23. Entry Wall Effective Stress (Model 1). ................................................ 37 
Figure 24. Cutaway view of Model 1 Material Fraction plot at 0.6 ms. ................. 39 

Figure 25. Left Wall Z-Displacement (Model 1). .................................................. 40 
Figure 26. Left Wall Z-Velocity (Model 1). ........................................................... 40 
Figure 27. Left Wall Effective Stress (Model 1).................................................... 41 

Figure 28. Exit Wall X-Displacement (Model 1). .................................................. 42 
Figure 29. Exit Wall X-Velocity (Model 1). ........................................................... 42 
Figure 30. Exit Wall Effective Stress (Model 1). ................................................... 43 



 x 

Figure 31. Effective Stress Fringe Plot at 0.12 ms (Model 1). ............................. 44 

Figure 32. Effective Stress Fringe Plot at 0.2 ms (Model 1). ............................... 44 
Figure 33. Shock pressure propagating from impact point at 0.03 ms (Model 

1). ....................................................................................................... 45 
Figure 34. Shock pressure generated by 300 m/s spherical projectile (Model 

1). ....................................................................................................... 46 
Figure 35. Entry Wall X-Displacement (Model 2). ................................................ 47 
Figure 36. Entry Wall X-Velocity (Model 2). ......................................................... 47 
Figure 37. Entry Wall Effective Stress (Model 2). ................................................ 48 
Figure 38. Left Wall Z-Displacement (Model 2). .................................................. 49 
Figure 39. Left Wall Z-Velocity (Model 2). ........................................................... 49 
Figure 40. Left Wall Effective Stress (Model 2).................................................... 50 
Figure 41. Exit Wall X-Displacement (Model 2). .................................................. 51 

Figure 42. Exit Wall X-Velocity (Model 2). ........................................................... 51 
Figure 43. Exit Wall Effective Stress (Model 2). ................................................... 52 
Figure 44. Effective stress fringe plot showing pre-stressed exit wall during 

drag phase (Model 2). ........................................................................ 53 
Figure 45. Drag phase fluid pressure output from fluid gauge 2 (Model 2). ......... 54 
Figure 46. Model 2 cavity evolution. .................................................................... 54 
Figure 47. Model 2 maximum cavity diameter measured from material fraction 

fringe plot. ........................................................................................... 55 
Figure 48. Material fraction plot of initial condition of Euler mesh for different 

fluid levels. .......................................................................................... 56 
Figure 49. Exit Wall X-Displacement for different projectile mass (Model 2). ...... 59 
Figure 50. Exit wall X-displacement for different projectile velocity (Model 2). .... 61 

Figure 51. Drag phase pressure for different projectile velocities (Model 2). ....... 62 
Figure 52. Exit wall X-displacement for different elastic modulus (Model 1). ....... 64 
Figure 53. Exit Wall X-Displacement for different material density (Model 2). ..... 66 
Figure 54. Exit wall X-Displacement for different fluid density (Model 1). ............ 68 
Figure 55. Exit wall X-Displacement for different fluid density (Model 2). ............ 68 
Figure 56. Entry wall resultant displacement for different fluid levels (Model 1). . 71 
Figure 57. Entry wall X-Displacement for different fluids levels (Model 1). .......... 72 
Figure 58. Entry wall resultant velocity for different fluid levels (Model 1). .......... 72 
Figure 59. Entry wall X-Velocity for different fluid levels (Model 1). ..................... 73 

Figure 60. Left wall resultant displacement for different fluid levels (Model 1). .... 73 
Figure 61. Left wall Z-Displacement for different fluid levels (Model 1). .............. 74 
Figure 62. Left wall resultant velocity for different fluid levels (Model 1). ............. 74 

Figure 63. Left wall Z-Velocity for different fluid levels (Model 1)......................... 75 

Figure 64. Exit wall resultant displacement for different fluid levels (Model 1). .... 75 
Figure 65. Exit wall X-Displacement for different fluid levels (Model 1). .............. 76 
Figure 66. Exit wall resultant velocity for different fluid levels (Model 1). ............. 76 
Figure 67. Entry wall effective stress for different fluid levels (Model 1). ............. 77 
Figure 68. Left wall effective stress for different fluid levels (Model 1). ................ 77 

Figure 69. Exit wall effective stress for different fluid levels (Model 1). ................ 78 
Figure 70. Fluid pressure for different fluid levels (Model 1). ............................... 78 



 xi 

Figure 71. Entry wall resultant displacement for different fluid levels (Model 2). . 79 

Figure 72. Entry wall X-Displacement for different fluid levels (Model 2). ............ 79 
Figure 73. Entry wall resultant velocity for different fluid levels (Model 2). .......... 80 
Figure 74. Entry wall X-Velocity for different fluid levels (Model 2). ..................... 80 
Figure 75. Left wall resultant displacement for different fluid levels (Model 2). .... 81 
Figure 76. Left wall Z-Displacement for different fluid levels (Model 2). .............. 81 
Figure 77. Left wall resultant velocity for different fluid levels (Model 2). ............. 82 
Figure 78. Left wall Z-Velocity for different fluid levels (Model 2)......................... 82 
Figure 79. Exit wall resultant displacement for different fluid levels (Model 2). .... 83 
Figure 80. Exit wall X-Displacement for different fluid levels (Model 2). .............. 83 
Figure 81. Exit wall X-Velocity for different fluid levels (Model 2). ....................... 84 
Figure 82. Entry wall effective stress for different fluid levels (Model 2). ............. 84 
Figure 83. Left wall effective stress for different fluid levels (Model 2). ................ 85 

Figure 84. Exit wall effective stress for different fluid levels (Model 2). ................ 85 
Figure 85. Drag phase pressure for different fluid levels (Model 2). .................... 86 

Figure 86. Drag phase pressure for different fluid levels (Model 2) - Enlarged. ... 86 
Figure 87. Entry wall resultant displacement for different projectile mass 

(Model 1). ........................................................................................... 87 
Figure 88. Entry wall X-Displacement for different projectile mass (Model 1). ..... 88 
Figure 89. Entry wall resultant velocity for different projectile mass (Model 1). ... 88 
Figure 90. Entry wall X-Velocity for different projectile mass (Model 1). .............. 89 
Figure 91. Left wall resultant displacement for different projectile mass (Model 

1). ....................................................................................................... 89 
Figure 92. Left wall Z displacement for different projectile mass (Model 1). ........ 90 
Figure 93. Left wall resultant velocity for different projectile mass (Model 1). ...... 90 

Figure 94. Left wall Z-Velocity for different projectile mass (Model 1). ................ 91 
Figure 95. Exit wall resultant displacement for different projectile mass (Model 

1). ....................................................................................................... 91 
Figure 96. Exit wall X-Displacement for different projectile mass (Model 1). ....... 92 
Figure 97. Exit wall resultant velocity for different projectile mass (Model 1). ...... 92 
Figure 98. Exit wall X-Velocity for different projectile mass (Model 1). ................ 93 
Figure 99. Entry wall effective stress for different projectile mass (Model 1). ...... 93 

Figure 100. Left wall effective stress for different projectile mass (Model 1). ........ 94 
Figure 101. Exit wall effective stress for different projectile mass (Model 1). ........ 94 
Figure 102. Fluid pressure for different projectile mass (Model 1). ........................ 95 
Figure 103. Entry wall resultant displacement for different projectile mass 

(Model 2). ........................................................................................... 95 

Figure 104. Entry wall X-Displacement for different projectile mass (Model 2). ..... 96 
Figure 105. Entry wall resultant velocity for different projectile mass (Model 2). ... 96 

Figure 106. Entry wall X-Velocity for different projectile mass (Model 2). .............. 97 
Figure 107. Left wall resultant displacement for different projectile mass (Model 

2). ....................................................................................................... 97 
Figure 108. Left wall Z-Displacement for different projectile mass (Model 2). ....... 98 

Figure 109. Left wall resultant velocity for different projectile mass (Model 2). ...... 98 
Figure 110. Left wall Z-Velocity for different projectile mass (Model 2). ................ 99 



 xii 

Figure 111. Exit wall resultant displacement for different projectile mass (Model 
2). ....................................................................................................... 99 

Figure 112. Exit wall X-Displacement for different projectile mass (Model 2). ..... 100 
Figure 113. Exit wall resultant velocity for different projectile mass (Model 2). .... 100 
Figure 114. Exit wall X-Velocity for different projectile mass (Model 2). .............. 101 
Figure 115. Entry wall effective stress for different projectile mass (Model 2). .... 101 
Figure 116. Left wall effective stress for different projectile mass (Model 2). ...... 102 
Figure 117. Exit wall effective stress for different projectile mass (Model 2). ...... 102 
Figure 118. Drag phase pressure for different projectile mass (Model 2). ........... 103 
Figure 119. Drag phase pressure for different projectile mass (Model 2). – 

Enlarged ........................................................................................... 103 
Figure 120. Exit wall resultant displacement for different projectile velocity 

(Model 1). ......................................................................................... 105 

Figure 121. Exit wall X-Displacement for different projectile velocity (Model 1). .. 106 
Figure 122. Exit wall resultant velocity for different projectile velocity (Model 1). 106 
Figure 123. Exit wall resultant velocity for different projectile velocity (Model 1) – 

Enlarged. .......................................................................................... 107 
Figure 124. Exit wall X-Velocity for different projectile velocity (Model 1). ........... 107 
Figure 125. Exit wall X-Velocity for different projectile velocity (Model 1) – 

Enlarged. .......................................................................................... 108 
Figure 126. Left wall resultant displacement for different projectile velocity 

(Model 1). ......................................................................................... 108 
Figure 127. Left wall Z-Displacement for different projectile velocity (Model 1). .. 109 
Figure 128. Left wall resultant velocity for different projectile velocity (Model 1). 109 
Figure 129. Left wall Z-Velocity for different projectile velocity (Model 1). ........... 110 

Figure 130. Exit wall resultant displacement for different projectile velocity 
(Model 1). ......................................................................................... 110 

Figure 131. Exit wall X-Displacement for different projectile velocity (Model 1). .. 111 
Figure 132. Exit wall resultant velocity for different projectile velocity (Model 1). 111 
Figure 133. Exit wall X-Velocity for different projectile velocity (Model 1). ........... 112 
Figure 134. Entry wall effective stress for different projectile velocity (Model 1). . 112 
Figure 135. Left wall effective stress for different projectile velocity (Model 1). ... 113 

Figure 136. Exit wall effective stress for different projectile velocity (Model 1). ... 113 
Figure 137. Fluid pressure for different projectile velocity (Model 1). .................. 114 
Figure 138. Entry wall resultant displacement for different projectile velocity 

(Model 2). ......................................................................................... 114 
Figure 139. Entry wall X-Displacement for different projectile velocity (Model 2). 115 

Figure 140. Entry wall resultant velocity for different projectile velocity (Model 
2). ..................................................................................................... 115 

Figure 141. Entry wall X-Velocity for different projectile velocity (Model 2). ........ 116 

Figure 142. Left wall resultant displacement for different projectile velocity 
(Model 2). ......................................................................................... 116 

Figure 143. Left wall Z-Displacement for different projectile velocity (Model 2). .. 117 

Figure 144. Left wall resultant velocity for different projectile velocity (Model 2). 117 
Figure 145. Left wall Z-Velocity for different projectile velocity (Model 2). ........... 118 



 xiii 

Figure 146. Exit wall resultant displacement for different projectile velocity 
(Model 2). ......................................................................................... 118 

Figure 147. Exit wall X-Displacement for different projectile velocity (Model 2). .. 119 
Figure 148. Exit wall resultant velocity for different projectile velocity (Model 2). 119 
Figure 149. Exit wall X-Velocity for different projectile velocity (Model 2). ........... 120 
Figure 150. Entry wall effective stress for different projectile velocity (Model 2). . 120 
Figure 151. Left wall effective stress for different projectile velocity (Model 2). ... 121 
Figure 152. Exit wall effective stress for different projectile velocity (Model 2). ... 121 
Figure 153. Drag phase pressure for different projectile velocity (Model 2). ........ 122 
Figure 154. Drag phase pressure for different projectile velocity (Model 2) – 

Enlarged. .......................................................................................... 122 
Figure 155. Entry wall resultant displacement for different material modulus 

(Model 1). ......................................................................................... 123 

Figure 156. Entry wall X-Displacement for different material modulus (Model 1). 124 
Figure 157. Entry wall resultant velocity for different material modulus (Model 

1). ..................................................................................................... 124 
Figure 158. Entry wall X-Velocity for different material modulus (Model 1). ........ 125 
Figure 159. Entry wall X-Velocity for different material modulus (Model 1) – 

Enlarged. .......................................................................................... 125 
Figure 160. Left wall resultant displacement for different material modulus 

(Model 1). ......................................................................................... 126 
Figure 161. Left wall Z-Displacement for different material modulus (Model 1). .. 126 
Figure 162. Left wall resultant velocity for different material modulus (Model 1). 127 
Figure 163. Left wall Z-Velocity for different material modulus (Model 1). ........... 127 
Figure 164. Exit wall resultant displacement for different material modulus 

(Model 1). ......................................................................................... 128 
Figure 165. Exit wall X-Displacement for different material modulus (Model 1). .. 128 
Figure 166. Exit wall resultant velocity for different material modulus (Model 1). 129 
Figure 167. Exit wall X-Velocity for different material modulus (Model 1). ........... 129 
Figure 168. Entry wall effective stress for different material modulus (Model 1). . 130 
Figure 169. Left wall effective stress for different material modulus (Model 1). ... 130 
Figure 170. Exit wall effective stress for different material modulus (Model 1). ... 131 

Figure 171. Fluid pressure for different material modulus (Model 1). .................. 131 
Figure 172. Entry wall resultant displacement for different material modulus 

(Model 2). ......................................................................................... 132 
Figure 173. Entry wall X-Displacement for different material modulus (Model 2). 132 
Figure 174. Entry wall resultant velocity for different material modulus (Model 

2). ..................................................................................................... 133 

Figure 175. Entry wall resultant velocity for different material modulus (Model 2) 
– Enlarged. ....................................................................................... 133 

Figure 176. Entry wall X-Velocity for different material modulus (Model 2). ........ 134 
Figure 177. Entry wall X-Velocity for different material modulus (Model 2) – 

Enlarged. .......................................................................................... 134 

Figure 178. Left wall resultant displacement for different material modulus 
(Model 2). ......................................................................................... 135 



 xiv 

Figure 179. Left wall Z-Displacement for different material modulus (Model 2). .. 135 

Figure 180. Left wall resultant velocity for different material modulus (Model 2). 136 
Figure 181. Left wall Z-Velocity for different material modulus (Model 2). ........... 136 
Figure 182. Exit wall resultant displacement for different material modulus 

(Model 2). ......................................................................................... 137 
Figure 183. Exit wall X-Displacement for different material modulus (Model 2). .. 137 
Figure 184. Exit wall resultant velocity for different material modulus (Model 2). 138 
Figure 185. Exit wall X-Velocity for different material modulus (Model 2). ........... 138 
Figure 186. Entry wall effective stress for different material modulus (Model 2). . 139 
Figure 187. Left wall effective stress for different material modulus (Model 2). ... 139 
Figure 188. Exit wall effective stress for different material modulus (Model 2). ... 140 
Figure 189. Drag phase pressure for different material modulus (Model 2). ........ 140 
Figure 190. Drag phase pressure for different material modulus (Model 2) - 

Enlarged. .......................................................................................... 141 
Figure 191. Entry wall resultant displacement for different material density 

(Model 1). ......................................................................................... 143 
Figure 192. Entry wall X-Displacement for different material density (Model 1). . 144 
Figure 193. Entry wall resultant velocity for different material density (Model 1). 144 
Figure 194. Entry wall X-Velocity for different material density (Model 1). ........... 145 
Figure 195. Left wall resultant displacement for different material density (Model 

1). ..................................................................................................... 145 
Figure 196. Left wall Z-Displacement for different material density (Model 1). .... 146 
Figure 197. Left wall resultant velocity for different material density (Model 1).... 146 
Figure 198. Left wall Z-Velocity for different material density (Model 1). ............. 147 
Figure 199. Exit wall resultant displacement for different material density (Model 

1). ..................................................................................................... 147 
Figure 200. Exit wall X-Displacement for different material density (Model 1). .... 148 
Figure 201. Exit wall resultant velocity for different material density (Model 1).... 148 
Figure 202. Exit wall X-Velocity for different material density (Model 1). ............. 149 
Figure 203. Entry wall effective stress for different material density (Model 1). ... 149 
Figure 204. Left wall effective stress for different material density (Model 1). ..... 150 
Figure 205. Exit wall effective stress for different material density (Model 1). ..... 150 
Figure 206. Fluid pressure for different material density (Model 1)...................... 151 
Figure 207. Entry wall resultant displacement for different material density 

(Model 2). ......................................................................................... 151 
Figure 208. Entry wall X-Displacement for different material density (Model 2). . 152 
Figure 209. Entry wall resultant velocity for different material density (Model 2). 152 

Figure 210. Entry wall resultant velocity for different material density (Model 2) 
– Enlarged. ....................................................................................... 153 

Figure 211. Entry wall X-Velocity for different material density (Model 2). ........... 153 
Figure 212. Entry wall X-Velocity for different material density (Model 2) – 

Enlarged. .......................................................................................... 154 
Figure 213. Left wall resultant displacement for different material density (Model 

2). ..................................................................................................... 154 

Figure 214. Left wall Z-Displacement for different material density (Model 2). .... 155 



 xv 

Figure 215. Left wall resultant velocity for different material density (Model 2).... 155 

Figure 216. Left wall Z-Velocity for different material density (Model 2). ............. 156 
Figure 217. Exit wall resultant displacement for different material density (Model 

2). ..................................................................................................... 156 
Figure 218. Exit wall X-Displacement for different material density (Model 2). .... 157 
Figure 219. Exit wall resultant velocity for different material density (Model 2).... 157 
Figure 220. Exit wall X-Velocity for different material density (Model 2). ............. 158 
Figure 221. Entry wall effective stress for different material density (Model 2). ... 158 
Figure 222. Left wall effective stress for different material density (Model 2). ..... 159 
Figure 223. Exit wall effective stress for different material density (Model 2). ..... 159 
Figure 224. Drag phase pressure for different material density (Model 2). .......... 160 
Figure 225. Drag phase pressure for different material density (Model 2) - 

Enlarged. .......................................................................................... 160 

Figure 226. Entry wall resultant displacement for different fluid density (Model 
1). ..................................................................................................... 161 

Figure 227. Entry wall X-Displacement for different fluid density (Model 1). ........ 162 
Figure 228. Entry wall resultant velocity for different fluid density (Model 1). ...... 162 
Figure 229. Entry wall X-Velocity for different fluid density (Model 1). ................. 163 
Figure 230. Left wall resultant displacement for different fluid density (Model 1). 163 
Figure 231. Left wall Z-Displacement for different fluid density (Model 1). .......... 164 
Figure 232. Left wall resultant velocity for different fluid density (Model 1). ......... 164 
Figure 233. Left wall Z-Velocity for different fluid density (Model 1). ................... 165 
Figure 234. Exit wall resultant displacement for different fluid density (Model 1). 165 
Figure 235. Exit wall X-Displacement for different fluid density (Model 1). .......... 166 
Figure 236. Exit wall resultant velocity for different fluid density (Model 1). ......... 166 

Figure 237. Exit wall X-Velocity for different fluid density (Model 1). ................... 167 
Figure 238. Entry wall effective stress for different fluid density (Model 1). ......... 167 
Figure 239. Left wall effective stress for different fluid density (Model 1). ........... 168 
Figure 240. Exit wall effective stress for different fluid density (Model 1). ........... 168 
Figure 241. Fluid pressure for different fluid density (Model 1). ........................... 169 
Figure 242. Entry wall resultant displacement for different fluid density (Model 

2). ..................................................................................................... 169 
Figure 243. Entry wall X-Displacement for different fluid density (Model 2). ........ 170 

Figure 244. Entry wall resultant velocity for different fluid density (Model 2). ...... 170 
Figure 245. Entry wall resultant velocity for different fluid density (Model 2) – 

Enlarged. .......................................................................................... 171 

Figure 246. Entry wall X-Velocity for different fluid density (Model 2). ................. 171 

Figure 247. Entry wall X-Velocity for different fluid density (Model 2) – Enlarged.172 

Figure 248. Left wall resultant displacement for different fluid density (Model 2). 172 
Figure 249. Left wall Z-Displacement for different fluid density (Model 2). .......... 173 
Figure 250. Left wall resultant velocity for different fluid density (Model 2). ......... 173 
Figure 251. Left wall Z-Velocity for different fluid density (Model 2). ................... 174 
Figure 252. Exit wall resultant displacement for different fluid density (Model 2). 174 

Figure 253. Exit wall X-Displacement for different fluid density (Model 2). .......... 175 
Figure 254. Exit wall resultant velocity for different fluid density (Model 2). ......... 175 



 xvi 

Figure 255. Exit wall X-Velocity for different fluid density (Model 2). ................... 176 

Figure 256. Entry wall effective stress for different fluid density (Model 2). ......... 176 
Figure 257. Left wall effective stress for different fluid density (Model 2). ........... 177 
Figure 258. Exit wall effective stress for different fluid density (Model 2). ........... 177 
Figure 259. Drag phase pressure for different fluid density (Model 2). ................ 178 
Figure 260. Drag phase pressure for different fluid density (Model 2) - Enlarged.178 
 



 xvii 

LIST OF TABLES 

Table 1. List of hardware and software for modeling and simulation. ............... 28 
Table 2. Loads and boundary conditions. ......................................................... 32 
Table 3. Summary of material properties and constitutive model ..................... 34 
Table 4. Model 1 exit wall response to varying fluid levels ............................... 57 
Table 5. Model 2 exit wall response to varying fluid levels ............................... 57 
Table 6. Model 1 exit wall response to varying projectile mass ........................ 58 
Table 7. Model 2 exit wall response to varying projectile mass ........................ 58 
Table 8. Model 1 exit wall response to varying projectile initial velocity. .......... 60 
Table 9. Model 2 exit wall response to varying projectile initial velocity. .......... 60 

Table 10. Model 1 exit wall response for varying tank material modulus. ........... 62 
Table 11. Model 2 exit wall response for varying tank material modulus. ........... 63 
Table 12. Model 1 exit wall response for varying tank material density. ............. 65 
Table 13. Model 2 exit wall response for varying tank material density. ............. 65 
Table 14. Model 1 exit wall response to varying fluid density. ............................ 66 
Table 15. Model 2 exit wall response to varying fluid density ............................. 67 
 



 xviii 

THIS PAGE INTENTIONALLY LEFT BLANK 



 xix 

LIST OF ACRONYMS AND ABBREVIATIONS 

ALE Arbitrary Lagrange Euler 
CEL coupled Euler Lagrange 
FE Finite Element 
HRAM  Hydrodynamic ram 
LFT live fire test 
SPH  Smoothed Particle Hydrodynamics 
 



 xx 

 

THIS PAGE INTENTIONALLY LEFT BLANK 

 



 xxi 

ACKNOWLEDGMENTS 

I would like to express my deepest gratitude and appreciation to the 

following people for their advice, encouragement and support toward the 

successful completion of this thesis. 

A sincere thank you goes to my thesis advisor, Distinguished Professor 

Kwon, who always put aside time for me despite his busy schedule to discuss my 

progress, giving me valuable technical insights and guidance along the way. 

Many thanks to my thesis co-advisor, Professor Christopher Adams, for 

helping me come up with the thesis topic and for always being so friendly, 

encouraging, and approachable. 

Milan Vukcevich, the IT specialist at the mechanical CAD lab, a big thank 

you for solving my IT-related problems and constantly updating me on any 

upcoming power outages and server maintenance at the lab when I was running 

my simulations. 

Finally, I would like to thank my wife, Mei Ing, and daughter, Mikaela, for 

their unconditional love, encouragement, and support. 



 xxii 

THIS PAGE INTENTIONALLY LEFT BLANK 

 



 1 

I. INTRODUCTION 

A. BACKGROUND 

Hydrodynamic Ram (HRAM) refers to the damage process due to high 

pressures generated when a kinetic energy projectile penetrates a compartment 

or vessel containing a fluid [1]. The large internal fluid pressure that acts on the 

walls of the fluid filled tank can result in severe structural damage especially at 

the entrance and exit walls. The study of HRAM effects on fuel tanks used on 

military aircraft is vital as a tank that is designed to withstand HRAM loads can 

increase its survivability to threats from small arms when operating in a hostile 

environment. 

Even as modern military aircraft become more survivable, due to 

technological advancements and considerations given to aircraft survivability 

during the development and design stages, HRAM remains a paramount damage 

process to today’s combat aircraft, especially during the takeoff and landing 

phases of flight operations. Moreover, modern aircraft structures are moving 

away from all aluminum structures and utilizing greater amounts of lightweight 

composite material, which presents an added challenge to protect, especially 

against HRAM. Even though composites have a much better strength to weight 

ratio compared to aluminium, they were known to be more brittle when loaded to 

point of failure and are therefore more prone to abrupt failures. 

Many types of threats can result in HRAM damage to aircraft fuel tanks, 

such as armor piercing rounds from small arms and fragments from missile 

warhead detonation. Statistics from Desert Storm indicated that 75% of aircraft 

losses were attributable to fuel system vulnerability with HRAM being one of the 

primary kill mechanisms [2]. An aircraft flying at low altitude in a hostile 

environment would be susceptible to small arms firing at them; and when these 

projectiles penetrate the aircraft’s fuel tank, the HRAM effect could rupture the 

tank walls and damage structural components, eventually rendering the aircraft 
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incapable for flight. An aircraft’s fuel tank is typically the most vulnerable 

component onboard, since it has the largest presented area. Ruptured aircraft 

fuel tanks and its damaged surrounding structures would require long downtime 

for depot level maintenance, as opposed to quick patch repairs of the entry wall 

panel, resulting in low aircraft availability and high cost of recovery. In some 

cases, HRAM could also lead to catastrophic attrition of the aircraft due to the 

cascading effect from a fuel tank failure [3]. 

To design structures to withstand the HRAM loads, or to develop the 

HRAM mitigation techniques for existing aircraft, it would be necessary to first 

predict the pressures and the distribution inside the tank throughout the different 

phases of the HRAM phenomenon. Understanding the source and magnitude of 

the pressure waves generated in the fluid could lead to improved methods of 

mitigation and attenuation to better protect aircraft. Live Fire Test (LFT), or 

experimental testing for such purposes, could be costly and impractical for 

parametric studies to be conducted. Therefore, in recent times, more emphasis 

has been placed on the development of numerical techniques to simulate this 

complex fluid structure interaction problem. For small projectile penetration into a 

fluid-filled tank, the classical Lagrangian finite element solver alone cannot 

resolve the large deformation in the fluid mesh. The high distortion in the fluid 

would have to be modeled using the Eulerian mesh, and solved using the 

Eulerian solver. For interaction to occur between the Lagrangian and Eulerian 

mesh, a coupling surface would be necessary to define the interaction between 

the fluid and structure mesh. MSC Dytran provides two types of coupling 

techniques, known as General Coupling and Arbitrary Lagrange Euler Coupling 

(ALE) [4].  

The ultimate goal for HRAM analysis and research is to develop ways to 

eliminate the extensive damage to the entry and exit walls of the fuel tank 

immediately after being impacted by a projectile such as a bullet. A well-designed 

fuel tank would be able to withstand HRAM loading and keep the damage to a 

mere small hole at the entry and exit walls. Such damage levels would be 
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considered acceptable, as the subsequent fuel loss would be minimal leading to 

increased survivability of the aircraft to such threats. The small hole on the entry 

wall of the tank could also be repaired more rapidly resulting in better aircraft 

availability. 

B. OBJECTIVES 

The objective of this thesis was to develop a Finite Element (FE) model 

using MSC Dytran to analyze the dynamic response of tank structure, and 

conduct parametric studies on factors that could affect tank wall response during 

the initial phase of HRAM event. The model would enable a better understanding 

of how various parameters affect the pressure waves generated in the fluid, as 

well as the dynamic response of the coupled structure. MSC Patran is used as 

the pre-processor for developing the FE model and boundary conditions for this 

complex fluid structure interaction problem. The Lagrangian structural shell 

elements were coupled to the fluid Euler elements using the ALE coupling 

technique whereas the projectile was coupled to the fluid using the general 

coupling technique. For the parametric studies conducted, the emphasis would 

mainly be on the structural exit wall response where critical components or main 

structural members on the aircraft are located. 

Chapter I presents the background and objective of this thesis. Chapter II 

introduces the different phases of the HRAM phenomenon by looking at some of 

the previous studies and experiments conducted. It also gives a brief history and 

overview of the HRAM simulation follow by the different techniques used by MSC 

Dytran for fluid structure interaction problems. Chapter III provides a description 

of the model development and its boundary conditions. Chapter IV presents the 

results and discussions of baseline Model 1 and 2 followed by the parametric 

studies that were conducted on the two baseline models. Finally, the conclusion 

and some possible future work are provided in Chapter V. 
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II. UNDERSTANDING HRAM 

A. THE HRAM PHENOMENON 

In most non-exploding projectile impacts with penetration and traversing 

through a fluid-filled tank, the HRAM phenomenon can be described in four 

distinct phases as follows [2]: 

 Shock phase: initial impact of projectile into entry wall of fuel tank 

 Drag phase: movement of projectile through fluid  

 Cavitation phase: development of cavity behind projectile as it 
moves through the fluid and the subsequent cavity oscillation and 
collapse 

 Exit phase: projectile penetrates the exit wall and leaves the tank 
only when there is sufficient energy remaining. 

 
Figure 1.  Four phases of HRAM phenomenon, from [2]. 

As depicted in Figure 1, each phase contributes to structural damage of 

the tank walls via a different mechanism and the extent of damage depends on 

numerous factors such as projectile shape and velocity, fluid level in impacted 

tank, obliquity of impact and material of fuel tank. The amount of structural 
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damage, shown in Figure 2, could be significant, with large-scale petalling and 

tearing of the entry and exit walls. Fuel tank failure could lead to numerous 

modes of aircraft attrition [5]. The following sub-sections detail the first three 

phases of HRAM phenomenon. 

 
Figure 2.  Extent of tank damage due to HRAM effect, from [5]. 

1. The Shock Phase 

The HRAM phenomenon begins with the shock phase as the projectile 

first impacts and penetrates the tank wall. A hemispherical shock wave 

propagates from the point of impact and traverses through the fluid due to the 

rapid transfer of energy from the projectile to the fluid, as shown in one of the 

earliest experiments conducted by McMillen [6] and McMillen and Harvey [7]. 

The shadowgraph technique was used to capture the shock wave shown in 

Figure 3, for a 3.2 mm steel sphere being propelled into the tank at an impact 

velocity of 1073 m/s. The shock front propagated away from the impact point and 

its strength diminished rapidly as it traveled away from the impact point. Since 

the projectile moved at a velocity below the speed of sound in water, as it is 

retarded by forces after entering water, the shock wave was observed to be 

ahead of the projectile. 
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Figure 3.  Spark shadowgraph of pressure wave during the shock phase 

captured in McMillen experiment, from [6]. 

Besides capturing the initial shock wave visually, McMillen [6] also 

concluded that the wave pressure was proportional to the impact velocity of 

projectile raised to the power of 2.17, and it varied linearly with the projectile’s 

projected area based on the dark band thickness captured by the shadowgraph. 

Several studies were done to record the initial impact and shock wave 

pressure of the shock phase using pressure transducers at different locations in 

the fluid filled tank, with the more recent experiment conducted by Disimile [8]. 

For the shock phase, Disimile found that the initial impact wave resulted in a 

sharp pressure rise of short duration. Tests were also conducted with spherical 

projectiles of the same size but made of different materials and it was concluded 

that the magnitude and duration of the initial wave pressure did not vary with the 

projectile material, which was consistent with the findings from Morse and Stepka 

[9]. The wave pressure was also found to have the greatest value near the shot 

line, and decreased with angles away from the shot line. 
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Equations 2.1 and 2.2 [10] attempted to provide analytical prediction for 

the shock phase of HRAM event. 

 Rankine-Hugoniot relations 

 
s l l pu c s u    (2.1) 

 
where, 

su = shock front velocity (m/s) 

lc = sound velocity in fluid (m/s) 

ls = Hugoniot slope coefficient of fluid 

pu = projectile velocity after impact (m/s) 

 Impact pressure 

  
 2

l p l pl l
p c u s u     (2.2) 

 
where, 
p = impact pressure (Pa) 

l
 = fluid density (kg/m3) 

lc = sound velocity in fluid (m/s) 

pu = projectile velocity after impact (m/s) 

ls = Hugoniot slope coefficient of fluid 
 

2. The Drag Phase 

As the projectile moves through the fluid, it is slowed by viscous drag and 

its energy is transformed into the kinetic energy of fluid motion. A pressure field is 

generated in front of the projectile along its path, as fluid is being displaced. 

Since the fluid is accelerated gradually rather than impulsively unlike the shock 

phase, the peak pressure would be much lower but occurred over a longer 

duration [5]. 
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Figure 4.  Top: Pressure of drag phase recorded by transducer P3. Bottom: 

Video image as projectile nears transducer P3, from [8]. 

In the Disimile experiment [8], the drag phase pressure rise is compared 

to the high-speed video image of the projectile path, to map the drag pressure 

recorded by the pressure transducer to the location of the projectile as it 

traverses through the fluid. The pressure time history of one of the transducers is 

shown in Figure 4, together with the captured video image during the drag 

pressure rise. The pressure recorded by the transducer P3 was found to increase 

gradually as the projectile approached the transducer, and then decreased as it 

passed the transducer. This phenomenon indicated that the projectile pressure 

field was responsible for the gradual pressure rise. In this study, projectile 

material and its effect on the drag pressure was also investigated. The 

comparison of the drag pressure time history of three different projectiles is 

shown in Figure 5. The aluminum projectile was found to produce the lowest drag 
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pressure followed by steel and then tungsten. It was determined that heavier 

projectiles maintained a greater velocity through the tank, demonstrating the 

effect of projectile mass and kinetic energy [8]. 

 
Figure 5.  Drag pressure comparison for different material measured by 

transducer P3, from [8]. 

Equations 2.3 and 2.4 for the analytical predictions of the drag phase [10] 

are given as such: 

 
 Drag Force on projectile 

 
2

0

2D PD

u
CF A     (2.3) 

 
where, 

DF = Drag force (N) 

DC = Drag coefficient of projectile 

PA = Cross sectional area of projectile (m2) 

0u = projectile velocity after impact (m/s) 
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 Newton’s second law  on projectile 

 
2

0
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D
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d







  
  

    

  (2.4) 

 
where, 
u = velocity of projectile after impact (m/s) 

0u = velocity of projectile before impact (m/s) 

DC = Drag coefficient of projectile 
 = Fluid density (kg/m3) 

P
 = Projectile density (kg/m3) 

Pd = Projectile diameter (m) 
t = time (s) 
 

3. The Cavitation Phase 

The cavitation phase is the most complex and least understood phase of a 

HRAM event. As the projectile moved through the fluid, a region of low pressure 

is developed in its wake as the flow accelerates past the surface of the projectile. 

This low pressure region could result in vaporization of the fluid behind, and air 

from the penetrated hole in the entry wall could also fill the cavity. The displaced 

fluid from the formation of an air cavity would eventually seek to regain its 

undisturbed condition and oscillate before collapsing. The oscillation and 

collapsing of the cavity is known as the cavitation phase [5]. Besides increasing 

the pressure in the tank, the collapsing of the cavity could also result in the 

violent ejection of fuel from the entry and exit holes, thereby increasing the risk of 

fire and damaged to surrounding critical component. Pressure pulses generated 

from the cavitation phase for a tungsten spherical projectile impacting the tank at 

350 m/s, have been found in the Disimile experiment to be much greater than the 

initial pressure wave from the impact phase, as illustrated in Figure 6 [8]. 
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Figure 6.  Pressure time history of spherical tungsten projectile impacting 

tank at 350 m/s, from [8]. 

The cavitation collapse was found to occur approximately 20 ms after the 

initial impact. The largest cavitation collapse pressure, occurring at approximately 

25 ms, corresponded to the smallest size of the cavity captured in the video 

image, and reached a peak value of approximately 10 MPa. 

Equations 2.5–2.10 for the analytical predictions of the cavitation  

phase [10] are given as such: 

 Cavitation parameter 

 0

21

2

v

p

k
p p

u


   (2.5) 

 
where, 

0
p = initial static pressure at axis level of projectile (Pa) 

v
p = liquid vapor pressure (Pa) 

 = Fluid density (kg/m3) 

pu = projectile velocity after impact (m/s) 
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 Drag coefficient 
 
  

0
1

D
kC C    (2.6) 

 
where, 

0C = Drag coefficient without cavitation 
k = Cavitation parameter 
 

 Relation between drag and maximum cavity diameter 
 

 max

1

21 0.132

D

p k

d C
d k


 
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 

  (2.7) 

 
where, 

maxd = Cavity maximum diameter (m) 

pd = Projectile diameter (m) 

DC = Drag coefficient 
k = Cavitation parameter 
 

 Rate of growth of cavity 
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where, 
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and 
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cr = Cavity diameter (m) 
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0u = Projectile velocity before impact (m/s) 
g = Gravitational acceleration (m/s2) 
h = Height of fluid at shot level (m) 

 

B. HISTORY AND OVERVIEW OF HRAM SIMULATION 

1. Evolution of Numerical Techniques for HRAM Simulation 

The high cost of performing experiments for extracting useful data to 

understand HRAM phenomenon has led to extensive efforts in developing 

numerical techniques for computational simulation. Such efforts had been 

attempted for the past thirty years with the earlier efforts trying simplify the 

phenomenon into a structural response problem with boundary conditions 

representing the applied loads from the pressure field generated by ram effects. 

Subsequent efforts attempted to solve the nonlinear sets of hydrodynamic 

equations using numerical techniques by coupling the fluid and structure 

interaction. 

The first method for the HRAM simulation was an approximate theory 

developed by Robert Ball at the Naval Postgraduate School, known as the piston 

theory [11]. This method allowed the solution for fluid pressures to be obtained 

separately from solution of wall response, which greatly simplified the problem as 

it ignored the effects of complex fluid and structure interaction during the HRAM 

event. Ball modified two structural response codes, known as BR-1 and 

SATANS, to include the piston theory and called it the BR-1HR. Simulating the 

fluid structure interaction is necessary as the high pressure in the fluid caused by 

the penetrating projectile loads and displaces the tank walls, while the 

displacement in turn also affects the pressure profile of the fluid. Due to the 

simplification and separation of fluid and structural analysis, the predicted entry 

and exit wall strains were found to be much lower than the actual data collected 

from experiments. 
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In 1980, Kimsey became the first to simulate the HRAM problem by 

solving the nonlinear set of hydrodynamic equations together with material 

constitutive model [1]. Dynamic analysis of a projectile penetrating a fluid-filled 

cylinder was performed using the two dimensional EPIC-2 code, which is a 

Lagrangian Finite Element solver. Since the elements in the Lagrangian Finite 

Element mesh move together with the deformation of the structure, this method, 

when applied to the HRAM problem, will result in massive distortion of the mesh, 

and will compromise the numerical accuracy of the results. However, Kimsey 

concluded that the use of EPIC-2 code in understanding the HRAM phenomenon 

was promising, even though mesh distortions and computational power might be 

a potential downside. Moreover, no validation to the numerical model was 

performed, due to the lack of experimental data [1]. 

Due to the limitations of Lagrangian codes for simulating the HRAM 

problem, and because of the high-mesh distortion, a new method was needed. 

The Eulerian method that uses a fixed-grid system managed to mitigate the 

problem of high-mesh distortion, but still require massive computational power. 

This led to the development of a new generation of computer codes in the early 

1990s that incorporated the Lagrangian and Eulerian methods together with 

higher-order numerical algorithms. These new codes, sometimes referred to as 

hybrid codes, allow for the coupling of Lagrangian and Eulerian formulations that 

are required for fluid and structure interaction problems in the HRAM simulation. 

Different numerical techniques for coupling, such as Coupled Euler-Lagrange 

(CEL) and Arbitrary Lagrange Euler (ALE) methodology, will be introduced in 

later sections. Most of these codes are still in the validation and verification 

phase, but have shown great potential in simulating fluid structure interaction 

problems. In particular, MSC Dytran and LS-DYNA had been verified to be 

capable of accurately predicting the response of structures to HRAM events, and 

are currently used by leading aerospace defense contractors like Boeing, 

Lockheed Martin, and Northrop Grumman [12]. 
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More recently, the Smoothed Particle Hydrodynamics (SPH) methodology, 

initially created by Lucy and Gingold and Monaghan to study astrophysical 

events, has been applied to the HRAM simulation. SPH is a mesh-free method 

where particles containing individual material properties replaced the mesh, but 

have its motion still governed by the general conservation equations. Since the 

particles are not constraint, they can move freely and deform in any manner, 

making SPH suitable for simulating processes where large deformation will occur 

in the case of HRAM [12]. 

Even though ALE and SPH methods have shown promising results in the 

simulation of the HRAM, modeling fluid structure interaction problems has proven 

to be a complicated task. The suitability and predictive capabilities of both 

methods have not been fully solved, and are currently still being investigated. 

2. Overview of Recent HRAM Numerical Simulations 

Most of the recent studies conducted on the HRAM simulation served to 

investigate the capabilities and shortfalls of different techniques such as CEL, 

ALE, and SPH. Due to the intensive computational time required for HRAM 

models, most research conducted was on simplified, small, and generic tanks 

and projectile. Some studies also involved the actual firing of projectiles into 

water tanks for the purpose of model validation and verification. 
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Figure 7.  Experiment setup of spherical projectile impacting aluminum tank, 

from [13]. 

In his research, Varas [13] utilized the commercial code LS-DYNA to 

simulate an HRAM event created by steel spherical projectiles, impacting a fluid-

filled aluminum square tank. Two different formulations, ALE and SPH, were 

used to recreate the actual experiment that was conducted. The experiment 

setup is shown in Figure 7, which provide data such as pressure in different 

points in the fluid, deformation of the tank walls, and cavity evolution for different 

impact velocities.  

Subsequently, the numerical results were compared to experimental data 

to determine the capabilities of the two techniques in reproducing such a 

complex phenomenon. Both ALE and SPH methods were able to qualitatively 

reproduce the HRAM phenomenon appropriately, as shown in Figure 8. Three 

important variables, the pressure time history in the fluid, the cavity evolution and 

the final deformation of the aluminum tank, are found to have good correlation to 

experimental test results, as illustrated in Figure 9. However, modeling of the 

shock wave propagation required fine mesh and particles, which resulted in a 

very long computational time. 
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Figure 8.  ALE and SPH simulation of the different phases of HRAM, from 

[13]. 

 
Figure 9.  Left: Projectile velocity decay time history. Right: Pressure time 

history plot near impact point for 100% filled tube impacted at 900 
m/s, from [13]. 
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MSC Dytran was used in [14] to simulate the HRAM effects where a high-

velocity projectile is shot into a fluid filled tank. ALE coupling was used to define 

the interaction between the structure and fluid mesh while a general coupling is 

defined between the penetrating projectile and fluid mesh. In this study, the 

velocity of the projectile and density of the fluid was varied to study its effect on 

the ram pressure in a 36” x 36” x 36” cubic aluminum tank of thickness 0.125.” 

The tank was modelled with Lagrangian shell element while the fluid was 

modelled with eight nodes solid element, as shown in Figure 10.  

 
Figure 10.  Top Left: Lagrangian Tank shell element. Top Right: Eight 

node solid Eulerian fluid element. Bottom: Tank and projectile 
dimensions with pressure gage locations, from [14]. 

It was concluded that higher projectile velocities translated to an increased 

displacement of the tank walls. The tank wall stresses were also higher for higher 

projectile velocities, but the duration of load application was shorter. When the 

densities of the fluid was varied, data collected from the simulation model 
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seemed to indicate no discernible effect on the deformation of the tank, but it was 

indicated that further analysis needed to be performed due to the lack of a 

consistent pattern. Additionally, the simulation model was not validated, as no 

experiment was conducted for comparison. 

Some of the more recent research into HRAM simulation involved the 

meshless SPH technique, which is currently still in the research phase even 

though some preliminary studies in [13], [15] and [16] have shown that SPH is 

capable of reproducing some of the physics of the HRAM and its different 

phases.  

C. FLUID STRUCTURE INTERACTION – DYTRAN 

MSC Dytran is a three-dimensional, explicit, finite, element analysis 

software program for simulating and analyzing complex, short-duration events 

involving severe deformation of structural materials, and the interaction of fluids 

and structures. This makes MSC Dytran a suitable platform for the simulation of 

HRAM phenomenon. The following sections summarize the solution techniques 

used by MSC Dytran detailed in [4] that are necessary for the modeling of HRAM 

events. 

1. Numerical Solvers 

MSC Dytran provides two solvers and two coupling techniques 

summarized in the following section [4], [17]. The Lagrangian solver is the most 

common finite element solution technique for engineering applications whereas 

the Eulerian solver is most frequently used for analyzing fluids or materials that 

undergo large deformation. The Lagrangian and Eulerian mesh can be coupled 

together to analyze fluid structure interaction problems, such as HRAM 

phenomenon, by means of a coupling surface in MSC Dytran: General Coupling 

and ALE Coupling. 
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a. Lagrangian Solver 

When the Lagrangian solver is used, grid points are fixed to locations on 

the body being analyzed. Elements of material are created by connecting the grid 

points together, and the collection of elements produces a mesh. When the body 

deforms due to loads, the numerical mesh moves and distorts together with the 

elements containing materials, as shown in Figure 11. Therefore, the Lagrangian 

solver is computing the motion of elements of constant mass bounded by the grid 

points at every time step. 

 
Figure 11.  Lagrangian solver mesh, from [17]. 

This solver is widely used in engineering applications as it is able to 

effectively and accurately track material interfaces and incorporate complex 

material models. However, its application is only suited for simulations where the 

material undergo relatively small deformations because large deformations will 

result in small time steps due to mesh distortion and entangling. Even though 

some numerical codes are able to handle such problems, it is computationally 

costly and might also cause the loss of accuracy. In the case of the HRAM 

simulation where the elements become highly distorted, a pure Lagrangian solver 

will not be sufficient. 
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b. Eulerian Solver 

In the Eulerian solver, the grid points are fixed in space and the elements 

are simply partitions of the space defined by connected grid points. The Eulerian 

mesh is a fixed reference frame where the grid points will not move. The physical 

material of a body under analysis moves through the Eulerian mesh; where the 

mass, momentum, and energy of the material are transported from element to 

element, as illustrated in Figure 12. The Eulerian solver, therefore, calculates the 

motion of material through elements of constant volume. 

 
Figure 12.  Eulerian solver mesh, from [17]. 

This solver is commonly used to represent fluids and gases, usually for 

the analysis of flow problems that involve multi-material properties with one finite 

element cell. Free surfaces and material interfaces can move through the fixed 

mesh and therefore it is also necessary that void spaces be modeled. The 

advantage for using Eulerian solver is that there will not be any mesh distortion 

problems as the mesh does not move even when there are large deformation. 

When modeling with the Eulerian technique, it is important for the mesh to be 

sufficiently big enough to contain the material after deformation. Since the 

Eulerian mesh acts like a container, the material cannot leave the boundary of 

the mesh, and stress waves reflection and pressure build-up can occur if the 

Eulerian mesh is too small for analysis. 
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A HRAM simulation will likely require both Lagrangian and Eulerian 

solvers, with the tank structure and projectile modeled using a Lagrangian mesh 

and the fluid domain inside the tank, using an Eulerian mesh. The two meshes 

will then be coupled together, either with the General Coupling or ALE Coupling 

techniques, by defining the coupling surface that acts as a boundary to the flow 

of material in the Eulerian mesh, while the stresses in the Eulerian material 

exerts forces on the surface, causing the Lagrangian mesh to distort. 

2. Coupling Techniques 

The coupling algorithm enabled the material modelled in the Eulerian and 

Lagrangian mesh to interact in the case of fluid structure interaction problem 

such as HRAM simulation. Without the coupling algorithm, the two solvers are 

entirely separate. This means that the Lagrangian elements that lie within an 

Eulerian mesh do not affect the flow of the Eulerian material and no forces are 

transferred from the Eulerian material back to the Lagrangian structure. 

a. General Coupling 

In order to create a coupling condition between the Eulerian and 

Lagrangian domain of the model, a surface had to be created on the Lagrangian 

structure. This surface was created to enable the transfer of forces between the 

two solver domains as shown in Figure 13. The coupling surface acts as a 

boundary to the flow of material in the Eulerian mesh. Concurrently, the stresses 

in the Eulerian elements also cause forces to act on the coupling surface, 

resulting in the distortion of the Lagrangian elements. MSC Dytran allows for a 

few methods to define the coupling surface, either by element numbers, property 

numbers, or material numbers. Users can also define whether the inside or 

outside domain is covered by the coupling surface by setting the COVER field on 

the entry. This entry means that the Euler domain cannot contain material where 

it is covered by the outside or inside of the Lagrangian structure. 
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Figure 13.  General coupling, from [4]. 

For the HRAM simulation, the Lagrangian tank model is to be filled with 

fluid likely being modeled with a Eulerian mesh; therefore, when coupling the 

tank mesh to the fluid mesh, the COVER field should be set to the outside, since 

the Eulerian elements outside the coupling surface must be covered. When 

coupling the projectile to the fluid, the COVER field should be set to the inside. In 

order for general coupling to work, the coupling surface must form a close 

volume, which means that there cannot be any holes in the coupling surface and 

the surface must be closed. Additionally, the closed volume formed by the 

coupling surface must intersect at least one Euler element in order for the 

coupling surface to be recognized by the Eulerian mesh. 

b. ALE Coupling 

The ALE coupling can be considered a hybrid method and a trade-off 

between pure Lagrangian and pure Eulerian formulation. In the ALE coupling 

approach, the Eulerian mesh is no longer fixed, but is allowed to follow the 

motion of the Lagrangian mesh at the coupling surface. The nodes of the 

structural Lagrangian mesh are physically connected to the nodes of the fluid 
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Eulerian mesh, as shown in Figure 14. When the tank starts to move and deform 

due to projectile impact in a HRAM simulation, the Eulerian mesh that is attached 

to the tank nodes at the coupling surface also start to move. Due to the 

movement of the coupling surface, fluid in the adjacent Eulerian elements 

becomes compressed, and exerts a pressure load back onto the structural tank 

wall elements. 

 
Figure 14.  ALE coupling, from [4]. 

To preserve the original Eulerian mesh and have it follow the structural 

motion, the Eulerian grid points can be defined as ALE grid points. This will allow 

the motion of the ALE coupling surface to propagate through the Eulerian mesh 

by the ALE motion algorithm. In the ALE formulation, the Eulerian material flows 

through the mesh, but the mesh can also move due to the coupling with the 

Lagrangian mesh. 



 26 

THIS PAGE INTENTIONALLY LEFT BLANK 



 27 

III. METHODOLOGY AND MODEL DEVELOPMENT 

A. MODELING PROCEDURES 

This study was conducted using the commercial FE software MSC Patran 

and MSC Dytran. 

 
Figure 15.  HRAM simulation modeling procedures. 

The modeling procedures for HRAM simulation are detailed in Figure 15. 

The MSC Patran was the pre-processor, where the tank, fluid, and projectile 

geometry were modeled and FE mesh created. The Patran interface to the 

Dytran input deck was utilized as a tool to create and assign material properties 

to the elements together with the assignments of loads and boundary conditions. 

The modeling and analysis were input and computed in S.I units by the MSC 

Dytran solver. Results archive file output from Dytran explorer was attached and 
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post-processed by MSC Patran. Table 1 lists the hardware and software tools for 

performing the analysis: 

Table 1.   List of hardware and software for modeling and simulation. 

Hardware Specifications 

Computer Intel® Xeon® CPU E5606 @ 2.13Ghz Dual Processor, 24Gb 
Ram (8 core) 

Software Versions 

MSC. Patran® 2012.2 64 bit, Build: 19.1.164499 

MSC. Dytran® Dytran Explorer 2012.1.2 
 

B. DESCRIPTION OF MODEL 

This section details the definition of the model and the interactions 

between the various parts in the simulation for the different phases of HRAM. 

The HRAM model consisted of three main parts: Lagrangian mesh for the tank 

and projectile and Eulerian mesh for the fluid inside the tank. 

The simulation of HRAM required a very fine Euler mesh and small 

sampling times to capture the propagation of shock waves in the fluid; thereby 

resulting in large files and long computational times. For a computational model 

simplification, a generic cubic tank of dimensions 200 mm x 200 mm x 200 mm, 

impacted by a 10 mm diameter spherical projectile was developed. Subsequent 

parametric studies on the tank wall response and fluid pressures during the 

different phases of the HRAM event will be conducted with this simplified fluid-

filled tank model. 

1. Projectile 

The projectile impacting at the center of the tank’s entry wall was a solid 

steel sphere weighing 4 grams, and with diameter 10mm. It was discretized with 

160 solid eight nodes hexahedron Lagrangian elements, as shown in Figure 16. 
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Figure 16.  Spherical projectile Lagrangian solid element mesh. 

Since the deformation of the projectile was not of interest in this study, the 

projectile was modeled as a rigid body defined using the material constitutive 

form MATRIG. One reason for selecting a projectile with a spherical surface was 

to prevent the tumbling of the projectile during the drag phase which would have 

resulted in significant pressure fluctuations in the fluid causing erratic response to 

the coupled tank walls. 

2. Tank 

The 200 mm cubic tank was discretized with 9,600 2-D quadrilateral shell 

element with four grid points, as shown in Figure 17. The element’s global edge 

length was set to 5 mm and was assigned properties defined with material 

constitutive form DMATEP in Dytran for the different cases investigated and 

detailed in Chapter IV. The DMATEP entry describes an isotropic, elastic-plastic 

material with a failure criterion.  
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Figure 17.  Left: Lagrangian tank model consisting 9,600 shell elements. 

Right: Lagrangian tank cutaway model. 

3. Fluid 

The fluid in the tank was discretized with 3-D solid eight nodes 

hexahedron Eulerian elements, as shown in Figure 18. A total of 64,000 Eulerian 

elements, with a global edge length of 5 mm, made up the Euler box. The fluid 

level and properties were varied for the different cases being investigated. The 

mesh size for the Eulerian fluid elements was chosen to be similar to the 

Lagrangian tank shell elements, so that the nodes are coincident to one another 

at the coupling surface. This condition is necessary for proper coupling of the 

Lagrangian and Eulerian elements to avoid unnecessary problems that could 

arise from the failure of the coupling surfaces.  

 
Figure 18.  Left: Eulerian fluid model consisting 64,000 solid hexahedron 

elements. Right: Eulerian fluid cutaway model. 
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4. Boundary Conditions 

As shown in Figure 19, two models were constructed for the purpose of 

this study. The first model was for the investigation of the shock phase of the 

HRAM with the projectile outside the tank, impacting the entry wall at a 

prescribed velocity. For this model, hereby referred to as Model 1, the 

displacement of the tank walls due to projectile impact and the subsequent ram 

pressure of the propagating hemispherical shock wave in the fluid from the 

impact point would be of interest.  

For the second model, hereby referred to as Model 2, the projectile initial 

starting position will be flush against the inner surface of the entry wall at the 

impact point to simulate the projectile’s position just after penetrating the entry 

wall. The initial velocity of the projectile will be lesser, at 250 m/s, due to 

retardation of the projectile by the entry wall. Model 2 would be used to study the 

fluid pressures and the tank wall response during the drag phase. 

 
Figure 19.  Schematic of Model 1 and Model 2. 

The initial loads and boundary conditions for the two models are tabulated 

in Table 2. 
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Table 2.   Loads and boundary conditions. 

Loads and Boundary 
Conditions 

Description 

Displacement Model 1: Bottom surface of tank is fixed.  
Model 2: Bottom surface of tank is fixed.  

Projectile Initial Velocity Model 1: 300 m/s  
Model 2: 250 m/s 

Contact Model 1: Master-slave surface contact 
between projectile and tank 
Model 2: Adaptive master-slave contact 
between projectile and tank 

Coupling (between fluid and 
projectile) 

Model 1: Nil 
Model 2: General Coupling 

Coupling (between fluid and tank) Model 1: ALE Coupling 
Model 2: ALE Coupling 

 

An important aspect of fluid structure interaction problem is the coupling of 

the surfaces between the structure and fluid mesh. For Model 2, the projectile 

was coupled to the fluid by the general coupling technique while the fluid and 

tank surfaces was coupled together using the ALE coupling technique. In MSC 

Dytran, the general coupling mode allows the motion of a structure through a 

fixed Eulerian mesh, such as the movement of the projectile through the fluid. 

The Lagrangian structure, which is the projectile in this case, acts as a moving 

flow boundary for the fluid in the Eulerian domain while the fluid in turns acts as a 

pressure load boundary on the projectile. For the ALE coupling technique used to 

define the interaction between the tank and fluid, the Eulerian mesh is now 

allowed to move and follow the motion of the Lagrangian mesh at the interface, 

since the nodes between the two meshes are now physically coupled together. 

When the tank walls start to displace, the fluid Euler mesh also move together. 

Due to the motion of the Euler mesh, a compressive force would be exerted on 

the adjacent fluid element. The compressed fluid element in turn would exert a 

pressure load back on the structural tank wall elements [14]. 
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5. Location of Tracer Elements 

Tracer elements were defined at various locations within the model to 

collect data required for time history plots of the tank wall displacement, velocity 

and stresses, and the fluid pressures for analysis. Location of the tracer elements 

were illustrated in Figure 20. There were nine tank shell element across the 

entry, left, and exit walls, and three fluid hex element tracers. 

 
Figure 20.  Location of tracer elements 

For ease of comparison and analysis, the graphs plotted in Chapter IV 

were obtained from the middle node and element of each wall, labeled No. 1, 5, 

and 7 for the tank structure, and Fluid 2 for the fluid pressures output. 
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6. Material Properties 

The material properties and constitutive models for baseline Model 1 and 

2 are summarized in Table 3. 

Table 3.   Summary of material properties and constitutive model 

  Tank Fluid Projectile 
Material Aluminium Water Steel 
Material Model  DMATEP LINFLUID MATRIG 
Density (kg/m3) 2700 1000 N.A. 
Elastic Modulus (GPa) 70 N.A. N.A. 
Bulk Modulus (GPa) N.A. 2.2 N.A. 
Von Mises Yield Strength (GPa) 20 N.A. N.A. 
Mass (kg) N.A. N.A. 0.004 
Thickness (m) 0.002 N.A. N.A. 
Poisson Ratio 0.33 N.A. N.A. 

 

Initially, the tank shell elements were assigned a linear elastic material 

model DMAT. This material constitutive model does not output the Von Mises 

stress that was necessary for analysis; therefore, it was decided to use DMATEP 

to model the tank structure. Since DMATEP is used for describing an elastic-

plastic material with failure criteria, the yield strength for the aluminum tank was 

artificially given a large value so that the failure and penetration of the tank 

structure, due to projectile impact, would not be simulated. 
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IV. RESULTS AND DISCUSSION 

A. TANK WALL RESPONSE TO HRAM LOADING 

The first step to better protect aircraft fuel tanks from the drastic 

consequences of the HRAM is to understand the structural dynamic responses of 

the tank during the HRAM events. Baseline Model 1 and Model 2 were 

developed for this purpose. Even though a typical HRAM event consists of four 

phases, as discussed earlier in Chapter II, it was decided to analyze the impact 

phase separately using Model 1, as the failure process of projectile penetration 

and the subsequent material failure is still not well modeled at present. To avoid 

the unclear nature and the possible ambiguity in the results, it was decided that 

the modeling of projectile penetration into and out of the tank be omitted from the 

simulation. Data collected to plot the time history for the tank wall’s displacement, 

velocity, and effective stress were taken from the nodes and elements output at 

the center of each wall. The gauges corresponded to shell element gauge no. 1, 

5, and 7, as shown in Figure 20. Similarly, the fluid pressures generated during 

the shock and drag phase were plotted using data collected from fluid gauge no. 

2, whose location was also shown in Figure 20. 

1. Baseline Model 1 

The baseline Model 1 simulation was set up for a 100% water filled 

aluminium tank of 2 mm thickness, impacted without penetration at the center of 

the entry wall by a spherical steel projectile of mass 4 grams, diameter 10 mm 

and with an initial velocity of 300 m/s. Even though this is a hypothetical situation, 

since the projectile would likely penetrate the entry wall in an actual experiment, 

this simulation provided some insight to the tank wall behavior during the initial 

shock phase of the HRAM event. The event was simulated for 1 ms with a 

sampling rate of 20 μs for data collection, to plot the event time history. A high 

frequency of sampling was required to capture the propagation of the ram 

pressure wave across the fluid upon projectile impact. For comparison purposes, 
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the following discussion compares Model 1 to an empty tank impacted under the 

same conditions. 

a. Entry Wall Response 

Entry wall X-displacement, X-velocity and effective stress plots are shown 

in Figures 21, 22, and 23, respectively. The X-direction corresponds to the major 

component of the entry wall, since the direction of projectile velocity impacting 

the entry wall is in the positive X-direction. 

 
Figure 21.  Entry Wall X-Displacement (Model 1). 
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Figure 22.  Entry Wall X-Velocity (Model 1). 

 
Figure 23.  Entry Wall Effective Stress (Model 1). 
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It can be observed that the peak displacement of the entry wall for the 

100% filled baseline Model 1 is higher at around 9 mm as compared to 7 mm for 

the empty tank. An interesting phenomenon observed for Model 1 was the entry 

wall displacing in the negative X-direction at around 0.06 ms after impact, which 

indicated the entry wall bulging outwards. The X-component velocity time history 

plot shown in Figure 22 indicated a much larger peak value of around 210 m/s in 

the negative X-direction right after projectile impact. This corresponded to the 

time where the entry wall starts to bulge. The subsequent velocity of the entry 

wall after deforming outwards was lower compared to that of the empty tank. 

The effective entry wall stress, also known as the Von Mises Stress, 

reached a higher peak value of 5 GPa for Model 1 but over a shorter duration of 

time. Once the entry wall started to bulge outwards in response to the impact, the 

effective stress decreased significantly to a stabilised value of around 0.3 GPa. 

For the empty tank, the peak stress is slightly lower at 4.7 GPa but tapered off 

after a longer time at around 0.13 ms. Subsequent peak stress for the empty tank 

was observed to be higher at around 0.9 GPa. 

b. Left Wall Response 

The Z-direction corresponded to the major component of the left wall since 

the projectile impact onto the entry wall would displaced the fluid near the impact 

point forming a cavity as shown in Figure 24. The displaced fluid pushed the 

walls of the tank outwards causing it to deform. The Left wall Z-displacement, Z-

velocity and effective stress plots are shown in Figures 25, 26 and 27, 

respectively. 
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Figure 24.  Cutaway view of Model 1 Material Fraction plot at 0.6 ms. 

Model 1 left wall Z-displacement plot shown in Figure 25 indicated the left 

wall displacing in the negative Z-direction. The peak displacement of around 3.5 

mm was much lesser than that of the entry wall, which registered a peak 

displacement of 9 mm. Similarly, the left wall experienced a much greater 

displacement as compared to an empty tank but with lesser oscillations due to 

the presence of fluid to damp out the fluctuations. The left wall Z-velocity plot 

shown in Figure 26, registered a peak value of around 15 m/s and stabilized to 

around 5 m/s whereas the empty tank had a larger peak value of 38 m/s with wild 

fluctuations. The left wall effective stress was observed to peak at around 0.15 

GPa, close to its nominal value of 0.05 GPa while a much higher peak value of 

0.42 GPa was observed for the empty tank. 

Cavity 
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Figure 25.  Left Wall Z-Displacement (Model 1). 

 
Figure 26.  Left Wall Z-Velocity (Model 1). 
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Figure 27.  Left Wall Effective Stress (Model 1). 

c. Exit Wall Response 

Exit wall response to HRAM is of main interest in this study as it is an area 

on the aircraft where main structural components and load bearing members are 

likely to be located. Graphs for exit wall response plotted from data collected 

from the center node of the exit wall panel are shown in Figures 28, 29 and 30. 
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Figure 28.  Exit Wall X-Displacement (Model 1). 

 
Figure 29.  Exit Wall X-Velocity (Model 1). 
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Figure 30.  Exit Wall Effective Stress (Model 1). 

The X-displacement plot in Figure 28 showed a peak displacement of 

around 2 mm experienced by the exit wall at the end of the simulation, a value 

which is much higher than that experienced by the empty tank. The exit wall for 

Model 1 started deforming earlier at approximately 0.13 ms. This is 

approximately the time where the initial shock wave due to projectile impact at 

the entry wall impinged onto the exit wall causing it to displace. The presence of 

fluid in the tank actually resulted in a much smaller velocity and effective stress at 

the exit wall. Peak stress at the center of the exit wall registered a much lower 

value of approximately 100 MPa as compared to 500 MPa for the empty tank. 

Fringe plot of entry wall effective stress at 0.12 ms and 0.2 ms shown in Figures 

31 and 32 indicated the stress wave on the aluminium tank structure propagating 

radially outwards from the point of impact towards the edges of the entry wall 

where there would be a region of stress concentration before propagating to 

other panels of the tank. 
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Figure 31.  Effective Stress Fringe Plot at 0.12 ms (Model 1). 

 
Figure 32.  Effective Stress Fringe Plot at 0.2 ms (Model 1). 

Besides the propagation of shock wave through the aluminium tank 

structure, a hemispherical shock wave was observed to propagate in the fluid 

towards the exit wall. This ram pressure generated by the impact of the projectile 

in the shock phase was recorded by the three fluid tracer elements whose 

locations were shown in Figure 20 previously. 
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Figure 33.  Shock pressure propagating from impact point at 0.03 ms 

(Model 1). 

A pressure fringe plot of the shock wave propagation from the impact point 

is shown in Figure 33. Data for the ram pressure collected by the fluid element 

pressure tracer were plotted in Figure 34. The graph showed a peak pressure of 

7 MPa recorded by fluid Gauge 1 located nearest to the impact point. This ram 

pressure was found to weaken significantly as it propagated through the fluid 

medium, reducing to a magnitude of 0.9 MPa near the exit wall recorded by fluid 

gauge 3. As the shock wave moved across the fluid towards the exit wall, its 

energy would be dissipated across a larger volume of fluid thereby resulting in a 

drastic reduction in ram pressure. The rapid weakening of the initial shock wave 

due to geometric expansion about the impact point and its short duration 

indicated that the left and exit walls of the tank are unlikely to experience 

significant pressures from the impact shock wave. 
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Figure 34.  Shock pressure generated by 300 m/s spherical projectile 

(Model 1). 

2. Baseline Model 2 

Simulation for baseline Model 2 was set up for a 100% water filled 

aluminium tank of 2 mm thickness, with initial position of the spherical steel 

projectile of mass 4 grams and diameter 10 mm, centered and flushed against 

the inner surface of the entry wall, given an initial velocity of 250 m/s. Model 2 

was developed to assist in understanding the structural response of the tank 

walls during the drag and cavitation phase of HRAM. The event was simulated 

for real time of 2 ms with a sampling rate of 2 μs. All displacement, velocity and 

effective stress values plotted were obtained from the center node or element of 

the tank walls. Since the collapse of the cavity would most likely occur at a much 

later time, the cavitation collapse pressure and its subsequent effect on the tank 

walls would be omitted from this study. Instead, the effects on tank walls due to 

drag phase pressure and the formation of cavity in the fluid would be of main 

interest. 



 47 

a. Entry Wall Response 

The entry wall response for Model 2 is shown in Figures 35, 36 and 37. 

 
Figure 35.  Entry Wall X-Displacement (Model 2). 

 
Figure 36.  Entry Wall X-Velocity (Model 2). 
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Figure 37.  Entry Wall Effective Stress (Model 2). 

As the projectile moved towards the exit wall in the positive X-direction, 

the fluid is being accelerated towards the entry wall after flowing over the 

projectile in the opposite direction. A peak displacement of 6 mm was 

experienced by the entry wall, occurring at approximately 1.5 ms into the 

simulation. The X-velocity of the entry wall shown in Figure 36 is pretty similar to 

that of Model 1, with velocity peaking at around 30 m/s for a short duration at the 

start of the simulation with the projectile initial velocity of 250 m/s. Subsequently, 

the velocity of the entry wall was reduced to below 5 m/s as the projectile moves 

closer to the exit wall of the tank. Similarly for effective stress, the entry wall 

experienced a peak stress of around 145 MPa initially for a very short duration 

before decreasing to around 20 MPa as the projectile reaches the exit wall. 

b. Left Wall Response 

Figures 38, 39 and 40 show the left wall Z-displacement, Z-velocity and 

effective stress at the center of the wall for Model 2. 
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Figure 38.  Left Wall Z-Displacement (Model 2). 

 
Figure 39.  Left Wall Z-Velocity (Model 2). 
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Figure 40.  Left Wall Effective Stress (Model 2). 

With the growth of the cavity as the projectile traverse through the fluid, 

the left wall was pushed outwards, resulting in a peak negative Z-displacement of 

5 mm. The left wall started to deform slightly later than the entry wall at 

approximately 0.15 ms. The left wall Z-velocity recorded a value of around 3 m/s 

throughout the drag phase. The effective stress at the middle of the left wall had 

a peak value of 80 MPa occurring at 1.2 ms, which corresponded to the time 

where the projectile is in the middle of the tank. Subsequently as the projectile 

passed the middle mark, the effective stress decreased to around 40 MPa. 

c. Exit Wall Response 

Figures 41, 42 and 43 showed the exit wall X-displacement, X-velocity and 

effective stress time history plot, respectively. The exit wall response graphs 

were plotted from start of simulation up to 1.5 ms just before the projectile impact 

the exit wall.  
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Figure 41.  Exit Wall X-Displacement (Model 2). 

 
Figure 42.  Exit Wall X-Velocity (Model 2). 
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Figure 43.  Exit Wall Effective Stress (Model 2). 

Exit wall started to move and deform at approximately 0.13 ms into the 

simulation due to the initial shock wave impinging onto the exit wall as shown in 

Figure 41. At approximately 1 ms into the simulation, the rate of displacement of 

the exit wall registered an increase as can be observed from the steeper gradient 

of the displacement time-history plot of the exit wall. Correspondingly, there was 

a sharp increase in exit wall X-velocity after 1 ms as illustrated in Figure 42. This 

is due to the projectile approaching the exit wall and the high pressure region in 

front of the projectile during the drag phase exerting a greater pressure and pre-

stressing the exit wall before projectile impact. The pre-stressing of the exit wall 

before the projectile impact is further illustrated in Figure 44. Likewise for the exit 

wall velocity and effective stress shown in Figures 42 and 43, respectively, the 

peak value occurred after 1 ms when the projectile approached the exit wall. The 

exit wall registered a peak velocity of 7 m/s and a peak stress of around 94 MPa 

prior to projectile impact. 
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Figure 44.  Effective stress fringe plot showing pre-stressed exit wall 

during drag phase (Model 2). 

Figure 45 shows the drag phase fluid pressure recorded by fluid gauge 2 

located in the middle of the tank near the shot line. A peak pressure of around 5 

MPa was registered as the projectile approached fluid gauge 2 at around 0.5 ms. 

As observed from Figure 45, the drag phase pressure rise was gradual and 

occurred over a longer period of time as compared to the initial shock phase 

pressure. As the projectile moved past fluid gauge 2, the pressure recorded went 

to zero, indicating the formation of a cavity behind the projectile path. The 

cavitation phase of HRAM, which include the oscillation and the subsequent 

collapse of the cavity is not part of this study since it would occur at a later time 

after the simulation had ended. 
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Figure 45.  Drag phase fluid pressure output from fluid gauge 2 (Model 2). 

 
Figure 46.  Model 2 cavity evolution. 
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An interesting parameter that the numerical simulation provided for drag 

phase analysis was the cavity evolution when the projectile traverses the fluid 

towards the exit wall. The Model 2 simulation fringe plot of material fraction in the 

fluid Euler mesh obtained at 0.4 ms interval is presented in Figure 46. The 

maximum cavity diameter measured from the fringe plot at 2ms was found to be 

approximately 60 mm as illustrated in Figure 47. The bulging of the entry and exit 

wall can also be observed in Figure 47. 

 
Figure 47.  Model 2 maximum cavity diameter measured from material 

fraction fringe plot. 

B. PARAMETRIC STUDIES CONDUCTED FOR MODEL 1 AND MODEL 2 

As part of the objective of this thesis, parametric studies were conducted 

on Model 1 and 2 to understand how different factors could affect the exit wall 

response. For Model 2, even though the simulation end time was set at 2 ms, 

peak values that were tabulated were chosen from the start of simulation up till 

the point before the projectile impact the exit wall. All graphs generated for the 

entry, left and exit wall response together with the fluid pressures obtained from 

fluid gauge 2 for the different impact conditions were attached in Appendix A to 

Appendix F for reference. 
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1. Variation in Fluid Levels 

The fluid level was varied for Model 1 and 2 to study the effects of free 

surface on the shockwave propagation and the resultant exit wall response. With 

the rest of the parameters and impact conditions kept constant, the fluid level 

was varied for 80% and 60% fluid levels. This was made possible by adjusting 

the initial condition of the Euler elements that would be filled with water as shown 

in Figure 48. 

 
Figure 48.  Material fraction plot of initial condition of Euler mesh for 

different fluid levels. 

The exit wall response and fluid pressures for Model 1 and Model 2 were 

tabulated in Table 4 and Table 5, respectively. 
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Table 4.   Model 1 exit wall response to varying fluid levels 

Parameters % Filling 
Level 

Maximum 
Displacement 

(m) 

Peak 
Stress 
(MPa) 

Shock phase 
Ram Pressure 

from Fluid 
Gauge 2 (MPa) 

Peak 
Velocity 

(m/s) 

Fluid Level 
Variation 

100 0.002035 104.802 1.61365 12.7263 
80 0.002027 170.765 1.3469 19.1264 
60 0.001714 240.244 0.45185 19.2642 

Table 5.   Model 2 exit wall response to varying fluid levels 

Parameters % Filling 
Level 

Maximum 
Displacement 

(m) 

Peak 
Stress 
(MPa) 

Peak Fluid Drag 
Pressure from 
Fluid Gauge 2 

(MPa) 

Peak 
Velocity 

(m/s) 

Fluid Level 
Variation 

100 0.00471648 94.074 4.64315 6.85024 
80 0.00398923 102.79 4.27619 6.23109 
60 0.00274174 109.94 3.0948 4.98805 

 

For Model 1, it was observed that lower fluid levels resulted in a lower exit 

wall displacement but higher velocity and stress. The shock phase ram pressure 

was also reduced significantly from 1.61 MPa in the fully filled tank to a mere 

0.45 MPa in the 60% filled tank. This was due to the presence of free surface 

distorting the hemispherical formation of the shock wave at the impact point. 

The reduction of exit wall displacement is more evident in Model 2 from 

4.7 mm for the fully filled tank to 2.7 mm for the 60% filled tank. The peak stress 

at the exit wall for the three different fluid levels see a lesser variation as 

compared to Model 1. Peak drag phase pressure was also observed to be higher 

for 100% filled tank at 4.63 MPa compared to 3.09 MPa for 60% filling level. 

2. Variation in Projectile Mass 

Projectile mass was varied from two grams to six grams to study its effect 

on exit wall response. Results were tabulated in Tables 6 and 7. 
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Table 6.   Model 1 exit wall response to varying projectile mass 

Parameters Mass (g) 
Maximum 

Displacement 
(m) 

Peak 
Stress 
(MPa) 

Shock phase 
Ram Pressure 

from Fluid 
Gauge 2 

(MPa) 

Peak 
Velocity 

(m/s) 

Projectile 
Mass 

2 0.00128098 70.5868 1.0475 7.32631 
4 0.00203513 104.802 1.61365 12.7263 
6 0.00243127 172.462 2.02303 16.4221 

Table 7.   Model 2 exit wall response to varying projectile mass 

Parameters Mass (g) 
Maximum 

Displacement 
(m) 

Peak 
Stress 
(MPa) 

Peak Fluid 
Drag 

Pressure 
from Fluid 
Gauge 2 

(MPa) 

Peak 
Velocity 

(m/s) 

Projectile 
Mass 

2 0.00295588 68.2312 2.68013 4.07203 
4 0.00471648 125.866 4.64315 8.3379 
6 0.00478961 170.508 4.52462 13.4958 

 
Model 1 results presented in Table 6 showed that projectile mass have a 

strong effect on the exit wall response during the initial shock phase. Peak 

displacement, stress, velocity and ram pressures were all found to increase 

significantly even though the difference in projectile mass for each case was only 

two grams. By increasing the mass from four grams to six grams, the peak stress 

recorded a considerable increase from 105 MPa to 172 MPa. 

However for Model 2, the variation in projectile mass on exit wall response 

was not entirely conclusive. Figure 49 showed the exit wall X-displacement plot 

for Model 2 comparison for the different projectile mass. The dotted line indicated 

the moment just before the projectile impact the exit wall. It can be observed that 

the peak displacement of the exit wall just before projectile impact registered only 

a minute difference, 4.79 mm compared to 4.72 mm between the four and six 

grams projectile. The only difference that could be observed from Figure 49 is 

that the heavier six grams projectile reaches the exit wall earlier than the lighter 
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four grams projectile. The two grams projectile most likely did not have enough 

momentum to overcome the drag of the fluid to reach the exit wall at the end of 

the simulation at 2 ms and was omitted from this discussion. The six grams 

projectile was observed to reach the exit wall at 1.28 ms whereas the four grams 

projectile took 1.6 ms to travel the same distance. 

 
Figure 49.  Exit Wall X-Displacement for different projectile mass (Model 

2). 

The peak fluid drag pressure was also found to be of similar magnitude for 

the four grams and six grams projectile. Nevertheless, some correlation was 

observed for the peak stress and velocity at the exit wall for Model 2 where a 

higher projectile mass resulted in a higher peak stress and velocity. 
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3. Variation in Projectile Initial Velocity 

In this parametric study, the initial velocity of the projectile was varied from 

100 m/s to 500 m/s. The results for Model 1 and 2 exit wall response were 

tabulated in Tables 8 and 9, respectively. 

Table 8.   Model 1 exit wall response to varying projectile initial velocity. 

Parameters 
Projectile 
Velocity 

(m/s) 

Maximum 
Displacement 

(m) 

Peak 
Stress 
(MPa) 

Shock phase 
Ram 

Pressure 
from Fluid 
Gauge 2 

(MPa) 

Peak 
Velocity 

(m/s) 

Projectile 
Velocity 

100 0.000660054 29.5669 0.46631 2.78716 
300 0.00203509 104.802 1.61365 12.7263 
500 0.00255664 406.831 2.39176 34.2576 

Table 9.   Model 2 exit wall response to varying projectile initial velocity. 

Parameters 
Projectile 
Velocity 

(m/s) 

Maximum 
Displacement 

(m) 

Peak 
Stress 
(MPa) 

Peak Fluid 
Drag 

Pressure 
from Fluid 
Gauge 2 

(MPa) 

Peak 
Velocity 

(m/s) 

Projectile 
Velocity 

100 0.00123423 32.48 2.72262 1.61611 
250 0.00471674 125.866 4.64315 8.3379 
500 0.00589209 157.726 10.6443 20.3856 

 

Model 1 results indicated a strong influence of projectile velocity on the 

exit wall response and fluid ram pressures. A projectile impacting the tank at a 

higher velocity of 500 m/s resulted in a drastic increase in peak stress and 

velocity at the exit wall. The ram pressure from projectile impact saw an increase 

from 1.61 MPa for the baseline Model to 2.39 MPa for 500 m/s projectile. 

The exit wall X-displacement and drag phase pressure for different 

projectile velocities was shown in Figure 50 and 51, respectively. The dotted line 

in Figure 50 corresponded to the time where the projectile reached the exit wall. 
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The projectile with velocity of 100 m/s did not have sufficient momentum to reach 

the exit wall at the end of simulation. It was evident that the exit wall response 

and fluid pressure were even more sensitive to projectile velocity for Model 2. 

With an increase in velocity from 250 m/s to 500 m/s, the displacement of the exit 

wall saw an increase from 4.72 mm to 5.89 mm. Similarly, drag phase pressure 

was more than doubled due to the increasing projectile velocity from 250 m/s to 

500 m/s. 

 
Figure 50.  Exit wall X-displacement for different projectile velocity (Model 

2). 
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Figure 51.  Drag phase pressure for different projectile velocities (Model 

2). 

4. Variation in Tank Material Modulus 

Tank material elastic modulus was varied for this study, while keeping the 

rest of the parameters constant. Elastic modulus E was varied from 40 GPa to 70 

GPa, and results were tabulated in Tables 10 and 11. 

Table 10.   Model 1 exit wall response for varying tank material modulus. 

Parameters 
Elastic 

Modulus 
(GPa) 

Maximum 
Displacement 

(m) 

Peak 
Stress 
(MPa) 

Shock phase 
Ram Pressure 

from Fluid 
Gauge 2 

(MPa) 

Peak 
Velocity 

(m/s) 

Tank 
Material 
Modulus 

40 0.00180311 72.9672 1.04987 11.6687 
70 0.00203509 104.802 1.61365 12.7263 

100 0.00181285 142.944 2.0287 9.30065 
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Table 11.   Model 2 exit wall response for varying tank material modulus. 

Parameters 
Elastic 

Modulus 
(GPa) 

Maximum 
Displacement 

(m) 

Peak 
Stress 
(MPa) 

Peak Fluid 
Drag 

Pressure 
from Fluid 
Gauge 2 

(MPa) 

Peak 
Velocity 

(m/s) 

Tank 
Material 
Modulus 

40 0.00502539 73.4471 5.35703 9.39117 
70 0.00471648 125.866 4.64315 8.3379 

100 0.00435498 152.739 3.00561 7.25874 

 

Examination of the data presented in Table 10 revealed no particular trend 

for displacement and velocity for the different elastic modulus. The X 

displacement plot for the exit wall, illustrated in Figure 52, showed that the 100 

GPa tank had a larger displacement initially but was eventually overtaken by 

tanks with lower modulus. This is an interesting phenomenon, which warrants 

further investigation. Values for peak stress and shock phase ram pressure for 

Model 1 did see a correlation with the stiffer tank with modulus of 100 GPa 

experiencing a higher stress and larger ram pressure at 143 MPa and 2.03 MPa, 

respectively. 
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Figure 52.  Exit wall X-displacement for different elastic modulus (Model 

1). 

Moving to Model 2, the effect of varying Young’s modulus was minimal for 

the exit wall displacement and velocity. However, the correlation for peak 

stresses and drag phase pressures was more apparent, with the stiffer tank 

experiencing a larger stress but smaller drag pressures. 

5. Variation in Tank Material Density 

The next parametric study conducted on Model 1 and 2 was the variation 

in the density of the tank’s material. With the baseline Model 1 and 2 having the 

density of aluminum at 2,700 kg/m3, material density was changed to 1,500 

kg/m3 and 4,500 kg/m3 to evaluate its effect on the structural response at the exit 

wall. Results obtained were summarized in Tables 12 and 13. 
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Table 12.   Model 1 exit wall response for varying tank material density. 

Parameters Density 
(kg/m3) 

Maximum 
Displacement 

(m) 

Peak 
Stress 
(MPa) 

Shock phase 
Ram Pressure 

from Fluid 
Gauge 2 

(MPa) 

Peak 
Velocity 

(m/s) 

Tank 
Material 
Density 

1500 0.00187647 93.5504 2.08677 13.448 
2700 0.00203509 104.802 1.61365 12.7263 
4500 0.00151676 98.4064 1.08979 10.6776 

Table 13.   Model 2 exit wall response for varying tank material density. 

Parameters Density 
(kg/m3) 

Maximum 
Displacement 

(m) 

Peak 
Stress 
(MPa) 

Peak Fluid 
Drag 

Pressure 
from Fluid 
Gauge 2 

(MPa) 

Peak 
Velocity 

(m/s) 

Tank 
Material 
Density 

1500 0.00466953 124.526 4.70424 9.52921 
2700 0.00471648 125.866 4.64315 8.3379 
4500 0.00465953 109.789 5.27148 7.03468 

 
Data from Table 12 indicated no discernible effect of material density on 

displacement and stress. It was observed that the baseline Model 1 has the 

highest displacement and stress, but the difference in value for the different 

material density was small. Some correlations were observed for shock ram 

pressure and velocity, with the denser material at 4,500 kg/m3 having a smaller 

ram pressure of 1.09 MPa and peak velocity of 10.7 m/s. 

For Model 2, the simulation model found that varying material density has 

almost negligible effects on the exit wall displacement, as illustrated in Figure 53. 

The dotted line shows that the projectile reached the exit wall at almost the same 

time with small difference in peak displacement for the three cases. A slight 

difference in the exit wall response was noted at an earlier time, with higher 

displacement observed for the less dense tank structure. Peak stress and 

velocity also see small changes even though density was varied from 1,500 

kg/m3 to 4,500 kg/m3.  
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Figure 53.  Exit Wall X-Displacement for different material density (Model 

2). 

6. Variation in Fluid Density 

For the final investigative choice, the density of the fluid was varied from 

800 kg/m3 to 1,200 kg/m3, with the baseline Model 1 and 2 having the density of 

water at 100 kg/m3. Results for this study are tabulated in Tables 14 and 15. 

Table 14.   Model 1 exit wall response to varying fluid density. 

Parameters Density 
(kg/m3) 

Maximum 
Displacement 

(m) 

Peak 
Stress 
(MPa) 

Shock phase 
Ram Pressure 

from Fluid 
Gauge 2 

(MPa) 

Peak 
Velocity 

(m/s) 

Fluid 
Density 

800 0.00208119 126.662 1.16409 14.1915 
1000 0.00203512 104.802 1.61365 12.7263 
1200 0.00178056 105.41 1.5171 14.2918 
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Table 15.   Model 2 exit wall response to varying fluid density 

Parameters Density 
(kg/m3) 

Maximum 
Displacement 

(m) 

Peak 
Stress 
(MPa) 

Peak Fluid 
Drag 

Pressure 
from Fluid 
Gauge 2 

(MPa) 

Peak 
Velocity 

(m/s) 

Fluid  
Density 

800 0.00463453 129.618 3.99885 10.0071 
1000 0.00471674 125.866 4.64315 8.3379 
1200 0.00475732 142.476 5.35016 13.8578 

 

The effect of fluid density on the shock phase of the HRAM for Model 1 

saw no consistent trend at the exit wall, especially for stress, velocity, and ram 

pressure. Even though displacement of the exit wall for lower fluid density 

seemed to be higher, the difference is perceived to be small, as illustrated in 

Figure 54. Results for shock phase ram pressure were also inconsistent where 

the more dense and less dense fluid both having a smaller ram pressure than the 

baseline Model 1. 

As for the drag phase analysis for Model 2, varying fluid density was 

observed to have little effect on the exit wall displacement. However, the less 

dense fluid allowed the projectile to reach the exit wall earlier, as illustrated in 

Figure 55, where the dotted line represented the time just before impact. With 

lower fluid density of 800 kg/m3, the projectile reached the exit wall after 1.4 ms, 

approximately 0.5 ms faster than the denser fluid with a density of 1,200 kg/m3. 
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Figure 54.  Exit wall X-Displacement for different fluid density (Model 1). 

 
Figure 55.  Exit wall X-Displacement for different fluid density (Model 2). 



 69 

V. CONCLUSION AND FUTURE WORK 

HRAM is a complex phenomenon which is still not well understood at 

present. Computational models can now provide an alternative to experimental 

testing in the understanding of HRAM by coupling the tank mesh to fluid mesh to 

simulate the fluid structure interaction. FE Models 1 and 2 developed using MSC 

Dytran, provided some insights into the dynamic response of the tank structure 

and fluid pressures at the early phases of the HRAM phenomenon. Key features 

of HRAM phenomenon such as the shock wave propagation through the fluid 

upon impact, drag phase pressures, cavity evolution and tank walls deformation 

could be observed from the model.  

For the studies conducted with Models 1 and 2, the examination and 

analysis of the data collected revealed the following observations: 

 Initial shock wave pressure upon projectile impact is unlikely to 

have detrimental effects on the exit wall of tank due to its rapid 

extinction in the fluid. 

 Presence of free surface with lower filling levels reduced both the 

initial shock pressure and subsequent drag phase pressures. 

 Projectile mass has a strong effect on the exit wall response during 

the shock phase, but once projectile penetrates the entry wall, the 

drag phase for different projectile mass investigated was 

inconclusive. 

 Velocity of the projectile had the largest influence on the exit wall 

response and fluid pressures, since the kinetic energy of the 

projectile is proportional to the square of its velocity. Therefore, 

when projectile velocity was increase to 500 m/s, all data collected 

for analysis observed a huge increase especially during the drag 

phase. From this observation, damage to exit wall of the tank could 
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be greatly reduced if the projectile velocity could be reduced 

significantly by the entry wall after penetration. 

 Tank material with a higher Young’s modulus resulted in a larger 

shock pressure but smaller drag phase pressures. Effective stress 

experienced by the exit wall was significantly greater for the stiffer 

tank. 

 Varying tank material density had little effect on the exit wall 

response during the drag phase. 

 Increasing the density of fluid in the tank resulted in higher drag 

phase pressures. The projectile was observed to reach the exit wall 

at a later time with increased fluid density. Deformation at the exit 

wall remained unchanged with varying fluid densities. 

Validation of the HRAM model is extremely challenging due to the lack of 

experimental data and the many factors that could affect the results. Some of the 

data that were collected for tank deformation and fluid pressures were compared 

to Varas [2] experiment, and found to be of the same order of magnitude; 

however, further verification is required in the future. Future development of the 

model could also investigate the effects of the cavitation phase on the tank wall 

response, which would entail an increase of simulation end time.  
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APPENDIX A. GRAPHS FOR FLUID LEVELS VARIATION 

 

 
 Fluid levels investigated: 100% filled, 80% filled, 60% filled and 

empty. 

 

Figure 56.  Entry wall resultant displacement for different fluid levels 
(Model 1). 
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Figure 57.  Entry wall X-Displacement for different fluids levels (Model 1). 

 

Figure 58.  Entry wall resultant velocity for different fluid levels (Model 1). 
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Figure 59.  Entry wall X-Velocity for different fluid levels (Model 1). 

 

Figure 60.  Left wall resultant displacement for different fluid levels (Model 
1). 
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Figure 61.  Left wall Z-Displacement for different fluid levels (Model 1). 

 

Figure 62.  Left wall resultant velocity for different fluid levels (Model 1). 
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Figure 63.  Left wall Z-Velocity for different fluid levels (Model 1). 

 

Figure 64.  Exit wall resultant displacement for different fluid levels (Model 
1). 
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Figure 65.  Exit wall X-Displacement for different fluid levels (Model 1). 

 

Figure 66.  Exit wall resultant velocity for different fluid levels (Model 1). 



 77 

 

Figure 67.  Entry wall effective stress for different fluid levels (Model 1). 

 

Figure 68.  Left wall effective stress for different fluid levels (Model 1). 
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Figure 69.  Exit wall effective stress for different fluid levels (Model 1). 

 

Figure 70.  Fluid pressure for different fluid levels (Model 1). 
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Figure 71.  Entry wall resultant displacement for different fluid levels 
(Model 2). 

 

Figure 72.  Entry wall X-Displacement for different fluid levels (Model 2). 
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Figure 73.  Entry wall resultant velocity for different fluid levels (Model 2). 

 

Figure 74.  Entry wall X-Velocity for different fluid levels (Model 2). 
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Figure 75.  Left wall resultant displacement for different fluid levels (Model 
2). 

 

Figure 76.  Left wall Z-Displacement for different fluid levels (Model 2). 
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Figure 77.  Left wall resultant velocity for different fluid levels (Model 2). 

 

Figure 78.  Left wall Z-Velocity for different fluid levels (Model 2). 
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Figure 79.  Exit wall resultant displacement for different fluid levels (Model 
2). 

 

Figure 80.  Exit wall X-Displacement for different fluid levels (Model 2). 
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Figure 81.  Exit wall X-Velocity for different fluid levels (Model 2). 

 

Figure 82.  Entry wall effective stress for different fluid levels (Model 2). 
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Figure 83.  Left wall effective stress for different fluid levels (Model 2). 

 

Figure 84.  Exit wall effective stress for different fluid levels (Model 2). 
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Figure 85.  Drag phase pressure for different fluid levels (Model 2). 

 

Figure 86.  Drag phase pressure for different fluid levels (Model 2) - 
Enlarged. 
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APPENDIX B. GRAPHS FOR PROJECTILE MASS VARIATION 

 

 
 Projectile mass investigated: 2g, 4g and 6g 

 
Figure 87.  Entry wall resultant displacement for different projectile mass 

(Model 1). 
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Figure 88.  Entry wall X-Displacement for different projectile mass (Model 

1). 

 
Figure 89.  Entry wall resultant velocity for different projectile mass (Model 

1). 
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Figure 90.  Entry wall X-Velocity for different projectile mass (Model 1). 

 
Figure 91.  Left wall resultant displacement for different projectile mass 

(Model 1). 
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Figure 92.  Left wall Z displacement for different projectile mass (Model 

1). 

 
Figure 93.  Left wall resultant velocity for different projectile mass (Model 

1). 
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Figure 94.  Left wall Z-Velocity for different projectile mass (Model 1). 

 
Figure 95.  Exit wall resultant displacement for different projectile mass 

(Model 1). 
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Figure 96.  Exit wall X-Displacement for different projectile mass (Model 

1). 

 
Figure 97.  Exit wall resultant velocity for different projectile mass (Model 

1). 
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Figure 98.  Exit wall X-Velocity for different projectile mass (Model 1). 

 
Figure 99.  Entry wall effective stress for different projectile mass (Model 

1). 
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Figure 100.  Left wall effective stress for different projectile mass (Model 1). 

 
Figure 101.  Exit wall effective stress for different projectile mass (Model 1). 
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Figure 102.  Fluid pressure for different projectile mass (Model 1). 

 
Figure 103.  Entry wall resultant displacement for different projectile mass 

(Model 2). 
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Figure 104.  Entry wall X-Displacement for different projectile mass (Model 

2). 

 
Figure 105.  Entry wall resultant velocity for different projectile mass (Model 

2). 
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Figure 106.  Entry wall X-Velocity for different projectile mass (Model 2). 

 
Figure 107.  Left wall resultant displacement for different projectile mass 

(Model 2). 
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Figure 108.  Left wall Z-Displacement for different projectile mass (Model 

2). 

 
Figure 109.  Left wall resultant velocity for different projectile mass (Model 

2). 
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Figure 110.  Left wall Z-Velocity for different projectile mass (Model 2). 

 
Figure 111.  Exit wall resultant displacement for different projectile mass 

(Model 2). 
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Figure 112.  Exit wall X-Displacement for different projectile mass (Model 

2). 

 
Figure 113.  Exit wall resultant velocity for different projectile mass (Model 

2). 
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Figure 114.  Exit wall X-Velocity for different projectile mass (Model 2). 

 
Figure 115.  Entry wall effective stress for different projectile mass (Model 

2). 
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Figure 116.  Left wall effective stress for different projectile mass (Model 2). 

 
Figure 117.  Exit wall effective stress for different projectile mass (Model 2). 
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Figure 118.  Drag phase pressure for different projectile mass (Model 2). 

 
Figure 119.  Drag phase pressure for different projectile mass (Model 2). – 

Enlarged 



 104 

THIS PAGE INTENTIONALLY LEFT BLANK  



 105 

APPENDIX C. GRAPHS FOR PROJECTILE VELOCITY 
VARIATION 

 
 Projectile velocities investigated: Model 1: 100m/s, 300m/s, 

500m/s; Model 2: 100m/s, 250m/s, 500m/s. 

 
Figure 120.  Exit wall resultant displacement for different projectile velocity 

(Model 1). 
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Figure 121.  Exit wall X-Displacement for different projectile velocity (Model 

1). 

 
Figure 122.  Exit wall resultant velocity for different projectile velocity 

(Model 1). 
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Figure 123.  Exit wall resultant velocity for different projectile velocity 

(Model 1) – Enlarged. 

 
Figure 124.  Exit wall X-Velocity for different projectile velocity (Model 1). 
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Figure 125.  Exit wall X-Velocity for different projectile velocity (Model 1) – 

Enlarged. 

 
Figure 126.  Left wall resultant displacement for different projectile velocity 

(Model 1). 
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Figure 127.  Left wall Z-Displacement for different projectile velocity (Model 

1). 

 
Figure 128.  Left wall resultant velocity for different projectile velocity 

(Model 1). 
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Figure 129.  Left wall Z-Velocity for different projectile velocity (Model 1). 

 
Figure 130.  Exit wall resultant displacement for different projectile velocity 

(Model 1). 
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Figure 131.  Exit wall X-Displacement for different projectile velocity (Model 

1). 

 
Figure 132.  Exit wall resultant velocity for different projectile velocity 

(Model 1). 
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Figure 133.  Exit wall X-Velocity for different projectile velocity (Model 1). 

 
Figure 134.  Entry wall effective stress for different projectile velocity 

(Model 1). 
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Figure 135.  Left wall effective stress for different projectile velocity (Model 

1). 

 
Figure 136.  Exit wall effective stress for different projectile velocity (Model 

1). 
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Figure 137.  Fluid pressure for different projectile velocity (Model 1). 

 
Figure 138.  Entry wall resultant displacement for different projectile 

velocity (Model 2). 
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Figure 139.  Entry wall X-Displacement for different projectile velocity 

(Model 2). 

 
Figure 140.  Entry wall resultant velocity for different projectile velocity 

(Model 2). 



 116 

 
Figure 141.  Entry wall X-Velocity for different projectile velocity (Model 2). 

 
Figure 142.  Left wall resultant displacement for different projectile velocity 

(Model 2). 
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Figure 143.  Left wall Z-Displacement for different projectile velocity (Model 

2). 

 
Figure 144.  Left wall resultant velocity for different projectile velocity 

(Model 2). 
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Figure 145.  Left wall Z-Velocity for different projectile velocity (Model 2). 

 
Figure 146.  Exit wall resultant displacement for different projectile velocity 

(Model 2). 
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Figure 147.  Exit wall X-Displacement for different projectile velocity (Model 

2). 

 
Figure 148.  Exit wall resultant velocity for different projectile velocity 

(Model 2). 
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Figure 149.  Exit wall X-Velocity for different projectile velocity (Model 2). 

 
Figure 150.  Entry wall effective stress for different projectile velocity 

(Model 2). 
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Figure 151.  Left wall effective stress for different projectile velocity (Model 

2). 

 
Figure 152.  Exit wall effective stress for different projectile velocity (Model 

2). 
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Figure 153.  Drag phase pressure for different projectile velocity (Model 2). 

 
Figure 154.  Drag phase pressure for different projectile velocity (Model 2) 

– Enlarged. 
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APPENDIX D. GRAPHS FOR TANK MATERIAL MODULUS 
VARIATION 

 
Tank material modulus investigated: E=40GPa, E=70GPa and E=100GPa 

 
Figure 155.  Entry wall resultant displacement for different material 

modulus (Model 1). 
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Figure 156.  Entry wall X-Displacement for different material modulus 

(Model 1). 

 
Figure 157.  Entry wall resultant velocity for different material modulus 

(Model 1). 
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Figure 158.  Entry wall X-Velocity for different material modulus (Model 1). 

 
Figure 159.  Entry wall X-Velocity for different material modulus (Model 1) – 

Enlarged. 
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Figure 160.  Left wall resultant displacement for different material modulus 

(Model 1). 

 
Figure 161.  Left wall Z-Displacement for different material modulus (Model 

1). 
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Figure 162.  Left wall resultant velocity for different material modulus 

(Model 1). 

 
Figure 163.  Left wall Z-Velocity for different material modulus (Model 1). 
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Figure 164.  Exit wall resultant displacement for different material modulus 

(Model 1). 

 
Figure 165.  Exit wall X-Displacement for different material modulus (Model 

1). 
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Figure 166.  Exit wall resultant velocity for different material modulus 

(Model 1). 

 
Figure 167.  Exit wall X-Velocity for different material modulus (Model 1). 
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Figure 168.  Entry wall effective stress for different material modulus 

(Model 1). 

 
Figure 169.  Left wall effective stress for different material modulus (Model 

1). 
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Figure 170.  Exit wall effective stress for different material modulus (Model 

1). 

 
Figure 171.  Fluid pressure for different material modulus (Model 1). 
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Figure 172.  Entry wall resultant displacement for different material 

modulus (Model 2). 

 
Figure 173.  Entry wall X-Displacement for different material modulus 

(Model 2). 
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Figure 174.  Entry wall resultant velocity for different material modulus 

(Model 2). 

 
Figure 175.  Entry wall resultant velocity for different material modulus 

(Model 2) – Enlarged. 
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Figure 176.  Entry wall X-Velocity for different material modulus (Model 2). 

 
Figure 177.  Entry wall X-Velocity for different material modulus (Model 2) – 

Enlarged. 
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Figure 178.  Left wall resultant displacement for different material modulus 

(Model 2). 

 
Figure 179.  Left wall Z-Displacement for different material modulus (Model 

2). 
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Figure 180.  Left wall resultant velocity for different material modulus 

(Model 2). 

 
Figure 181.  Left wall Z-Velocity for different material modulus (Model 2). 
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Figure 182.  Exit wall resultant displacement for different material modulus 

(Model 2). 

 
Figure 183.  Exit wall X-Displacement for different material modulus (Model 

2). 
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Figure 184.  Exit wall resultant velocity for different material modulus 

(Model 2). 

 
Figure 185.  Exit wall X-Velocity for different material modulus (Model 2). 
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Figure 186.  Entry wall effective stress for different material modulus 

(Model 2). 

 
Figure 187.  Left wall effective stress for different material modulus (Model 

2). 
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Figure 188.  Exit wall effective stress for different material modulus (Model 

2). 

 
Figure 189.  Drag phase pressure for different material modulus (Model 2). 
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Figure 190.  Drag phase pressure for different material modulus (Model 2) - 

Enlarged. 
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APPENDIX E. GRAPHS FOR TANK MATERIAL DENSITY 
VARIATION 

 
Tank material density investigated: 1500kg/m3, 2700kg/m3 and 4500kg/m3 

 
Figure 191.  Entry wall resultant displacement for different material density 

(Model 1). 
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Figure 192.  Entry wall X-Displacement for different material density (Model 

1). 

 
Figure 193.  Entry wall resultant velocity for different material density 

(Model 1). 
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Figure 194.  Entry wall X-Velocity for different material density (Model 1). 

 
Figure 195.  Left wall resultant displacement for different material density 

(Model 1). 
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Figure 196.  Left wall Z-Displacement for different material density (Model 

1). 

 
Figure 197.  Left wall resultant velocity for different material density (Model 

1). 
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Figure 198.  Left wall Z-Velocity for different material density (Model 1). 

 
Figure 199.  Exit wall resultant displacement for different material density 

(Model 1). 
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Figure 200.  Exit wall X-Displacement for different material density (Model 

1). 

 
Figure 201.  Exit wall resultant velocity for different material density (Model 

1). 
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Figure 202.  Exit wall X-Velocity for different material density (Model 1). 

 
Figure 203.  Entry wall effective stress for different material density (Model 

1). 
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Figure 204.  Left wall effective stress for different material density (Model 

1). 

 
Figure 205.  Exit wall effective stress for different material density (Model 

1). 
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Figure 206.  Fluid pressure for different material density (Model 1). 

 
Figure 207.  Entry wall resultant displacement for different material density 

(Model 2). 
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Figure 208.  Entry wall X-Displacement for different material density (Model 

2). 

 
Figure 209.  Entry wall resultant velocity for different material density 

(Model 2). 
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Figure 210.  Entry wall resultant velocity for different material density 

(Model 2) – Enlarged. 

 
Figure 211.  Entry wall X-Velocity for different material density (Model 2). 
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Figure 212.  Entry wall X-Velocity for different material density (Model 2) – 

Enlarged. 

 
Figure 213.  Left wall resultant displacement for different material density 

(Model 2). 
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Figure 214.  Left wall Z-Displacement for different material density (Model 

2). 

 
Figure 215.  Left wall resultant velocity for different material density (Model 

2). 
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Figure 216.  Left wall Z-Velocity for different material density (Model 2). 

 
Figure 217.  Exit wall resultant displacement for different material density 

(Model 2). 
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Figure 218.  Exit wall X-Displacement for different material density (Model 

2). 

 
Figure 219.  Exit wall resultant velocity for different material density (Model 

2). 
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Figure 220.  Exit wall X-Velocity for different material density (Model 2). 

 
Figure 221.  Entry wall effective stress for different material density (Model 

2). 



 159 

 
Figure 222.  Left wall effective stress for different material density (Model 

2). 

 
Figure 223.  Exit wall effective stress for different material density (Model 

2). 
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Figure 224.  Drag phase pressure for different material density (Model 2). 

 
Figure 225.  Drag phase pressure for different material density (Model 2) - 

Enlarged. 
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APPENDIX F. GRAPHS FOR FLUID DENSITY VARIATION 

 
Fluid density investigated: 800kg/m3, 1000kg/m3 and 1200kg/m3 

 
Figure 226.  Entry wall resultant displacement for different fluid density 

(Model 1). 
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Figure 227.  Entry wall X-Displacement for different fluid density (Model 1). 

 
Figure 228.  Entry wall resultant velocity for different fluid density (Model 1). 
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Figure 229.  Entry wall X-Velocity for different fluid density (Model 1). 

 
Figure 230.  Left wall resultant displacement for different fluid density 

(Model 1). 
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Figure 231.  Left wall Z-Displacement for different fluid density (Model 1). 

 
Figure 232.  Left wall resultant velocity for different fluid density (Model 1). 
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Figure 233.  Left wall Z-Velocity for different fluid density (Model 1). 

 
Figure 234.  Exit wall resultant displacement for different fluid density 

(Model 1). 
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Figure 235.  Exit wall X-Displacement for different fluid density (Model 1). 

 
Figure 236.  Exit wall resultant velocity for different fluid density (Model 1). 
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Figure 237.  Exit wall X-Velocity for different fluid density (Model 1). 

 
Figure 238.  Entry wall effective stress for different fluid density (Model 1). 
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Figure 239.  Left wall effective stress for different fluid density (Model 1). 

 
Figure 240.  Exit wall effective stress for different fluid density (Model 1). 
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Figure 241.  Fluid pressure for different fluid density (Model 1). 

 
Figure 242.  Entry wall resultant displacement for different fluid density 

(Model 2). 
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Figure 243.  Entry wall X-Displacement for different fluid density (Model 2). 

 
Figure 244.  Entry wall resultant velocity for different fluid density (Model 2). 
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Figure 245.  Entry wall resultant velocity for different fluid density (Model 2) 

– Enlarged. 

 
Figure 246.  Entry wall X-Velocity for different fluid density (Model 2). 
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Figure 247.  Entry wall X-Velocity for different fluid density (Model 2) – 

Enlarged. 

 
Figure 248.  Left wall resultant displacement for different fluid density 

(Model 2). 
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Figure 249.  Left wall Z-Displacement for different fluid density (Model 2). 

 
Figure 250.  Left wall resultant velocity for different fluid density (Model 2). 
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Figure 251.  Left wall Z-Velocity for different fluid density (Model 2). 

 
Figure 252.  Exit wall resultant displacement for different fluid density 

(Model 2). 
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Figure 253.  Exit wall X-Displacement for different fluid density (Model 2). 

 
Figure 254.  Exit wall resultant velocity for different fluid density (Model 2). 
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Figure 255.  Exit wall X-Velocity for different fluid density (Model 2). 

 
Figure 256.  Entry wall effective stress for different fluid density (Model 2). 
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Figure 257.  Left wall effective stress for different fluid density (Model 2). 

 
Figure 258.  Exit wall effective stress for different fluid density (Model 2). 
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Figure 259.  Drag phase pressure for different fluid density (Model 2). 

 
Figure 260.  Drag phase pressure for different fluid density (Model 2) - 

Enlarged. 
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