
 

NAVAL 
POSTGRADUATE 

SCHOOL 
 

MONTEREY, CALIFORNIA 
 

 
 

THESIS 
 
 

Approved for public release; distribution is unlimited 

IMPROVING CLUSTER ANALYSIS WITH AUTOMATIC 
VARIABLE SELECTION BASED ON TREES 

 
by 
 

Anton D. Orr 
 

December 2014 
 

Thesis Advisor:  Samuel E. Buttrey 
Second Reader: Lyn R. Whitaker 



THIS PAGE INTENTIONALLY LEFT BLANK 



i 

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing 
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection 
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including 
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction 
Project (0704-0188) Washington, DC 20503. 
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

December 2014
3. REPORT TYPE AND DATES COVERED

Master’s Thesis 
4. TITLE AND SUBTITLE
IMPROVING CLUSTER ANALYSIS WITH AUTOMATIC VARIABLE 
SELECTION BASED ON TREES 

5. FUNDING NUMBERS

6. AUTHOR(S)  Anton D. Orr
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School 
Monterey, CA  93943-5000 

8. PERFORMING ORGANIZATION
REPORT NUMBER    

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A 

10. SPONSORING/MONITORING
    AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government. IRB Protocol number ____N/A____. 

12a. DISTRIBUTION / AVAILABILITY STATEMENT  
Approved for public release; distribution is unlimited 

12b. DISTRIBUTION CODE 
A 

13. ABSTRACT (maximum 200 words)
Clustering is an algorithmic technique that aims to group similar objects together in order to give users 
better understanding of the underlying structure of their data. It can be thought of as a two-step process. 
The first step is to measure the distances among the objects to determine how dissimilar they are. The 
second, clustering, step takes the dissimilarity measurements and assigns each object to a cluster. 

We examine three distance measures proposed by Buttrey at the Joint Statistical Meeting in Seattle, 
August 2006 based on classification and regression trees to address problems with determining 
dissimilarity. Current algorithms do not simultaneously address the issues of automatic variable selection, 
independence from variable scaling, resistance to monotonic transformation and datasets of mixed variable 
types. 

These "tree distances" are compared with an existing dissimilarity algorithm and two newer methods using 
four well-known datasets. These datasets contain numeric, categorical and mixed variable types. In 
addition, noise variables are added to test the ability of each algorithm to automatically select important 
variables. The tree distances offer much improvement for the problems they aimed to address, performing 
well against competitors amongst numerical datasets, and outperforming in the cases of categorical and 
mixed variable type datasets. 

14. SUBJECT TERMS Clustering, Classification Trees, Regression Trees, Random Forests,
Sparse Hierarchical, Sparse K-means 

15. NUMBER OF
PAGES 

61 
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF 
REPORT 

Unclassified 

18. SECURITY
CLASSIFICATION OF THIS 
PAGE 

Unclassified 

19. SECURITY
CLASSIFICATION OF 
ABSTRACT 

Unclassified 

20. LIMITATION OF
ABSTRACT 

UU 
NSN 7540–01-280-5500 Standard Form 298 (Rev. 2–89)  

Prescribed by ANSI Std. 239–18 



ii 

THIS PAGE INTENTIONALLY LEFT BLANK 



iii 

Approved for public release; distribution is unlimited 

IMPROVING CLUSTER ANALYSIS WITH AUTOMATIC VARIABLE 
SELECTION BASED ON TREES 

Anton D. Orr 
Commander, United States Navy 

B.S., United States Naval Academy, 1995 

Submitted in partial fulfillment of the 
requirements for the degree of 

MASTER OF SCIENCE IN OPERATIONS RESEARCH 

from the 

NAVAL POSTGRADUATE SCHOOL 
December 2014 

Author: Anton D. Orr 

Approved by:  Samuel E. Buttrey 
Thesis Advisor 

Lyn R. Whitaker 
Second Reader 

Robert F. Dell 
Chair, Department of Operations Research 



iv 

THIS PAGE INTENTIONALLY LEFT BLANK 



v 

ABSTRACT 

Clustering is an algorithmic technique that aims to group similar objects together 

in order to give users better understanding of the underlying structure of their 

data. It can be thought of as a two-step process. The first step is to measure the 

distances among the objects to determine how dissimilar they are. The second 

clustering step takes the dissimilarity measurements and assigns each object to 

a cluster. 

We examine three distance measures proposed by Buttrey at the Joint 

Statistical Meeting in Seattle, August 2006 based on classification and regression 

trees to address problems with determining dissimilarity. Current algorithms do 

not simultaneously address the issues of automatic variable selection, 

independence from variable scaling, resistance to monotonic transformation and 

datasets of mixed variable types. 

These “tree distances” are compared with an existing dissimilarity 

algorithm and two newer methods using four well-known datasets. These 

datasets contain numeric, categorical and mixed variable types. In addition, noise 

variables are added to test the ability of each algorithm to automatically select 

important variables. The tree distances offer much improvement for the problems 

they aimed to address, performing well against competitors amongst numerical 

datasets, and outperforming in the cases of categorical and mixed variable type 

datasets. 
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EXECUTIVE SUMMARY 

Grouping similar objects together is an instinctual response when trying to 

organize or process an array of information. This sorting and classification 

process dates back to Aristotle’s work on biological taxonomy (Hartigan, 1975). 

Since then, most fields have developed their own processes to accomplish the 

task, and data scientists use clustering algorithms. 

Clustering can be thought of as a two-step process. The first step is the 

measurement of distance, or more generally, dissimilarity between observations. 

The second step is assigning each object to a specific group or “cluster.” Our 

focus is to improve clustering techniques that are applied to the types of data 

encountered by military practitioners. Often such data consists of a mix of both 

numeric and categorical data. For example, military manpower studies of 

promotion rates include numeric variables such as “age” and “number of 

dependents” as well as categorical variables such as “education level,” 

“commissioning source” and “marital status” (Kizilkaya, 2004). In addition, it is 

common that in such studies the number of variables is great, but the number of 

relevant variables for clustering is small. 

The book by Kaufman and Rousseeuw (1990) presents different variable 

types and ways to measure distance along with the two main clustering methods. 

Numerical variables can be measured using either Euclidean or Manhattan 

distance, although both are susceptible to scaling or monotonic transformation. 

Dissimilarities for categorical and mixed data types can be measured using a 

generalization of Gower’s (1971) formula. A common practice is to use Euclidean 

distance when all variables are numeric and Gower dissimilarity for datasets of 

mixed variable types as is implemented by the daisy function in the R software (R 

Core Team, 2014) package “cluster” (Maechler, Rousseeuw, Struyf, Hubert, & 

Hornik, 2014). 
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Current clustering algorithms do not simultaneously address these key 

issues: 

• Independence from variable scaling 

• Automatic selection of important variables 

• Resistance to monotonic transformation 

• Inputs with mixed numerical and categorical variables. 

A new approach by Buttrey (2006) uses classification and regression trees 

to define three new distances (tree distances) that attempt to address these 

issues. This thesis compares these tree distances to dissimilarities computed by 

daisy and the random forest proximities proposed by Breiman (2001). These five 

distances are computed for four existing and well-known datasets and input into 

the clustering algorithms Agnes (agglomerative nesting), PAM (partitioning 

around medoids) and K-means. Noise is introduced into each dataset to test 

automatic variable selection. An additional method that uses sparse hierarchical 

and sparse k-means combines the distance measurement and clustering steps is 

introduced by Witten and Tibshirani (2010) and is also used for comparison. 

The tree distances take a dataset of n observations and p variables and 

create a classification or regression tree using each variable as the response. 

After the trees are created, each object is run down the tree. For the first distance 

d1, two objects are considered similar if they end up in the same leaf. The second 

distance, d2, scales the dissimilarity of objects by the “quality” of each tree, which 

is determined by the amount of deviance between the root node and leaves. The 

third distance, d3, computes dissimilarity between objects by comparing deviance 

at their parent node to the deviance at the root node. 

Of the distance metrics tested, d2 consistently performed well across all 

four datasets.  
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I. INTRODUCTION 

Classification dates back to Aristotle’s biological work on the taxonomy of 

plants and animals. Clustering is the grouping of similar objects and is a 

counterpart of classification (Hartigan, 1975). Algorithms, whose modern usage 

has extended into the fields of astronomy, medicine, economics, and many other 

types of data analysis, implement the more formal technique of clustering. 

Military and industry practitioners of data analytics face the challenge of turning 

an abundance of information into useful tools that can assist in making critical 

decisions. The amount of data collected by private industry and government 

institutions can be on the order of terabytes daily and clustering techniques can 

aid the decision-making process by helping to identify and visualize the patterns 

in this data. Finding the signal in this sea of “noise” will require improvements to 

the tools we currently use. 

Our focus is to improve clustering techniques that are applied to the types 

of data encountered by military practitioners. Often such data consists of a mix of 

both numeric and categorical data. For example, military manpower studies of 

promotion rates include numeric variables such as “age” and “number of 

dependents” as well as categorical variables such as “education level,” 

“commissioning source,” and “marital status” (Kizilkaya, 2004). In addition, it is 

common that in such studies the number of variables is great, but the number of 

relevant variables for clustering is small. In this thesis, we build on the work of 

Lynch’s (2014) empirical study of a new and novel clustering technique from 

Buttrey (2006), specifically designed to cluster observations with mixed 

categorical and numeric variables and which promises to be robust when applied 

to datasets with a large number of irrelevant and noisy variables. 

Clustering is an algorithmic technique. Which algorithm is used depends 

on a number of factors including the tradition of the field of application, the types 

of variables measured, the size of the data set, and what is known a priori about 

the clusters. Most research in this area has been for data consisting solely of 
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numeric variables (e.g. Ooi, 2002), although there are notable attempts to treat 

clustering of categorical variables and mixed variables (e.g. Zhang, Wang and 

Zhang, 2007). A recent research trend in the area of clustering concerns variable 

selection, i.e., when confronted with a large (big) data set with many variables, 

which should be used or weighted more heavily when clustering (e.g. Witten & 

Tibshirani, 2010). Few works explicitly address both the issues of clustering 

mixed variables and variable selection. 

The process of clustering can be thought of as a two-step process. At the 

center is the measurement of distance, or more generally, dissimilarity between 

observations. This aspect of clustering is given much less attention in the 

literature than the second step (Hastie, Tibshirani and Friedman, 2009). The 

second step, the clustering step, is the process of grouping like objects into 

clusters. For clustering based on numeric variables, the choice of dissimilarity 

measurement is problematic. It depends, among other things, on the choice of an 

appropriate scale for each variable and on how much weight each variable will be 

given in the dissimilarity computation. Combining categorical variables with 

numeric variables complicates the choice of dissimilarity measurement further. 

Current clustering algorithms that implicitly or explicitly produce distance 

calculations do not simultaneously address these key issues: 

• Independence from variable scaling 

• Automatic selection of important variables 

• Resistance to monotonic transformation 

• Inputs with mixed numerical and categorical variables 

The fundamental contribution of Buttrey (2006) is his approach to using 

classification and regression trees to define distances (tree distances) that 

address each of these four key issues. Lynch (2014) studies three tree distances 

and shows that clustering based on two of the tree distances is advantageous 

when clustering noisy data of mixed variable types. But Lynch (2014) does not 

completely decouple the process of measuring dissimilarity from the process of 
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clustering. In our work, we explicitly decouple the dissimilarity measuring process 

from the clustering process. This allows us to include in our study a comparison 

of tree distances with two competing dissimilarities for mixed variables. By 

decoupling the dissimilarity computations from the clustering algorithm, we also 

extend the sparse clustering methods of Witten and Tibshirani (2010) so that 

they can be used to cluster mixed variable datasets. This allows us to experiment 

with the use of more modern clustering algorithms that are not explicitly designed 

for mixed variables. 

This thesis examines the ability of five methods for determining 

dissimilarities amongst observations in datasets with and without mixed 

variables. Their performance will be evaluated based on the clustering solutions 

they produce for four existing and well-known datasets. The five dissimilarities 

include the three new tree distances and two existing dissimilarities: one of 

Euclidean distance for numeric variables or the ubiquitous Gower (1971) 

dissimilarity, a generalization of the Gower coefficient, for mixed variables, and 

the lesser known distance based on Breiman’s (2001) random forest proximities. 

Each will be matched with at least two clustering algorithms to establish whether 

the new tree distances produce better results, and if so, what the causes are. In 

addition, because a benefit of tree distances is their robustness when noisy or 

irrelevant variables are present, we also produce results for two clustering 

methods of Witten and Tibshirani (2010). Their sparse clustering incorporates 

variable selection into the distance computations and has been observed to 

perform well for datasets with few relevant variables. 

This paper is organized as follows. Chapter II introduces common 

dissimilarities for numeric, categorical, and mixed variables and describes 

distances based on random forest proximities. Chapter II also reviews some of 

the current clustering methodology. Chapter III is an introduction to the new tree 

distances and review of the datasets used in the study. Chapter IV presents 

findings and analysis of the research. Finally, chapter V provides conclusions 

and discusses future work to be done with these new distances.  
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II. BACKGROUND AND LITERATURE REVIEW 

There are many approaches to the problem of clustering and many finely 

detailed aspects addressed in academic texts and papers. Two often referenced 

sources on which we rely heavily to lay the groundwork for clustering are the 

books by Kaufman and Rousseeuw (1990) and Hastie, Tibshirani and Friedman 

(2009). Kaufman and Rousseeuw (1990) cover many of the algorithms used to 

measure dissimilarity between observations and group them into clusters. The 

second book by Hastie, Tibshirani and Friedman (2009), covers many of the 

same techniques as do Kaufman and Rousseeuw (1990) and introduces a 

unique distance measurement technique that will be examined further in this 

paper. 

The basic idea for clustering is to take a dataset with n observations and p 

measurements (variables) and separate them into groups, or “clusters,” based on 

their proximities. Thus, in this chapter, we begin by discussing common methods 

for measuring proximities starting with numeric variables and then discussing 

mixed numeric and categorical variables. We then give a review of classification 

and regression trees (CART). CART forms the basis of the new tree distances 

introduced in Chapter III. CART is also the basis of a competing distance 

computed from the Breiman (2001) random forest proximities and described in 

this chapter. 

We note that most clustering algorithms do not require that a distance 

characterize proximities between observations. Most clustering algorithms will 

take dissimilarities rather than distances, where the dissimilarities have the 

following properties: the dissimilarity of an object with itself is zero, all 

dissimilarities are non-negative, and the dissimilarity between object i and object j 

is the same as the dissimilarity between object j and object i. 

The difference between a dissimilarity and a distance is that the triangle 

inequality need not hold for dissimilarity. Throughout the thesis, we use the less 
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restrictive term dissimilarity to mean either distance or dissimilarity. Further, 

proximity is the general term which can be measured by how far apart objects 

are or by closeness or similarity, where similarity is a monotonic decreasing 

function of dissimilarity (often similarity is one minus dissimilarity). 

A. DISSIMILARITY MEASUREMENTS FOR NUMERIC VARIABLES 

There are many ways to measure the dissimilarity between objects i and j. 

Two of the most common for continuous numeric variables are Euclidian distance 

and Manhattan distance. These are suitable for variables that are positive or 

negative real numbers on a linear scale, such as age, weight, cost, length, etc. 

Numeric variables can be subjected to a change in units or monotonic 

transformations that will affect their distance. For linear forms, the primary way to 

handle these changes is standardization, so that relative distances between 

observations remain constant. 

1. Euclidean and Manhattan Distance 

Euclidean distance is the true geometrical distance between two points i 

and j with coordinates (xi1,..., xip) and (xj1,…, xjp), and is given by the equation: 

 d(i, j) = (xi1 − x j1)
2 + (xi2 − x j2 )2 + ...+ (xip − x jp )2   (2.1) 

where the x’s are numeric and the number of variables are measured by p 

(Kaufman and Rousseeuw, 1990). Equation 2.1 gives the length of the 

hypotenuse of the triangle, so this distance is sometimes referred to as 

Pythagorean distance and is illustrated in Figure 1. 
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Figure 1.  Illustration of Euclidean distance. 

The second well-known distance metric is the Manhattan distance, or city 

block. This is the distance between two points in a grid based strictly on a 

horizontal and/or vertical line of travel instead of the diagonal route. This distance 

is the sum of the absolute value of the difference between each variable: 

 d(i, j) = xi1 − x j1 + xi2 − x j2 + ...+ xip − x jp   (2.2) 
and is illustrated in Figure 2. 
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Figure 2.  Illustration of Manhattan distance. 

The Minkowski distance provides a generalization of these distances 

 d(i, j) = xi1 − x j1

q
+ xi2 − x j2

q
+ ...+ xip − x jp

q( )1/q
  (2.3) 

in which q is any real number greater than or equal to 1 (Kaufman & Rousseeuw, 

1990). 

The distance algorithm daisy (DISssimilAritY) implemented in the R 

package (R Core Team, 2014) “cluster” (Maechler, Rousseeuw, Struyf, Hubert, & 

Hornik, 2014), which will be discussed later and which we use in this study, can 

use either the Euclidean or Manhattan distance for its calculations when all 

variables are numeric. 

2. Variable Weights 

The distances (2.1), (2.2), and (2.3) weigh each variable equally. Other 

considerations in distance measurements concern the importance of individual 

variables and their weight towards the calculations. For example, changing the 

scale of a variable by converting from meters to kilometers would change the 

apparent weight of that variable by a factor of 1000. One way to deal with this is 
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through standardization of the variables. Kaufman and Rousseeuw (1990) 

accomplish this with three steps. First, calculate the mean for variable f,

mf = 1
n

x1 f + x2 f + ...+ xnf( )  . (2.4) 

Then take the mean absolute deviation 

s f = 1
n

x1 f − mf + x2 f − mf + ...+ xnf − mf{ }  . (2.5) 

Use the mean (2.4) and the mean absolute deviation (2.5) to standardize the 

variable in a “z-score” calculation 

zif =
xif − mf

s f

 . (2.6) 

Standardization (2.6) gives all variables an equal weight independent of their 

units (Kaufman & Rousseeuw, 1990). Often practitioners use either the sample 

standard deviation of the range in place of the mean absolute deviation in (2.5). 

The advantage of using the mean absolute deviation over the sample standard 

deviation or the variable range is that it is more robust to extreme values. 

More generally, it must be decided if all variables should have equal 

importance before clustering. Some variables matter more than others and this 

consideration requires some subject matter expertise. A hypothetical dataset of 

aircraft might include age, top speed, gross weight, empty weight, cost and tail 

number. If you wanted to cluster the aircraft according to cargo-carrying 

capability, gross weight might be a better discriminant than age, and should be 

weighted appropriately. Tail number probably provides no useful information, so 

it might be excluded or equivalently given a weight of 0. Weighted Euclidian 

distance is given by 

d(i, j) = w1(xi1 − x j1)
2 + w2 (xi2 − x j2 )2 + ...+ wp (xip − x jp )2 (2.7) 

where w is the weight applied to each variable, and can be used to indicate 

perceived importance (Kaufman & Rousseeuw, 1990). Both Kaufman and 

Rousseeuw (1990) and Hastie, Tibshirani and Friedman (2009) see this process 

as subjective and therefore cumbersome in data with many variables. However, 
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current work (Witten and Tibshirani, 2010) seeks to automate this process 

through variable selection, which computes the variable weight, with selected 

(irrelevant) variables getting weight zero. 

B. DISSIMILARITY MEASUREMENTS FOR MIXED VARIABLES 

Different types of variables require different approaches when considering 

their proximities for clustering. For non-numeric variables, we start by considering 

dissimilarities based only on categorical variables with two levels each (binary 

variables). We then discuss dissimilarities between nominal and ordinal 

categorical variables with two or more levels and then show the most common 

approach to combining numeric and categorical variables. 

1. Binary Variables

Categorical variables with two levels are common in practice. For 

example, an attribute can be present/absent, yes/no, male/female, or small/large. 

Often such variables are encoded as binary 0/1 variables. When these 

characterizations are symmetric, of equal value, similar weight, and all variables 

in a dataset are binary, the similarity between two observations is calculated with 

a matching coefficient derived from an association table: 

Table 1.   Observation i and j association table 

object j 
1 0 

object i 1 a b a+b 
0 c d c+d 

a+c b+d 

In Table 1, the value depicted by a is the sum of binary attributes where 

object i and object j both equal 1 and d is where they both equal 0. The matching 

coefficient for similarity s(i, j)  is then computed as 
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 s(i, j) = a + d
a + b + c + d

 , (2.8) 

where the numerator is the total number of matches and the denominator, the 

total number of binary variables (Kaufman & Rousseeuw, 1990). 

The corresponding dissimilarity would be d(i, j) = 1− s(i, j) , with 

coefficients taking on values from 0 to 1. The algorithm daisy default is to use this 

coefficient to compute dissimilarities between observations when all variables are 

binary categorical variables. 

Another type of binary variable is asymmetric. One value, usually taken to 

be 1, of an asymmetric binary variable is rare, so most objects would have a 

value of 0. When compared for similarity, negative matches would be expected, 

so positive matches are considered more significant. 

An example dataset of aircraft might include a variable of aircraft type, 

measuring whether the aircraft is an attack aircraft, with value 1, or not, with 

value 0. In this case, for variable f corresponding to aircraft type the statement xif 

= 1 and xjf = 1 is a rare positive match, and implies that aircraft i and j are both 

attack aircraft. In this dataset of civilian aircraft, a negative match “non-attack,” is 

common and less meaningful because the two could be of many different aircraft 

types. To calculate similarities, only positive matches are considered, where sijf = 

1 for each match at variable f, giving similarity between aircraft i and j 

 
sijf

f =1

p

∑
p

 . (2.9) 

To accommodate missing values, let sijf = 1 if variable f can be measured for both 

object i and j and define the similarity to be 

 s(i, j) =
δ ijf sijf

f =1

p

∑

δ ijf
f =1

p

∑
 . (2.10) 



12 

This is Gower’s (1971) general similarity coefficient for asymmetric binary 

categorical variables, and can be implemented in daisy. 

2. General Categorical Variables 

The last variable type is categorical. This variable comes in the form of 

nominal or ordinal values. Nominal variable types are for observations that take 

on multiple values, where the values are not ranked and are simply labels. 

Ordinal values have a ranking attached. 

An example of a nominal categorical variable would be the county in which 

a person resides, with the counties encoded by values one through five. When 

measuring dissimilarity, the difference between counties one and two should be 

the same as to the difference between counties two and five. The most common 

way to calculate dissimilarity for a nominal categorical variable f is a simple 

matching approach: 

 dijf =
0    if  xif = x jf

1    if  xif ≠ x jf

⎧
⎨
⎪

⎩⎪
 . (2.11) 

When all p variables are nominal categorical variables the dissimilarity is 

calculated as the average of individual dissimilarities that are available for both 

objects i and j: 

 d(i, j) =
δ ijf dijf

f =1

p

∑

δ ijf
f =1

p

∑
 . (2.12) 

Ordinal variables take on different states like nominal values, except they 

have a meaningful order. An example would be responses to survey questions 

with values one through five on a five point Likert scale. The states range from 

strongly disagree = 1, to strongly agree = 5, and the difference between states 1 

and 2 would not be equivalent to the difference between 2 and 5.  

Dissimilarities between objects that contain ordinal variables usually 

assign a score to each value of the ordinal variable. A data-driven approach to 
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scoring is to base the scores on the ranks of the observations. For example, if 

the ordered states are 1, 2,..., M, a z-score can be created using the rank rif of 

the i-th observation in the f-th variable by 

 zif =
rif −1
M f −1

  (2.13) 

where Mf is the highest state for variable f. The z-score will take on values 0 to 1. 

When all p variables are ordinal, the dissimilarity between observations i and j 

can then be calculated by the Manhattan distance divided by the number of 

variables being considered (Kaufman & Rousseeuw, 1990). 

3. Mixed Variables 

So far, we are able to compute distances for five variable types: numeric, 

symmetric and asymmetric binary, and nominal and ordinal categorical. When 

different types occur in the same dataset, we need a way to combine them. In 

this section we describe Gower’s approach to computing dissimilarities for mixed 

variables. This approach is implemented by daisy as the default for datasets with 

mixed variables. 

First, the dissimilarity for each variable is scaled to be between 0 and 1, 

i.e., for any pair of objects i, j the dissimilarity for variable f = 1, .., p is 0 ≤ dijf ≤1 . 

Once these calculations have been made, an overall dissimilarity can be defined 

for datasets that contain p variables of a mixed nature 

 d(i, j) =
δ ijf dijff =1

p∑
δ ijff =1

p∑
 , (2.14) 

where, as before, δ ijf  is equal to 1 when both xif and xjf for the f-th variable are 

non-missing (Kaufman & Rousseeuw, 1990). 

In (2.14) dijf is the contribution of the f-th variable to the dissimilarity 

between i and j. If either observation is missing on variable f, δ ijf = 0 and that 

variable does not contribute to the dissimilarity. For binary or nominal variables, 
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(2.10) gives the dissimilarity. For continuous or ordinal variables, the dissimilarity 

is given by 

dijf =
xif − x jf

Rf

(2.15) 

where Rf is the range of variable f, 

Rf = max
h

 xhf − min
h

 xhf (2.16) 

and h covers all non-missing observations for variable f. 

C. CLASSIFICATION AND REGRESSION TREES 

When dealing with datasets that involve a large number of variables, 

classification and regression trees (CART) are often used (Breiman, Friedman, 

Stone, & Olshen, 1984). These are simple nonlinear predictive models that 

recursively partition a data space and fit a decision tree into each partition. 

Regression trees are used when the response variable has continuous values, 

and classification trees when a response has a finite number of unordered values 

or “classes.” 

1. Regression Trees

Regression tree algorithms take an observation with a numeric response y 

and p input variables for each of n observations: that is (yi | xi )  for i = 1, 2, ...,n, 

with input variables xi = (xi1, xi2 ,..., xip )  (Hastie, Tibshirani, & Friedman, 2009). The 

algorithm automatically decides the splitting variable and split to produce a 

partition with M regions R1, R2, ..., RM. For each region, the predicted response, 

y(x)  is modeled as a constant cm, so that  

y(x) = cmI(x ∈Rm )
m=1

M

∑  (2.17) 

where I(x ∈Rm )  is the indicator function which is 1 is x ∈Rm  and 0 otherwise. 

Using minimized sum of squared deviations between predicted and observed 

response as a criterion for selecting cm , the best ĉm  for a numeric y is the 

average of yi in region Rm 
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ĉm = ave(yi | xi ∈Rm )  . (2.18) 

A tree is grown starting with the root node, which contains all observations. 

Proceeding with a greedy algorithm, at each node R, a splitting variable j and 

split point s (or set s for categorical variables) will partition the node R into left 

and right child nodes defined by 

RL ( j, s) = xij ∈R | xij ≤ s{ }  and RR( j, s) = xij ∈R | xij > s{ } (2.19) 

for numeric variables xj. For categorical variables, 

RL ( j, s) = xij ∈R | xij ∈s{ }  and RR( j, s) = xij ∈R | xij ∈s{ } (2.20) 

where s is a subset of the levels of the categorical variable. 

The values for j, s and cL , cR , the predicted values for y in the left and

right child nodes respectively are found by solving 

min
j ,s

min
cL

(yi − cL )2

xij∈RL ( j ,s )
∑ + min

cR

(yi − cR )2

xij∈RR ( j ,s )
∑

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 , (2.21) 

the combined “impurity” of the two child nodes (Hastie, Tibshirani, & Friedman, 

2009). 

For each splitting variable j and split s, the inner minimization is solved by 

ĉL = ave yi | xi ∈RL ( j, s)( )   and  ĉR = ave yi | xi ∈RR( j, s)( )   (2.22)

This algorithm will grow a tree and stops when a node size limit or a threshold 

value for equation (2.21) is reached. This tends to produce a tree which is too 

large. With large trees there is a danger of over-fitting. That is, the tree is grown 

to a depth that predicts each observation in the data set well, but it cannot predict 

observations taken from an independent, but similar data set. To guard against 

over-fitting, the tree is then “pruned” by collapsing internal nodes to find a subtree 

that minimizes ten-fold cross-validated measure of impurity. 

2. Classification Trees

Classification trees are used when the objective is to find which class an 

object belongs to. A process similar to the regression algorithm is used, with the 
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main difference being the criteria used to split nodes. The proportion of objects in 

node m, which represents region Rm and nm observations is shown by, 

 p̂mk = 1
nm

I(yi = k)
xi∈Rm

∑   (2.23) 

where k is the class. The majority of observations residing in node m determine 

its classification: k(m) = argmaxk  p̂mk . At each split, a variable and splitting criteria 

are chosen to minimize the impurity of the child nodes. A common measure of 

impurity and the one we use is the multinomial deviance,  

 −2 nmk log(
i=1

K∑ p̂mk )
. (2.24) 

As with regression trees, classification trees are pruned so that the ten-fold 

cross-validated deviance is minimized. 

3. Random Forest Distance 

The random forest concept was introduced by Breiman (2001) and builds 

multiple classification or regression trees to reduce variance, creating a “forest” 

of trees. In addition to prediction, Breiman (2003) discuses a number of 

applications of random forests including the notion of using random forests to 

measure the proximity between two observations. In this thesis, random forests 

are used to measure dissimilarities between two observations based on 

Breiman’s proximities. 

The steps for building a random forest based on a dataset with n 

observations are: 

For b = 1 to B: 

1. Draw n cases at random, with replacement, from the dataset to 
create a training set. This training set is called a “bootstrapped” 
sample. 

2. Grow tree Tb using the bootstrapped sample by repeating the 
following steps at each node, until a minimum node size nmin  is 
reached: 
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 a)  Select m << p variables at random from the original variables. 
 (typically m = p ) 

 b)  Pick the best variable and split among m. 

 c)  Split the node into two child nodes. 

The output is the set of trees Tb{ }1

B
. 

For a categorical response, the class prediction of the b-th random forest 

tree will be Ĉb (x) , making the final prediction Ĉrf
B (x) = majority vote Ĉb (x){ }

1

B
 

(Hastie, Tibshirani, & Friedman, 2009). For a numeric response, yb (x)  is the 

prediction for the b-th random forest tree and the final prediction is the forest 

average. 

Breiman (2001) uses random forests to measure proximity between 

observations. In this setting there is no response variable. His solution is to label 

all n observations in the dataset to have value y = 1  and then to simulate 

“observations” for the y = 0  class. The y = 0  observations are generated so that 

their marginal distributions match the marginal distributions of the original data, 

but so that the variables of the simulated observations are independent. Building 

random forests to correctly classify the combined data can uncover structural 

properties, like clusters, of the original y = 1  observations, which are not present 

in the simulated y = 0  observations. Breiman calls this method unsupervised 

random forests. 

After each tree in the random forest is built, all the observations are run 

down each tree and if two (i and j) end up in the same leaf, their similarity s(i, j)  

is increased by one. After all similarities are totaled, they are normalized by 

dividing by the number of trees. This is used to create a distance between any 

two observations d(i, j) = 1− s(i, j) ; i.e., the distance between observations i and j 

is the proportion of trees for which i and j fall in different leaves. 
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D. CLUSTERING ALGORITHMS 

There are two primary families of clustering methods, implemented by 

either partitioning or hierarchical algorithms (a third approach, model based 

clustering, is not discussed here). They both require a dissimilarity matrix as the 

input. A dissimilarity matrix for n observations is the n x n matrix of dissimilarities 

or distances d(i, j){ }nxn . The two types of clustering methods (partitioning and 

hierarchical methods) are often used for comparison to see which produces a 

better cluster organization. 

1. Partitioning Algorithms 

Partitioning algorithms take all n observations and group them into K 

clusters. The user inputs the value for K, so it is advisable to try different values 

for K to see which output produces the best result. There are many algorithms, 

but this thesis will discuss the two most popular, K-means and PAM. 

a. K-means 

Given a set of multivariate observations (x1, x2, ... ,xn), K-means partitions 

the n observations into K clusters C = C1,C2,...,CK{ }  so as to minimize the within-

cluster sum of squares (WCSS). The objective is to find: 

 argmin
C

x − µk
2

x∈Ck

∑
k=1

K

∑   (2.25) 

where µk  is the mean of observations in Ck  (MacQueen, 1967). 

The algorithm proceeds in two steps. First, an initial set of K means m1, ..., 

mK is chosen at random and each observation is assigned to the cluster that is 

closest. After all observations have been assigned, the centroid of each cluster 

becomes the new mean. The process starts again by reassigning observations to 

the new means until convergence and the assignments stop changing. This does 

not guarantee a global optimum, so the algorithm can be run multiple times with 

different randomly selected initial clusters to determine the final result. 
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K-means uses Euclidean distance in (2.25) to measure the distance from 

observations in a cluster to the cluster center. In addition, a cluster center is the 

average of the observations in that cluster. For these two reasons, K-means can 

only be used when all variables are numeric and Euclidean distance is 

appropriate. 

b. PAM 

Partitioning around medoids uses the K-medoids algorithm which is 

related to K-means. They both attempt to minimize squared error, with the 

difference being that PAM always chooses a datapoint as the center of a cluster 

instead of using the centroid of i-th cluster. This algorithm can be more robust to 

noise and outliers than K-means. Further, PAM can be adapted to handle 

datasets with mixed variable types. Using the medoid as the cluster center 

requires no averaging of observations and because a cluster medoid is one of 

the observations in the dataset, dissimilarity between it and the members of the 

cluster can be measured by any dissimilarity or distance defined for mixed 

variables. 

2. Hierarchical Algorithms 

Hierarchical algorithms do not construct a single partition with K clusters, 

but offer all combinations of clusters from K = 1 (all observations in one cluster) 

to K = n (each observation in its own cluster). This paper will address the 

agglomerative nesting (Agnes) technique that starts with K = n.  

This method begins by joining the two observations that are closest 

together, leaving n − 1 clusters. Once the first cluster is created, for subsequent 

pairings, the distances are measured using the unweighted pair-group average 

method (UPGMA). This method measures dissimilarities between all objects in 

two clusters and takes the average value. This process is continued until K = 1. 

Different techniques are then applied to determine the optimal number of clusters 

from this output. We note that Agnes can cluster datasets of mixed variable 

types. Agnes only requires that dissimilarities be computed for all pairs of 
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observations in the dataset. However, it requires that all n(n −1)
2

 pairwise 

dissimilarities be computed, a computational load that can be burdensome for 

large datasets. 

3. Sparse Clustering 

Clustering data with a large set of p variables introduces the challenge of 

selecting which ones actually differentiate the observations. Witten, Tibshirani 

and Hastie (2010) present a method of sparse K-means and sparse hierarchical 

clustering that address this problem. These two new methods will be used with 

the two previously described traditional clustering algorithms for this paper’s 

analysis.  

a. Sparse K-means 

The sparse K-means algorithm operates by maximizing the between-

cluster (weighted) sum of squares (BCSS), which is the equivalent to K-means 

minimization of WCSS. A weight w1,..., wp, is assigned to each of the p variables. 

The value of ||w|| ≤  s, where w = (w1,..., wp) and s is a tuning parameter that 

satisfies 1≤ s ≤ p . 

The algorithm initializes variable weights as w1 = ... = wp = 1
p

. It then iterates 

over the following steps until convergence: 

1. Compute C1,..., Ck using standard K-means, while holding w fixed. 

2. Maximize BCSS by adjusting w. 

The final value of w indicates which variables contributed most to the dissimilarity 

calculations. 

b. Sparse Hierarchical 

This clustering method uses standard hierarchical clustering algorithms. 

The difference is a dissimilarity matrix is created by the sparse principal 
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components (SPC) criterion of Witten, Tibshirani and Hastie (2009) as the input. 

The methodology for obtaining SPC is implemented in an R package (R Core 

Team, 2014) called PMA (for penalized multivariate analysis) (Witten, Tibshirani, 

Gross, & Narasimhan, 2013). 

Both sparse K-means and sparse hierarchical clustering algorithms are 

implemented in an R package called “sparcl” (Witten & Tibshirani, 2013) that will 

be used in the analysis portion of this thesis. The R implementation of sparse 

hierarchical clustering in this package is not able to accept categorical variables. 

We get around this by using daisy to construct a n(n −1)
2

× p  numeric matrix of 

pairwise, component-wise dissimilarities, which the R function will accept. This 

workaround is only suitable for small datasets, since n(n −1)
2

× p  grows quickly 

with n. The “sparcl” implementation of sparse K-means cannot be made to 

accept categorical variables. 
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III. METHODOLOGY 

A. INTRODUCTION 

We have decoupled the clustering problem into two phases, determining 

dissimilarity between observations and using the dissimilarities in an algorithm to 

find how they are best grouped. The five methods for computing dissimilarity 

include tree distances, dissimilarities as computed using the daisy algorithm, and 

random forest proximities. The cluster algorithms are traditional partitioning and 

hierarchical approaches and their improved sparse methodologies introduced by 

Witten and Tibshirani (2010). 

Our new method addresses the phase one clustering problem of distance 

calculation using classification and regression trees. This methodology 

addresses traditional shortcomings with mixed variable datasets, linear and 

monotonic transformations, and automatic selection of “important” variables.  

B. BUTTREY TREE DISTANCES 

To build classification and regression trees, all observations start in one 

node. The first split creates two child nodes and is selected based on which 

variable minimizes impurities in the new nodes, based on residual sums of 

squares. This process continues until a minimum node size is reached. This 

tends to produce a large tree which is then “pruned” with ten-fold cross 

validation. In this final step, the cross-validation finds the tree size that produces 

the smallest impurity. 

A tree algorithm requires a response variable, and with clustering there 

are none, so we use each variable as a response and create p trees. There is 

also a tendency to over-fit, so the grown trees will be “pruned” with ten-fold cross 

validation. This step will find a tree size that produces the smallest impurity 

(Buttrey, 2006). Every observation will fall into one leaf of the tree. 
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1. Tree Distance 1, d1 

The first metric calculates distance between observations based on which 

leaf they reside in. If two observations fall on the same leaf, their distance is 0 

and 1 otherwise. The leaf L an observation i falls into, for tree t, is denoted by 

Lt (i) . Thus 

 d1(i, j) =
0    if Lt (i) = Lt ( j)
1    if Lt (i) ≠ Lt ( j)

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪t=1

p

∑ . (3.1) 

These distances create a dissimilarity matrix to be used as the input for a 

clustering algorithm. 

2. Tree Distance 2, d2 

The second metric uses the same calculation for distance between 

observations. The primary difference is that this approach does not treat all trees 

equally. Some trees might be “better” than others, and the way this is measured 

is by the overall decrease in deviance a tree produces. The decrease is based on 

the difference between the deviance at the root node, Dt, and the sum of 

deviances of all the leaves. The difference is denoted ΔDt . 

A tree that produces a large ΔDt  is considered to be of better quality. 

Observations that are on different leaves of this “better” tree are more dissimilar 

than those on different leaves of a lower-quality tree. 

The “best” tree with maximum deviance max
t

(ΔDt )  will be used to scale 

our distances in d2 using this formula: 

 d2 (i, j) =

0                   if Lt (i) = Lt ( j)
ΔDt

max
t

(ΔDt )
    if Lt (i) ≠ Lt ( j)

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

t=1

p

∑ . (3.2) 

The tree in Figure 3 will be used to illustrate the difference between d1 and 

d2. The large ovals in this picture are the deviance at that node, and the small 
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circles are the leaf number. If observations i and j land in leaves 14 and 15, their 

d1 distance would be 1. 

To calculate the d2 distance, the numerator value isΔDt = 10,000 − 4,700 , 

which is the root node deviance minus the sum of the leaf nodes. From the group 

of trees built, assume max
t

(ΔDt ) = 10,000 . This gives a distance of (5,300/10,000) 

= 0.53. If we were calculating the distance between two leaves on the best tree, it 

would be (10,000/10,000) = 1. 

 
Figure 3.  Tree with deviance in large circles and leaf numbers in small 

circles (from Buttrey, 2006) 

3. Tree Distance 3, d3 

The third distance metric compares the deviance at the parent node of two 

observations to the deviance at the tree’s root node. The deviance at the parent 

is denoted Dt (i, j)  and the overall deviance of the tree Dt . The distance is 

calculated by 

 d3(i, j) =
0           if Lt (i) = Lt ( j)
ΔDt (i, j)
ΔDt

   if Lt (i) = Lt ( j)

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

. (3.3) 
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The process to find the d3 distance between leaves 14 and 15 is illustrated 

in Figure 4. Total change in deviance for the tree is ΔDt = 10,000 − 4,700 = 

5,300. After the tree is cropped at the parent node, the change in deviance is 

ΔDt (14,15)  = 4,900 − 4,700 = 200. The final distance for objects in these leaves 

is 
ΔDt (i, j)
ΔDt

= 200
5300

= 0.038 . The distance between observations that are close 

together on a tree are smaller than those that fall farther apart. 

 
Figure 4.  Example tree evaluated using d3 with deviances for leaf 14 

and 15 (from Lynch, 2014) 

Currently these three distances are computed and stored for all pairs of 

observations. However, we need only compute distances among all pairs of 

leaves within each tree, so substantial gains in efficiency will be possible in the 

future. 

C. ALGORITHMS USED 

Five sets of dissimilarity matrices are computed for each dataset. Tree 

distances are calculated using the steps described. The daisy algorithm 
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constructs a matrix using Euclidean distance for the numeric datasets and 

Gower’s dissimilarity for the categorical and mixed datasets. Random forest 

proximities are used to create the final matrices. 

Three clustering algorithms are then used to find a clustering solution, 

Agnes, PAM and K-means. K-means clustering is only applied to two of the four 

datasets, which consist of entirely numeric variables. Because its underlying 

distance is Euclidean. PAM and Agnes are applied to all four datasets using each 

of the five dissimilarity measures. 

Sparse K-means and sparse hierarchical clustering are also used, with 

sparse K-means applied only to the two numerical datasets. 

D. EVALUATION USING CRAMÉR’S V 

To compare different clustering approaches, we used four established 

datasets in which the “correct” classifications are known. The quality of each 

solution was evaluated using Cramér’s V (Cramér, 1946), which is a scaled 

version of the χ 2  measure of association for a two-way table. This produces a 

number between 0 and 1, which will be close to 1 when clusters closely match 

their class label, and small when they do not.  

E. DATASETS 

Four datasets from the University of California, Irvine, Machine Learning 

Repository (Bache & Lichman, 2013) were used in this analysis: Iris, Optical 

Recognition of Handwritten Digits, Molecular Biology (Splice-junction Gene 

Sequence), and Cardiac Arrhythmia. The dimensions of each dataset are listed 

in Table 2. The number of classes k is known and will be used to evaluate how 

well each algorithm classifies a given set of data. In addition, the algorithms will 

be run with 2k clusters because the number of clusters might be greater than the 

number of classes. 
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Table 2.   Dimensions of datasets 

Name	
   Observations	
   Variables	
   Data	
  Type	
   Classes	
  
Iris	
   150	
   4	
   Numeric	
   3	
  
Iris	
  +	
  15	
  noise	
   150	
   19	
   Numeric	
   3	
  
Iris	
  +	
  50	
  noise	
   150	
   54	
   Numeric	
   3	
  
Optical	
   1797	
   64	
   Numeric	
   10	
  
Optical	
  +	
  15	
  noise	
   1797	
   79	
   Numeric	
   10	
  
Optical	
  +	
  50	
  noise	
   1797	
   114	
   Numeric	
   10	
  
Splice	
  	
   3190	
   60	
   Categorical	
   3	
  
Splice	
  +	
  15	
  noise	
   3190	
   75	
   Categorical	
   3	
  
Splice	
  +	
  50	
  noise	
   3190	
   110	
   Categorical	
   3	
  
Arrhythmia	
   452	
   278	
   Mixed	
   13	
  
Arrhythmia+	
  15	
  noise	
   452	
   293	
   Mixed	
   13	
  
Arrhythmia	
  +	
  50	
  noise	
   452	
   328	
   Mixed	
   13	
  

 

Noise variables are added to see if the algorithm can discern which 

variables are most important. Therefore, we will introduce 15 and 50 noise 

variables into each dataset to see how our algorithms perform.  

1. Iris 

The Iris flower dataset was made famous by Sir Ronald Fisher (Fisher, 

1936) and includes information to quantify the variations of iris flowers of three 

related species. There are 50 samples from each species (Iris setosa, Iris 

virginica, and Iris versicolor) collected from the Gaspe Peninsula. Measurements 

were taken of four features of the flowers, the length and width of their sepals 

and petals in centimeters. Fisher developed a linear discriminant model to 

distinguish each species from the other and this dataset has been used as a 

typical test case for many classification techniques. All variables in this dataset 

are numeric. 

Random noise is introduced into the dataset from a normal distribution 

with a mean of zero and standard deviation of one. 
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2. Optical 

The Optical Recognition of Handwritten Digits dataset was donated by E. 

Alpaydin and C. Kaynak (Bache & Lichman, 2013). The data is from 43 people 

who contributed handwritten digits from zero to nine. These were then converted 

to bitmaps and a preprocessing program was used to determine what number 

was displayed. The output is an 8 x 8 matrix of 64 integers taking values zero 

through 16 to account for small distortions in the way different people write their 

numbers. There are 5,620 observations total, but only 1,797, the original test set, 

are used in this analysis. All sixty-four variables are numeric. 

Noise variables are introduced by a random sample with replacement, of 

integers zero through 16. 

3. Splice 

The Splice-junction data comes from Genbank 64.1 (Bache & Lichman, 

2013). It includes 3,190 primate DNA sequences with 60 elements. Each element 

corresponds to a categorical variable with levels C, A, G and T. The purpose of 

each is to recognize the boundaries between exons (EI) and introns (IE) to 

determine if the sequence is from a donor or acceptor, respectively. The third 

class in this dataset is neither. The sixty variables in this dataset are categorical. 

The noise variables for splice are generated by drawing from a random 

sample with replacement, of the letters C, A, G and T, which correspond to DNA 

sequence elements. 

4. Cardiac Arrhythmia 

The final dataset comes from H. Altay Guvenir (Bache & Lichman, 2013) 

of Bilkent University. The variables in the data comprise the electrocardiograph 

readings from 452 medical patients. The output of these readings contain 279 

variables, of which 206 are numeric and 73 categorical. There are 16 response 

classes with one being normal cardiac function, one undetermined and the rest 
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denoting differing degrees of cardiac arrhythmia. Only 13 classes are used in the 

analysis because three of the classes have no patients associated with them.  

Noise variables are introduced from a normal distribution with mean of 

zero and standard deviation of one. 
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IV. ANALYSIS 

A. INTRODUCTION 

This chapter presents the results of our comparative analysis of the 

different dissimilarity measures and clustering algorithms. Cramér’s V is the 

metric used for each algorithm and dataset combination, and a higher value 

indicates a better pairing, with a value of one being a perfect match between 

clusters and classes. 

There are a total of five dissimilarity measuring techniques, three 

clustering algorithms and two methods that wrap the distance and clustering 

together. The distance measures are the traditional daisy method, the newer 

random forest technique and our proposed distances d1, d2, and d3. The three 

clustering algorithms are Agnes, PAM and K-means. K-means is used only with 

numeric datasets Iris and optical digits. The two sparse methods, K-means 

sparse and hierarchical sparse, combine the distance calculation and clustering 

using techniques previously described. 

B. RESULTS 

This analysis was done on a MacBook Pro with a 2.6Ghz Intel Core i7 

running 16GB of RAM. R Studio with R version 3.1.1 (R Core Team, 2014) was 

used execute the code. For each dataset, two sets of noise variables are added. 

Daisy dissimilarity is then computed for all datasets (for the numeric datasets Iris 

and optical digits, the daisy dissimilarity is Euclidean distance). Random forest 

proximities and d1 through d3 distances are also computed for all datasets. All 

were used in Agnes and PAM clustering algorithms. All of the techniques were 

computationally tractable, and the time to run each one was less than five 

minutes. Sparse K-means was run only on the two numerical datasets, Iris and 

optical digits, and took less than 10 minutes on each. Sparse hierarchical 

clustering was quick, except on optical digits, which took about an hour to run. 

The resulting Cramér’s V for each run are displayed in the Tables 3–6. 
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For the Iris dataset shown in Table 3, d2 produces the highest Cramér’s V 

values (highlighted in yellow) independent of the clustering algorithm. The best 

clustering results are produced when d2 is paired with PAM (highlighted in 

yellow). In the dataset with 15 noise variables and run using 2K clusters, Agnes 

produces a slightly better solution than PAM. Using 50 noise variables and 2K 

clusters, d1 clustered with Agnes also produces a slightly better solution. 

Table 3.   Iris Dataset Results 

 
 

The second numerical dataset in Table 4, optical digits, favors sparse K-

means. The new distance metrics perform well, but sparse K-means beats them 

by a small margin. Even in the presence of noise, the sparse K-means algorithm 

maintained its advantage because it is able to minimize the contribution of 

variables that add no value to a dissimilarity calculation. 

  

Dataset Clusters Agnes Pam K0Means KMSparse HeirSparse Agnes Pam
Iris 3 0.7075 0.8633 0.8633 0.8839 0.8452 0.8513 0.8360
Iris 6 0.7808 0.9261 0.9199 0.8984 0.8700 0.9529 0.8923
Iris0150noise0variables3 0.1157 0.6526 0.7307 0.9081 0.8392 0.6451 0.4841
Iris0150noise0variables6 0.6833 0.6643 0.6844 0.9147 0.9032 0.6625 0.5279
Iris0500noise0variables3 0.1162 0.4205 0.6972 0.8839 0.7670 0.1769 0.1992
Iris0500noise0variables6 0.2183 0.5024 0.7252 0.8787 0.9343 0.2923 0.3261

Dataset Clusters Agnes Pam Agnes Pam Agnes Pam
Iris 3 0.8771 0.8909 0.8771 0.9081 0.8058 0.8058
Iris 6 0.9370 0.9316 0.9363 0.9458 0.9359 0.9440
Iris0150noise0variables3 0.8058 0.8276 0.8276 0.9514 0.7223 0.8058
Iris0150noise0variables6 0.9485 0.9441 0.9531 0.9444 0.8095 0.8631
Iris0500noise0variables3 0.7217 0.7563 0.9333 0.9514 0.7071 0.7085
Iris0500noise0variables6 0.9446 0.8922 0.9442 0.9322 0.7155 0.7608

Random0Forest

d1 d2 d3

Daisy Sparse
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Table 4.   Optical Digits Dataset Results 

 
 

The Splice dataset in Table 5 is categorical, so the K-means and sparse 

K-means algorithms are not used. With this dataset, d2 clearly outperformed 

other techniques. The introduction of noise brought small improvements, due to 

the automatic variable selection offered by the algorithm. 

Table 5.   Splice Dataset Results 

 
 

Cardiac arrhythmia was the final dataset shown in Table 6. It contained 

mixed variable types and performed best with the tree distances. This was the 

Dataset Clusters Agnes Pam K0Means KMSparse HeirSparse Agnes Pam
Optical 10 0.7106 0.8116 0.7956 0.8217 0.3944 0.7892 0.7166
Optical 20 0.8534 0.8768 0.9123 0.9108 0.4749 0.8861 0.6759
Optical0150noise 10 0.7005 0.7485 0.7822 0.8218 0.3887 0.6793 0.4804
Optical0150noise 20 0.8472 0.8601 0.9081 0.9132 0.4897 0.8340 0.7928
Optical0500noise 10 0.7757 0.6585 0.8203 0.8242 0.3638 0.5114 0.7821
Optical0500noise 20 0.8047 0.7831 0.8872 0.9157 0.4755 0.5323 0.5548

Dataset Clusters Agnes Pam Agnes Pam Agnes Pam
Optical 10 0.7526 0.7226 0.7128 0.7340 0.6936 0.7364
Optical 20 0.8354 0.7225 0.8391 0.7350 0.8440 0.7364
Optical0150noise 10 0.7582 0.7311 0.6743 0.7352 0.7671 0.7346
Optical0150noise 20 0.8614 0.8168 0.8396 0.8065 0.8470 0.8368
Optical0500noise 10 0.7566 0.8136 0.7530 0.7940 0.6215 0.8368
Optical0500noise 20 0.8502 0.8007 0.8435 0.7934 0.8285 0.8490

Random0Forest

d1 d2 d3

Daisy Sparse

Dataset Clusters Agnes Pam K0Means KMSparse HeirSparse Agnes Pam
Splice 3 0.3600 0.1782 0.0617 0.0631 0.0893
Splice 6 0.3603 0.3038 0.0877 0.1206 0.1283
Splice0150noise 3 0.2609 0.1786 0.0617 0.1994 0.1480
Splice0150noise 6 0.2877 0.2638 0.0982 0.2578 0.1358
Splice0500noise 3 0.2329 0.1600 0.0145 0.0668 0.0858
Splice0500noise 6 0.2901 0.2353 0.0398 0.1515 0.1138

Dataset Clusters Agnes Pam Agnes Pam Agnes Pam
Splice 3 0.5943 0.5017 0.5977 0.7815 0.0419 0.5647
Splice 6 0.5971 0.6040 0.8249 0.7988 0.0664 0.5952
Splice0150noise 3 0.6104 0.5174 0.6347 0.7677 0.0359 0.6092
Splice0150noise 6 0.6128 0.6130 0.8312 0.7982 0.5738 0.6358
Splice0500noise 3 0.6104 0.5174 0.6347 0.7677 0.0359 0.6092
Splice0500noise 6 0.6128 0.6130 0.8312 0.7982 0.5738 0.6358

Random0Forest

d3d2d1

Daisy Sparse
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first dataset in which d3 performed strongly. The metrics d1 and d2 did well in a 

noisier environment. 

Table 6.   Cardiac Arrhythmia Dataset Results 

 

C. CONCLUSION 

The Buttrey tree distances performed best with categorical and mixed 

datasets. They performed well with numerical data, but sparse K-means slightly 

outperformed them when dealing with the optical digits dataset. It was expected 

that as the new distance metrics increased in complexity, the resulting clustering 

solutions would improve. However, in this analysis the best result was the 

intermediate distance algorithm, d2. 

  

Dataset Clusters Agnes Pam K0Means KMSparse HeirSparse Agnes Pam
Arrhythmia 13 0.3406 0.3877 0.3143 0.3750 0.3235
Arrhythmia 26 0.4998 0.5014 0.4032 0.4489 0.4344
Arrhythmia0150noise 13 0.2898 0.3381 0.3238 0.4063 0.2777
Arrhythmia0150noise 26 0.4160 0.4821 0.4059 0.4676 0.3975
Arrhythmia0500noise 13 0.3276 0.3729 0.3355 0.2933 0.3048
Arrhythmia0500noise 26 0.4880 0.4509 0.4220 0.3903 0.4015

Dataset Clusters Agnes Pam Agnes Pam Agnes Pam
Arrhythmia 13 0.4436 0.3659 0.4231 0.3549 0.4502 0.3795
Arrhythmia 26 0.5060 0.4802 0.4939 0.4841 0.5179 0.4898
Arrhythmia0150noise 13 0.4818 0.3934 0.4266 0.3681 0.4084 0.3063
Arrhythmia0150noise 26 0.5255 0.4880 0.5461 0.4775 0.4928 0.4810
Arrhythmia0500noise 13 0.4666 0.3837 0.4607 0.3225 0.4311 0.4072
Arrhythmia0500noise 26 0.5156 0.4776 0.4990 0.4692 0.5172 0.4796

Random0Forest

d1 d2 d3

Daisy Sparse
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V. SUMMARY 

A. SUMMARY 

This thesis examines new distance measurements that offer 

independence from variable scaling, resistance to monotonic transformations, 

automatic variable selection and are able to process datasets of mixed variable 

types. Chapter I introduced the problem and laid out the objectives. Chapter II’s 

literature review was a background on past and current state of the clustering 

arts. Chapter III reviewed the tree distances and discussed the datasets to be 

used in this analysis. The fourth chapter presented the results of this study. 

Of the three tree distances, d2 consistently performed well and 

simultaneously dealt with the four problems addressed at the outset. Tree 

distances best handled categorical and mixed variable types, with d2 performing 

best overall. Automatic variable selection was tested with the addition of noise 

variables, and tree distances performed well. Their nearest competitor was 

sparse clustering, which was computationally expensive with large datasets, and 

had difficulty with categorical data. The last two problems of variable scaling and 

monotonic transformations were dealt with by the use of CART upon which tree 

distances are based. 

B. FUTURE WORK 

It was expected that as the tree distances increased in complexity, their 

performance would improve. There was no significant improvement from d2 to d3, 

so work remains to be done on whether evaluating deviance decreases at parent 

nodes can produce better results. 

We discussed the increasing volume of data that organizations now deal 

with and will encounter in the future. Application of tree distance to “big data” and 

comparisons of computations tractability to these future clustering problems 

should be explored. Parallel processing or high power computing can be used 

with “big data” to explore processing speed, and also visualization tools. 
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Visualization tools are another important application of tree distances. 

Multi-dimensional scaling tools require a dissimilarity matrix to produce 2-D and 

3-D images of high dimensional data. This can be used in addition to or instead 

of clustering to give users a better understanding underlying data structures and 

can benefit from the computational ease and relative accuracy of tree distance 

calculations. 
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