Award Number: W81XWH-12-1-0316

TITLE: Targeting Phosphatidylserince for Radioimmunotherapy of Breast Cancer Brain Metastasis

PRINCIPAL INVESTIGATOR: Rolf A. Brekken

CONTRACTING ORGANIZATION: University of Southwestern Medical Center
Dallas, TX 75390

REPORT DATE: October 2014

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT:

 X Approved for public release; distribution unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
Brain metastasis occurs in ~30% of metastatic breast cancer patients. The prognosis is extremely poor, with a median survival of 4-6 months even with aggressive treatment. Thus, there is an urgent need to develop new treatments that target brain metastases. Radioimmunotherapy (RIT) is a targeted therapy that uses radiolabeled antibodies against tumor-specific antigens to treat lymphoma patients. However, success of RIT in the therapy of solid tumors has generally been limited due to heterogeneous tumor expression of the target antigens and cross-reactivity with normal cells. In preliminary studies, we have demonstrated that phosphatidylserine (PS) is exposed exclusively on tumor vascular endothelium of brain metastases in mouse models. A novel PS-targeting antibody, PGN635, a fully human monoclonal antibody, was used to target exposed PS in the brain metastases. Our data show that PGN635 binds specifically to tumor vascular endothelial cells in multi-focal brain metastases throughout the whole mouse brain. Vascular endothelium in normal brain tissues is negative. Furthermore, pretreatment with 10Gy of whole brain radiation significantly increased PGN635 binding to tumor vascular endothelial cells and tumor cells by increasing their exposure of PS. Vasculature in irradiated normal brain remained negative for exposed PS.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>4</td>
</tr>
<tr>
<td>Body</td>
<td>4</td>
</tr>
<tr>
<td>Key Research Accomplishments</td>
<td>7</td>
</tr>
<tr>
<td>Reportable Outcomes</td>
<td>7</td>
</tr>
<tr>
<td>Conclusion</td>
<td>8</td>
</tr>
<tr>
<td>References</td>
<td>8</td>
</tr>
<tr>
<td>Appendices</td>
<td>na</td>
</tr>
</tbody>
</table>
Introduction

Brain metastasis is the most common intracranial malignancy in adults. The prognosis is extremely poor, with a median survival of 4-6 months even with treatment. Due to the high incidence of multiple lesions and limited leakage of most chemotherapeutic agents through blood brain barrier (BBB), the standard care for these patients involves whole brain radiotherapy (WBRT). WBRT is often associated with neurological complications that preclude delivery of the sufficient dose to tumor lesions. Radioimmunotherapy (RIT) using radiolabeled monoclonal antibodies against tumor-specific antigens offers the opportunity to selectively irradiate tumor cells while sparing normal tissues. We have recently applied a novel phosphatidylserine (PS)-targeting antibody, PGN635, a fully human monoclonal antibody to study brain metastases in mouse models of breast cancer. PS is an integral membrane phospholipid that is maintained on the inner leaflet of the plasma membrane. It becomes externalized under stressful conditions or when cells under programmed cell death. PS exposure is a conserved immunosuppressive signal that serves as an immune checkpoint to prevent the induction of autoimmunity to dying cells. PGN635 and other antibodies developed by our group that target PS inhibit this immune checkpoint and stimulate a productive immune response to antibody coated cells. The overall goal of this proposal is to test the hypothesis that PS-targeted radioimmunotherapy provides an effective and safe treatment for brain metastases.

Prior work from the Thorpe laboratory has demonstrated that PS is externalized on vasculature in the tumor microenvironment (1). Importantly, therapy also increases the exposure of PS on endothelial cells and tumor cells and the localization of anti-PS antibodies to the tumor microenvironment. The anti-PS antibodies (e.g., PGN635) once bound block PS induced immune suppression and drive activation of an innate immune response against the tumor. This response includes antibody dependent cellular cytotoxicity (ADCC) which results in targeting of PS positive cells for immune mediated destruction. We have shown recently in murine models of prostate cancer that antibody mediated blockade of PS results in striking changes in immune cell phenotype and potent anti-tumor efficacy (2).

Results

The current proposal has 3 tasks.

Task 1. To study PS exposure on tumor vasculature and tumor cells of breast cancer brain metastasis and determine if exposed PS is increased by radiation.

Dr. Zhao’s laboratory has established a model of brain metastasis where breast tumor cells (e.g., MDA-MB-231/BR cells) are seeded in the brain via intracardiac injection. His laboratory has also demonstrated that brain metastases established in this manner can be visualized via MRI. (Task 1; Parts a & b) (see Figures 1 & 2)
Fig. 1 MRI evaluation of tumor vascularity of brain metastases and correlating with histological studies. A. Four weeks after intracardiac injection of 231Br cells, T2-weighted MRI revealed multiple high signal intensity lesions (arrowheads) on four consecutive coronal sections of a representative mouse brain. Only a few of the lesions (arrowheads) were enhanced on T1-weighted post contrast images, one (blue arrowhead in the MRI section 3) of which showed partial enhancement, indicating intratumoral heterogeneity of BTB disruption. rCBV maps of the four sections were generated and overlaid on the T2-weighted images. B. The rCBV values of the metastatic lesions and their contralateral normal brain were obtained and summarized in the table. Note the color presented in the table coincides with the color of arrowhead on each of the MR images. Most of metastatic lesions had lower rCBV values than their contralateral counterparts of normal brain. C. Statistical analysis of rCBV in a total of 212 lesions of 9 animals obtained from the last follow-up MRI showed significantly lower rCBV of the metastatic tumors with a mean value of 0.89 ± 0.03 (s.e.), compared to the contralateral normal brain (mean = 1.00 ± 0.03; p < 0.005). D. Anti-CD31 staining was performed on a brain section bearing metastases. A cortical lesion (~ 600 µm in diameter) was depicted with green fluorescence (GFP). Microvessels (red) within the lesion appeared less dense, as compared to abundant fine vessels in the contralateral normal brain tissues (E). Some of the tumor vessels were irregular in shape and larger in diameter (arrow). F. Quantitative data of MVD showed a significantly lower MVD in brain metastases versus contralateral normal brain (mean = 669 ± 201/mm² vs. 965 ± 177/mm²; p < 0.05).

Fig. 4 Enhanced PS exposure after WBRT. Top. T2-weighted MRI clearly revealed a high-signal intensity tumor lesion. Bottom. After a single dose of 10 Gy WBRT, immunohistochemical staining was conducted on the tumor specimen with CD31 (green), PGN635 (red) and Dapi (blue). In addition to vascular exposed PS (orange), massive tumor cells were detected with PS exposure.
In collaboration with Dr. Zhao we have demonstrated that PS is exposed on the vasculature of breast cancer brain metastases and have evaluated microvessel density (MVD) and hypoxia. We are currently evaluating cellular proliferation and apoptosis via immunohistochemistry. (Task 1; Part c) See Figures below.

We have obtained tissue from mice bearing brain metastases that have been subjected to WBRT. These animals were injected iv with PGN635 4 hours prior to sacrifice. The tissue is being processed for immunohistochemical evaluation of PS exposure, MVD, markers of hypoxia, and cell proliferation and apoptosis. (Task 1; part d)

Task 2. To radiolabel mch635 and evaluate its biodistribution and pharmacokinetics in breast cancer brain metastasis.

We have produced and provided PGN635 F(ab’2)2 to Dr. Zhao who has provided an update on the imaging properties of the radiolabeled antibody fragment in his progress report.

Task 3. To evaluate radioimmunotherapy of breast cancer brain metastases. These studies are ongoing and will be completed in the NCE period.

Key Research Accomplishments (consistent with Dr. Zhao’s report)

- Extensive imaging studies of the intracardiac model of breast cancer brain metastasis with various brain-tropic metastatic breast cancer cells including MDA-MB231Br-EGFR, MCF7Br-Her2 and syngeneic 4T1 cells.

- MRI was applied to evaluate vascular perfusion and BTB permeability of brain metastases. Our data showed significantly lower tumor perfusion in brain metastases as compared to the contralateral normal brain, and less than half of brain metastases containing disruptive blood-tumor-barrier (BTB), which correlated well with histological analyses.

- Immunohistochemical studies show PS exposure is specifically located on tumor vascular endothelial cells of brain metastases while the normal vessels surrounding the metastases lack of exposed PS, suggesting that PS can serve as a brain metastasis-specific biomarker.

- Whole brain radiation (WBRT) induced significantly more PS exposure on both tumor vascular endothelial cells and tumor cells of brain metastases.

- PS-targeting antibody, PGN635F(ab’2)2 has been successfully conjugated with radioisotope, enabling in vivo PET imaging for sensitive detection of brain metastases.

Challenges
The major challenge we have faced is the sudden passing of Dr. Thorpe. This caused a significant delay in progress on the project. While our progress on this project has not been as rapid as anticipated, we anticipate that all research objectives will be achieved within the NCE period.

Reportable outcomes
Recent PS related Publications: There have been no publications in Yr 2 of funding.

Conclusion

During the first and second years of this project we have worked with Dr. Dawen Zhao to establish murine models of brain metastasis. Dr. Zhao has evaluated these models using MRI techniques that have enabled visualization of individual lesions in the brain. We have also exploited the specificity of PGN635, a human anti-PS antibody to visualize externalized PS on the vasculature and tumor cells in brain lesions. PGN635 specifically localized to the vasculature in metastases and did not react with blood vessels in normal brain tissue. We conclude that PS, as expected is an excellent marker of tumor vasculature and anticipate that therapy studies combining radiation and anti-PS, which are ongoing will provide potent therapeutic efficacy.

References