ABSTRACT

Background: In emergencies when commercially designed tourniquets are unavailable, hemorrhage may need to be controlled with improvised tourniquets. In the aftermath of the Boston Marathon bombing, no improvised strap-and-windlass tourniquets were used to treat casualties; tourniquets without windlasses were used. The purpose of the present study is to determine the effectiveness of improvised tourniquets with and without a windlass to better understand the role of the windlass in tightening the tourniquet strap. Methods: An experiment was designed to test the effectiveness of improvised strap-and-windlass tourniquets fashioned out of a tee shirt on a manikin thigh. Two users conducted 40 tests each with and without the use of a windlass. Results: Without a windlass, improvised tourniquets failed to stop bleeding in 99% of tests (79 of 80 tests). With a windlass, improvised tourniquets failed to stop bleeding in 32% of tests (p < .0001). In tests with no windlass, attempts to stop the pulse completely failed (100%, 80 of 80 tests). With a windlass, however, attempts to stop the pulse failed 31% of the time (25 of 80 tests); the difference in proportions was significant (p < .0001). Conclusions: Improvised strap-and-windlass tourniquets were more effective than those with no windlass, as a windlass allowed the user to gain mechanical advantage. However, improvised strap-and-windlass tourniquets failed to control hemorrhage in 32% of tests.

Keywords: first aid; hemorrhage; tourniquets; shock; damage control; tourniquet, makeshift; tourniquet, homemade; strap-and-windlass

Introduction

Explosions on Boylston Street near the crowded finish line of the 2013 Boston Marathon caused more than 260 casualties, which, in turn, spurred nearby people to improvise tourniquets to stop limb bleeding.1,2 These first people to respond made tourniquets fashioned out of clothing such as shirts from nearby runners or from blast-damaged storefronts, for use on casualties who were at risk of death by wound exsanguination.2,3 No longer bystanders, these responders gave first aid by wrapping and tightening a shirt around a limb, and these makeshift tourniquets reportedly helped save lives.4 Such field tourniquets were replaced at the hospitals with dressings, commercial tourniquets, or blood pressure cuffs1,2; observers noted that tourniquets improvised by first responders were ineffective, as hemorrhage was not controlled.1,2 The lifesaving–ineffective contradiction indicates confusion and a need to better understand improvised tourniquets. The confusion and contradiction exist fundamentally because there is essentially no substantial research into the optimal use of improvised tourniquets. This lack of research leaves knowledge gaps unfilled regarding best tourniquet practices.

A strap-and-windlass design is an ancient way to use a rod to wind a strap more tightly around a limb; a key step in improvising tourniquets is to twist a strap with a windlass to gain mechanical advantage in tightening. However, to our knowledge, no one in Boston reported windlass use with an improvised tourniquet. If the role of the windlass was made clear, then tourniquet practice might be improved. A theory is that an inadequately tightened strap can occlude limb veins but not arteries; venous tourniquets control venous bleeding while arterial tourniquets control both venous and arterial bleeding. If so, then a venous tourniquet may be effective only for venous bleeding and not for arterial bleeding.5 Furthermore, such effectiveness for venous hemorrhage may be only brief since paradoxical bleeding may soon occur.5

The purpose of the present study is to determine the effectiveness of improvised tourniquets with and without a windlass to better understand the role of the windlass in gaining mechanical advantage in tightening the tourniquet strap.

Methods

This study was conducted under a protocol reviewed and approved by the Regulatory Compliance Division
Role of the Windlass in Improvised Tourniquet Use on a Manikin Hemorrhage Model

AUTHOR(S)

Altamirano, M. P. Kragh, J. F., Jr. Aden, J. K., 3rd Dubick, M. A.

PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

United States Army Institute Of Surgical Research, JBSA Fort Sam Houston, TX 78234

DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release, distribution unlimited

SECURITY CLASSIFICATION OF:

- **REPORT:** unclassified
- **ABSTRACT:** unclassified
- **THIS PAGE:** unclassified

LIMITATION OF ABSTRACT

SAR

NUMBER OF PAGES

6
Windlass in Improvised Tourniquet Use

The Role of the Windlass in Improvised Strap-and-Windlass Tourniquet Use

Without a windlass, improvised tourniquets failed to stop bleeding 79 times out of 80 tests (99%; 95% CI, 96%–100%). With a windlass, they stopped bleeding 180 times out of 180 tests (100%; 95% CI, 96%–100%). The windlass significantly increased the effectiveness of the tourniquet. The critical outcome was effectiveness (hemorrhage controlled: yes or no). An important outcome was absence of palpable pulse distal to the tourniquet (yes or no). Minor outcomes included time to cessation of bleeding (seconds), pressure applied to the skin by the tourniquet (mmHg), and the volume of blood loss (mL). Effectiveness, time to stop bleeding, and pressure were measured by the manikin, while pulse stoppage was measured by the user. Historically, a threshold has been used as a rough guide to tourniquet effectiveness such that when 80% or more of uses are successfully effective, then the tourniquet has reached a minimal level of reliability—a so-called 80% solution. Descriptive statistics were used to analyze results. For categorical variables, a chi-squared test was used and the likelihood ratio \(p \) values were reported (SAS Institute Inc.; www.sas.com). For continuous variables, a mixed model was used with user as a random effect, as there was a clear user difference in the results. Confidence limits were adjusted Wald 95% confidence intervals (CIs). Significance for results was established when \(p \) values were less than .05.

Results

The Role of the Windlass in Improvised Strap-and-Windlass Tourniquet Use

Without a windlass, improvised tourniquets failed to stop bleeding 79 times out of 80 tests (99%; 95% CI, 96%–100%). With a windlass, they stopped bleeding 180 times out of 180 tests (100%; 95% CI, 96%–100%). The windlass significantly increased the effectiveness of the tourniquet. The critical outcome was effectiveness (hemorrhage controlled: yes or no). An important outcome was absence of palpable pulse distal to the tourniquet (yes or no). Minor outcomes included time to cessation of bleeding (seconds), pressure applied to the skin by the tourniquet (mmHg), and the volume of blood loss (mL). Effectiveness, time to stop bleeding, and pressure were measured by the manikin, while pulse stoppage was measured by the user. Historically, a threshold has been used as a rough guide to tourniquet effectiveness such that when 80% or more of uses are successfully effective, then the tourniquet has reached a minimal level of reliability—a so-called 80% solution. Descriptive statistics were used to analyze results. For categorical variables, a chi-squared test was used and the likelihood ratio \(p \) values were reported (SAS Institute Inc.; www.sas.com). For continuous variables, a mixed model was used with user as a random effect, as there was a clear user difference in the results. Confidence limits were adjusted Wald 95% confidence intervals (CIs). Significance for results was established when \(p \) values were less than .05.
93%–100%) (Table 1). With a windlass, improvised tourniquets failed to stop bleeding 26 times out of 80 tests (32%; 95% CI, 23%–43%) (Table 1). The difference in proportions, 99% versus 32%, was statistically significant ($p < 0.0001$). However, neither group was reliably effective: Both with and without a windlass, improvised tourniquets did not achieve 80% effectiveness, the minimum threshold of reliable effectiveness.

<table>
<thead>
<tr>
<th>Windlass Used</th>
<th>Failed Hemorrhage Control</th>
<th>Total Tests, No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>79 (99)</td>
<td>80</td>
</tr>
<tr>
<td>Yes</td>
<td>26 (32)</td>
<td>80</td>
</tr>
</tbody>
</table>

Table 1 Hemorrhage Control Results by Windlass or No Windlass

Note: CI, confidence interval.

Pulse results were nearly the same as the hemorrhage control results in that the windlass played a major role in improvised tourniquet performance (Table 2). In tests with no windlass, attempts to stop the pulse failed every time (80 of 80 tests, 100%; 95% CI, 96%–100%). With a windlass, however, attempts to stop the pulse failed 31% (95% CI, 22%–42%) of the time (25 of 80 tests); the difference in proportions was significant ($p < 0.0001$). The similarity between results of pulse stoppage and hemorrhage control indicated that the two phenomena were closely related.

<table>
<thead>
<tr>
<th>Windlass Used</th>
<th>Failed Pulse Cessation</th>
<th>Total Tests, No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>80 (100)</td>
<td>80</td>
</tr>
<tr>
<td>Yes</td>
<td>25 (31)</td>
<td>80</td>
</tr>
</tbody>
</table>

Table 2 Pulse Stoppage Results by Windlass or No Windlass

Note: CI, confidence interval.

The mean time to bleeding cessation with no windlass was 59 seconds (95% CI, 54–64 seconds), and all but one test with no windlass ended in failure (79 of 80 tests; 95% CI, 93%–100%). On the other hand, the mean time to bleeding cessation with a windlass was 98 seconds (95% CI, 90–105 seconds), and 32% (26 of 80 tests; 95% CI, 23%–43%) of tests ended in failure. The difference in mean times was significant ($p < 0.0001$; 95% CI for difference, 28–48).

The mean pressure applied with no windlass was 46mmHg (95% CI, 35mmHg–58mmHg), whereas with a windlass, it was 114mmHg (95% CI, 92mmHg–136mmHg; $p < 0.0001$; 95% CI for difference, 42mmHg–92mmHg). Windlass use increased the pressure under the tourniquet compared to no windlass use.

The mean blood loss volume with no windlass was 415mL (95% CI, 383mL–446mL) and with a windlass was it was 648mL (95% CI, 596mL–700mL; $p < 0.0001$; 95% CI for difference, 172mL–294mL). When blood loss was measured as volume per time, the windlass tests bled at an average of 6.7mL/s (95% CI, 6.5mL/s–6.9mL/s) until bleeding was stopped, while the tests without a windlass bled at an average of 7.1mL/s (95% CI, 6.9mL/s–7.3mL/s) throughout the test period.

The Role of the User
There were interesting results that varied by user. Even with the user effect taken into account in the statistical methods, there was a very significant windlass use effect. For both users, the results of tests with no windlass were similar in that almost every test failed. However, tests with a windlass varied by user.

The user with more experience had faster tests (mean time, 70 seconds vs. 87 seconds, $p < .0001$; 95% CI for difference, 6–27 seconds). With these shorter times to stop bleeding, the mean blood loss was also less for the user with more experience (mean volume, 458mL vs. 604mL; $p < .0001$; 95% CI for difference, 78mL–213mL). However, the users differed greatly in pressure. The mean pressure applied by the experienced user was 15mmHg, while the less-experienced user applied a mean pressure of 145mmHg ($p < .0001$; 95% CI for difference, 111mmHg–148mmHg). Based on these results, we decided it was necessary to consider the user a random effect in the mixed statistical modeling when comparing windlass type for the factors of interest: time to stop bleeding, pressure, blood loss, and blood loss per second.

Discussion
The first major finding of the present study is that the performance of improvised tourniquets varied by design, with the strap-and-windlass method performing substantially better than the strap with no windlass. Tourniquets with a windlass had higher proportions of tests with hemorrhage control, higher proportions of tests with suitable pressures, and lower rates of blood loss. Mean blood loss volumes with a windlass were more because such tests were reliably effective and lasted longer while tests with no windlass were not reliably effective and ended earlier. Use of a windlass is historically intended to gain a mechanical advantage in tightening a tourniquet. As a matter of fact, this windlass role is not specific to tourniquets but applies to hauling and lifting.
Windlass in Improvised Tourniquet Use

The second major finding of the present study is that although a windlass worked when compared to no windlass, improvised tourniquet use overall was not reliable (windlass did not achieve 80% or higher effectiveness). The windlass did provide a mechanical advantage necessary to increase effectiveness, but the increase was insufficient to be reliable. The US Army experience in training tourniquet users illustrates the ineffectiveness problem with improvised tourniquets. Since 2001, the Department of Combat Medic Training, a key section of the US Army Medical Department’s Center and School, made an extensive effort to train medics in improvised tourniquet use. There was a time period when the old Second World War strap-and-buckle tourniquet was out of favor within the Army, and the current standard issue Combat Application Tourniquet (Composite Resources Inc.; http://composite-resources.com) was yet to be adopted. The improvised tourniquet technique of the strap-and-windlass design was the remaining candidate for use. However, trainers assessed the improvised tourniquet as unreliable in that it could not be made reliably effective in the hands of student medics (Donald Parsons, personal communication, 2013). The experience of the Army medics, of the present investigators, and of the first responders in Boston was similar in that improvised tourniquets are challenging to use well and are unreliable in hemorrhage control. The Boston police acquired commercial tourniquets for the 2014 Boston Marathon perhaps because of the poor performance of the improvised tourniquets. In 2015, Stewart et al. reviewed improvised tourniquet use and recommended their consideration for emergency use when no scientifically designed tourniquet is available, and Stewart et al improved awareness of a need for improvised tourniquets and helped legitimize research of improvised tourniquets. Based on the findings of the present study, a search for better designs of improvised tourniquets is recommended; the designs that are commonly recommended or used are now shown to be unreliable. Such recommendations and uses should be reconsidered.

The first minor finding from the present study was that the improvised strap-and-windlass design showed skin deformation during use that indicated it may be more painful than a well-designed tourniquet. When the user continued to wind the knot with a windlass, the strap often dragged a fold of skin into the crease of the knot in a swirled, layered fashion. This swirling applies forceful shearing to the skin, producing damage that may cause painful pinching. Tourniquet pain varies, in part, by the tourniquet design, and there is a historical record that indicates that poorly designed tourniquets such as improvised tourniquets are more painful than well-designed tourniquets. The experienced user in the present study has made thousands of tests of many different tourniquet designs and the results that appear most painful have been in the present study with the improvised strap-and-windlass design. The experienced user had treated many patients, while the inexperienced user was minimally trained in tourniquet techniques and had no healthcare experience. Because of this difference, when the expert used the windlass and the tourniquet pinched the skin severely, the user instinctively stopped the test early. The swirl avulsed fragments of silicone skin and ripped holes in the skin, which made the expert wince in empathy for the simulated casualty. The other user kept twisting the windlass until the bleeding stopped without regard for the skin deformity and damage. Without knowing the likely pain and iatrogenic injury that would have been caused if the subject was living, the less-experienced user had no such experience to limit him in twisting. Aggressively making improvised tourniquets more effective also made them less safe. The current understanding of the relationship between effectiveness and safety has not been developed fully.

The second minor finding of the present study was that tourniquets with no windlass were mostly venous tourniquets and not arterial tourniquets. The pressure applied to the skin by pulling the tee shirt tight was, on average, only 46mmHg without windlass use. This pressure is too low for a reliable arterial tourniquet but provides enough pressure to slow venous bleeding. The strap tourniquet with no windlass was modeled directly from firsthand accounts from Boston and failed 98% of the time, indicating that most such tourniquets used in Boston also likely failed to provide effective hemorrhage control. The present experiment provides clear, coherent, and concise evidence that the Boston technique was likely a venous tourniquet technique. This explanation at once explains the Boston findings, explains the experimental findings, and fulfills the purpose of the study. Education may mitigate the confusion of individual tourniquet users; improved awareness of venous versus arterial tourniquet use may aid users to become more effective.

The limitations of the present study are based in its experimental design. The results were gathered through an experiment and not through patient care. Therefore,
the results are based on an assumption that the manikin acted like a bleeding patient, but the manikin has no pain response. If the inexperienced user’s excessive force skewed the results toward higher effectiveness, then when patients feel pain, real-world results may be more like that of the experienced user. A controlled experiment is not as chaotic as mass casualty situations that entail other considerations such as human factors, various levels of healthcare, and tourniquet-user performance under stressful situations with associated distractions. Given these limitations, the current understanding of improvised tourniquets does not permit a definitive recommendation regarding the optimal design or best technique of use.

Future directions for research include study of other purposes, such as looking at more users to better understand user variability in skill level, looking at bystander capacity to use tourniquets, looking at learning curves of users with increasing experience by numbers of uses, and progressing to fill the many other empiric gaps in knowledge regarding improvised tourniquet use, such as which techniques are better, which device designs are better, and which training programs are better. A search for better designs of improvised tourniquets appears worthwhile. Better understanding of the effectiveness—safety relationship is needed. Once these gaps are filled by research, the user’s understanding of tourniquets and of their mechanical use in first aid may be improved to move current care toward best care.

In summary, the improvised strap-and-windlass tourniquet was more effective than the same strap tourniquet with no windlass, as a windlass allowed the user to gain mechanical advantage. However, the improvised strap-and-windlass tourniquet was only 68% effective and this rate did not achieve the minimum threshold of reliability of 80%.

Disclaimer

The opinions or assertions contained herein are the private views of the authors and are not to be construed as official or reflecting the views of the Department of Defense or US Government. The authors are employees of the US Government. This work was prepared as part of their official duties and, as such, there is no copyright to be transferred.

Disclosure

The authors declare no conflicts of interest.

References

Cadet Altamirano is with the US Corps of Cadets, US Military Academy, West Point, New York.

COL (Ret) Kragh is with the US Army Institute of Surgical Research, Joint Base San Antonio Fort Sam Houston, Texas. E-mail: john.f.kragh.civ@mail.mil.

Dr Aden is with the US Army Institute of Surgical Research, Joint Base San Antonio Fort Sam Houston, Texas.

Dr Dubick is with the US Army Institute of Surgical Research, Joint Base San Antonio Fort Sam Houston, Texas.