
CONFABULATION BASED REAL-TIME ANOMALY DETECTION
FOR WIDE-AREA SURVEILLANCE USING HETEROGENEOUS
HIGH PERFORMANCE COMPUTING ARCHITECTURE

SYRACUSE UNIVERSITY

JUNE 2015

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2015-139

 UNITED STATES AIR FORCE  ROME, NY 13441 AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose
other than Government procurement does not in any way obligate the U.S. Government. The fact that
the Government formulated or supplied the drawings, specifications, or other data does not license the
holder or any other person or corporation; or convey any rights or permission to manufacture, use, or
sell any patented invention that may relate to them.

This report is the result of contracted fundamental research deemed exempt from public affairs security
and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and AFRL/CA policy
clarification memorandum dated 16 Jan 09. This report is available to the general public, including
foreign nationals. Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2015-139 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE DIRECTOR:

/ S / / S /
GEORGE O. RAMSEYER MARK H. LINDERMAN
Work Unit Manager Technical Advisor, Computing

 & Communications Division
Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

JUNE 2015
2. REPORT TYPE

FINAL TECHNICAL REPORT
3. DATES COVERED (From - To)

JUN 2012 – DEC 2014
4. TITLE AND SUBTITLE

CONFABULATION BASED REAL-TIME ANOMALY DETECTION
FOR WIDE-AREA SURVEILLANCE USING HETEROGENEOUS
HIGH PERFORMANCE COMPUTING ARCHITECTURE

5a. CONTRACT NUMBER
FA8750-12-1-0251

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
62788F

6. AUTHOR(S)

Qinru Qiu

5d. PROJECT NUMBER
925F

5e. TASK NUMBER
OS

5f. WORK UNIT NUMBER
YR

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Syracuse University
CST 4-206
Syracuse, NY 13244

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RITB
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/RI
11. SPONSOR/MONITOR’S REPORT NUMBER

AFRL-RI-RS-TR-2015-139
12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited. This report is the result of contracted fundamental research deemed
exempt from public affairs security and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and
AFRL/CA policy clarification memorandum dated 16 Jan 09.
13. SUPPLEMENTARY NOTES

14. ABSTRACT
The feasibility of probabilistic inference based anomaly detection was determined, and those results were applied to wide
area surveillance. An abstract-level autonomous information processing framework was developed that provided
continuous monitoring and real-time anomaly detection over hundreds of square kilometer areas. The anomaly
recognition and detection (AnRAD) system was built as a cogent confabulation network. It represented road traffic using
a set of features extracted from a Ground Moving Target Indicator (GMTI) input stream and performed likelihood-ratio
testing on a set of key features to detect abnormal vehicle behavior. Due to its low learning and recall complexities, the
AnRAD supported incremental learning, which was proved to enhance the detection accuracy. A self-structuring
technique was developed that learned the structure of a probabilistic inference network from unlabeled data. Without any
assumption of the distribution of data, mutual information between features was leveraged to learn a succinct network
configuration. Compared to several existing anomaly detection methods, the proposed approach provided higher
detection performances and excellent reasoning capabilities. Massive parallelism was inherent to the inference model
and accelerated the detection process using state-of-the-art multicore processors including graphic processor units
(GPUs) and Intel Xeon Phi processors. Experimental results showed significant speedups, which can enable real-time
applications with high-volume data streams.
15. SUBJECT TERMS
Neuromorphic, anomaly detection , confabulation, high performance computing

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

SAR

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
GEORGE RAMSEYER

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

47

i

Table of Contents
List of Figures ... iii

List of Tables... iv

1 Summary .. 1

2 Introduction .. 2

2.1 Overview .. 2

2.2 Confabulation-based Network Architecture ... 3

2.3 Cogent Confabulation ... 3

3 Methods, Assumptions, and Procedures .. 5

3.1 Zone Partition ... 5

3.2 Confabulation Networks ... 7

3.2.1 Confabulation Network Self-structuring... 8

3.2.2 Key Node Hierarchy. .. 8

3.2.3 Feature Combination Pooling. .. 9

3.2.4 k-NN Node Reduction. ... 11

3.2.5 Knowledge Link Determinations. ... 13

3.3 Training .. 13

3.3.1 Manual Training.. 13

3.3.2 Automated Training. ... 16

3.4 Anomaly Scores .. 17

3.5 Incremental Learning .. 20

3.6 Accelerating AnRAD ... 21

3.6.1 Complexity Analysis. .. 21

3.6.2 Naïve Parallel Implementation. .. 22

3.6.3 In-memory Knowledge Bases. .. 23

3.6.4 Workload Balancing. .. 25

3.6.5 Extension to Xeon Phi Co-processor. ... 25

4 Results and Discussions ... 26

4.1 AnRAD for Traffic Monitoring of Manually Structured Data 26

4.2 AnRAD Accuracy ... 28

4.2.1 Abnormal Vehicle Behavior Detection. .. 28

ii

4.2.2 Network Data Intrusion Applications. .. 30

4.3 Incremental Learning Benefits ... 33

4.4 Performance Evaluations .. 34

5 Conclusions .. 36

6 References .. 37

APPENDIX .. 38

LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS ... 39

iii

LIST OF FIGURES

Figure 1. Zone Partitioning Algorithm .. 6

Figure 2. Partitioned Zones .. 6

Figure 3. Classification of Vehicle Records and Corresponding Lexicons 7

Figure 4. Hierarchical Lexicons Structure ... 9

Figure 5. Uncorrelated Components .. 10

Figure 6. Correlated Components .. 10

Figure 7. Knowledge Links among Lexicons .. 14

Figure 8. Neighbor Index ... 15

Figure 9. Confabulation Model Training and Recall ... 16

Figure 10. AnRAD Training and Recall Procedures ... 16

Figure 11. Workload Mapping ... 18

Figure 12. Anomaly Score Computation .. 19

Figure 13. Thread Pool for CPU Multi-threading .. 22

Figure 14. In-memory Knowledge Base Layout .. 24

Figure 15. Memory Usage of Individual Models ... 25

Figure 16. Anomaly Score of a Location Key Lexicon ... 26

Figure 17. Anomaly Scores of Speed Key Lexicons ... 27

Figure 18. Anomaly Scores of First Neighbor Pair Lexicons .. 27

Figure 19. Anomaly Scores of the Speed Lexicon for “Start/Stop” Events............................. 27

Figure 20. Anomaly Scores for (a) AnRAD and (b) Bayesian .. 28

Figure 21. Alarm Rate v. Score Threshold of Vehicle Monitoring ... 29

Figure 22. DARPA Dataset ROC Analysis .. 31

Figure 23. ADFA-LD Dataset ROC Analysis ... 32

Figure 24. False Alarm Rate v. Training Time .. 33

Figure 25. AUC Scores v. Training Sizes .. 34

Figure 26. Converting ECEF Data to Geodetic Format ... 38

iv

LIST OF TABLES

Table 1. Complexity Analysis .. 21

Table 2 Correlation between Anomalies and Outstanding Nodes ... 30

Table 3. Runtime Comparison Results .. 35

Approved for Public Release; Distribution Unlimited

1

1 SUMMARY
In this project probabilistic inference-based anomaly detection was investigated, and the

results were applied to wide area surveillance scenarios. The “Anomaly Recognition And
Detection” (AnRAD) system, which is a cogent confabulation network, was developed and
tested. This system included an abstract-level autonomous information processing framework
that provided continuous monitoring and real-time anomaly detection.

Massive parallelism accelerated this inference modeling system using state-of-the-art
multicore processors including Graphics Processor Units (GPUs) and Intel Xeon Phi processors.
Real-time surveillance applications with high-volume input data streams were modelled with
significant processing speedups.

Synthetic Aperture Radar (SAR) data from hundreds of square kilometer areas were analyzed
in wide area surveillance scenario testing. In this testing road traffic was represented by a set of
features that were extracted from a Ground Moving Target Indicator (GMTI) radar input stream.
Likelihood-ratio testing was performed on sets of key features to determine abnormal vehicle
behavior. The low-complexity learning and recall AnRAD system supported incremental
learning, which enhanced the system accuracy.

The AnRAD system was also generalized for the additional application of network intrusion
detection. A self-structuring technique was developed that determined a probabilistic inference
network structure from unlabeled data. Without relying on data distribution assumptions, mutual
information between features was leveraged to learn and produce succinct network
configurations. These results were compared to several other existing anomaly detection methods.

Approved for Public Release; Distribution Unlimited

2

2 INTRODUCTION
 In Section 2 is presented an overview of this topic and pertinent background information.

2.1 Overview
The advanced sensing and imaging capabilities of today’s Synthetic Aperture Radar (SAR)

systems enable wide-area surveillance by generating large volumes of data. There is an urgent
need for autonomous SAR information processing and data exploitation techniques to facilitate
the continuous monitoring and prompt anomaly detection of this data that may be collected from
areas of hundreds of square kilometers.

Confabulation theory offers a comprehensive detailed explanation of the mechanism of
thought in humans and other vertebrates. In terms of computational reasoning, the term
confabulation is also used to describe inductive reasoning via Bayesian networks. In this project,
we applied the Cogent Confabulation model [1] to develop an abstract-level autonomous
information processing framework that performed real-time anomaly recognition and detection.

Anomaly detection refers to techniques that identify patterns in data that do not conform to
the expected observations. This project focused on developing an abstract-level autonomous
information framework that would provide continuous monitoring of vehicle behaviors over a
very large area using unsupervised machine learning. Taking advantage of the advanced sensing
and imaging capabilities of today’s SAR systems, our framework focused on anomalous traffic
situation detection for wide area surveillance.

Several factors made building such a system challenging. It is very difficult to exactly define
what the “expected” vehicle behavior is. Once that is determined, then behavior that can be
differentiated from that is defined as abnormal vehicles behavior. Secondly, normal traffic
situations may evolve over time, so it is critical that a system is adaptive to such changes.
Thirdly, modeling the traffic behavior and designing the learning algorithm can be complex since
there may be thousands of vehicles within an area of interest. Last but not least, the requirements
to handle such a large volume of inputs and provide real-time monitoring impose stringent
computation performance requirements.

Several anomaly detection techniques [2] have been developed, including a kernelized one-
class Support Vector Machine (SVM) classifier [3]. Replicator neural networks [4] also provide
anomaly determinations by a measuring the “outlierness” of data. Nearest neighbor approaches
[5] assume that normal data occurs in dense neighborhoods, and that anomalies are more distant
from their neighbors. This has been improved by Huang [6] using a rank-based approach.
Bayesian network-based methods have been proposed by many researchers, including Sebyala
[7], as the basis for anomaly detection. Fu [8] determined traffic anomalies from camera
imagery by exploiting trajectory clustering, while Shen [9] developed a Gaussian mixture model.
These approaches neither systematically resolved the problem of monitoring very large areas nor
did they exploit the relationship between adjacent vehicles.

To solve these additional problems, here we developed and tested the autonomous Anomaly
Recognition And Detection (AnRAD) framework. This framework is based on cogent
confabulation [1], which is a probabilistic inference model that mimics human information
processing. It extracts the conditional probability among symbolic representations of features in

Approved for Public Release; Distribution Unlimited

3

an unsupervised environment. A large surveillance area is first partitioned into smaller zones that
are then independently processed. A Knowledge Base (KB) is built for each zone by feeding
traffic records into the properly modeled knowledge networks. When new traffic information is
received, anomaly scores are then calculated by means of the likelihood-ratio test for observed
events. Events with high anomaly scores are then marked as potential anomalies, and alarms are
sent to a human observer. The AnRAD requirements for the unique features of this platform are
summarized as follows:

1. The AnRAD system must be able handle a large volume of vehicle traces over large areas.
The surveillance area will be partitioned that is based on traffic density information extracted
from the training data. In this way, the computation load will be balanced, and the inference
model can be constructed more accurately.

2. The confabulation-based model had low complexity for both training and recall.
Therefore, the ANRAD system must even be trainable during operating time, which will enable
continuous improvement to the Knowledge Base (KB) quality.

3. The AnRAD system must be capable of capturing contextual information among vehicles
and their neighbors. Abnormal events such as tailgating that is caused by interactions among
vehicles must be detectable. Such events have not been considered in previous research.

4. The overall system must have a hierarchical architecture so that the work load in each
level of the hierarchy is inherently parallel. A Graphics Processing Unit (GPU)-based parallel
implementation will be developed to achieve computation acceleration of the AnRAD system.

2.2 Confabulation-based Network Architecture
The network architecture for confabulation-based anomaly detection is by definition specific

for each application. The neuron nodes (i.e. lexicons) and the synapses (i.e. knowledge links)
between them must be re-configured when applied to different applications. To build such
networks requires expert knowledge. This limitation makes the same confabulation-based
anomaly detection architecture inflexible in handling different datasets. To address this, a self-
structuring technique needed to be developed that would enable the automatic construction of the
confabulation architectural network. It must concretely learn from the data a succinct set of
nodes that represent the original features or combinations of the features.

Each node is to be associated with a lexicon, which will record the symbolic representations
of the possible inputs. The links between the nodes must also learn from the initial data. Given
the learned network configuration, further incoming data streams must then incrementally refine
the weights of the knowledge links. These weights will be the conditional probabilities between
the lexicon symbols. With this self-structuring technique the AnRAD framework will be
generalizable to a wider range of applications. In addition to road-traffic monitoring that was the
primary application for this effort, the AnRAD system was also applied to a network intruder
detection application.

2.3 Cogent Confabulation
Cogent confabulation is a bio-inspired computational model that mimics human information

processing. The AnRAD system is based on a cogent confabulation model that performs
probabilistic inferences. An observation is represented as a set of features. From these features
the basic dimensions are constructed that describe the specific application, e.g. vehicle speed and

Approved for Public Release; Distribution Unlimited

4

position coordinates. The observed attributes of a feature are referred to as symbols. A set of
symbols that describes the same feature forms a lexicon. The symbols in a lexicon are mutually
exclusive.

Knowledge Links (KLs) are established among the lexicons. The KLs are directed edges that
extend from the source lexicons to the target lexicons. Each KL is associated with a matrix. The
ijth entry of the matrix gives the conditional probability log�𝑝𝑝�𝑠𝑠𝑖𝑖�𝑡𝑡𝑗𝑗��between the symbol si in
the source lexicon and the symbol tj in the target lexicon. The knowledge matrix is constructed
during training by extracting and associating features that were extracted from the training data.

The cogent confabulation model has a close resemblance to a neural system. The symbols are
analogous to neurons, and KLs between the symbols are analogous to synapses between neurons.
Whenever an attribute is observed, the corresponding symbol (i.e. neuron) is activated, and an
excitation is passed to the other symbol(s)1 through the KLs2.

The excitation level (el) of a symbol t in lexicon l is calculated by summing up all of the
incoming KLs:

𝑒𝑒𝑒𝑒(𝑡𝑡) = ∑ (∑ 𝐼𝐼(𝑠𝑠) ln �𝑝𝑝(𝑠𝑠|𝑡𝑡)
𝑝𝑝0

� + 𝐵𝐵)𝑠𝑠∈𝑆𝑆𝑘𝑘𝑘𝑘∈𝐹𝐹𝑙𝑙 , (1)

where Fl denotes the set of lexicons that has connections to l, and Sk is a set that consists of
collections of symbols in lexicon k; I(s) is the firing strength of source symbol s, and it is set to 1
if s is observed without ambiguity; p0 is the minimum probability that is considered informative.
Parameter B is a constant called the band gap. It is 0 if none of the active source symbols in Sk
has KLs that are connected into t. The band gap ensures that the symbols with more KLs receive
higher excitation over those with fewer KLs.

 The excitation level of a symbol is actually its log-likelihood given the observed attributes in
other lexicons. The excitation levels can be used to resolve the observation ambiguities via the
maximum likelihood inference [10]. A confabulation model [11] has been applied to text
recognition, which demonstrates its ability to handle incomplete data and capture causal
relationships between observations. Here the excitation level enables the anomaly detection by
using the likelihood ratio test.

When compared to other schemes, the training and recall processes in the confabulation
model are simplified. Also, since the model is highly configurable, the system is easily
modifiable, which is a requirement of the system. It is also easily optimized for improved
performance. Finally, because training and recall share the same knowledge data structures, the
model offers unsupervised learning and online updating capabilities.

1 i.e. neurons
2 i.e. synapses

Approved for Public Release; Distribution Unlimited

5

3 METHODS, ASSUMPTIONS, AND PROCEDURES
The basic AnRAD system for wide area surveillance was designed with four functional areas:

zone partitioning, confabulation networks, training, and detection. Network self-structuring
enhanced the flexibility of the AnRAD framework and increased its applicability. The system
was accelerated through high performance computing parallel processing.

3.1 Zone Partition
The test SAR surveillance data were typically collected from hundreds of square kilometer

areas, and within these surveillance areas were observed thousands of vehicles. To provide real-
time learning and detection, an area was partitioned into multiple zones, and parallel processing
was then performed on each of the zones. This was designed in part to reduce the complexity of
learning and detection. Zone partitioning also resulted in the following benefits:

1. More accurate modeling that captured local details. The traffic situation varied from
location to location. Therefore it was not appropriate to describe the whole area by a
single model, since vehicles exhibited different behaviors in different zones. Zone
partitioning helped to improve the accuracy of the model.

2. Reduced model complexity and memory requirement. The number of possible
attributes of certain features, e.g. vehicle coordinates, was directly proportional to the
size of the monitoring area. Therefore zone partitioning effectively reduced the
number of symbols in a lexicon, and this reduced the complexity of the confabulation
model.

3. Enabled parallel processing. Each detection zone was trained and operated as an
independent unit. The workload was easily parallelized and the knowledge base could
be stored in a distributed manner.

The number of vehicles in a partitioned zone determined the computation workload of the
training and recall processes. The partitioning algorithm that was developed is shown in Figure 1.
This algorithm divided the area into zones that were based on the average traffic density, and
ensured that none of the detection zones had more than N vehicles appearing in the same time
slot (frame) in the training set. The resulting zones were organized as a sibling tree structure.
Each parent node was associated with four child zones, which were derived by splitting the
parent zone into four equally-sized patches.

Approved for Public Release; Distribution Unlimited

6

1 Find the MAX and MIN values of vehicle coordinates
2 Define the root zone and set Z = {root}
3 For each time slot t in the training set
4 reset vehicle_count of each zone in Z
5 For each record x at time slot t
6 Find zone z that x.location falls into
7 if z.vehicle_count exceed limit N
8 Split z into 4 child zones z[1-4]
9 Update vehicle_count of z[1-4]
10 Update set Z
11 Else
12 z.vehicle_count++
13 End if
14 End for
15 End for

Figure 1. Zone Partitioning Algorithm
An example of the resulting zone partitioning is shown in Figure 2. Each zone was designed

to have a “buffer area”, which are the margins of a zone that overlap with its adjacent zones.
Vehicles in these buffer areas were not tested for anomaly detection, but were used to generate
supporting information, such as the neighbors to the target vehicles and the previous records of
the current target vehicles. This allowed the system to also consider vehicles about to enter or
that have already exited a zone.

Figure 2. Partitioned Zones

Approved for Public Release; Distribution Unlimited

7

3.2 Confabulation Networks
A confabulation model was manually built for each of the partitioned zones. The first task

was to define the lexicons, which are features that were used to describe the vehicle behavior in
traffic. In the anomaly detection problem, the behavior of a vehicle was considered within the
context of its neighbors during the current and previous observations. When all of the
observations were made in the same time slot as a frame, the detection involved three
consecutive frames. Four classes of objects were then observed in a scene: Target, Neighbor,
Auxiliary Center, and Supporter.

Each vehicle that appeared in a detection zone at frame t was considered a target. The ten
vehicles closest to the target in the same frame were defined as neighbors. Based on the current
location and speed of target, its location was estimated in the previous frames. The estimated
targets in frames t-1 and t-2 were referred as the auxiliary centers. The nearest ten neighbors of
the auxiliary center in the corresponding frame were called the supporters. In Figure 3 is shown
an example of the four types of vehicle records. A scene was generated for each target
observation within the context of neighbors, auxiliary centers and supporters.

Figure 3. Classification of Vehicle Records and Corresponding Lexicons

Approved for Public Release; Distribution Unlimited

8

Three lexicons were used to describe the basic attributes of a target vehicle: Target Location
(L), Target Velocity (V), and Target Size (S). The target location was expressed in geographic
latitude and longitude and was discretized to levels of approximately ten meters. The target
speed was expressed as the combination of the ground speed and the direction. The target size
was discretized to reflect the five different vehicle categories:

1. Sedan,
2. Truck,
3. SUV,
4. Moving Truck, and
5. 18-wheeler Truck.

3.2.1 Confabulation Network Self-structuring.
Our experimental results showed that the AnRAD was a promising approach to detect

anomalous streaming data, but its performance essentially depended on the selection of key
lexicons and their incoming links. To construct the confabulation network required application
specific knowledge. Expert knowledge will not always be available, and it does not always
ensure optimal network structure. Self-structuring then plays an important role to improve the
framework’s generality and applicability.

In the AnRAD framework, inputs were represented as N streams {{𝑥𝑥11, 𝑥𝑥12, … , 𝑥𝑥1𝑡𝑡 ,⋯ } ,
{⋯ , 𝑥𝑥2𝑡𝑡 ,⋯ }, ⋯ , {⋯ , 𝑥𝑥𝑁𝑁𝑡𝑡 ,⋯ }} generated from the certain distribution D. Here 𝑥𝑥𝑛𝑛𝑡𝑡 represented a
record tuple of the nth stream at time frame t. It consisted of Q features denoted by 𝑥𝑥𝑛𝑛𝑡𝑡 (𝑞𝑞). In the
self-structuring stage, a span of the data at frame [0,𝑇𝑇𝑔𝑔] was sampled and used to construct the
confabulation network G that best described the application. After the network was constructed,
new streams at (𝑇𝑇𝑔𝑔,𝑇𝑇0] were used to train the initial knowledge base 𝐾𝐾𝐾𝐾𝐺𝐺

𝑇𝑇𝑔𝑔:𝑇𝑇0 . The KB was
applied to streams at (𝑇𝑇0,⋯) to generate network anomaly scores for each frame. At the same
time, the new incoming data continuously refined the knowledge base 𝐾𝐾𝐾𝐾𝐺𝐺

𝑇𝑇𝑔𝑔:𝑡𝑡 . Typically, a
moving window with size W, {𝑥𝑥𝑛𝑛𝑡𝑡−𝑊𝑊,⋯ , 𝑥𝑥𝑛𝑛𝑡𝑡−1, 𝑥𝑥𝑛𝑛𝑡𝑡 } was applied to the input stream at frame t to
form the scene. In the next subsection the generation of network G and refinement of knowledge
base 𝐾𝐾𝐾𝐾𝐺𝐺

𝑇𝑇𝑔𝑔:𝑡𝑡 are discussed.

3.2.2 Key Node Hierarchy.
The confabulation model captured the first order relationships between features. Higher order

relations were considered by adding new lexicons corresponding to the feature combinations.
The final structure of confabulation network consisted of hierarchical lexicons that where higher
level nodes that were formed as the compositions of lower-level nodes, as shown in Figure 4.
Lexicons at the bottom layer represented single primary features. These primary features
provided a basic description of the input data. The higher level lexicons assembled multiple
primary features, and represented more abstract meanings and combinational patterns. The
layered structure provided direct mapping from the feature space to nodes in the knowledge
graph, but its complexity increased exponentially with naive implementation. Since the
confabulation network worked at the symbolic level, continuous features were discretized before
mapping to symbols in the lexicons. Given the composition of features, higher-level lexicons had
coarser discretization intervals than the lower level lexicons.

Approved for Public Release; Distribution Unlimited

9

Figure 4. Hierarchical Lexicons Structure

Note that each input data point was a segment of the data stream within a time span. The
primary features may also have had a timestamp. The composition of features were not just
spatial, but also temporal. For example, there may have been a feature composition:

〈𝑥𝑥𝑛𝑛𝑡𝑡 (𝑞𝑞), 𝑥𝑥𝑛𝑛𝑡𝑡 (𝑞𝑞′)〉, 𝑞𝑞, 𝑞𝑞′ ∈ 𝑄𝑄, or 〈𝑥𝑥𝑛𝑛𝑡𝑡 (𝑞𝑞),𝑥𝑥𝑛𝑛𝑡𝑡−∆𝑡𝑡(𝑞𝑞)〉 (2)

 ∆𝑡𝑡 < 𝑊𝑊. (3)
The temporal relations among them were learned and checked.

A question raised here was which feature combinations should be included. If the model
simply considered all of the possibilities, it would quickly scale to an intractable size as Q and W
increased. This is both unnecessary and computationally wasteful. Another option was to rely on
traditional feature reduction techniques, such as principal component analysis. Although these
techniques have long been studied, they either required supervised learning or destroyed the
direct relation (one-to-one mapping) between feature space and lexicon space. Furthermore, none
of the previous techniques have been applied to select feature combinations. A pooling and
reduction procedure was used here that was applied to both spatial and temporal domains to
construct the key lexicon’s hierarchy. A link selection algorithm was also developed to establish
the knowledge links between the lexicons.

3.2.3 Feature Combination Pooling.
Feature pooling is when primary features are complemented with a set of composite features,

and this captures the higher order relations. The pooling stage generates a set of lexicon
candidates, which can then be reduced, as discussed in the next section.

For a simple two-feature combination; the first question asked is whether such a combination
will provide more information for anomaly detection than the individual feature components.
Consider the example scatter plots in Figures 5 and 6, where the X and Y axes represent the
dimensions of the two primary features in arbitrary units.

Approved for Public Release; Distribution Unlimited

10

Figure 5. Uncorrelated Components

Figure 6. Correlated Components
If the two features are distributed independently in their feature space, as are the blue dots in

Figure 5 a potential outlier (the red dot) in this subspace is detected by considering only one of

Approved for Public Release; Distribution Unlimited

11

the components. Therefore the combinations of non-correlated features do not offer additional
information. However, if the two features are sufficiently relevant, as shown in Figure 6, the red
dot, which is originally indistinguishable from any single axis, is detected by their combination.
Based on this observation, the pooling procedure was designed to be a combination of highly
correlated features.

To extend this concept to more general cases, the feature distance was defined as 𝑑𝑑�𝑞𝑞𝑖𝑖, 𝑞𝑞𝑗𝑗� ∈
[0, 1]. The shorter the distance the more relevant were the two features 𝑞𝑞𝑖𝑖 and 𝑞𝑞𝑗𝑗 . Since the
framework had to be applicable to both continuous and categorical data, the normalized mutual
information was adopted as the distance measure. For combination Ql consisting of two or more
features, a simple relevancy test was performed to determine whether it should be included in the
lexicon candidate set:

𝑅𝑅𝑅𝑅(𝑄𝑄𝑙𝑙) = ∏ 𝐼𝐼�𝑑𝑑(𝑞𝑞𝑖𝑖, 𝑞𝑞𝑗𝑗) < 𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�𝑞𝑞𝑖𝑖,𝑞𝑞𝑗𝑗∈𝑄𝑄𝑙𝑙 (4)

This test required that all of the component pairs in Ql were within a constant proximity
distance dprox to each other. Algorithm 1 pooled the features for the lexicon generation. The
algorithm first added all of the single features into the candidate set. Then in the second for-loop
each subset of Q whose cardinality was less than max_order was inspected. If the subset passed
the relevancy test, a new lexicon candidate was added to CS. Not all of the candidates were key
lexicons whose anomaly score was calculated. A reduction stage was also used to select the key
lexicons from the candidate set.

3.2.4 k-NN Node Reduction.
Although the pooling process excluded most of the irrelevant combinations, the number of

possible candidates was still large when Q had many features. Therefore, a reduction procedure
was used to further compress the candidate set that generated the key lexicons. The redundancy
among candidates selected in the pooling stage was removed during this reduction. Because
labels were not available in the training set, a similarity-based method [12] was modified to
preserve the most representative combinations.

Approved for Public Release; Distribution Unlimited

12

The general idea of the reduction procedure was to cluster the candidate feature combinations
by similarities, and then select one representative from each of the clusters. Again, normalized
mutual information was employed to measure the distance 𝑑𝑑(𝑄𝑄11,𝑄𝑄12) between the
combinations. The clustering process was accomplished by k-NN (k nearest neighbor) principle.
When the most compact candidate was selected from a cluster, its neighbors were discarded.
This operation was repeated until the remaining candidates no longer formed a cluster. The
reduction procedure is described in Algorithm 2.

The algorithm first initialized the set KEY with all of the candidates. Then it calculated the
distances for each combination to its nearest neighbors. The center of the compact cluster’s k-
distance was selected as the upper limit of the cluster radius. Then in the following while-loop,
the combination with the minimum k-distance was selected, and its K neighbors were removed
from the KEY set. Then the K value was reduced until the next cluster’s radius was shorter than
the radius limit. The neighbor-removing process repeated until K reached 1. The remaining
candidates in KEY set were the final key lexicons selected.

Although the features in Q were used as an example to explain the pooling-reduction
procedure, the concept can also be applied to temporal domain. When the data inputs were not
single points in the feature space, but multi-variant time series, the definition of anomalies can be
extended to historical patterns. To capture such potential outliers, the key lexicons must include
not only the different features, but also the feature projections in different frames. This can be
accomplished by performing feature-wise selection followed by temporal selection.

If multiple frames were considered after the key lexicons were determined, then each lexicon
along with its historical readings formed a new temporal feature set 𝑄𝑄𝑙𝑙𝑊𝑊 = {𝑄𝑄𝑙𝑙0,𝑄𝑄𝑙𝑙−1,⋯ ,𝑄𝑄𝑙𝑙−𝑊𝑊}.
The same pooling-reduction algorithms were then directly applied on these feature sets to
generate informative and succinct key lexicons. A key lexicon was represented as a two-
dimensional pattern:

 𝑅𝑅𝑙𝑙 ~ �(𝑞𝑞𝑙𝑙1 , 𝑞𝑞𝑙𝑙2 ,⋯ , 𝑞𝑞𝑙𝑙𝑖𝑖 ,⋯)−𝑡𝑡1 , (⋯ , 𝑞𝑞𝑙𝑙𝑖𝑖 ,⋯)−𝑡𝑡2 ,⋯ , (⋯ , 𝑞𝑞𝑙𝑙𝑖𝑖 ,⋯)−𝑡𝑡𝑗𝑗 ,⋯� (5)

The number of correlated frames W was usually much smaller than the feature number in Q,
so that the reduction process was sometimes omitted in the temporal selection.

Approved for Public Release; Distribution Unlimited

13

3.2.5 Knowledge Link Determinations.
Now that the key lexicons were identified, the next step was to find the supporting lexicons

that could be used to infer the key lexicon symbols. To do so a max-similarity, min-redundancy
principle was followed. For instance, to infer the shape of an object, touching was preferable
compared to color (max-similarity). But if touching was already selected, weighting might not be
necessary as they share some information (min-redundancy). Generally, we wanted to maximize
the correlation between key lexicons and their supporting lexicons, and meanwhile, minimize the
correlation among the supporting lexicons that were connected to the same key lexicon. The
supporting lexicons were chosen from the primary features since the key lexicons had already
handled the combinational patterns.

Heuristic Algorithm 3 defined a group of features at certain time offset, {𝑞𝑞−𝑡𝑡, 𝑞𝑞 ∈ 𝑄𝑄, 𝑡𝑡 < 𝑊𝑊}
which inferred the observation at a key lexicon Rl. The algorithm first sorted the supporting
features by their distances to the target key lexicon. Then it traversed the sorted features, added a
primary feature to the supporter set only when: (1) it was not one of the components of the key
lexicon; (2) it was highly correlated with the key lexicon; and (3) it had a low correlation with
supporting features that had already been selected for the same key lexicon. At this point the
confabulation model was properly configured, and the training streams were then processed to
build the KB.

3.3 Training

3.3.1 Manual Training.
Two lexicons were associated with each auxiliary center, the center displacement (ΔL-t) and

the center acceleration (ΔV-t), at frame t = 1, 2. The center displacement was the distance
between the target and the auxiliary center, and was represented by the displacement in latitude
and longitude. It described how far the target moved in the last 1 and 2 frames. The center
acceleration specified the change of velocity (speed and direction) of the target during the last 1
and 2 frames.

Approved for Public Release; Distribution Unlimited

14

Two lexicons were associated with each neighbor or supporter. The relative location lexicon3
gave the relative position of the neighbor (or supporter) with the respect to the target. The
velocity lexicon (denoted as Vi for the ith neighbor, and Vi

-t for the ith supporter in frame -t)
specified the velocity of the neighbor (or supporter) as a combination of the speed and direction.

Three lexicons were used for pairwise attributes that described the relation between the target
and each of its neighbors. Pairwise location lexicon (Li

~) specified the distance (in meters) and
direction (in degrees, relative to neighbor’s moving direction) between the target and the ith
neighbor. Pairwise speed lexicon (Vi

~) specified the target’s absolute speed (in m/s) and relative
direction (in degrees) with respect to the neighbor’s direction. Pairwise speed change lexicons
(ΔVi

~) captured the target relative speed (in m/s) and relative direction (in degrees) with respect
to the ith neighbor.

In total 100 lexicons (i.e. features) were used to describe the status and context of a target
vehicle. The set of observed attributes of these features formed a sentence, which was the basic
input for the confabulation training and recall processes. Every vehicle in the detection zone was
treated as a target; and a scene was created for each one of them.

In Figure 7 is shown the overall confabulation model with lexicons and the knowledge links
that connected them. Lexicons S, L, V and Li

~, where 1≤i≤10, were represented using dashed
circles. Each one of them corresponds to a general category of abnormal behavior of the target
vehicle, such as abnormal location or speeding, inconsistency between vehicle size and its status,
and abnormal interactions with neighbors. We refer these lexicons as the key lexicons and others
as the regular lexicons. Only the excitation levels of the key lexicons were evaluated. All other
lexicons provided supporting context for them. A key lexicon has incoming knowledge links
from all of the other lexicons, while a regular lexicon has outgoing knowledge links.

Figure 7. Knowledge Links among Lexicons

3 denoted as ΔLi for the ith neighbor, and ΔLi
-t for the ith supporter in frame -t

Approved for Public Release; Distribution Unlimited

15

Figure 8. Neighbor Index

In previous confabulation models [1] [11] ten neighbor lexicons were necessary. In Figure 8
is presented the neighbor index that was determined for our data. A target vehicle only had a
small number of neighbors, which was usually less than five. Therefore, the neighbor lexicons
with the most indices had the smallest training data. Because of this, this work developed a new
technique called “shared links”

The amount of available training data directly affected the accuracy of the model. Meanwhile
neighboring vehicles with similar behavior were associated more often during multiple times of
observation, because the neighbors were mapped to lexicon indices-based on their relative
distance to the target. Our shared links model overcame these problems by letting the knowledge
links initiated from the neighbor lexicons share the same knowledge matrix. In other words, we
did not distinguish neighbors. In this way the training data for the neighbors all contributed to the
same KB. This also reduced the false alarm rate. Moreover, the shared link knowledge helped to
reduce the size of KB, since one matrix was maintained for multiple knowledge links.

Approved for Public Release; Distribution Unlimited

16

Figure 9. Confabulation Model Training and Recall

3.3.2 Automated Training.
The automated confabulation algorithm consisted of two procedures: unsupervised learning

(training) and anomaly detection (recall). Both procedures operated on the same KB. In Figure
9 is shown the task flow diagram of the training and recall procedures. The observed traffic data
were first preprocessed by zone partitioning and feature extraction. The observed lexicon
attributes were collected and assembled into a scene. Each observed attribute was mapped into a
globally unique reference number called a symbol using two-level hash functions. For a given
lexicon, all of the observed attributes during the training process formed the candidate set. After
preprocessing each knowledge link, the co-occurrences of the source and target symbols were
counted, and the log-conditional probabilities were calculated. Lastly, the knowledge matrices
were stored as KBs. These steps are summarized in the Training Section in Figure 10.

Training
1 Reset all KLs and lexicons
2 For each input sentence T
3 Map elements in T into reference numbers
4 For each symbol oi in T
5 Add oi to the candidate set of lexicon[i]
6 For each symbol oj in T
7 If (i != j), KL[oi, oj].count++
8 End for
9 End for
10 End for
11 Finalize value of each KL and store into KB

Recall
1 For each input sentence T
2 Map elements in T into reference numbers
3 For each target key lexicon l and observation t
4 Calculate el(t) by Eq. (1)
5 For each candidate’s tj in lexicon[l], find el(tbest)
6 End for
7 Calculate nas() by Eq. (2) (3)
8 If bucket overflows, flag anomaly on the target
9 End for
10 Output anomaly reports

Figure 10. AnRAD Training and Recall Procedures

Approved for Public Release; Distribution Unlimited

17

The same preprocessing and feature extraction training procedures were performed during a
recall. The excitation level el of each key lexicon was calculated, which gave the likelihood
value of the observation given the context of the target and neighbors. For each key lexicon the
excitation levels of other symbols in its candidate set were also calculated, and the symbol
𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏with the highest excitation level was obtained. An anomaly score as(l,t) was defined based
on the likelihood ratio test as shown in Equation (6).

 𝑎𝑎𝑎𝑎(𝑙𝑙, 𝑡𝑡) = 𝑒𝑒𝑒𝑒(𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)−𝑒𝑒𝑒𝑒(𝑡𝑡)
𝑒𝑒𝑒𝑒(𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) (6)

A high anomaly score for an observed symbol t indicated that the likelihood of t was much
lower than the likelihood of a typical observation. The score reflected how low the observed
symbol’s cogency was under the given context. The anomaly score of all key lexicons were then
weighted by symbol’s prior probability, which was then consolidated into a network anomaly
score 𝑛𝑛𝑛𝑛𝑛𝑛(𝑣𝑣𝑙𝑙=1⋯𝐿𝐿) that was calculated as the following:

𝑛𝑛𝑛𝑛𝑛𝑛(𝑣𝑣𝑙𝑙=1⋯𝐿𝐿) = ∑ 𝑎𝑎𝑎𝑎𝑙𝑙
∗(𝑣𝑣𝑙𝑙)𝐿𝐿

𝑙𝑙=1
𝐿𝐿

, (7)

𝑎𝑎𝑎𝑎𝑙𝑙∗(𝑣𝑣 ∈ 𝑆𝑆𝑙𝑙) = [𝑒𝑒𝑒𝑒(𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)+𝑝𝑝𝑝𝑝(𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)]−[𝑒𝑒𝑒𝑒(𝑣𝑣)+𝑝𝑝𝑝𝑝(𝑣𝑣)]
𝑒𝑒𝑒𝑒(𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)+𝑝𝑝𝑝𝑝(𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) , (8)

where 𝑝𝑝𝑝𝑝(𝑣𝑣) was the log prior probability of symbol v, L was the number of key lexicons, and
the output score was within the range [0, 1].

3.4 Anomaly Scores
The AnRAD framework and the baseline methods generated anomaly scores for each input

frame. A leaky bucket algorithm [13] with a capacity 2.0 and leak rate of 0.5 was used as the
decision stage for the data streams. Whenever the score generated by the above method exceeded
its threshold, it filled 1 unit into the bucket. The system reported anomalous when the water
overflowed the bucket.

Approved for Public Release; Distribution Unlimited

18

Figure 11. Workload Mapping

The kernel for computing the anomaly score was divided into two stages, the excitation
mapping and the score reduction, as shown in Figure 11. The mapping stage calculated the
excitations of the symbols for a key lexicon, and stored them in the shared memory buffer.
Consider a key lexicon Rl with symbol set Sl and supporting lexicons {𝑅𝑅𝑘𝑘|𝑘𝑘 ∈ 𝐹𝐹𝑙𝑙}.

When the kernel received a new input, it used the input supporting symbols {𝑡𝑡|𝑡𝑡 ∈ 𝑆𝑆𝑘𝑘} to
locate the activated strips from the knowledge link LIL. Such a strip contained all the conditional
probabilities for one supporting symbol t, {𝑝𝑝(𝑠𝑠|𝑡𝑡)|𝑠𝑠 ∈ 𝑆𝑆𝑙𝑙}. At this point, if a thread was to locate
a specific 𝑝𝑝(𝑠𝑠|𝑡𝑡), the entire strip would need to be searched, which would have degraded the
cache performance. Thus, a reversed approach was used in which the threads read consecutive
values from the strips and accumulated these values atomically to the key-symbol buffer. To
prevent control divergence, the strip-lengths were warp aligned so that the threads of a warp
follow the same control flow. The cache performance was optimized since the strip access
patterns were continuous.

The same preprocessing and feature extraction training procedures were performed during a
recall. The excitation level el of each key lexicon was calculated, which gave the likelihood
value of the observation given the context of the target and neighbors. For each key lexicon the
excitation levels of other symbols in its candidate set were also calculated, and the symbol
𝑡𝑡𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒with the highest excitation level was obtained. An anomaly score as(l,t) was defined based
on the likelihood ratio test as shown in Equation (6).

Approved for Public Release; Distribution Unlimited

19

Figure 12. Anomaly Score Computation

The excitations of the key symbols Sl were stored in the shared memory for efficient atomic
addition and inter-thread operations. If a lexicon had more symbols than the pre-defined shared
memory usage of Umax > 2048, then it was partitioned into multiple blocks, as shown in Figure
12. A block dimension of 256 was jointly chosen based on the Umax for full occupancy. The
atomic addition did not cause performance degradation: when a lexicon had many symbols, the
possibility that multiple threads would write the same symbol was low; if the lexicon had very
few symbols, the computation of this lexicon itself was less time consuming, and hence didn’t
limit the overall performance.

The same preprocessing and feature extraction training procedures were performed during a
recall. The excitation level el of each key lexicon was calculated, which gave the likelihood
value of the observation given the context of the target and neighbors. For each key lexicon the
excitation levels of other symbols in its candidate set were also calculated, and the symbol
𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏with the highest excitation level was obtained. An anomaly score as(l,t) was defined based
on the likelihood ratio test as shown in Equation (6).

In the reduction stage, the excitations of the observed key symbol were stored first. Then all
the excitations buffered in the shared memory were compared and reduced to find the most likely
symbol 𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡∈𝑆𝑆𝑙𝑙. The anomaly score was calculated using the excitation of this reference symbol
and that of the real input symbol based on Equation (2). In lightly loaded applications, the node
scores from blocks was transferred back to the host for calculating the network anomaly score.
Alternatively, another kernel was launched to further reduce the scores across key lexicons when
the model was more complicated or there were several concurrent input streams. The formal
representation of the reduction process is shown in Algorithm 5.

Approved for Public Release; Distribution Unlimited

20

3.5 Incremental Learning
Given the configured confabulation network, a KB was constructed for AnRAD from the

input data streams. The learning process was to determine the weight of the knowledge links, i.e.,
the p(s|t) values in Equation 1. This was achieved by collecting the statistics of the co-
occurrences of the linked lexicon symbols. The probability was then calculated as 𝑝𝑝(𝑠𝑠|𝑡𝑡) =
𝑐𝑐𝑐𝑐𝑐𝑐(𝑠𝑠, 𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡)⁄ , where 𝑐𝑐𝑐𝑐𝑐𝑐(𝑠𝑠, 𝑡𝑡) was the number of co-occurrences of the source s and the
target t, and 𝑐𝑐𝑐𝑐𝑐𝑐(𝑠𝑠, 𝑡𝑡) was the occurrence of the target symbol t.

For probabilistic inference applications the above method worked fine because larger data
samples generally gave more information of the most likely symbols. However, this was not true
with anomaly detection, because the unlikely symbol was not necessarily made more
distinguishable when the sample size increased. Zimek [14] determined that smaller datasets
outperformed larger ones, and that constantly incrementing the co-activation counters can
degrade the detection performance. Therefore, our framework used a mechanism named
“episodic training”, in which the co-activation counters were reset after time period 𝑇𝑇𝑒𝑒𝑒𝑒. Then
the excitation stored in the KB was updated by merging the new one into the previous episodes
using the following equations:

 𝑒𝑒𝑒𝑒𝐸𝐸+1(𝑠𝑠, 𝑡𝑡) = 𝑒𝑒𝑒𝑒𝐸𝐸(𝑠𝑠,𝑡𝑡)+𝑙𝑙𝑙𝑙[𝑝𝑝(𝑠𝑠|𝑡𝑡)/𝑝𝑝0]
𝐸𝐸+1

, (9)

𝑒𝑒𝑒𝑒0(𝑠𝑠, 𝑡𝑡) = ln (𝑝𝑝(𝑠𝑠|𝑡𝑡)
𝑝𝑝0

), (10)

Approved for Public Release; Distribution Unlimited

21

where 𝑒𝑒𝑒𝑒𝐸𝐸 was the stored excitation at episode E. When equation (6) was substituted into
equation (1), it resulted in:

 𝑒𝑒𝑒𝑒(𝑡𝑡) = ∑ �∑ [𝐼𝐼(𝑠𝑠)𝑒𝑒𝑒𝑒(𝑠𝑠, 𝑡𝑡)] + 𝐵𝐵𝑠𝑠∈𝑆𝑆𝑘𝑘 �𝑘𝑘∈𝐹𝐹𝑙𝑙 . (11)

Before the first reset, i.e. ex0, the result was the same as equation (1). This updating function
resulted in an ensemble of temporal sub-samples.

3.6 Accelerating AnRAD
In terms of the computation recall complexity, AnRAD is similar to other conventional

anomaly detection approaches. However, the AnRAD architecture, if parallelized, would
significantly accelerate its processing speed. This section addresses the complexity of
accelerating the AnRAD algorithm.

3.6.1 Complexity Analysis.
Accelerating the algorithm required an understanding of the processing bottleneck. The

Confabulation (CFB) method was compared to some of the standard anomaly detection
algorithms, including the incremental Local Outlier Factor (LOF), the Replicator Neural
Network (RNN), and the Cross-Feature Analysis (CFA). Their computing time and the
complexity to process a single Defense Advanced Research Projects Agency (DARPA) data
stream are given in Table 1.

Table 1. Complexity Analysis

(Q – number of features; N – number of training samples; T – neural network iterations; S – neural network connections; H –

decision tree height; L– key lexicon numbers; D – average key symbols; F – average knowledge link numbers)

The programs are all single threaded without intentional algorithmic optimizations. In terms
of training, CFB is much faster than the others because at each frame it only updates a single
entry of the affected knowledge link tables. Therefore it allowed real-time processing and
incremental training without much optimization. However, the recall of confabulation was
merely faster than the incremental LOF, whose complexity scaled with the volume of the
training samples. Fortunately, the confabulation network has layered and massive parallel
structure. And this can be exploited for performance acceleration with the help of today’s
multicore processors.

According to anomaly score equations (1) and (2), the complexity of detecting one instance is
O(LDF), where L is the number of key lexicons, D is the average number of symbols in one key
lexicon, and F is the average number of knowledge links connected to one symbol. At node level,
each key lexicon worked as an independent test, so L could be parallelized on multiple
computing elements, e.g. Compute Unified Device Architecture (CUDA) blocks. At the

Approved for Public Release; Distribution Unlimited

22

symbolic level, D and F induced the accumulation of link values from the knowledge tables to
the candidate symbols. These operations were parallelized by either creating one CUDA thread
for each knowledge link or by using vector processing.

In term of the storage space complexity, the confabulation model was dominated by O(LFB),
in which B was the average size of the knowledge link matrices. The actual memory requirement
could be lower. For example, if lexicon R1 and R2 had connections to each other, then they could
mirror the knowledge link. Also, features such as “shared links” could be adopted to reduce the
KB size. The main optimization relied on B. Because most of the knowledge links were sparse
matrices, a compact storage format was preferable.

3.6.2 Naïve Parallel Implementation.
The straightforward implementation design mapped each key lexicon to its own thread.

Multiple threads were then run on a state-of-the-art multi-core CPU. This was feasible because
the key lexicon computations were independent, and thus did not require significant
synchronization. Also, there were usually a few dozen key lexicons, so the workload was
sufficient to achieve high occupancy. As shown in Figure 13, a thread pool was allocated with a
number of simultaneous threads. The system assigned key-lexicon computations to the available
threads, or waited until all of the worker threads were occupied. The pool size was no less than
(2 ∗ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛_𝑐𝑐𝑐𝑐𝑐𝑐_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐), so context switching was prevented. However, the limited number of
available CPU cores prevented us from fully exploiting the structural parallelism of AnRAD.

Figure 13. Thread Pool for CPU Multi-threading

GPUs also provided a potential option to fully parallelize the key-lexicon computations. Most
GPUs may have more cores than most state-of-the-art CPUs. A simple design directly moved the
aforementioned CPU threads to GPU cores using kernel Algorithm 4. In this implementation,
each CUDA thread handled one key lexicon, and distinct CUDA blocks processed concurrent
input streams.

Approved for Public Release; Distribution Unlimited

23

This naïve acceleration had two major problems. First of all, it had inefficient KB

management. In the CPU implementation the knowledge link matrices were stored in hash tables
to provide near constant lookup time. However, on the GPUs concurrent random accesses
affected the memory bandwidth and induced stalls. Secondly, it caused imbalanced workloads
among threads. The number of symbols in key lexicons was determined by the nature of the
targeted application and varied significantly. Thus, different key lexicons may sometimes
introduce different workloads. Such workload imbalance produced serious control divergence,
since the CUDA threads were executed in warps. If the threads had to wait for their neighbors’
outstanding workloads, the overall acceleration was diminished.

These limitations of the naïve implementation motivated us to modify three aspects of the
AnRAD system to provide GPU acceleration: KB management, workload balancing and finer-
grained parallelization.

3.6.3 In-memory Knowledge Bases.
The KB of the confabulation network was flattened and stored in the device memory. There

could be multiple KBs on the same device, each associated with a knowledge link. Figure 14
shows the memory layout of one KB. The KB maintained a “Block List”, each entry of which
corresponded to a key lexicon. Based on the size of its symbol list and the amount of available
shared memory, a key lexicon could be divided into multiple blocks.

In addition to number of symbols and number of source lexicons, a block entry also stored the
location of a “KL List” which described the incoming knowledge links of the key lexicon. A KL
entry pointed to the list of symbols in the source lexicon for that knowledge link, and provided
the starting address of the knowledge link matrix. Note that the knowledge link matrix was very
sparse, for memory reduction the matrix was stored in a list of lists (LIL) format.

Approved for Public Release; Distribution Unlimited

24

Figure 14. In-memory Knowledge Base Layout

Each LIL had a strip list, which corresponded to rows in the matrix. Each entry in the strip list
pointed to an excitation list, which corresponded to non-zero elements in the row. The matrix
was arranged such that each row corresponded to a symbol in the support lexicon, and the
column represented a symbol in the key lexicon. The input of support lexicons were invariant
when the detect process calculated the excitation level of all symbols of the key lexicon for a
given scene. Hence only one excitation list needed to be loaded for each knowledge link. The
column and row arrangement of knowledge matrix insured that the algorithm accessed
knowledge values in continuous address. Finally, each block entry also contained addresses to
the prior probabilities of the key symbols that were needed for the calculation of Equation (8).

The size of the trained KBs for a single detection zone is plotted in Figure 15. The naive
implementations stored raw knowledge matrices and quickly scaled the memory usages as the
training data increased in size. On the other hand, the optimized memory layouts compressed the
sparse knowledge links and significantly reduced the memory consumptions. The shared link
feature included knowledge links that connected the different neighbor vehicles that shared the
same probability matrices. This not only made the nodes of interactive features more general, but
also reduced the memory usage. For this example, compared to naive and LIL-only (Optimized)
storages, enabling shared memory (Shared) reduced the knowledge base size to less than 20MB.

Approved for Public Release; Distribution Unlimited

25

Figure 15. Memory Usage of Individual Models

3.6.4 Workload Balancing.
Instead of mapping the key lexicons to individual threads, a CUDA block was assigned to

each key lexicon. Each CUDA block consisted of multiple threads. The blocks were dynamically
schedulable, and uneven workloads among different lexicons did not introduce control
divergence. Also, multiple threads in the CUDA block contributed to the anomaly score of the
same key lexicon. This exploited the layered parallel structure, i.e. optimized the D and F factors.

During the system initialization, the trained KBs were flattened and loaded to the GPU. The
input streams were then organized into the corresponding format and then were dynamically sent
to the devices at each frame. One CUDA block either computed the anomaly score of one key
lexicon or a part of a larger lexicon with many symbols.

3.6.5 Extension to Xeon Phi Co-processor.
The memory layout and computation process was also applied to a Xeon Phi co-processor.

The in-memory KB was also used when the co-processor was in the off-load mode. However,
the way that the workload was mapped needed to be changed. Typically a Xeon Phi KNC chip
has fewer physical cores than the NVIDIA GPGPU, but each of the Xeon Phi cores is a fully
featured processor, and thus more powerful than the GPU shadows.

In particular, each Xeon Phi core was equipped with a 256-bit vector engine, which can
perform the mapping reduction process. Therefore, the lexicon-wised CUDA block computations
were mapped to individual Open Multi-Processing (OpenMP) threads. Within each OpenMP
thread the vector unit replaced the function of the original CUDA threads.

Approved for Public Release; Distribution Unlimited

26

4 RESULTS AND DISCUSSIONS
Experiments were carried out to evaluate the basic AnRAD system, the effectiveness of the

self-structuring algorithm, and the speed-ups of the optimized implementation. In the following
set of experiments the AnRAD system detection accuracy was determined. To evaluate the
effectiveness of the framework, in addition to the GMTI dataset [15] for large area surveillance,
two other publicly available anomaly detection datasets were analyzed. The second dataset was
composed of extracted package streams from the DARPA 1998 Intrusion Detection Program
[16]. The third dataset was the ADFA-LD contained system call sequences [17-19] of benign and
malicious programs.

4.1 AnRAD for Traffic Monitoring of Manually Structured Data
The detection performance of the AnRAD system was evaluated with manually constructed

confabulation network data that was described in Section 3. A zone of 500x500 meter2 with
moderate traffic density was randomly selected from the total monitored area. The training data
was for 240 minutes of normal traffic. The testing data included 10 minutes of normal traffic
data. Abnormal events representing typical hazardous vehicle activities had been manually
inserted into the data. The abnormal events included cars deviating from the road, speeding,
tailgating, 18-wheeler trucks running at abnormal speeds, and cars that unexpectedly “Start/Stop”
in the middle of the road.

Figure 16-19 are the anomaly scores of selected key lexicons of all of the target vehicles in
the testing area during the time when abnormal events occurred. This anomaly value is a
representation of how anomalous the data set was. In historical modes, the value of the score isn't
as important as the relative height of the peak of the score line. The X-axis in each of these
figures gives the indices of vehicles. The Y-axes are the magnitudes of the anomaly scores. Each
figure corresponded to a type of abnormal activities.

Figure 16. Anomaly Score of a Location Key Lexicon

Abnormal location

Approved for Public Release; Distribution Unlimited

27

Figure 17. Anomaly Scores of Speed Key Lexicons

Figure 18. Anomaly Scores of First Neighbor Pair Lexicons

Figure 19. Anomaly Scores of the Speed Lexicon for “Start/Stop” Events

Speeding

Tailgating

Abnormal stop

Approved for Public Release; Distribution Unlimited

28

The anomaly scores of the manually-inserted abnormal targets are highlighted in red in each
figure. The anomaly scores of the normal vehicles are in blue. The anomaly scores in red were
significantly higher than the blue ones, and could be readily detected by a decision threshold.
Furthermore, the anomaly scores demonstrated an obvious temporal continuity for most of the
abnormal events categories. The exception was the abnormal “Start/Stop” of vehicles, which
gave short spikes only when the moving status changed. These results also demonstrated that
different key lexicons corresponded to different types of anomalies. For example, a high
anomaly score in the neighbor pair lexicon indicated a tailgating event or some other unusual
relation between two vehicles.

The anomaly scores for a set of anomaly data were compared using the AnRAD framework
and a traditional Bayesian model. For this data an 18-wheeler by itself was quite common in the
zone, but this type of vehicle becomes abnormal when it was driven at a speed that was normally
observed for sedans. From the anomaly scores as shown in Figure 20, the AnRAD framework
was more effective in detecting these anomalies. The AnRAD anomaly scores for such events
were 20% higher than those calculated with Bayesian model, which resulted in the AnRAD
model providing a higher detection probability than the Bayesian model.

4.2 AnRAD Accuracy

4.2.1 Abnormal Vehicle Behavior Detection.
For this determination vehicle traces were obtained from an area road network. Each record

contained the vehicle location, speed, type and a timestamp. Our preprocessor extracted the
interactive features including distances and velocity angles between vehicles and their neighbors.
The original features and the interactive measures together formed 10 primary features. The self-
structuring procedure selected 44 key lexicons out of the 2548 possibilities. The maximum order
of feature-wise pooling was set to 5, and the maximum order of temporal pooling was 3. The
traffic records were generated at one-second sampling intervals in four randomly picked zones.
The training stage consumed 240 minutes of traces, and another 10-minute trace was used as the
test set. Among the test data there were 179 vehicles that, without intentional modification, were
used as the negative cases, and 22 manually created anomalies of different categories that were
the positive cases.

Figure 20. Anomaly Scores for (a) AnRAD and (b) Bayesian

Approved for Public Release; Distribution Unlimited

29

Figure 21. Alarm Rate v. Score Threshold of Vehicle Monitoring

In Figure 21 is shown the anomaly class detection results. The Y-axis is the alarm rate and the
X-axis is the network anomaly score threshold. It was observed that the normal vehicles
generated a much lower alarm rate compared to abnormal ones. When the threshold was 0.14, a
100% anomaly detection rate was achieved when the false positive rate was 10e-2. Therefore, for
vehicle anomaly detection tasks, the framework leaves a wide margin to trade between detection
and false alarms. The self-structured network was able to detect abnormal behaviors such as
tailgating, deviating from driveway and speeding.

Approved for Public Release; Distribution Unlimited

30

Table 2 Correlation between Anomalies and Outstanding Nodes

The AnRAD framework provided the reasoning ability in that the anomaly decisions were
explainable by the introspection of the anomaly scores of the key lexicons. For instance, Table 2
showed the relationship between the key lexicons and the anomaly classes. In this example, key
lexicons that generated an anomaly score of higher than 0.8 were defined as “outstanding”. The
different anomaly outstanding occurrences were counted, and three largest lexicons were noted.
For speeding and sudden stops, i.e., these anomalies were closely correlated. Our analysis also
showed that the most outstanding lexicon for this type of anomaly was <speed>.

Tailgating happens when one vehicle quickly approaches another vehicle. This was detected
when the composite lexicons of speed and distance to the first neighbor had an increased
anomaly score. Anomalies such as deviating from the road were revealed by high anomaly
scores in the coordinates-related lexicons. A truck was determined to be speeding even when its
speed was normal for a sedan. Such behavior was flagged by the composite lexicon of vehicle
size and its displacement in consecutive frames. These examples showed that the AnRAD
framework used features to determine additional classes of anomalies without additional training
labels or domain knowledge.

4.2.2 Network Data Intrusion Applications.
The AnRAD framework was also tested with fully labeled datasets and compared with other

baseline methods. The baseline algorithms considered were: incremental Local Outlier Factor
(LOF) [20], which is a density-based method; Replicator Neural Network (RNN) [21], which is a
classification-based method; and Cross-Feature Analysis (CFA) [22] with Classification and
Regression Tree (CART) decision trees (rule-based method). The baselines did not have all of
the AnRAD functionality such as reasoning and incremental training, here only the detection
performances were considered.

Approved for Public Release; Distribution Unlimited

31

The first dataset was processed from the 1998 DARPA Intrusion Detection Evaluation Data
Set. For each Internet Protocol (IP) address pairs, traffic statistics were recorded per 300 msec.
per frame. In total 21 primary features were extracted from the raw files. Some examples of the
features were bytes from client to server (or server to client), service ports, and the number of
clients connected with a server.

We did not use the session-oriented Knowledge Discovery and Data Mining (KDD) 99
dataset because we investigated the concurrent data streams rather than the session-oriented data
points, and our processing also leveraged less attack specific domain knowledge. The self-
structuring network picked 123 key lexicons out of the 446,320 possibilities given the max order
equals five for both the feature-wise and the temporal pooling. For training, normal streams from
the seven weeks of training data were randomly sampled, and 20,000 frames were selected. The
negative class for this test had another 7000 streams, and all the attacks (422 streams, 24
categories) in the seven weeks formed the positive class. The moving window size was five
frames for all of the methods.

The Receiver Operation Curves (ROCs) for the DARPA dataset are plotted in Figure 22, with
the X-axis representing the false alarm rate and the Y-axis representing the true detection rate.
Note that the true positive rates were averaged across the anomaly categories to prevent the
results from being biased by the larger classes. The AnRAD method outperformed the network
that had an equal number of randomly selected zones (Random). The AnRAD method also
obtained the best “Area Under the Curve” (AUC), which is a measure of accuracy, as compared
to the Incremental Local Outlier Factor, the Replicator Neural Network and the Cross Feature
Analysis decision tree method. The results demonstrated that the AnRAD method had the
advantage in the tradeoff between false alarms and detection rates. This was because the AnRAD
method was able to capture implicit patterns, while the general baseline methods did not. In this
example the LOF and the RNN methods outperformed the CFA decision tree approach because
they worked better with continuous features.

Figure 22. DARPA Dataset ROC Analysis

Approved for Public Release; Distribution Unlimited

32

The second dataset was system call sequences from the ADFA-LD dataset, which included
discrete features that were generated from a Linux local server configured to represent a
contemporary computer system. The training data consisted of less than 20,000 system calls. The
testing data had 6000 sequences from the validation set and 746 sequences from the attack set.
To enable LOF the Levenshtein Edit Distance4 was used; for the neural network method 100
frequent and orthogonal system calls were sampled from the training set as the template points,
and the input layer of the network received the call distances to these templates. The moving
window size was set to six consecutive calls. Because this dataset had fewer primary features, we
also evaluated the confabulation network with all of the 41 possible nodes and full connections
(Full).

From the ROC analysis curves is shown in Figure 23 the AnRAD and the decision tree
methods outperform the other two. This was because the latter two approaches did not adapt as
well to the purely categorical features. The decision tree had a marginally better AUC score, but
it suffered from over fitting: its performance was reasonable at the high-detection-rate regions,
but its false positive rates were 19% and greater. Also, the self-structured 10-node network was
determined to have a better performance than the Full configuration.

The comparisons in this section demonstrated that the AnRAD framework’s detection
performances were equal to or superior to the classical methods. The AnRAD method is the only
method that also provided incremental training, transparency and adaption to both continuous
and categorical data.

Figure 23. ADFA-LD Dataset ROC Analysis

4 The minimum number of single-character edits required to change one word into another.

Approved for Public Release; Distribution Unlimited

33

4.3 Incremental Learning Benefits
In the training sequences experiments data was streamed into the system in an incremental

fashion to verify that the AnRAD model evolved and improved as additional training data
become available. In this test a detection zone was selected, and the training data was gradually
presented to the system in 10-minute-long segments. After every incremental training step a 10-
minute-long normal traffic sequence that was different from any of the training segments was
used for the testing, and the numbers of detected anomalies in any key lexicons were reported.
Since the testing sequence consisted of normal vehicles, these anomaly counts were false alarms,
and were expected to decrease with additional training.

In Figure 24 is shown that the false alarm rate was reduced with increased training. The false
alarm rate was calculated as the ratio of the reported anomalies over the total number of checked
instances. Each line represented a false alarm rate of one category of anomaly category (i.e., a
key lexicon). With insufficient training, e.g. 10 minutes of the training sequence, the false alarm
rate was as high as 60%. With additional training, the false alarm rates quickly decreased. The
system reported near zero false alarms after 150 minutes of data training. This indicated that the
model has been incrementally updated, and that it had become more accurate with additional
training.

Another benefit of the incremental training was that it diluted the impact of the false training
data. Training used clean samples, i.e. anomalies were not intentionally inserted. However, in the
real unsupervised case, there was no guarantee of the training set quality. So it was important
that the framework incrementally improved the KB quality.

Figure 24. False Alarm Rate v. Training Time

Approved for Public Release; Distribution Unlimited

34

Figure 25. AUC Scores v. Training Sizes

In the next experiment the train confabulation networks were first trained with anomalous

data. Then the clean training sets were segmented into 10 episodes and added into the KB one by
one. At each stage the model tested the same evaluation set, and the AUC scores were collected.
In Figure 25 for both the DARPA and the ADFA datasets the AUC scores increased as the
incremental training increased. As more data streams were received, the AnRAD framework was
able to update and further correct for earlier erroneous knowledge. The detection performance
continuously improved with new and better training data.

4.4 Performance Evaluations
To test the effectiveness of the fine-grained parallelization, datasets were implemented on a

CPU with single threading and multi-threading, a naive GPU and an optimized GPU, and a Xeon
Phi KNC. The four designs were compared using single testing streams from the normal vehicle
classes of the DARPA and ADFA datasets. For CPU multi-threading programs were run on an
Intel Xeon W5580 with 16 cores at 3.20 GHz frequency. For the GPU implementations the
device used was a NVIDIA Tesla C2075 with 448 CUDA cores at 1.15 GHz and 6 GB device
memory. Umax = 1536 and blockDim.x = 192 were selected to achieve full occupancy. The Intel
co-processor implementation was on a Xeon Phi 5100 with 60 cores, 1.053 GHz processor
speeds, and a memory capacity of 16 GB. A maximum of 240 threads were allocated.

Approved for Public Release; Distribution Unlimited

35

Table 3. Runtime Comparison Results

The runtime comparison results in Table 3 showed that the CPU implementation with 16

threads resulted in a 3-8 times speedup compared to the serial baseline implementation. It did not
linearly scale with the thread number due to the memory stalls caused by the concurrent memory
accesses. The GPU naive implementation provided marginal improvements, or ran slower than
the single-thread baseline, because imbalanced workloads across the threads produced control
divergence. The optimized GPU implementation provided 442-955 speedups over the baseline
methods. The optimized kernel fully exploited the concurrent structure of the confabulation
model and avoided control divergence. Also, the memory access pattern improved the cache
performance. The Xeon Phi implementation had measured speedup improvement of 24-50 times.
The reason that Xeon Phi implementation was not as fast as GPU is that the single testing
streams did generate enough workload for the 240 threads. The GPU offered better
responsiveness for small and randomly arrived service requests, while the processing power of
Xeon Phi will be sufficiently utilized by large workload batches.

Approved for Public Release; Distribution Unlimited

36

5 CONCLUSIONS
In this project a high performance computing-based neuromorphic anomaly detection

framework was developed that provided real-time processing for concurrent data streams. The
autonomous anomaly recognition and detection (AnRAD) framework was based on cogent
confabulation, which is a probabilistic inference model that mimicked human information
processing. It extracted the conditional probability among symbolic representations of features in
an unsupervised environment.

Large areas of surveillance data were first partitioned into smaller zones that were then
independently processed. A Knowledge Base (KB) was built for each zone by adding traffic
records into properly modeled knowledge networks. When new traffic information was received,
anomaly scores were calculated by means of the likelihood-ratio test for the observed events.
Events with high anomaly scores were then marked as potential anomalies, and alarms were sent
to a human observer. The unique features of this platform are summarized as follows:

1. The model was able to handle a large volume of vehicle traces over a large area. Large
areas had not been considered in previous works. The surveillance area was partitioned-based on
the traffic density information extracted from the training data. In this way, the computation load
was balanced, and the inference model was more accurately constructed.

2. The confabulation-based model had a lower complexity for both the training and the
recall. The system was trainable while operational, and this enabled continuous improvements to
the KB quality.

3. By proper modeling the system was capable of capturing contextual information among
vehicles and their neighbors. Abnormal events such as tailgating that were caused by interactions
among vehicles were detected. Such events were not considered in previous research.

4. The overall system had a hierarchical architecture, and the workloads in each level of the
hierarchy were inherently parallel. A GPU-based parallel implementation was adopted that
achieved computation acceleration of the AnRAD system.

The anomaly detection confabulation model is application specific. The neuron nodes
(lexicons) and the synapses (knowledge links) between them were reconfigurable for different
applications. The AnRAD system enabled the automatic construction of a confabulation network.
It concretely learned from the data a succinct set of nodes that represented original features or
combinations of features. Each node was associated to a lexicon, which recorded the symbolic
representations of the possible inputs. The links between nodes were also learned from the initial
data. Given the learned network configuration, further incoming data streams were used to
incrementally refine the weight of the knowledge links, which was the conditional probability
between the lexicon symbols.

With the self-structuring technique, the AnRAD framework was generalized to a wide range
of applications. In addition to road-traffic monitoring, it was also applied to network intruder
detection and program control flow monitoring.

Approved for Public Release; Distribution Unlimited

37

6 REFERENCES

[1] Hecht-Nielsen, R., Confabulation Theory: The Mechanism of Thought, Springer-Verlag, Berlin, Germany,
2007.

[2] Chandola, V., Banerjee, A., and Kumar, V., “Anomaly Detection: A Survey,” ACM Computing Surveys
(CSUR), 41(3), Article 15, July 2009.

[3] Roth, V., “Outlier Detection with One-class Kernel Fisher Discriminants,” Proc. of the Conference on Advances
in Neural Information Processing Systems 17, 2004.

[4] Hawkins, S., He, H., Williams, G.J. , and Baxter, R.A. , “Outlier Detection using Replicator Neural Networks,”
Proc. of 5th International Conference on Data Warehousing and Knowledge Discovery, 2002.

[5] Yu, J.X., Qian, W., Lu, H., and Zhou, A., “Finding Centric Local Outliers in Categorical/Numerical Spaces,”
Knowledge and Information Systems, Vol. 9(3), pp. 309-338, March, 2006.

[6] Huang, H., Mehrotra, K., and Mohan, C.K., “Rank-based Outlier Detection,” Journal of Statistical Computation
and Simulation, 83(3), pp. 518-531, 2013.

[7] Sebyala, A.A., Olukemi, T., and Sacks, L., “Active Platform Security through Intrusion Detection using Naive
Bayesian Network for Anomaly Detection,” Proc. of the 2002 London Communications Symposium, 2002.

[8] Fu, Z., Hu, W., and Tan, T., “Similarity based Vehicle Trajectory Clustering and Anomaly Detection,” Proc. of
IEEE International Conference on Image Processing, 2, pp. 602-605, 2005.

[9] Sheng, H., Li, C., Wei, Q., and Xiong, Z., “Real-time Detection of Abnormal Vehicle Events with Multi-feature
over Highway Surveillance Video,” Proc. of 11th International IEEE Conference on Intelligent Transportation
Systems, pp. 550-556, 2008.

[10] Bhardwaj, A., Farooq, F., Cao, H., and Govindaraju, V., “Topic Based Language Models for OCR Correction,”
Proceedings of the Second Workshop on Analytics for Noisy Unstructured Text Data, pp. 107-112, 2008.

[11] Qiu, Q., Wu, Q., Bishop, M., Pino, R., and Linderman, R.W., “A Parallel Neuromorphic Text Recognition
System and Its Implementation on a Heterogeneous High Performance Computing Cluster,” IEEE Transactions
on Computers, 62(5), pp. 886-899, 2013.

[12] Mitra, P., Murthy, C. and Pal, S.K., “Unsupervised Feature Selection using Feature Similarity,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, 24(3), pp. 301–312, 2002.

[13] Tanenbaum, A.S., Computer Networks, 4th Edition, Prentice Hall, New Jersey, 2002.
[14] Zimek, A., Campello, R.J., and Sander, J., “Ensembles for Unsupervised Outlier Detection: Challenges and

Research Questions a Position Paper,” ACM SIGKDD Explorations Newsletter, 15(1), pp. 11–22, 2014.
[15] O’Neil, S.D., “Estimating Road Network using Archived GMTA Data,” IEEE Proceedings Aerospace

Conference, Vol. 4, pp.1865-1871, 2001.
[16] Lippmann, R.P., Fried, D.J., Graf, I., Haines, J.W., Kendall, K.R., McClung, D., Weber, D., Webster, S.E.,

Wyschogrod, D., Cunningham, R.K., et al. “Evaluating Intrusion Detection Systems: The 1998 DARPA Offline
Intrusion detection evaluation,” In DARPA Information Survivability Conference and Exposition, 2000.
DISCEX’00. Proceedings, 2, pp. 12–26. IEEE, 2000.

[17] Creech, G. and Hu, J., “Generation of a New IDS Test Dataset: Time to Retire the KDD Collection,” IEEE
Wireless Communications and Networking Conference (WCNC), pp. 4487–4492, 2013.

[18] Creech, G. and Hu, J., “A Semantic Approach to Host-based Intrusion Detection Systems using Contiguous and
Discontiguous System Call Patterns,” IEEE Transactions on Computer, 63(4), pp. 807–819, 2014.

[19] Xie, M., Hu, J., Yu, X. and Chang, E., “Evaluating Host-Based Anomaly Detection Systems: Application of the
Frequency-Based Algorithms to ADFA-LD,” Network and System Security, 8792, pp. 542-549, 2014.

[20] Pokrajac, D., Lazarevic, A., and Latecki, L.J., “Incremental Local Outlier Detection for Data Streams,”
Computational Intelligence and Data Mining,” IEEE Symposium on Computational Intelligence and Data
Mining, pp. 504–515, 2007.

[21] Hawkins, S., He, H., Williams, G. and Baxter, R., “Outlier Detection using Replicator Neural Networks,” 5th
International Conference on Data Warehousing and Knowledge Discovery, pp. 170–180. Springer, 2002.

[22] Cabrera, J.B., Gutie´rrez, C., and Mehra, R.K., “Ensemble Methods for Anomaly Detection and Distributed
Intrusion Detection in Mobile Ad-Hoc Networks,” Information Fusion, 9(1), pp. 96–119, 2008.

Approved for Public Release; Distribution Unlimited

38

APPENDIX

The output of the Ground Moving Target Indicator (GMTI) was in the Earth-Centered, Earth-
Fixed (ECEF) representation. To facilitate the display and analysis, the input data was converted
from the ECEF format to a Geodetic format using the WGS84 earth model. The conversion
algorithm is shown in Figure 26.

Figure 26. Converting ECEF Data to Geodetic Format

AmosCoord_ECF2Geo
Input arguments:
 double x, y, z; //ECF coordinates in meters;
Outputs:
 double lat, lng, alt; //Latitude and longitude in degrees, altitude in meters
begin
 while (lat has not converged)
 begin
 𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑡𝑡𝑡𝑡𝑡𝑡−1(𝑦𝑦

𝑥𝑥
); // Calculate longitude

 𝑙𝑙𝑙𝑙𝑡𝑡′ = 𝑡𝑡𝑡𝑡𝑡𝑡−1(𝑧𝑧
(1−𝑓𝑓)𝑝𝑝

); // Guess of latitude and reduced latitude (lat’),

 𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑡𝑡𝑡𝑡𝑡𝑡 −1(
𝑧𝑧+𝑒𝑒

2(1−𝑓𝑓)
1−𝑒𝑒2

𝑎𝑎 sin3�𝑙𝑙𝑙𝑙𝑡𝑡′�

𝑝𝑝−𝑒𝑒2𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐3(𝑙𝑙𝑙𝑙𝑡𝑡′)
) ; //in which 𝑝𝑝 = �𝑥𝑥2 + 𝑦𝑦2 , f = 0.0033528106718309896

//(flattening), e2 = 0.006694380004260827 (first
//eccentricity squared) and a = 6378137.0 (equatorial
//radius), in accordance to WGS84 earth model.

 𝑙𝑙𝑙𝑙𝑡𝑡′ = 𝑡𝑡𝑡𝑡𝑡𝑡−1((1−𝑓𝑓) 𝑠𝑠𝑠𝑠𝑠𝑠(𝑙𝑙𝑙𝑙𝑙𝑙)
𝑐𝑐𝑜𝑜𝑜𝑜(𝑙𝑙𝑙𝑙𝑙𝑙)

); // After the guess, lat’ is re-calculated

 end
 𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑙𝑙𝑙𝑙𝑙𝑙) + �𝑧𝑧 + 𝑒𝑒2𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑙𝑙𝑙𝑙𝑙𝑙)� sin(𝑙𝑙𝑙𝑙𝑙𝑙) − 𝑁𝑁; // Where 𝑁𝑁 = 𝑎𝑎/�1 − 𝑒𝑒2𝑠𝑠𝑠𝑠𝑠𝑠2(𝑙𝑙𝑙𝑙𝑙𝑙).
end

Approved for Public Release; Distribution Unlimited

39

LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS

ADFA-LD Australian Defence Force Academy - Linux Dataset

AUC Area Under Curve

AnRAD Anomaly Recognition and Detection

CART Classification And Regression Tree

ΔL Center Displacement

CFA Cross-Feature Analysis

CFB Confabulation

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

DARPA Defense Advanced Research Projects Agency

ECEF Earth-Centered, Earth-Fixed

GMTI Ground Moving Target Indicator

GPU Graphics Processor Unit

IP Internet Protocol

KB Knowledge Base

KDD Knowledge Discovery and Data Mining

KL Knowledge Links

L Target Location

ΔL Center Displacement

Lexicon Features that were used to describe behaviors

LOF Local Outlier Factor

OpenMP Open Multi-Processing

RNN Replicator Neural Network

Approved for Public Release; Distribution Unlimited

40

S Target Size

SAR Synthetic Aperture Radar

SVM Support Vector Machine

V Target Velocity

ΔV Center Displacement

	List of Figures
	LIST OF TABLES
	1 Summary
	2 Introduction
	2.1 Overview
	2.2 Confabulation-based Network Architecture
	2.3 Cogent Confabulation

	3 Methods, assumptions, and procedures
	3.1 Zone Partition
	3.2 Confabulation Networks
	3.2.1 Confabulation Network Self-structuring.
	3.2.2 Key Node Hierarchy.
	3.2.3 Feature Combination Pooling.
	3.2.4 k-NN Node Reduction.
	3.2.5 Knowledge Link Determinations.

	3.3 Training
	3.3.1 Manual Training.
	3.3.2 Automated Training.

	3.4 Anomaly Scores
	3.5 Incremental Learning
	3.6 Accelerating AnRAD
	3.6.1 Complexity Analysis.
	3.6.2 Naïve Parallel Implementation.
	3.6.3 In-memory Knowledge Bases.
	3.6.4 Workload Balancing.
	3.6.5 Extension to Xeon Phi Co-processor.

	4 Results and discussions
	4.1 AnRAD for Traffic Monitoring of Manually Structured Data
	4.2 AnRAD Accuracy
	4.2.1 Abnormal Vehicle Behavior Detection.
	4.2.2 Network Data Intrusion Applications.

	4.3 Incremental Learning Benefits
	4.4 Performance Evaluations

	5 conclusions
	6 References
	APPENDIX
	LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS

