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1 SUMMARY 
In this project probabilistic inference-based anomaly detection was investigated, and the 

results were applied to wide area surveillance scenarios. The “Anomaly Recognition And 
Detection” (AnRAD) system, which is a cogent confabulation network, was developed and 
tested. This system included an abstract-level autonomous information processing framework 
that provided continuous monitoring and real-time anomaly detection.  

Massive parallelism accelerated this inference modeling system using state-of-the-art 
multicore processors including Graphics Processor Units (GPUs) and Intel Xeon Phi processors. 
Real-time surveillance applications with high-volume input data streams were modelled with 
significant processing speedups. 

Synthetic Aperture Radar (SAR) data from hundreds of square kilometer areas were analyzed 
in wide area surveillance scenario testing. In this testing road traffic was represented by a set of 
features that were extracted from a Ground Moving Target Indicator (GMTI) radar input stream. 
Likelihood-ratio testing was performed on sets of key features to determine abnormal vehicle 
behavior. The low-complexity learning and recall AnRAD system supported incremental 
learning, which enhanced the system accuracy.  

The AnRAD system was also generalized for the additional application of network intrusion 
detection. A self-structuring technique was developed that determined a probabilistic inference 
network structure from unlabeled data. Without relying on data distribution assumptions, mutual 
information between features was leveraged to learn and produce succinct network 
configurations. These results were compared to several other existing anomaly detection methods. 



Approved for Public Release; Distribution Unlimited 

2 

2 INTRODUCTION 
      In Section 2 is presented an overview of this topic and pertinent background information. 

2.1 Overview 
The advanced sensing and imaging capabilities of today’s Synthetic Aperture Radar (SAR) 

systems enable wide-area surveillance by generating large volumes of data. There is an urgent 
need for autonomous SAR information processing and data exploitation techniques to facilitate 
the continuous monitoring and prompt anomaly detection of this data that may be collected from 
areas of hundreds of square kilometers.  

Confabulation theory offers a comprehensive detailed explanation of the mechanism of 
thought in humans and other vertebrates. In terms of computational reasoning, the term 
confabulation is also used to describe inductive reasoning via Bayesian networks. In this project, 
we applied the Cogent Confabulation model [1] to develop an abstract-level autonomous 
information processing framework that performed real-time anomaly recognition and detection.  

Anomaly detection refers to techniques that identify patterns in data that do not conform to 
the expected observations. This project focused on developing an abstract-level autonomous 
information framework that would provide continuous monitoring of vehicle behaviors over a 
very large area using unsupervised machine learning. Taking advantage of the advanced sensing 
and imaging capabilities of today’s SAR systems, our framework focused on anomalous traffic 
situation detection for wide area surveillance.  

Several factors made building such a system challenging. It is very difficult to exactly define 
what the “expected” vehicle behavior is. Once that is determined, then behavior that can be 
differentiated from that is defined as abnormal vehicles behavior. Secondly, normal traffic 
situations may evolve over time, so it is critical that a system is adaptive to such changes. 
Thirdly, modeling the traffic behavior and designing the learning algorithm can be complex since 
there may be thousands of vehicles within an area of interest. Last but not least, the requirements 
to handle such a large volume of inputs and provide real-time monitoring impose stringent 
computation performance requirements. 

Several anomaly detection techniques [2] have been developed, including a kernelized one-
class Support Vector Machine (SVM) classifier [3]. Replicator neural networks [4] also provide 
anomaly determinations by a measuring the “outlierness” of data. Nearest neighbor approaches 
[5] assume that normal data occurs in dense neighborhoods, and that anomalies are more distant 
from their neighbors. This has been improved by Huang [6] using a rank-based approach. 
Bayesian network-based methods have been proposed by many researchers, including Sebyala 
[7], as the basis for anomaly detection.  Fu [8] determined traffic anomalies from camera 
imagery by exploiting trajectory clustering, while Shen [9] developed a Gaussian mixture model. 
These approaches neither systematically resolved the problem of monitoring very large areas nor 
did they exploit the relationship between adjacent vehicles. 

To solve these additional problems, here we developed and tested the autonomous Anomaly 
Recognition And Detection (AnRAD) framework. This framework is based on cogent 
confabulation [1], which is a probabilistic inference model that mimics human information 
processing. It extracts the conditional probability among symbolic representations of features in 
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an unsupervised environment. A large surveillance area is first partitioned into smaller zones that 
are then independently processed. A Knowledge Base (KB) is built for each zone by feeding 
traffic records into the properly modeled knowledge networks. When new traffic information is 
received, anomaly scores are then calculated by means of the likelihood-ratio test for observed 
events. Events with high anomaly scores are then marked as potential anomalies, and alarms are 
sent to a human observer. The AnRAD requirements for the unique features of this platform are 
summarized as follows: 

1. The AnRAD system must be able handle a large volume of vehicle traces over large areas.
The surveillance area will be partitioned that is based on traffic density information extracted 
from the training data. In this way, the computation load will be balanced, and the inference 
model can be constructed more accurately. 

2. The confabulation-based model had low complexity for both training and recall.
Therefore, the ANRAD system must even be trainable during operating time, which will enable 
continuous improvement to the Knowledge Base (KB) quality. 

3. The AnRAD system must be capable of capturing contextual information among vehicles
and their neighbors. Abnormal events such as tailgating that is caused by interactions among 
vehicles must be detectable. Such events have not been considered in previous research. 

4. The overall system must have a hierarchical architecture so that the work load in each
level of the hierarchy is inherently parallel. A Graphics Processing Unit (GPU)-based parallel 
implementation will be developed to achieve computation acceleration of the AnRAD system. 

2.2 Confabulation-based Network Architecture 
The network architecture for confabulation-based anomaly detection is by definition specific 

for each application. The neuron nodes (i.e. lexicons) and the synapses (i.e. knowledge links) 
between them must be re-configured when applied to different applications. To build such 
networks requires expert knowledge. This limitation makes the same confabulation-based 
anomaly detection architecture inflexible in handling different datasets. To address this, a self-
structuring technique needed to be developed that would enable the automatic construction of the 
confabulation architectural network. It must concretely learn from the data a succinct set of 
nodes that represent the original features or combinations of the features.  

Each node is to be associated with a lexicon, which will record the symbolic representations 
of the possible inputs. The links between the nodes must also learn from the initial data. Given 
the learned network configuration, further incoming data streams must then incrementally refine 
the weights of the knowledge links. These weights will be the conditional probabilities between 
the lexicon symbols. With this self-structuring technique the AnRAD framework will be 
generalizable to a wider range of applications. In addition to road-traffic monitoring that was the 
primary application for this effort, the AnRAD system was also applied to a network intruder 
detection application. 

2.3 Cogent Confabulation 
Cogent confabulation is a bio-inspired computational model that mimics human information 

processing. The AnRAD system is based on a cogent confabulation model that performs 
probabilistic inferences. An observation is represented as a set of features. From these features 
the basic dimensions are constructed that describe the specific application, e.g. vehicle speed and 
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position coordinates. The observed attributes of a feature are referred to as symbols. A set of 
symbols that describes the same feature forms a lexicon. The symbols in a lexicon are mutually 
exclusive.  

Knowledge Links (KLs) are established among the lexicons. The KLs are directed edges that 
extend from the source lexicons to the target lexicons. Each KL is associated with a matrix. The 
ijth entry of the matrix gives the conditional probability log�𝑝𝑝�𝑠𝑠𝑖𝑖�𝑡𝑡𝑗𝑗��between the symbol si in 
the source lexicon and the symbol tj in the target lexicon. The knowledge matrix is constructed 
during training by extracting and associating features that were extracted from the training data. 

The cogent confabulation model has a close resemblance to a neural system. The symbols are 
analogous to neurons, and KLs between the symbols are analogous to synapses between neurons. 
Whenever an attribute is observed, the corresponding symbol (i.e. neuron) is activated, and an 
excitation is passed to the other symbol(s)1  through the KLs2.  

The excitation level (el) of a symbol t in lexicon l is calculated by summing up all of the 
incoming KLs: 

𝑒𝑒𝑒𝑒(𝑡𝑡) =  ∑ (∑ 𝐼𝐼(𝑠𝑠) ln �𝑝𝑝(𝑠𝑠|𝑡𝑡)
𝑝𝑝0

� + 𝐵𝐵)𝑠𝑠∈𝑆𝑆𝑘𝑘𝑘𝑘∈𝐹𝐹𝑙𝑙 , (1) 

where Fl denotes the set of lexicons that has connections to l, and Sk is a set that consists of 
collections of symbols in lexicon k; I(s) is the firing strength of source symbol s, and it is set to 1 
if s is observed without ambiguity; p0 is the minimum probability that is considered informative. 
Parameter B is a constant called the band gap. It is 0 if none of the active source symbols in Sk 
has KLs that are connected into t. The band gap ensures that the symbols with more KLs receive 
higher excitation over those with fewer KLs. 

 The excitation level of a symbol is actually its log-likelihood given the observed attributes in 
other lexicons. The excitation levels can be used to resolve the observation ambiguities via the 
maximum likelihood inference [10]. A confabulation model [11] has been applied to text 
recognition, which demonstrates its ability to handle incomplete data and capture causal 
relationships between observations. Here the excitation level enables the anomaly detection by 
using the likelihood ratio test. 

When compared to other schemes, the training and recall processes in the confabulation 
model are simplified. Also, since the model is highly configurable, the system is easily 
modifiable, which is a requirement of the system. It is also easily optimized for improved 
performance. Finally, because training and recall share the same knowledge data structures, the 
model offers unsupervised learning and online updating capabilities. 

1 i.e. neurons 
2 i.e. synapses 
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3 METHODS, ASSUMPTIONS, AND PROCEDURES 
The basic AnRAD system for wide area surveillance was designed with four functional areas: 

zone partitioning, confabulation networks, training, and detection. Network self-structuring 
enhanced the flexibility of the AnRAD framework and increased its applicability. The system 
was accelerated through high performance computing parallel processing.  

3.1 Zone Partition 
The test SAR surveillance data were typically collected from hundreds of square kilometer 

areas, and within these surveillance areas were observed thousands of vehicles. To provide real-
time learning and detection, an area was partitioned into multiple zones, and parallel processing 
was then performed on each of the zones. This was designed in part to reduce the complexity of 
learning and detection. Zone partitioning also resulted in the following benefits: 

1. More accurate modeling that captured local details. The traffic situation varied from
location to location. Therefore it was not appropriate to describe the whole area by a
single model, since vehicles exhibited different behaviors in different zones. Zone
partitioning helped to improve the accuracy of the model.

2. Reduced model complexity and memory requirement. The number of possible
attributes of certain features, e.g. vehicle coordinates, was directly proportional to the
size of the monitoring area. Therefore zone partitioning effectively reduced the
number of symbols in a lexicon, and this reduced the complexity of the confabulation
model.

3. Enabled parallel processing. Each detection zone was trained and operated as an
independent unit. The workload was easily parallelized and the knowledge base could
be stored in a distributed manner.

The number of vehicles in a partitioned zone determined the computation workload of the 
training and recall processes. The partitioning algorithm that was developed is shown in Figure 1. 
This algorithm divided the area into zones that were based on the average traffic density, and 
ensured that none of the detection zones had more than N vehicles appearing in the same time 
slot (frame) in the training set. The resulting zones were organized as a sibling tree structure. 
Each parent node was associated with four child zones, which were derived by splitting the 
parent zone into four equally-sized patches. 
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1  Find the MAX and MIN values of vehicle coordinates 
2  Define the root zone and set Z = {root} 
3  For each time slot t in the training set 
4      reset vehicle_count of each zone in Z 
5      For each record x at time slot t 
6          Find zone z that x.location falls into 
7          if z.vehicle_count exceed limit N 
8        Split z into 4 child zones z[1-4] 
9      Update vehicle_count of z[1-4] 
10      Update set Z 
11        Else 
12     z.vehicle_count++
13        End if 
14    End for 
15 End for 

Figure 1. Zone Partitioning Algorithm 
An example of the resulting zone partitioning is shown in Figure 2. Each zone was designed 

to have a “buffer area”, which are the margins of a zone that overlap with its adjacent zones. 
Vehicles in these buffer areas were not tested for anomaly detection, but were used to generate 
supporting information, such as the neighbors to the target vehicles and the previous records of 
the current target vehicles. This allowed the system to also consider vehicles about to enter or 
that have already exited a zone.  

Figure 2. Partitioned Zones 
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3.2 Confabulation Networks 
A confabulation model was manually built for each of the partitioned zones. The first task 

was to define the lexicons, which are features that were used to describe the vehicle behavior in 
traffic. In the anomaly detection problem, the behavior of a vehicle was considered within the 
context of its neighbors during the current and previous observations. When all of the 
observations were made in the same time slot as a frame, the detection involved three 
consecutive frames. Four classes of objects were then observed in a scene: Target, Neighbor, 
Auxiliary Center, and Supporter. 

Each vehicle that appeared in a detection zone at frame t was considered a target. The ten 
vehicles closest to the target in the same frame were defined as neighbors. Based on the current 
location and speed of target, its location was estimated in the previous frames. The estimated 
targets in frames t-1 and t-2 were referred as the auxiliary centers. The nearest ten neighbors of 
the auxiliary center in the corresponding frame were called the supporters. In Figure 3 is shown 
an example of the four types of vehicle records. A scene was generated for each target 
observation within the context of neighbors, auxiliary centers and supporters. 

Figure 3. Classification of Vehicle Records and Corresponding Lexicons 
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Three lexicons were used to describe the basic attributes of a target vehicle: Target Location 
(L), Target Velocity (V), and Target Size (S). The target location was expressed in geographic 
latitude and longitude and was discretized to levels of approximately ten meters. The target 
speed was expressed as the combination of the ground speed and the direction. The target size 
was discretized to reflect the five different vehicle categories: 

1. Sedan,
2. Truck,
3. SUV,
4. Moving Truck, and
5. 18-wheeler Truck.

3.2.1 Confabulation Network Self-structuring. 
Our experimental results showed that the AnRAD was a promising approach to detect 

anomalous streaming data, but its performance essentially depended on the selection of key 
lexicons and their incoming links. To construct the confabulation network required application 
specific knowledge. Expert knowledge will not always be available, and it does not always 
ensure optimal network structure. Self-structuring then plays an important role to improve the 
framework’s generality and applicability. 

In the AnRAD framework, inputs were represented as N streams {{𝑥𝑥11, 𝑥𝑥12, … , 𝑥𝑥1𝑡𝑡 ,⋯ } , 
{⋯ , 𝑥𝑥2𝑡𝑡 ,⋯ }, ⋯ , {⋯ , 𝑥𝑥𝑁𝑁𝑡𝑡 ,⋯ }} generated from the certain distribution D. Here 𝑥𝑥𝑛𝑛𝑡𝑡  represented a 
record tuple of the nth stream at time frame t. It consisted of Q features denoted by 𝑥𝑥𝑛𝑛𝑡𝑡 (𝑞𝑞). In the 
self-structuring stage, a span of the data at frame [0,𝑇𝑇𝑔𝑔] was sampled and used to construct the 
confabulation network G that best described the application. After the network was constructed, 
new streams at (𝑇𝑇𝑔𝑔,𝑇𝑇0] were used to train the initial knowledge base 𝐾𝐾𝐾𝐾𝐺𝐺

𝑇𝑇𝑔𝑔:𝑇𝑇0 . The KB was 
applied to streams at (𝑇𝑇0,⋯ ) to generate network anomaly scores for each frame. At the same 
time, the new incoming data continuously refined the knowledge base 𝐾𝐾𝐾𝐾𝐺𝐺

𝑇𝑇𝑔𝑔:𝑡𝑡 . Typically, a 
moving window with size W, {𝑥𝑥𝑛𝑛𝑡𝑡−𝑊𝑊,⋯ , 𝑥𝑥𝑛𝑛𝑡𝑡−1, 𝑥𝑥𝑛𝑛𝑡𝑡 } was applied to the input stream at frame t to 
form the scene. In the next subsection the generation of network G and refinement of knowledge 
base 𝐾𝐾𝐾𝐾𝐺𝐺

𝑇𝑇𝑔𝑔:𝑡𝑡 are discussed. 

3.2.2 Key Node Hierarchy. 
The confabulation model captured the first order relationships between features. Higher order 

relations were considered by adding new lexicons corresponding to the feature combinations. 
The final structure of confabulation network consisted of hierarchical lexicons that where higher 
level nodes that were formed as the compositions of lower-level nodes, as shown in Figure 4. 
Lexicons at the bottom layer represented single primary features. These primary features 
provided a basic description of the input data. The higher level lexicons assembled multiple 
primary features, and represented more abstract meanings and combinational patterns. The 
layered structure provided direct mapping from the feature space to nodes in the knowledge 
graph, but its complexity increased exponentially with naive implementation. Since the 
confabulation network worked at the symbolic level, continuous features were discretized before 
mapping to symbols in the lexicons. Given the composition of features, higher-level lexicons had 
coarser discretization intervals than the lower level lexicons. 
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Figure 4. Hierarchical Lexicons Structure 

Note that each input data point was a segment of the data stream within a time span. The 
primary features may also have had a timestamp. The composition of features were not just 
spatial, but also temporal. For example, there may have been a feature composition:  

〈𝑥𝑥𝑛𝑛𝑡𝑡 (𝑞𝑞), 𝑥𝑥𝑛𝑛𝑡𝑡 (𝑞𝑞′)〉, 𝑞𝑞, 𝑞𝑞′ ∈ 𝑄𝑄, or 〈𝑥𝑥𝑛𝑛𝑡𝑡 (𝑞𝑞),𝑥𝑥𝑛𝑛𝑡𝑡−∆𝑡𝑡(𝑞𝑞)〉 (2) 

 ∆𝑡𝑡 < 𝑊𝑊. (3) 
The temporal relations among them were learned and checked. 

A question raised here was which feature combinations should be included. If the model 
simply considered all of the possibilities, it would quickly scale to an intractable size as Q and W 
increased. This is both unnecessary and computationally wasteful. Another option was to rely on 
traditional feature reduction techniques, such as principal component analysis. Although these 
techniques have long been studied, they either required supervised learning or destroyed the 
direct relation (one-to-one mapping) between feature space and lexicon space. Furthermore, none 
of the previous techniques have been applied to select feature combinations. A pooling and 
reduction procedure was used here that was applied to both spatial and temporal domains to 
construct the key lexicon’s hierarchy. A link selection algorithm was also developed to establish 
the knowledge links between the lexicons. 

3.2.3 Feature Combination Pooling. 
Feature pooling is when primary features are complemented with a set of composite features, 

and this captures the higher order relations. The pooling stage generates a set of lexicon 
candidates, which can then be reduced, as discussed in the next section. 

For a simple two-feature combination; the first question asked is whether such a combination 
will provide more information for anomaly detection than the individual feature components. 
Consider the example scatter plots in Figures 5 and 6, where the X and Y axes represent the 
dimensions of the two primary features in arbitrary units. 
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Figure 5. Uncorrelated Components 

Figure 6. Correlated Components 
If the two features are distributed independently in their feature space, as are the blue dots in 

Figure 5 a potential outlier (the red dot) in this subspace is detected by considering only one of 
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the components. Therefore the combinations of non-correlated features do not offer additional 
information. However, if the two features are sufficiently relevant, as shown in Figure 6, the red 
dot, which is originally indistinguishable from any single axis, is detected by their combination. 
Based on this observation, the pooling procedure was designed to be a combination of highly 
correlated features. 

To extend this concept to more general cases, the feature distance was defined as  𝑑𝑑�𝑞𝑞𝑖𝑖, 𝑞𝑞𝑗𝑗� ∈
[0, 1]. The shorter the distance the more relevant were the two features 𝑞𝑞𝑖𝑖  and 𝑞𝑞𝑗𝑗 . Since the 
framework had to be applicable to both continuous and categorical data, the normalized mutual 
information was adopted as the distance measure. For combination Ql consisting of two or more 
features, a simple relevancy test was performed to determine whether it should be included in the 
lexicon candidate set: 

𝑅𝑅𝑅𝑅(𝑄𝑄𝑙𝑙) = ∏ 𝐼𝐼�𝑑𝑑(𝑞𝑞𝑖𝑖, 𝑞𝑞𝑗𝑗) < 𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�𝑞𝑞𝑖𝑖,𝑞𝑞𝑗𝑗∈𝑄𝑄𝑙𝑙                 (4) 

This test required that all of the component pairs in Ql were within a constant proximity 
distance dprox to each other. Algorithm 1 pooled the features for the lexicon generation. The 
algorithm first added all of the single features into the candidate set. Then in the second for-loop 
each subset of Q whose cardinality was less than max_order was inspected. If the subset passed 
the relevancy test, a new lexicon candidate was added to CS. Not all of the candidates were key 
lexicons whose anomaly score was calculated. A reduction stage was also used to select the key 
lexicons from the candidate set. 

3.2.4 k-NN Node Reduction. 
Although the pooling process excluded most of the irrelevant combinations, the number of 

possible candidates was still large when Q had many features. Therefore, a reduction procedure 
was used to further compress the candidate set that generated the key lexicons. The redundancy 
among candidates selected in the pooling stage was removed during this reduction. Because 
labels were not available in the training set, a similarity-based method [12] was modified to 
preserve the most representative combinations. 



Approved for Public Release; Distribution Unlimited 

12 

The general idea of the reduction procedure was to cluster the candidate feature combinations 
by similarities, and then select one representative from each of the clusters. Again, normalized 
mutual information was employed to measure the distance 𝑑𝑑(𝑄𝑄11,𝑄𝑄12)  between the 
combinations. The clustering process was accomplished by k-NN (k nearest neighbor) principle. 
When the most compact candidate was selected from a cluster, its neighbors were discarded. 
This operation was repeated until the remaining candidates no longer formed a cluster. The 
reduction procedure is described in Algorithm 2.  

The algorithm first initialized the set KEY with all of the candidates. Then it calculated the 
distances for each combination to its nearest neighbors. The center of the compact cluster’s k-
distance was selected as the upper limit of the cluster radius. Then in the following while-loop, 
the combination with the minimum k-distance was selected, and its K neighbors were removed 
from the KEY set. Then the K value was reduced until the next cluster’s radius was shorter than 
the radius limit. The neighbor-removing process repeated until K reached 1. The remaining 
candidates in KEY set were the final key lexicons selected. 

Although the features in Q were used as an example to explain the pooling-reduction 
procedure, the concept can also be applied to temporal domain. When the data inputs were not 
single points in the feature space, but multi-variant time series, the definition of anomalies can be 
extended to historical patterns. To capture such potential outliers, the key lexicons must include 
not only the different features, but also the feature projections in different frames. This can be 
accomplished by performing feature-wise selection followed by temporal selection.  

If multiple frames were considered after the key lexicons were determined, then each lexicon 
along with its historical readings formed a new temporal feature set 𝑄𝑄𝑙𝑙𝑊𝑊 = {𝑄𝑄𝑙𝑙0,𝑄𝑄𝑙𝑙−1,⋯ ,𝑄𝑄𝑙𝑙−𝑊𝑊}. 
The same pooling-reduction algorithms were then directly applied on these feature sets to 
generate informative and succinct key lexicons. A key lexicon was represented as a two-
dimensional pattern: 

 𝑅𝑅𝑙𝑙  ~ �(𝑞𝑞𝑙𝑙1 , 𝑞𝑞𝑙𝑙2 ,⋯ , 𝑞𝑞𝑙𝑙𝑖𝑖 ,⋯ )−𝑡𝑡1 , (⋯ , 𝑞𝑞𝑙𝑙𝑖𝑖 ,⋯ )−𝑡𝑡2 ,⋯ , (⋯ , 𝑞𝑞𝑙𝑙𝑖𝑖 ,⋯ )−𝑡𝑡𝑗𝑗 ,⋯� (5) 

The number of correlated frames W was usually much smaller than the feature number in Q, 
so that the reduction process was sometimes omitted in the temporal selection. 
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3.2.5 Knowledge Link Determinations. 
Now that the key lexicons were identified, the next step was to find the supporting lexicons 

that could be used to infer the key lexicon symbols. To do so a max-similarity, min-redundancy 
principle was followed. For instance, to infer the shape of an object, touching was preferable 
compared to color (max-similarity). But if touching was already selected, weighting might not be 
necessary as they share some information (min-redundancy). Generally, we wanted to maximize 
the correlation between key lexicons and their supporting lexicons, and meanwhile, minimize the 
correlation among the supporting lexicons that were connected to the same key lexicon. The 
supporting lexicons were chosen from the primary features since the key lexicons had already 
handled the combinational patterns. 

Heuristic Algorithm 3 defined a group of features at certain time offset, {𝑞𝑞−𝑡𝑡, 𝑞𝑞 ∈ 𝑄𝑄, 𝑡𝑡 < 𝑊𝑊}  
which inferred the observation at a key lexicon Rl. The algorithm first sorted the supporting 
features by their distances to the target key lexicon. Then it traversed the sorted features, added a 
primary feature to the supporter set only when: (1) it was not one of the components of the key 
lexicon; (2) it was highly correlated with the key lexicon; and (3) it had a low correlation with 
supporting features that had already been selected for the same key lexicon. At this point the 
confabulation model was properly configured, and the training streams were then processed to 
build the KB. 

3.3 Training 

3.3.1 Manual Training. 
Two lexicons were associated with each auxiliary center, the center displacement (ΔL-t) and 

the center acceleration (ΔV-t), at frame t = 1, 2. The center displacement was the distance 
between the target and the auxiliary center, and was represented by the displacement in latitude 
and longitude. It described how far the target moved in the last 1 and 2 frames. The center 
acceleration specified the change of velocity (speed and direction) of the target during the last 1 
and 2 frames. 
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Two lexicons were associated with each neighbor or supporter. The relative location lexicon3  
gave the relative position of the neighbor (or supporter) with the respect to the target. The 
velocity lexicon (denoted as Vi for the ith neighbor, and Vi

-t for the ith supporter in frame -t) 
specified the velocity of the neighbor (or supporter) as a combination of the speed and direction.  

Three lexicons were used for pairwise attributes that described the relation between the target 
and each of its neighbors. Pairwise location lexicon (Li

~) specified the distance (in meters) and 
direction (in degrees, relative to neighbor’s moving direction) between the target and the ith 
neighbor. Pairwise speed lexicon (Vi

~) specified the target’s absolute speed (in m/s) and relative 
direction (in degrees) with respect to the neighbor’s direction. Pairwise speed change lexicons 
(ΔVi

~) captured the target relative speed (in m/s) and relative direction (in degrees) with respect 
to the ith neighbor.  

In total 100 lexicons (i.e. features) were used to describe the status and context of a target 
vehicle. The set of observed attributes of these features formed a sentence, which was the basic 
input for the confabulation training and recall processes. Every vehicle in the detection zone was 
treated as a target; and a scene was created for each one of them. 

In Figure 7 is shown the overall confabulation model with lexicons and the knowledge links 
that connected them. Lexicons S, L, V and Li

~, where 1≤i≤10, were represented using dashed 
circles.  Each one of them corresponds to a general category of abnormal behavior of the target 
vehicle, such as abnormal location or speeding, inconsistency between vehicle size and its status, 
and abnormal interactions with neighbors. We refer these lexicons as the key lexicons and others 
as the regular lexicons. Only the excitation levels of the key lexicons were evaluated. All other 
lexicons provided supporting context for them. A key lexicon has incoming knowledge links 
from all of the other lexicons, while a regular lexicon has outgoing knowledge links. 

Figure 7. Knowledge Links among Lexicons 

3 denoted as ΔLi for the ith neighbor, and ΔLi
-t for the ith supporter in frame -t 
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Figure 8. Neighbor Index 

In previous confabulation models [1] [11] ten neighbor lexicons were necessary.  In Figure 8 
is presented the neighbor index that was determined for our data. A target vehicle only had a 
small number of neighbors, which was usually less than five. Therefore, the neighbor lexicons 
with the most indices had the smallest training data. Because of this, this work developed a new 
technique called “shared links” 

The amount of available training data directly affected the accuracy of the model. Meanwhile 
neighboring vehicles with similar behavior were associated more often during multiple times of 
observation, because the neighbors were mapped to lexicon indices-based on their relative 
distance to the target. Our shared links model overcame these problems by letting the knowledge 
links initiated from the neighbor lexicons share the same knowledge matrix. In other words, we 
did not distinguish neighbors. In this way the training data for the neighbors all contributed to the 
same KB. This also reduced the false alarm rate. Moreover, the shared link knowledge helped to 
reduce the size of KB, since one matrix was maintained for multiple knowledge links. 
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Figure 9. Confabulation Model Training and Recall 

3.3.2 Automated Training. 
The automated confabulation algorithm consisted of two procedures: unsupervised learning 

(training) and anomaly detection (recall). Both procedures operated on the same KB.  In Figure 
9 is shown the task flow diagram of the training and recall procedures. The observed traffic data 
were first preprocessed by zone partitioning and feature extraction. The observed lexicon 
attributes were collected and assembled into a scene. Each observed attribute was mapped into a 
globally unique reference number called a symbol using two-level hash functions. For a given 
lexicon, all of the observed attributes during the training process formed the candidate set. After 
preprocessing each knowledge link, the co-occurrences of the source and target symbols were 
counted, and the log-conditional probabilities were calculated. Lastly, the knowledge matrices 
were stored as KBs. These steps are summarized in the Training Section in Figure 10. 

Training 
1 Reset all KLs and lexicons 
2  For each input sentence T 
3      Map elements in T into reference numbers 
4      For each symbol oi in T 
5          Add oi to the candidate set of lexicon[i] 
6          For each symbol oj in T 
7          If (i !=  j), KL[oi, oj].count++ 
8          End for 
9      End for 
10 End for 
11 Finalize value of each KL and store into KB 

Recall 
1  For each input sentence T 
2      Map elements in T into reference numbers 
3      For each target key lexicon l  and observation t 
4          Calculate el(t) by Eq. (1) 
5          For each candidate’s tj in lexicon[l], find el(tbest) 
6      End for 
7        Calculate nas() by Eq. (2) (3) 
8      If bucket overflows, flag anomaly on the target 
9  End for 
10 Output anomaly reports 

Figure 10. AnRAD Training and Recall Procedures 
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The same preprocessing and feature extraction training procedures were performed during a 
recall. The excitation level el of each key lexicon was calculated, which gave the likelihood 
value of the observation given the context of the target and neighbors. For each key lexicon the 
excitation levels of other symbols in its candidate set were also calculated, and the symbol 
𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏with the highest excitation level was obtained. An anomaly score as(l,t) was defined based 
on the likelihood ratio test as shown in Equation (6).  

 𝑎𝑎𝑎𝑎(𝑙𝑙, 𝑡𝑡) = 𝑒𝑒𝑒𝑒(𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)−𝑒𝑒𝑒𝑒(𝑡𝑡)
𝑒𝑒𝑒𝑒(𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) (6) 

A high anomaly score for an observed symbol t indicated that the likelihood of t was much 
lower than the likelihood of a typical observation. The score reflected how low the observed 
symbol’s cogency was under the given context. The anomaly score of all key lexicons were then 
weighted by symbol’s prior probability, which was then consolidated into a network anomaly 
score 𝑛𝑛𝑛𝑛𝑛𝑛(𝑣𝑣𝑙𝑙=1⋯𝐿𝐿) that was calculated as the following: 

𝑛𝑛𝑛𝑛𝑛𝑛(𝑣𝑣𝑙𝑙=1⋯𝐿𝐿) = ∑ 𝑎𝑎𝑎𝑎𝑙𝑙
∗(𝑣𝑣𝑙𝑙)𝐿𝐿

𝑙𝑙=1
𝐿𝐿

, (7) 

𝑎𝑎𝑎𝑎𝑙𝑙∗(𝑣𝑣 ∈ 𝑆𝑆𝑙𝑙) = [𝑒𝑒𝑒𝑒(𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)+𝑝𝑝𝑝𝑝(𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)]−[𝑒𝑒𝑒𝑒(𝑣𝑣)+𝑝𝑝𝑝𝑝(𝑣𝑣)]
𝑒𝑒𝑒𝑒(𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)+𝑝𝑝𝑝𝑝(𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) ,         (8) 

where 𝑝𝑝𝑝𝑝(𝑣𝑣) was the log prior probability of symbol v, L was the number of key lexicons, and 
the output score was within the range [0, 1]. 

3.4 Anomaly Scores 
The AnRAD framework and the baseline methods generated anomaly scores for each input 

frame. A leaky bucket algorithm [13] with a capacity 2.0 and leak rate of 0.5 was used as the 
decision stage for the data streams. Whenever the score generated by the above method exceeded 
its threshold, it filled 1 unit into the bucket. The system reported anomalous when the water 
overflowed the bucket.  
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Figure 11. Workload Mapping 

The kernel for computing the anomaly score was divided into two stages, the excitation 
mapping and the score reduction, as shown in Figure 11. The mapping stage calculated the 
excitations of the symbols for a key lexicon, and stored them in the shared memory buffer. 
Consider a key lexicon Rl with symbol set Sl and supporting lexicons {𝑅𝑅𝑘𝑘|𝑘𝑘 ∈ 𝐹𝐹𝑙𝑙}.  

When the kernel received a new input, it used the input supporting symbols {𝑡𝑡|𝑡𝑡 ∈ 𝑆𝑆𝑘𝑘} to 
locate the activated strips from the knowledge link LIL. Such a strip contained all the conditional 
probabilities for one supporting symbol t, {𝑝𝑝(𝑠𝑠|𝑡𝑡)|𝑠𝑠 ∈ 𝑆𝑆𝑙𝑙}. At this point, if a thread was to locate 
a specific 𝑝𝑝(𝑠𝑠|𝑡𝑡), the entire strip would need to be searched, which would have degraded the 
cache performance. Thus, a reversed approach was used in which the threads read consecutive 
values from the strips and accumulated these values atomically to the key-symbol buffer. To 
prevent control divergence, the strip-lengths were warp aligned so that the threads of a warp 
follow the same control flow. The cache performance was optimized since the strip access 
patterns were continuous.  

The same preprocessing and feature extraction training procedures were performed during a 
recall. The excitation level el of each key lexicon was calculated, which gave the likelihood 
value of the observation given the context of the target and neighbors. For each key lexicon the 
excitation levels of other symbols in its candidate set were also calculated, and the symbol 
𝑡𝑡𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒with the highest excitation level was obtained. An anomaly score as(l,t) was defined based 
on the likelihood ratio test as shown in Equation (6).  
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Figure 12.  Anomaly Score Computation 

The excitations of the key symbols Sl were stored in the shared memory for efficient atomic 
addition and inter-thread operations. If a lexicon had more symbols than the pre-defined shared 
memory usage of Umax > 2048, then it was partitioned into multiple blocks, as shown in Figure 
12. A block dimension of 256 was jointly chosen based on the Umax for full occupancy. The 
atomic addition did not cause performance degradation: when a lexicon had many symbols, the 
possibility that multiple threads would write the same symbol was low; if the lexicon had very 
few symbols, the computation of this lexicon itself was less time consuming, and hence didn’t 
limit the overall performance. 

The same preprocessing and feature extraction training procedures were performed during a 
recall. The excitation level el of each key lexicon was calculated, which gave the likelihood 
value of the observation given the context of the target and neighbors. For each key lexicon the 
excitation levels of other symbols in its candidate set were also calculated, and the symbol 
𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏with the highest excitation level was obtained. An anomaly score as(l,t) was defined based 
on the likelihood ratio test as shown in Equation (6).  

In the reduction stage, the excitations of the observed key symbol were stored first. Then all 
the excitations buffered in the shared memory were compared and reduced to find the most likely 
symbol 𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡∈𝑆𝑆𝑙𝑙. The anomaly score was calculated using the excitation of this reference symbol 
and that of the real input symbol based on Equation (2). In lightly loaded applications, the node 
scores from blocks was transferred back to the host for calculating the network anomaly score. 
Alternatively, another kernel was launched to further reduce the scores across key lexicons when 
the model was more complicated or there were several concurrent input streams. The formal 
representation of the reduction process is shown in Algorithm 5. 
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3.5 Incremental Learning 
Given the configured confabulation network, a KB was constructed for AnRAD from the 

input data streams. The learning process was to determine the weight of the knowledge links, i.e., 
the p(s|t) values in Equation 1. This was achieved by collecting the statistics of the co-
occurrences of the linked lexicon symbols. The probability was then calculated as 𝑝𝑝(𝑠𝑠|𝑡𝑡) =
𝑐𝑐𝑐𝑐𝑐𝑐(𝑠𝑠, 𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡)⁄ , where 𝑐𝑐𝑐𝑐𝑐𝑐(𝑠𝑠, 𝑡𝑡) was the number of co-occurrences of the source s and the 
target t, and 𝑐𝑐𝑐𝑐𝑐𝑐(𝑠𝑠, 𝑡𝑡) was the occurrence of the target symbol t. 

For probabilistic inference applications the above method worked fine because larger data 
samples generally gave more information of the most likely symbols. However, this was not true 
with anomaly detection, because the unlikely symbol was not necessarily made more 
distinguishable when the sample size increased. Zimek [14] determined that smaller datasets 
outperformed larger ones, and that constantly incrementing the co-activation counters can 
degrade the detection performance. Therefore, our framework used a mechanism named 
“episodic training”, in which the co-activation counters were reset after time period  𝑇𝑇𝑒𝑒𝑒𝑒. Then 
the excitation stored in the KB was updated by merging the new one into the previous episodes 
using the following equations: 

   𝑒𝑒𝑒𝑒𝐸𝐸+1(𝑠𝑠, 𝑡𝑡) = 𝑒𝑒𝑒𝑒𝐸𝐸(𝑠𝑠,𝑡𝑡)+𝑙𝑙𝑙𝑙[𝑝𝑝(𝑠𝑠|𝑡𝑡)/𝑝𝑝0]
𝐸𝐸+1

,                          (9) 

𝑒𝑒𝑒𝑒0(𝑠𝑠, 𝑡𝑡) = ln (𝑝𝑝(𝑠𝑠|𝑡𝑡)
𝑝𝑝0

),                                             (10) 
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where 𝑒𝑒𝑒𝑒𝐸𝐸  was the stored excitation at episode E. When equation (6) was substituted into 
equation (1), it resulted in: 

 𝑒𝑒𝑒𝑒(𝑡𝑡) =  ∑ �∑ [𝐼𝐼(𝑠𝑠)𝑒𝑒𝑒𝑒(𝑠𝑠, 𝑡𝑡)] + 𝐵𝐵𝑠𝑠∈𝑆𝑆𝑘𝑘 �𝑘𝑘∈𝐹𝐹𝑙𝑙 .      (11) 

Before the first reset, i.e. ex0, the result was the same as equation (1). This updating function 
resulted in an ensemble of temporal sub-samples. 

3.6 Accelerating AnRAD 
In terms of the computation recall complexity, AnRAD is similar to other conventional 

anomaly detection approaches. However, the AnRAD architecture, if parallelized, would 
significantly accelerate its processing speed. This section addresses the complexity of 
accelerating the AnRAD algorithm. 

3.6.1 Complexity Analysis. 
Accelerating the algorithm required an understanding of the processing bottleneck. The 

Confabulation (CFB) method was compared to some of the standard anomaly detection 
algorithms, including the incremental Local Outlier Factor (LOF), the Replicator Neural 
Network (RNN), and the Cross-Feature Analysis (CFA). Their computing time and the 
complexity to process a single Defense Advanced Research Projects Agency (DARPA) data 
stream are given in Table 1.  

Table 1. Complexity Analysis 

  
(Q – number of features; N – number of training samples; T – neural network iterations; S – neural network connections; H – 

decision tree height; L– key lexicon numbers; D – average key symbols; F – average knowledge link numbers) 

 

The programs are all single threaded without intentional algorithmic optimizations. In terms 
of training, CFB is much faster than the others because at each frame it only updates a single 
entry of the affected knowledge link tables. Therefore it allowed real-time processing and 
incremental training without much optimization. However, the recall of confabulation was 
merely faster than the incremental LOF, whose complexity scaled with the volume of the 
training samples. Fortunately, the confabulation network has layered and massive parallel 
structure. And this can be exploited for performance acceleration with the help of today’s 
multicore processors.   

According to anomaly score equations (1) and (2), the complexity of detecting one instance is 
O(LDF), where L is the number of key lexicons, D is the average number of symbols in one key 
lexicon, and F is the average number of knowledge links connected to one symbol. At node level, 
each key lexicon worked as an independent test, so L could be parallelized on multiple 
computing elements, e.g. Compute Unified Device Architecture (CUDA) blocks. At the 
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symbolic level, D and F induced the accumulation of link values from the knowledge tables to 
the candidate symbols. These operations were parallelized by either creating one CUDA thread 
for each knowledge link or by using vector processing. 

In term of the storage space complexity, the confabulation model was dominated by O(LFB), 
in which B was the average size of the knowledge link matrices. The actual memory requirement 
could be lower. For example, if lexicon R1 and R2 had connections to each other, then they could 
mirror the knowledge link. Also, features such as “shared links” could be adopted to reduce the 
KB size. The main optimization relied on B. Because most of the knowledge links were sparse 
matrices, a compact storage format was preferable. 

3.6.2 Naïve Parallel Implementation. 
The straightforward implementation design mapped each key lexicon to its own thread.  

Multiple threads were then run on a state-of-the-art multi-core CPU. This was feasible because 
the key lexicon computations were independent, and thus did not require significant 
synchronization. Also, there were usually a few dozen key lexicons, so the workload was 
sufficient to achieve high occupancy. As shown in Figure 13, a thread pool was allocated with a 
number of simultaneous threads. The system assigned key-lexicon computations to the available 
threads, or waited until all of the worker threads were occupied. The pool size was no less than 
(2 ∗ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛_𝑐𝑐𝑐𝑐𝑐𝑐_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐), so context switching was prevented. However, the limited number of 
available CPU cores prevented us from fully exploiting the structural parallelism of AnRAD. 

 
Figure 13. Thread Pool for CPU Multi-threading 

 

GPUs also provided a potential option to fully parallelize the key-lexicon computations. Most 
GPUs may have more cores than most state-of-the-art CPUs. A simple design directly moved the 
aforementioned CPU threads to GPU cores using kernel Algorithm 4. In this implementation, 
each CUDA thread handled one key lexicon, and distinct CUDA blocks processed concurrent 
input streams.  
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This naïve acceleration had two major problems. First of all, it had inefficient KB 

management. In the CPU implementation the knowledge link matrices were stored in hash tables 
to provide near constant lookup time. However, on the GPUs concurrent random accesses 
affected the memory bandwidth and induced stalls. Secondly, it caused imbalanced workloads 
among threads. The number of symbols in key lexicons was determined by the nature of the 
targeted application and varied significantly. Thus, different key lexicons may sometimes 
introduce different workloads. Such workload imbalance produced serious control divergence, 
since the CUDA threads were executed in warps. If the threads had to wait for their neighbors’ 
outstanding workloads, the overall acceleration was diminished.  

These limitations of the naïve implementation motivated us to modify three aspects of the 
AnRAD system to provide GPU acceleration: KB management, workload balancing and finer-
grained parallelization.  

3.6.3 In-memory Knowledge Bases. 
The KB of the confabulation network was flattened and stored in the device memory. There 

could be multiple KBs on the same device, each associated with a knowledge link. Figure 14 
shows the memory layout of one KB. The KB maintained a “Block List”, each entry of which 
corresponded to a key lexicon. Based on the size of its symbol list and the amount of available 
shared memory, a key lexicon could be divided into multiple blocks.  

In addition to number of symbols and number of source lexicons, a block entry also stored the 
location of a “KL List” which described the incoming knowledge links of the key lexicon. A KL 
entry pointed to the list of symbols in the source lexicon for that knowledge link, and provided 
the starting address of the knowledge link matrix. Note that the knowledge link matrix was very 
sparse, for memory reduction the matrix was stored in a list of lists (LIL) format.  
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Figure 14. In-memory Knowledge Base Layout 

Each LIL had a strip list, which corresponded to rows in the matrix. Each entry in the strip list 
pointed to an excitation list, which corresponded to non-zero elements in the row. The matrix 
was arranged such that each row corresponded to a symbol in the support lexicon, and the 
column represented a symbol in the key lexicon. The input of support lexicons were invariant 
when the detect process calculated the excitation level of all symbols of the key lexicon for a 
given scene. Hence only one excitation list needed to be loaded for each knowledge link. The 
column and row arrangement of knowledge matrix insured that the algorithm accessed 
knowledge values in continuous address. Finally, each block entry also contained addresses to 
the prior probabilities of the key symbols that were needed for the calculation of Equation (8). 

The size of the trained KBs for a single detection zone is plotted in Figure 15.  The naive 
implementations stored raw knowledge matrices and quickly scaled the memory usages as the 
training data increased in size. On the other hand, the optimized memory layouts compressed the 
sparse knowledge links and significantly reduced the memory consumptions. The shared link 
feature included knowledge links that connected the different neighbor vehicles that shared the 
same probability matrices. This not only made the nodes of interactive features more general, but 
also reduced the memory usage. For this example, compared to naive and LIL-only (Optimized) 
storages, enabling shared memory (Shared) reduced the knowledge base size to less than 20MB. 
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Figure 15. Memory Usage of Individual Models 

3.6.4 Workload Balancing. 
Instead of mapping the key lexicons to individual threads, a CUDA block was assigned to 

each key lexicon. Each CUDA block consisted of multiple threads. The blocks were dynamically 
schedulable, and uneven workloads among different lexicons did not introduce control 
divergence. Also, multiple threads in the CUDA block contributed to the anomaly score of the 
same key lexicon. This exploited the layered parallel structure, i.e. optimized the D and F factors. 

During the system initialization, the trained KBs were flattened and loaded to the GPU. The 
input streams were then organized into the corresponding format and then were dynamically sent 
to the devices at each frame. One CUDA block either computed the anomaly score of one key 
lexicon or a part of a larger lexicon with many symbols. 

3.6.5 Extension to Xeon Phi Co-processor. 
The memory layout and computation process was also applied to a Xeon Phi co-processor. 

The in-memory KB was also used when the co-processor was in the off-load mode. However, 
the way that the workload was mapped needed to be changed. Typically a Xeon Phi KNC chip 
has fewer physical cores than the NVIDIA GPGPU, but each of the Xeon Phi cores is a fully 
featured processor, and thus more powerful than the GPU shadows.  

In particular, each Xeon Phi core was equipped with a 256-bit vector engine, which can 
perform the mapping reduction process. Therefore, the lexicon-wised CUDA block computations 
were mapped to individual Open Multi-Processing (OpenMP) threads. Within each OpenMP 
thread the vector unit replaced the function of the original CUDA threads. 
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4  RESULTS AND DISCUSSIONS 
Experiments were carried out to evaluate the basic AnRAD system, the effectiveness of the 

self-structuring algorithm, and the speed-ups of the optimized implementation. In the following 
set of experiments the AnRAD system detection accuracy was determined. To evaluate the 
effectiveness of the framework, in addition to the GMTI dataset [15] for large area surveillance, 
two other publicly available anomaly detection datasets were analyzed. The second dataset was 
composed of extracted package streams from the DARPA 1998 Intrusion Detection Program 
[16]. The third dataset was the ADFA-LD contained system call sequences [17-19] of benign and 
malicious programs.  

 

4.1 AnRAD for Traffic Monitoring of Manually Structured Data 
The detection performance of the AnRAD system was evaluated with manually constructed 

confabulation network data that was described in Section 3. A zone of 500x500 meter2 with 
moderate traffic density was randomly selected from the total monitored area. The training data 
was for 240 minutes of normal traffic. The testing data included 10 minutes of normal traffic 
data. Abnormal events representing typical hazardous vehicle activities had been manually 
inserted into the data. The abnormal events included cars deviating from the road, speeding, 
tailgating, 18-wheeler trucks running at abnormal speeds, and cars that unexpectedly “Start/Stop” 
in the middle of the road.  

 

Figure 16-19 are the anomaly scores of selected key lexicons of all of the target vehicles in 
the testing area during the time when abnormal events occurred. This anomaly value is a 
representation of how anomalous the data set was. In historical modes, the value of the score isn't 
as important as the relative height of the peak of the score line. The X-axis in each of these 
figures gives the indices of vehicles. The Y-axes are the magnitudes of the anomaly scores. Each 
figure corresponded to a type of abnormal activities. 

 
 

 
Figure 16. Anomaly Score of a Location Key Lexicon 

Abnormal location 
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Figure 17. Anomaly Scores of Speed Key Lexicons 
 

 

Figure 18. Anomaly Scores of First Neighbor Pair Lexicons 
 

 

Figure 19. Anomaly Scores of the Speed Lexicon for “Start/Stop” Events 

Speeding 

Tailgating 

Abnormal stop 
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The anomaly scores of the manually-inserted abnormal targets are highlighted in red in each 
figure. The anomaly scores of the normal vehicles are in blue. The anomaly scores in red were 
significantly higher than the blue ones, and could be readily detected by a decision threshold. 
Furthermore, the anomaly scores demonstrated an obvious temporal continuity for most of the 
abnormal events categories. The exception was the abnormal “Start/Stop” of vehicles, which 
gave short spikes only when the moving status changed. These results also demonstrated that 
different key lexicons corresponded to different types of anomalies. For example, a high 
anomaly score in the neighbor pair lexicon indicated a tailgating event or some other unusual 
relation between two vehicles.  

The anomaly scores for a set of anomaly data were compared using the AnRAD framework 
and a traditional Bayesian model. For this data an 18-wheeler by itself was quite common in the 
zone, but this type of vehicle becomes abnormal when it was driven at a speed that was normally 
observed for sedans. From the anomaly scores as shown in Figure 20, the AnRAD framework 
was more effective in detecting these anomalies. The AnRAD anomaly scores for such events 
were 20% higher than those calculated with Bayesian model, which resulted in the AnRAD 
model providing a higher detection probability than the Bayesian model. 

 

4.2  AnRAD Accuracy 

4.2.1 Abnormal Vehicle Behavior Detection. 
For this determination vehicle traces were obtained from an area road network. Each record 

contained the vehicle location, speed, type and a timestamp. Our preprocessor extracted the 
interactive features including distances and velocity angles between vehicles and their neighbors. 
The original features and the interactive measures together formed 10 primary features. The self-
structuring procedure selected 44 key lexicons out of the 2548 possibilities. The maximum order 
of feature-wise pooling was set to 5, and the maximum order of temporal pooling was 3. The 
traffic records were generated at one-second sampling intervals in four randomly picked zones. 
The training stage consumed 240 minutes of traces, and another 10-minute trace was used as the 
test set. Among the test data there were 179 vehicles that, without intentional modification, were 
used as the negative cases, and 22 manually created anomalies of different categories that were 
the positive cases. 

 

 
Figure 20. Anomaly Scores for (a) AnRAD and (b) Bayesian 
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Figure 21. Alarm Rate v. Score Threshold of Vehicle Monitoring 

 

 

 

 

 

 

 

In Figure 21 is shown the anomaly class detection results. The Y-axis is the alarm rate and the 
X-axis is the network anomaly score threshold. It was observed that the normal vehicles 
generated a much lower alarm rate compared to abnormal ones. When the threshold was 0.14, a 
100% anomaly detection rate was achieved when the false positive rate was 10e-2. Therefore, for 
vehicle anomaly detection tasks, the framework leaves a wide margin to trade between detection 
and false alarms. The self-structured network was able to detect abnormal behaviors such as 
tailgating, deviating from driveway and speeding. 
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Table 2 Correlation between Anomalies and Outstanding Nodes 

 
 

The AnRAD framework provided the reasoning ability in that the anomaly decisions were 
explainable by the introspection of the anomaly scores of the key lexicons. For instance, Table 2 
showed the relationship between the key lexicons and the anomaly classes. In this example, key 
lexicons that generated an anomaly score of higher than 0.8 were defined as “outstanding”. The 
different anomaly outstanding occurrences were counted, and three largest lexicons were noted. 
For speeding and sudden stops, i.e., these anomalies were closely correlated. Our analysis also 
showed that the most outstanding lexicon for this type of anomaly was <speed>.  

Tailgating happens when one vehicle quickly approaches another vehicle. This was detected 
when the composite lexicons of speed and distance to the first neighbor had an increased 
anomaly score. Anomalies such as deviating from the road were revealed by high anomaly 
scores in the coordinates-related lexicons. A truck was determined to be speeding even when its 
speed was normal for a sedan. Such behavior was flagged by the composite lexicon of vehicle 
size and its displacement in consecutive frames. These examples showed that the AnRAD 
framework used features to determine additional classes of anomalies without additional training 
labels or domain knowledge. 

4.2.2 Network Data Intrusion Applications. 
The AnRAD framework was also tested with fully labeled datasets and compared with other 

baseline methods. The baseline algorithms considered were: incremental Local Outlier Factor 
(LOF) [20], which is a density-based method; Replicator Neural Network (RNN) [21], which is a 
classification-based method; and Cross-Feature Analysis (CFA) [22] with Classification and 
Regression Tree (CART) decision trees (rule-based method). The baselines did not have all of 
the AnRAD functionality such as reasoning and incremental training, here only the detection 
performances were considered. 
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The first dataset was processed from the 1998 DARPA Intrusion Detection Evaluation Data 
Set. For each Internet Protocol (IP) address pairs, traffic statistics were recorded per 300 msec. 
per frame. In total 21 primary features were extracted from the raw files. Some examples of the 
features were bytes from client to server (or server to client), service ports, and the number of 
clients connected with a server.  

We did not use the session-oriented Knowledge Discovery and Data Mining (KDD) 99 
dataset because we investigated the concurrent data streams rather than the session-oriented data 
points, and our processing also leveraged less attack specific domain knowledge. The self-
structuring network picked 123 key lexicons out of the 446,320 possibilities given the max order 
equals five for both the feature-wise and the temporal pooling. For training, normal streams from 
the seven weeks of training data were randomly sampled, and 20,000 frames were selected. The 
negative class for this test had another 7000 streams, and all the attacks (422 streams, 24 
categories) in the seven weeks formed the positive class. The moving window size was five 
frames for all of the methods. 

The Receiver Operation Curves (ROCs) for the DARPA dataset are plotted in Figure 22, with 
the X-axis representing the false alarm rate and the Y-axis representing the true detection rate. 
Note that the true positive rates were averaged across the anomaly categories to prevent the 
results from being biased by the larger classes. The AnRAD method outperformed the network 
that had an equal number of randomly selected zones (Random). The AnRAD method also 
obtained the best “Area Under the Curve” (AUC), which is a measure of accuracy, as compared 
to the Incremental Local Outlier Factor, the Replicator Neural Network and the Cross Feature 
Analysis decision tree method. The results demonstrated that the AnRAD method had the 
advantage in the tradeoff between false alarms and detection rates. This was because the AnRAD 
method was able to capture implicit patterns, while the general baseline methods did not. In this 
example the LOF and the RNN methods outperformed the CFA decision tree approach because 
they worked better with continuous features.  

 
Figure 22.  DARPA Dataset ROC Analysis 
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The second dataset was system call sequences from the ADFA-LD dataset, which included 
discrete features that were generated from a Linux local server configured to represent a 
contemporary computer system. The training data consisted of less than 20,000 system calls. The 
testing data had 6000 sequences from the validation set and 746 sequences from the attack set. 
To enable LOF the Levenshtein Edit Distance4 was used; for the neural network method 100 
frequent and orthogonal system calls were sampled from the training set as the template points, 
and the input layer of the network received the call distances to these templates. The moving 
window size was set to six consecutive calls. Because this dataset had fewer primary features, we 
also evaluated the confabulation network with all of the 41 possible nodes and full connections 
(Full). 

From the ROC analysis curves is shown in Figure 23 the AnRAD and the decision tree 
methods outperform the other two. This was because the latter two approaches did not adapt as 
well to the purely categorical features. The decision tree had a marginally better AUC score, but 
it suffered from over fitting: its performance was reasonable at the high-detection-rate regions, 
but its false positive rates were 19% and greater. Also, the self-structured 10-node network was 
determined to have a better performance than the Full configuration. 

The comparisons in this section demonstrated that the AnRAD framework’s detection 
performances were equal to or superior to the classical methods. The AnRAD method is the only 
method that also provided incremental training, transparency and adaption to both continuous 
and categorical data. 

 

 
Figure 23. ADFA-LD Dataset ROC Analysis 

                                                 
4 The minimum number of single-character edits required to change one word into another. 
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4.3 Incremental Learning Benefits 
In the training sequences experiments data was streamed into the system in an incremental 

fashion to verify that the AnRAD model evolved and improved as additional training data 
become available. In this test a detection zone was selected, and the training data was gradually 
presented to the system in 10-minute-long segments. After every incremental training step a 10-
minute-long normal traffic sequence that was different from any of the training segments was 
used for the testing, and the numbers of detected anomalies in any key lexicons were reported. 
Since the testing sequence consisted of normal vehicles, these anomaly counts were false alarms, 
and were expected to decrease with additional training. 

In Figure 24 is shown that the false alarm rate was reduced with increased training. The false 
alarm rate was calculated as the ratio of the reported anomalies over the total number of checked 
instances. Each line represented a false alarm rate of one category of anomaly category (i.e., a 
key lexicon). With insufficient training, e.g. 10 minutes of the training sequence, the false alarm 
rate was as high as 60%. With additional training, the false alarm rates quickly decreased. The 
system reported near zero false alarms after 150 minutes of data training. This indicated that the 
model has been incrementally updated, and that it had become more accurate with additional 
training.  

Another benefit of the incremental training was that it diluted the impact of the false training 
data. Training used clean samples, i.e. anomalies were not intentionally inserted. However, in the 
real unsupervised case, there was no guarantee of the training set quality. So it was important 
that the framework incrementally improved the KB quality.  

 

 

 
Figure 24. False Alarm Rate v. Training Time 
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Figure 25. AUC Scores v. Training Sizes 

 
In the next experiment the train confabulation networks were first trained with anomalous 

data. Then the clean training sets were segmented into 10 episodes and added into the KB one by 
one. At each stage the model tested the same evaluation set, and the AUC scores were collected. 
In Figure 25 for both the DARPA and the ADFA datasets the AUC scores increased as the 
incremental training increased. As more data streams were received, the AnRAD framework was 
able to update and further correct for earlier erroneous knowledge. The detection performance 
continuously improved with new and better training data. 

 

4.4  Performance Evaluations 
To test the effectiveness of the fine-grained parallelization, datasets were implemented on a 

CPU with single threading and multi-threading, a naive GPU and an optimized GPU, and a Xeon 
Phi KNC. The four designs were compared using single testing streams from the normal vehicle 
classes of the DARPA and ADFA datasets. For CPU multi-threading programs were run on an 
Intel Xeon W5580 with 16 cores at 3.20 GHz frequency. For the GPU implementations the 
device used was a NVIDIA Tesla C2075 with 448 CUDA cores at 1.15 GHz and 6 GB device 
memory. Umax = 1536 and blockDim.x = 192 were selected to achieve full occupancy. The Intel 
co-processor implementation was on a Xeon Phi 5100 with 60 cores, 1.053 GHz processor 
speeds, and a memory capacity of 16 GB. A maximum of 240 threads were allocated. 

  



Approved for Public Release; Distribution Unlimited 

35 

Table 3. Runtime Comparison Results 

 
The runtime comparison results in Table 3 showed that the CPU implementation with 16 

threads resulted in a 3-8 times speedup compared to the serial baseline implementation. It did not 
linearly scale with the thread number due to the memory stalls caused by the concurrent memory 
accesses. The GPU naive implementation provided marginal improvements, or ran slower than 
the single-thread baseline, because imbalanced workloads across the threads produced control 
divergence. The optimized GPU implementation provided 442-955 speedups over the baseline 
methods. The optimized kernel fully exploited the concurrent structure of the confabulation 
model and avoided control divergence. Also, the memory access pattern improved the cache 
performance. The Xeon Phi implementation had measured speedup improvement of 24-50 times. 
The reason that Xeon Phi implementation was not as fast as GPU is that the single testing 
streams did generate enough workload for the 240 threads. The GPU offered better 
responsiveness for small and randomly arrived service requests, while the processing power of 
Xeon Phi will be sufficiently utilized by large workload batches. 
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5 CONCLUSIONS  
In this project a high performance computing-based neuromorphic anomaly detection 

framework was developed that provided real-time processing for concurrent data streams. The 
autonomous anomaly recognition and detection (AnRAD) framework was based on cogent 
confabulation, which is a probabilistic inference model that mimicked human information 
processing. It extracted the conditional probability among symbolic representations of features in 
an unsupervised environment.  

Large areas of surveillance data were first partitioned into smaller zones that were then 
independently processed. A Knowledge Base (KB) was built for each zone by adding traffic 
records into properly modeled knowledge networks. When new traffic information was received, 
anomaly scores were calculated by means of the likelihood-ratio test for the observed events. 
Events with high anomaly scores were then marked as potential anomalies, and alarms were sent 
to a human observer. The unique features of this platform are summarized as follows: 

1. The model was able to handle a large volume of vehicle traces over a large area. Large 
areas had not been considered in previous works. The surveillance area was partitioned-based on 
the traffic density information extracted from the training data. In this way, the computation load 
was balanced, and the inference model was more accurately constructed. 

2. The confabulation-based model had a lower complexity for both the training and the 
recall. The system was trainable while operational, and this enabled continuous improvements to 
the KB quality. 

3. By proper modeling the system was capable of capturing contextual information among 
vehicles and their neighbors. Abnormal events such as tailgating that were caused by interactions 
among vehicles were detected. Such events were not considered in previous research. 

4. The overall system had a hierarchical architecture, and the workloads in each level of the 
hierarchy were inherently parallel. A GPU-based parallel implementation was adopted that 
achieved computation acceleration of the AnRAD system. 

The anomaly detection confabulation model is application specific. The neuron nodes 
(lexicons) and the synapses (knowledge links) between them were reconfigurable for different 
applications. The AnRAD system enabled the automatic construction of a confabulation network. 
It concretely learned from the data a succinct set of nodes that represented original features or 
combinations of features. Each node was associated to a lexicon, which recorded the symbolic 
representations of the possible inputs. The links between nodes were also learned from the initial 
data. Given the learned network configuration, further incoming data streams were used to 
incrementally refine the weight of the knowledge links, which was the conditional probability 
between the lexicon symbols.  

With the self-structuring technique, the AnRAD framework was generalized to a wide range 
of applications. In addition to road-traffic monitoring, it was also applied to network intruder 
detection and program control flow monitoring. 
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APPENDIX 
 

 

The output of the Ground Moving Target Indicator (GMTI) was in the Earth-Centered, Earth-
Fixed (ECEF) representation. To facilitate the display and analysis, the input data was converted 
from the ECEF format to a Geodetic format using the WGS84 earth model. The conversion 
algorithm is shown in Figure 26. 

  

 

 

 
Figure 26. Converting ECEF Data to Geodetic Format 

 
 

 

 
 
   

 

  

AmosCoord_ECF2Geo  
Input arguments: 
        double  x, y, z;   //ECF coordinates in meters;  
Outputs:  
        double lat, lng, alt;  //Latitude and longitude in degrees, altitude in meters 
begin 
        while (lat has not converged)  
 begin 
                       𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑡𝑡𝑡𝑡𝑡𝑡−1(𝑦𝑦

𝑥𝑥
);  // Calculate longitude 

          𝑙𝑙𝑙𝑙𝑡𝑡′ = 𝑡𝑡𝑡𝑡𝑡𝑡−1( 𝑧𝑧
(1−𝑓𝑓)𝑝𝑝

); // Guess of latitude and reduced latitude (lat’),  

          𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑡𝑡𝑡𝑡𝑡𝑡 −1(
𝑧𝑧+𝑒𝑒

2(1−𝑓𝑓)
1−𝑒𝑒2

𝑎𝑎 sin3�𝑙𝑙𝑙𝑙𝑡𝑡′�

𝑝𝑝−𝑒𝑒2𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐3(𝑙𝑙𝑙𝑙𝑡𝑡′)
) ; //in which 𝑝𝑝 = �𝑥𝑥2 + 𝑦𝑦2 , f = 0.0033528106718309896 

//(flattening), e2 = 0.006694380004260827 (first 
//eccentricity squared) and a = 6378137.0 (equatorial 
//radius), in accordance to WGS84 earth model.  

          𝑙𝑙𝑙𝑙𝑡𝑡′ = 𝑡𝑡𝑡𝑡𝑡𝑡−1((1−𝑓𝑓) 𝑠𝑠𝑠𝑠𝑠𝑠(𝑙𝑙𝑙𝑙𝑙𝑙)
𝑐𝑐𝑜𝑜𝑜𝑜(𝑙𝑙𝑙𝑙𝑙𝑙)

); // After the guess, lat’ is re-calculated  

             end 
             𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑙𝑙𝑙𝑙𝑙𝑙) + �𝑧𝑧 + 𝑒𝑒2𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑙𝑙𝑙𝑙𝑙𝑙)� sin(𝑙𝑙𝑙𝑙𝑙𝑙) − 𝑁𝑁; // Where 𝑁𝑁 = 𝑎𝑎/�1 − 𝑒𝑒2𝑠𝑠𝑠𝑠𝑠𝑠2(𝑙𝑙𝑙𝑙𝑙𝑙). 
end 
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LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS 
 

ADFA-LD Australian Defence Force Academy - Linux Dataset 

AUC Area Under Curve 

AnRAD Anomaly Recognition and Detection 

CART Classification And Regression Tree  

ΔL Center Displacement 

CFA Cross-Feature Analysis 

CFB Confabulation 

CPU Central Processing Unit 

CUDA Compute Unified Device Architecture 

DARPA Defense Advanced Research Projects Agency 

ECEF Earth-Centered, Earth-Fixed 

GMTI Ground Moving Target Indicator 

GPU Graphics Processor Unit 

IP Internet Protocol 

KB Knowledge Base 

KDD Knowledge Discovery and Data Mining 

KL Knowledge Links 

L Target Location 

ΔL Center Displacement 

Lexicon Features that were used to describe behaviors 

LOF Local Outlier Factor 

OpenMP Open Multi-Processing 

RNN Replicator Neural Network 
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S Target Size 

SAR Synthetic Aperture Radar 

SVM Support Vector Machine 

V Target Velocity 

ΔV Center Displacement 
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