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1. Introduction
Many problems in materials design involve optimizing semi-crystalline polymeric
materials with respect to their dynamical behavior or nonequilibrium properties.
These problems pose substantial modeling challenges that do not afflict crystalline
or amorphous materials or raise questions about thermodynamics. First, length scales
on the order of 10 µm are required to model many semi-crystalline materials or
rare-event phenomena involving low- to medium-defect concentrations (e.g., ag-
gregation, crack initiation, and strain-induced crystallization). This scale exceeds
current computational resources for molecular dynamics (MD) simulations by a
factor of 1,000. Ultra-high-molecular-weight polyethylene offers a classic example
of the scale challenge: despite its simple chemical makeup, CnH2n+2 with n �
100,000, as a material it exhibits large regions of disorder that coexist with crys-
talline regions.

Compounding the challenge, fully atomic detail is required for performance-deter-
mining phenomena, such as vacancies, dislocations, and crack tips; consequently,
MD simulations represent the state of the art for computational design of materials
from first principles. In contrast, for crystalline materials one may use multiscale
models that couple atomistic and continuum theories, e.g., the quasi-continuum
model and the finite-element atomistic method.

We now highlight the main computational challenges faced by MD methods. First,
high-frequency events, such as bond vibrations, dominate the state space sampled
during an MD simulation (and the computational work performed in the process).
Slower processes, such as torsions and translations, are usually the more relevant
ones. The polymers’ long chain lengths, and low defect concentrations, compound
these effects by requiring a large number of degrees of freedom (DoFs). Similarly,
the size of the crystalline or disordered regions is frequently too large for fully
atomistic MD simulations, and hence MD is generally restricted to homogeneous
systems, i.e., fully crystalline or wholly amorphous materials. A polymer melt with
N particles requires O(N3) time to equilibrate, making simulation essentially im-
possible without advanced simulation approaches.

Coarse-graining is an effective approach to reduce simulation cost. Coarse-grained
(CG) simulations are usually faster than their atomistic counterparts due partially to
the reduced DoFs and partially to an increased time step enabled by the elimination
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of high-frequency vibrations. CG methods generally reduce predefined chemical
groups, or sets of atoms, to a single “bead,” and the assignment of atoms and the
bead properties are developed through chemical intuition and careful testing. The
force-matching method of Lu et al.1 and the reversible CG method for phenolic
polymers by Harmandaris et al.2 have greatly impacted accessible simulation scales
for these materials. Other groups have used wavelet bases to construct potentials
that are efficiently evaluated.3 However, the human insights required at the atom-
istic level makes it difficult to develop higher-level CG models, which are essential
to reach the desired 10-µm length scale and commensurate time scales. Further-
more, these CG approaches introduces the difficult problem of generating consistent
atomistic reconstructions, because particle-like coarse-grained beads lose informa-
tion about the particles they subsume. Few models provide the on-the-fly adaptivity
required for important problems, such as modeling crack initiation and propagation,
or interfacial phenomena.

In the present work, we introduce a wavelet-based approach to extend the work
of Ismail et al.,4,5 which provides a consistent and systematic framework to derive
multiple levels of model resolution while also reducing simulation complexity. Im-
portantly for the dynamical and nonequilibrium metrics of interest, this approach
captures molecular information relevant to kinetics in addition to thermodynam-
ics. Our approach is tied strictly to the underlying physics and has the potential
to increase accessible simulation sizes and durations by multiple orders of magni-
tude. Earlier wavelet approaches for MD addressed time-series analysis, a classical
application of wavelet techniques, and did not explore model acceleration and ap-
proximation.

2. Methodology
The foundations of MD lie in the application of Newtonian mechanics to the energy
functional

E =
1

2
M ||ẋ||2 + V (x), (1)

where x are particle positions, M is the diagonal matrix of particle masses, and V
is the applied potential. For the macromolecular systems we are interested in, V is
usually partitioned into

V = Vbond + Vangle + Vtorsion + Vnon−bonded;
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Vbond is generally a pairwise harmonic potential:

Vbond(x) =
∑
i 6=j

1

2
kij(||xi − xj|| − r(ij)

0 )2.

The matrix K = (kij)ij is highly sparse. The atoms and K define a graph
in which the atoms are the vertices and an edge between atom i and j has
weight from Kij . The maximum degree of a vertex in organic materials is 4,
and even in organometallic complexes the coordination number is unlikely to
exceed 6.

Vangle is a 3-body potential. Several functional forms are common for angle poten-
tials complicating not only implementation but also choice of approximation.
In all cases, the contributions vary much more slowly than in bonds, and the
energies from angle interactions are typically an order of magnitude smaller
than bond energies.

Vtorsion is a 4-body potential that includes the dihedral and improper plane defor-
mation interactions. Force constants tend to be 2 to 3 magnitudes lower than
bond constants.

Vnon−bonded includes all nonbonded interactions, such as electrostatics and van
der Waals terms.

The matrix K is highly sparse. The atoms and K define a graph in which the atoms
are the vertices and an edge between atom i and j has weight from Kij . The maxi-
mum degree of a vertex in organic materials is 4, and even in organometallic com-
plexes, the coordination number is unlikely to exceed 6. From Eq. 1, we derive
equations of motion,

M
1
2 r̈ = Mẍ = −∇V (x) = −M

1
2 ∆̃M

1
2x−M

1
2 Ṽ (M

1
2x), (2)

where ∆̃ := M− 1
2 (diag(K1) −K)M− 1

2 , 1 is the all ones vector, and diag maps a
vector to its corresponding diagonal matrix. By letting r = M

1
2x, the kinetic energy

reduces to 1
2
||ṙ||2 and the equations of motion become

r̈ = −∆̃r − Ṽ (r).
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If Ṽ = 0, the system can be solved analytically,

(
r(t)

ṙ(t)

)
= e

0B@ 0 I

−∆̃ 0

1CAt(
r0

ṙ0

)
.

Since ∆̃ is positive semi-definite, the eigenvectors Ui of ∆̃ oscillate with frequen-
cies ±ωi, where ω2

i is the corresponding eigenvalue and the sign corresponds to
the phase of U̇i. ∆̃ and its eigenvector matrix U are natural candidates for defining
wavelets, replacing the Laplace operator and the Fourier transform in conventional
wavelet theory. If Ṽ is small compared to the harmonic contribution, this solution
is amenable to perturbation theories, and interactions between harmonic modes of
strongly differing frequencies will be low. Furthermore, in regular molcular dynam-
ics, the maximum time step for all DoFs is limited by the Nyquist sampling rate of
the highest frequency. If Ṽ is not small, then another reference needs to be used. In
the following, it is assumed that Ṽ is either small or can be properly localized.

2.1 Basic Multiresolution
Here we introduce the employed wavelet transform and its derivation. We use the
multiresolution analysis for diffusion wavelets as introduced by Coifman and Mag-
gioni6 In essence, the multiresolution decomposition partitions the eigenvalues and
eigenvectors of ∆̃, effectively coupling high frequencies in the time domain strongly
to high-frequency eigenvectors of ∆̃ in the “particle” domain. This is a very impor-
tant point for the feasibility of the approach because not only can DoFs be reduced,
but simultaneously the time step may be increased.

The multiresolution scheme relies on the filter T and an accuracy operator Pε that
projects eigenvectors of a matrix X ∈ span{T 2n|n ∈ N} with associated eigen-
value less than ε > 0 to zero. The recursively defined vector spaces

Vn+1 = Pε(T
2n+1

)Vn and (3)

Wn+1 = kerPε(T
2n+1|Vn) (4)

are iteratively associated with orthonormal bases via QR-decompositions,

T 2n

= QnRn,
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where Qn is unitary, Rn is upper triangular, and both are dependent on the basis
used to express T 2n . At each iteration, the operator is cast in the Q basis of the
previous iteration,

(
n∏
i=0

Qi)
TT 2n+1

(
n∏
i=0

Qi) = Qn+1Rn+1.

Therefore, repeated application (in infinite precision) is equivalent to the QR algo-
rithm for finding eigenvalues. We separate Qn into Φn and Ψn, where the latter are
the columns of Qn for which the corresponding rows of Rn have a norm below ε.
Φn collects the remaining columns of Qn. Thus,

(
n−1∏
i=0

Qi)
TT 2n+1

(
n−1∏
i=0

Qi) ≈ ΦT
nQnRnR

T
nQ

T
nΦT

n ≈ (
n∏
i=0

ΦT
i )T 2n+1

(
n∏
i=0

Φi).

Since T is positive definite and ||T ||∞ = 1, the squaring introduces a de facto

projection operator Pε via the machine precision. It is this projection that makes
the difference between the QR algorithm and the wavelet decomposition. Wn is
spanned by eigenvectors of T whose eigenvalues obey

ε1/2n−1

< λ ≤ ε1/2n

. (5)

Since the low-pass filter T = I − ∆̃/C, where C is a sufficiently large constant,
the frequency range ∆λ = ε1/2n − ε1/2n−1

= ε1/2n
(1− ε1/2n

) for Ψn is drawn ever
tighter with each iteration, and λ − 1 → 0. C = maxx ||∆||∞ would generally be
optimal computationally as Ψ1 6= ∅. One advantage of this approach is the inherent
permutational invariance of the wavelet spaces and its ability to deal with arbitrary
matrices T with ||T ||∞ ≤ 1.

C = maxx ||∆||∞ would generally be optimal computationally as Ψ1 6= ∅. Eigen-
values for graph Laplacians are known to lie in [0, 2 maxi ∆̃ii].7 We have inves-
tigated a variety of estimates, but so far the conservative estimate of the largest
eigenvalue δmax of ∆̃ by min{2 maxi ∆̃ii, ||∆̃||} has served best.

Assuming that eigenvalues are distributed approximately quadratically, ε = 1
2

would
lead to log2N scales, where N is the dimensionality of ∆̃. This has not served well
as too many DoFs are lumped together due to issues discussed below. Instead, a
higher resolution of ε

1
2
machine is used, and although this wastes some computation on
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the first few iterations, it is equivalent to choosing a tolerance on the scale of δmax,
εeffective = ε2−m

machine ≈ 1− δmax.

All MD simulations were performed in LAMMPS.8 A crystalline model of polyethylene
(PE) consisting of 100,800 atoms was simulated with 1-fs time steps and PCFF9

from 100 K to 500 K in 50-K increments. A 201,936 atom model of amorphous
PE was constructed from a cubic supercell in Materials Studio. We used LAMMPS
with 3-fs time steps and OPLS10,11 for alanine dipeptide.

3. Results
We looked at other avenues to derive wavelets from ∆̃. One choice is to define a
shift operator σ in the eigenbasis of ∆̃ ordered by eigenvalue, i.e., an eigenvector
Ui with eigenvalue λi is mapped to an eigenvector of λi+1, and a dilation operator
D that projects every other eigenvector to zero. We found no way to derive these
without a full computation of the eigenproblem. Similarly, attempts at defining a
fast transform via the filter algebra12,13 generated by T failed because it required a
full solution to the eigenproblem.

Since ∆̃ is used to define the wavelets, we discuss its properties in greater detail.
These properties have a major impact on the performance of the wavelet transform.
Degeneracies in ∆̃ reduce the effectiveness of the wavelets based on ∆̃. More in-
formation from the potential Ṽ needs to be incorporated to take further advantage.
Degeneracies are rampant in large linear homopolymers, but their repetitive struc-
ture makes for particularly simple solutions.

T and ∆̃ share the same eigenvectors, albeit with reversed order of eigenvalues,
so we restrict our discussion to ∆̃. ∆̃ is positive semi-definite, and for each set of
indices J , ∆̃JJM

1
21J = 0, where ∆̃JJ is the square submatrix of ∆̃ with indices in

J , and 1J is the vector of ones on indices in J and 0 otherwise. It is possible to block
triagonalize ∆̃ using transpositions only with diagonal blocks ∆̃J,J and off-diagonal
blocks ∆̃J,K , where J andK are disjoint and J,K, J ∪K are contiguous index sets.
Without loss of generality, let j < k∀j ∈ J, k ∈ K. rank ∆̃JK is generally low
because of the low maximum degree of a vertex in ∆̃. If Λ = span ∆̃KJ and ∆̃JJ

has a nontrivial, invariant vector space Γ perpendicular to Λ, then Γ is localized
to indices preceding K. Examples include linear homopolymers discussed in detail
below, but also disconnected graphs from individual molecules.
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Linear homopolymers can be ordered to have block tridiagonal structure where each
nonterminal block is a constant m×m-matrix for the off-diagonal B and diagonal
A, respectively,

∆̃ =


A B∗

B
. . . . . .
. . . . . . B∗

B A

 .

Furthermore, the off-diagonal blockB consists of a single nonzero entry. The recur-
sive structure implies that ∆̃ for a linear homopolymer of n repeat units can be re-
ordered by a permutation κ of indices such that κT ∆̃κ = A⊗In+B⊗Σn+BT⊗ΣT

n ,
where In is the n × n identity matrix, and Σn is the n × n-matrix with all ones on
the first subdiagonal only and zeros elsewhere. We assume that the single nonzero
entry in B is B1,1, connecting only the first entries of the blocks on the diagonal. In
this case, ∆̃ takes the simple form

C A1,2In · · · A1,mIn

A2,1In A2,2In · · · A1,mIn
... . . . ...

Am,1In · · · · · · Am,mIn

 .

IfU is a unitary matrix of eigenvectors of the tridiagonal, symmetric Toeplitz matrix
C with eigenvalues ηi = A1,1 + 2|B1,1| cos(iπ/(m+ 1)), the block diagonal unitary
matrix Im ⊗ U transforms ∆̃ into a square block matrix, for which every block
is square and diagonal. The eigensystem of ∆̃ then comprises eigensolutions to the
matricesA+(ηi−A1,1)e1e

T
1 . It follows that any eigenvector v ofA such that v1 = 0

has an n-fold degenerate eigenvalue.

∆̃ often has many highly degenerate and localized eigenvalues. This fact constitutes
a problem since ∆̃ provides no further insight into how to subdivide these subspaces
within the given wavelet scheme and the external potential Ṽ is not small. Also,
numerical solutions are poorly defined as any unitary transform of the subspace is
an eigensolution to ∆̃.

Example. Any CH2 group has an associated medium-frequency, highly localized

eigenvector of ∆̃.
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This follows from the fact that the hydrogens are leafs on the graph, i.e.,

∆CH2 =

2KCH −KCH −KCH

−KCH KCH 0

−KCH 0 KCH

 .

If the hydrogens are identified with indices i and j, then 1√
2
(ei−ej) is an eigenvector

with an associated frequency of a CH vibration.

To address the degeneracy problem, we have considered using alternate relation-
ships. One approach is to compute the conjugacy class of T and to choose a phys-
ically relevant matrix to lift the degeneracy. Some symmetries have known algo-
rithms with decent performance, such as searching for disconnected subgraphs. But
in general, it is prohibitively costly to find arbitrary symmetries and then to choose
a relevant one, since there are n! possible permutations of n indices alone.

Since the QR decomposition is sensitive to the permutations of the matrix, differ-
ent bases Ψn of Wn are found depending on preconditioning. This is of particular
importance for the high-frequency modes and highly degenerate frequencies. So,
another route to approaching the degeneracy issue was to use preconditioning of
T to bias toward localized solutions in the original basis, e.g., balancing distance
of nonzeros to the diagonal or backloading high-degree vertices in the QR scheme.
This lead to mixed results and was deemed no more reliable than the standard de-
composition. Efforts using Ṽ to address the basis problem within Ψn are ongoing.

3.1 Adaptive Multiresolution
Since one goal of the project is to retain as little information as necessary, yet to
reintroduce information when it is needed on the fly, the following discusses the
technical and fundamental issues of reconstruction. Reconstruction is the process
of adaptively reintroducing detail after dropping information in coarse-graining. We
find that reconstruction is systematically possible for numerical as well as analytical
coarse-graining hierarchies.

3.1.1 Reconstruction Theory
In order to discuss reconstruction properly, it is first necessary to put coarse-graining
into a wider context. In general, a coarsening γ : α → β is a continuous sur-
jection between 2 topological state spaces α and β that can be parameterized by
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n > m state variables, respectively. If α is dressed with a probability measure
Pα : {X ⊂ α} → [0, 1] to produce a probability space, then γ induces a proba-
bility space on β with probability measure Pβ(k) = Pα(γ−1(k)) where k ⊂ β and
γ−1(k) ⊂ α is the preimage of k. It is thus possible to select (reconstruct) a precur-
sor for a state b ∈ β by sampling γ−1({b}) with Pα via the conditional probability
P (a|b) = Pα({a} ∩ γ−1(b))/Pα(γ−1(b)).

In MD, the state spaces consist of the positions and their associated momenta and
thermodynamic state variables, such as temperature or pressure. The probability
distributions are Boltzmann distributions that depend on the studied thermodynami-
cal ensemble. In a sequence of coarsenings (γn, βn), it is generally not cost-effective
to sample in the largest space α, and analytical derivations for Pβn are rarely avail-
able. In such cases, approximations need to be made. Common solutions in the MD
community are probability measures from iterative Boltzmann inversion or (succes-
sive) force matching. Hierarchical iteration thereby produces not only probability
distributions on the coarser space, but also conditional probability distributions for
a fine state mapping to a coarse state. Furthermore, the probability distributions can
be used to indicate when a previously undersampled coarse state subspace is en-
countered, e.g., using an expected improvement measure of the potential − lnPβ

based on the sampled points, for which the trust boundaries can be precomputed.

We now consider hierarchical coarsenings. Let βτn : Rmn → βn denote a pa-
rameterization of βn. A coarsening is separable if there exist parameterizations
βτn

(
t
(n)
1 , . . . , t

(n)
mn

)
and βτn+1

(
t
(n+1)
1 , . . . , t

(n+1)
mn+1

)
of βn and βn+1, respectively, such

that there exists a partition of indices (tmi )i=1...am ∈ Ram , (tmi )i=a+1...m ∈ Rm−am ,
collected as Am and Bm, and continuous surjective mappings µAn : An → An+1

and µBn : Bn → Bn+1 with

βτn(µ−1
An

(tA), µ−1
Bn

(tB)) = γ−1
n (βτn+1(tA, tB))

for tA ∈ An+1, tB ∈ Bn+1. We will call a separable coarsening for which neither
µAn nor µBn are bijections a “fundamental coarsening.” Fundamental coarsenings
induce intermediate coarsenings. The state spaceAn×Bn+1 is an intermediate state
space with the coarsenings γ : βτn(tAn , tBn) 7→ (tAn , µBn(tBn)) ∈ An × Bn+1 and
γ′ : (tAn , tBn+1) 7→ βτn+1(µAn(tAn), tBn+1) ∈ βn+1.

A sequence of separable coarsenings thereby induces a hierarchy of coarsenings
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and associated probability measures, induced as described above. In particular, the
reconstruction from a fundamental coarsening can be achieved by reconstructing its
separable components separately and independently via the conditional probabili-
ties

P (tAn|tAn+1 , tBn+1) = Pβn(({tAn}∩µ−1
An

(tAn+1))×µ−1
Bn

(tBn+1))/Pβn+1(tAn+1 , tBn+1).

It is noteworthy that these intermediate probability distributions are available in an-
alytical as well as numerical settings, since a fundamental coarsening has to include
proper statistics for the intermediate state space in order to be consistently sampled.
Recursive application of conditional probabilities enables concurrent mixed resolu-
tions. Since the construction of modes from the multiresolution analysis produces a
hierarchy of frequencies, it induces a hierarchy of coarsenings by dropping succes-
sively higher-frequency modes, i.e., by applying the low-pass filter PεT 2n .

3.1.2 A Priori Approximations for Reconstruction
Implementation of reconstruction algorithms as discussed above requires a starting
point. In the following paragraphs, methods are proposed for finding good start-
ing points based on ∆̃ and other molecular information that is available prior to
simulation.

To second order, a quadratic potential around the equilibrium positions of the trans-
formed coordinates approximates the full potential. We assume dominance of har-
monic terms, both in the orginal and transformed basis:

Vbond(M− 1
2Ur̃) ≈ 1

2
(r̃ − r̃0)TUT∆̃U(r̃ − r̃0), (6)

where r̃ is the vector of ||ri||. From statistical mechanics the root mean squared
deviation from equilibrium of a harmonic oscillator is√

kT

λ
,

where λ is the force constant. In other words, the higher-frequency components are
increasingly found close to their energy minima. This implies that finer scales only
have small deviations from their equilibrium positions, while coarser scales may
access a much larger space.

We start by approximating ||xi−xj|| by a Taylor expansion around r(0)
ij . This trans-
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forms the bond potential Vbond into:

Vbond ≈
1

8

∑
ij

Kij

r
(0)2

ij

(
||xi − xj||2 − r(0)2

ij

)2

.

Hence, to find equilibrium distances for r̃, we solve the minimization problem

min
r̃0

∑
Cij

(
||(M− 1

2Ur̃0)i − (M− 1
2Ur̃0)j||2 − r(0)2

ij

)2

, (7)

where Cij =
Kij

r
(0)2

ij

.

Example. The 2 nonzero eigenvalues of H2O correspond to a unique solution for

reconstructing H2O.

The harmonic Laplacian for H2O,

∆̃H2O =


2KOH/mO −KOH/m

1
2
O −KOH/m

1
2
O

−KOH/m
1
2
O KOH 0

−KOH/m
1
2
O 0 KOH

 ,

shares the same structure as CH2. The eigenvalues λ0,1,2 of this simple matrix are 0,
KOH , and (1 + 2/mO)KOH , respectively. Since there are only 2 independent DoFs
aside from the center of mass, r̃(0)

i is a 2-dimensional system. In 1 dimension, Eq. 7
has 2 solutions for this simple system; r̃(0)

1 =
√

2rOH , r̃
(0)
2 = 0, which leads to a

symmetric linear molecule, and r̃(0)
1 = 0, r̃

(0)
2 = rOH

√
4+2mO

2m
− 1

2
O +m

1
2
O

. In 2 dimensions, an

angle between these 2 solutions can be assigned. At 90◦, the equilibrium structure
of water is recovered.

Example. HCN

The harmonic Laplacian for HCN,

∆̃HCN =


KCH+KCN

mC
−KCH

m
1
2
C

− KCN

m
1
2
Cm

1
2
N

−KCH

m
1
2
C

KCH 0

− KCN

m
1
2
Cm

1
2
N

0 KCN

mN

 ,

is no longer as simple as for H2O, nor are the eigenvalues except 0 simple; for
the generalized Amber force field (GAFF), they are 14.7 and 42.8. The numerical
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GAFF mode distances in 1 dimension are r̃(0)
1 = 3.26, r̃

(0)
2 = 0.66 and r̃

(0)
1 =

2.61, r̃
(0)
2 = −1.32. Knowing that the equilibrium angle between the 2 modes is ca.

80◦ selects the first solution to reconstruct the equilibrium structure.

In both examples it was necessary to include angle information to make the best
choice. The numerical solution to Eq. 7 can be computed efficiently using a variety
of nonlinear least-squares algorithms, but more direct methods are still under inves-
tigation. Similar derivations are possible for angle potentials and are under current
investigation.

3.2 Simulation Results and Analysis
We witnessed this behavior in computations of PE as well as polyglucose. Fur-
thermore, when applied to the alanine dipeptide model, commonly used for testing
coarse-graining methods for proteins, the wavelet decomposition correctly identi-
fied the various chemical groups at the finer scales, while the coarse scales captured
the partitioning corresponding to single bond rotations. See Fig. 1 for an illustration
on tetra-1,4-D-glucose and Fig. 2 for a demonstration of informational content in
the wavelet DoFs for PE.

Fig. 3 shows the superimposed Fourier-transformed time series of 1,000 atoms from
the 500-K trajectory, which, due to the high temperature, shows the highest mobility
of atoms. Although the zero frequency is by far the most intense signal (and is
omitted from the figure for clarity), a wide range of other frequencies is active, most
importantly around 0.45 PHz, which limits the time step of atomistic simulations of
PE to less than 1.2 fs. On the other hand, Fig. 4 shows the effects of scales on time
series analysis.

Fig. 1 Heat map of selected wavelet degrees of freedom (DoFs) in 1,4-D-glucose tetramer. Blue
denotes positive coefficients, red negative. From left to right: fine-grained wavelet DoF cover-
ing a single repeat unit; coarse-grained wavelet DoF covering 1 half of the oligomer; coarser-
wavelet DoF covering the oligomer isolating repeat units with sign changes; coarsest wavelet.
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a) b)

c) d)

Fig. 2 Selected reduced wavelet representations of a polyethylene crystal. From a) to d)
wavelet information is successively added. a) Coarse representation highlights the anisotropy
in 1-dimensional chain averaged over all chain segments; b) coarse representation of the 2-
dimensional chain plane; c) 3-dimensional representation; and d) full resolution.

Fig. 3 Fourier transform of the y-component of 1,000 atoms in crystalline polyethylene (100,800
atoms) excluding zero frequency to allow detail at other frequencies. Molecular dynamics at
500 K and 1 atm. Left: Individual power spectra per atom. Right: Power spectrum of magni-
tude of optimal representation.

Fig. 4 Fourier transform of the y-component of a 100,800-atom crystalline polyethylene system
sampled at 1 fs. 3 scales are shown: 1st (left, finest scale), 5th (middle), and 12th scale (out of
25, right).
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The finest scale out of 25 still retains the high-frequency components (top left), as
may be expected, but they are much less intense than the remaining modes. Travers-
ing the scales, we note that a decreasing number of DoFs at the coarser scales shows
significant peaks at all. At the medium scale (top right), no high-frequency compo-
nents are found anymore. Therefore, medium-scale and coarser DoFs are quasi-
static compared to the finer scales. Furthermore, the signals are clearly separated
and very sharp despite the high temperature, which speaks for strongly decoupled
modes and justifies dropping the finer scales, which in turn facilitates speed-up by
not only reducing DoFs but also increasing the propagation time step.

The same is witnessed for alanine dipeptide and polyglucose (not shown). Fig. 5
shows the power spectra for all 22 DoFs. Clearly, a large number of frequencies
are active for all atoms. The spectrum of optimal representation shows some clear
peaks around 0.13 and 0.10 PHz. But in Fig. 6, the 0.13-PHz peak is absent after the
2nd scale, and the 0.10-PHz peak, including noise down to ca. 0.06 PHz, vanishes
from the 4th scale on through the remaining 4 scales.

Fig. 5 Fourier transform of the z-component of alanine dipeptide in vacuum excluding zero
frequency to allow detail at other frequencies. Molecular dynamics at 500 K and 1 atm. Left:
Individual power spectra per atom. Right: Power spectrum of magnitude of optimal represen-
tation.
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Fig. 6 Fourier transforms of alanine dipeptide degrees of freedom (DoFs) time series in vacuum
excluding zero frequency to allow detail at other frequencies. Molecular dynamics at 500 K
and 1 atm. Upper-left: z-component of optimal representation; Upper-right: 2nd finest optimal
wavelet DoF z-component; Lower-left: 3rd finest optimal wavelet DoF z-component; Lower-
right: 4th finest optimal wavelet DoF z-component.

We investigated the correlation matrices of the various coordinate systems to quan-
tify the extent of interdependence. Fig. 7 shows the correlation matrices,

Cij =

∫
x∗i (t)xj(s− t)dsdt(∫

x∗i (t)xi(s− t)dsdt
∫
x∗j(t)xj(s− t)dsdt

) 1
2

,

where xi(t) is a time-dependent coordinate, as heat maps. As may be expected, all
particle coordinates are strongly correlated, but in both the water case as well as
the alanine dipeptide case, much less correlation is witnessed for the wavelet DoFs
(Fig. 7, right), despite the few DoFs involved in these small systems. The extent
of overall correlation can be assessed by the `1-norm of the correlation matrices,
ca. 28 versus ca. 21 for water, and ca. 315 versus ca. 168 for alanine dipeptide.
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Fig. 7 Top: Heat maps of the degree of freedom (DoF) correlations of a water dimer in vacuum;
Bottom: Heat maps of the DoF correlations of alanine dipeptide in vacuum; Left: Correlations
of the cartesian DoFs; Right: Correlations of the wavelet DoFs.

A further indication of the appropriateness of the diffusion wavelet DoFs is the
`1-norm of structures and forces in a given representation basis. The `1-norm is
bounded by the `2-norm for any orthonormal basis, and there exists at least one
coordinate system in which ||x||1 = ||x||2. These coordinate systems optimally
describe a state x.

We compared the `1-norm in the XYZ coordinate system, the non-lossy wavelet
coordinate system, and the optimal coordinate system on each scale. For alanine
dipeptide, a reduction by a factor of ca. 2 was achieved by switching to wavelets
(3 times the optimum), while the optimal wavelet system managed to reduce to
twice the optimum. For polyglucose, the full wavelet DoFs reduce the `1-norm to
half of the XYZ coordinate system, and the optimal wavelet system reduces it to
within 20% of the optimum. For crystalline PE, the full wavelet DoFs improve the
structural `1-norm by a factor of ca. 7, while the optimal wavelet representation
comes in below 1% of the XYZ coordinate system to a factor of roughly twice
the optimal representation. Similar results were obtained for amorphous PE and
nanocellulose.
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4. Concluding Remarks
We have characterized and applied a diffusion-wavelet-based multiresolution of
DoFs in MD. The methodology was applied to unimolecular systems of alanine
dipeptide, crystalline PE, and an oligomer of 1,4-D-glucose. In all cases, a clear
and strong separation of time scales was associated with individual particle scales.
This separation was evident even for the very small alanine dipeptide system. Be-
cause the particle scales are derived systematically from the underlying bonding
topology and do not require any further input, the wavelet decomposition system-
atically identifies DoFs for conventional coarse-graining procedures. The proposed
approach goes beyond conventional approaches based on expert knowledge; how-
ever, the wavelet method can be used even in the absence of expert insight, and
furthermore, can be used on all length scales, including the smallest. Future work
will focus on exploiting these findings to speed up MD a priori.
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List of Symbols, Abbreviations, and Acronyms

CG coarse-grained

DoF degree of freedom

GAFF generalized Amber force field

MD molecular dynamics

PE polyethylene
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