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Abstract 

One of the challenges associated with defending against ballistic missiles is to 
discriminate the object of interest among multiple closely-spaced objects (CSOs) that travel on a 
ballistic trajectory. The discrimination process typically involves the identification and tracking 
of the object of interest.  One approach that can improve discrimination performance is to 
employ multiple sensors. Multiple-sensor correlation and discrimination involves the integration 
of sensor measurements collected from terrestrial and on-orbit sensors to improve the likelihood 
of identifying and tracking an object of interest within the CSOs. This report describes the 
development of the algorithms necessary for fusing sensor measurement data obtained from 
multiple, dissimilar sensors in order to improve the likelihood of identifying and tracking an 
object of interest within closely-spaced objects traveling on a ballistic trajectory. The algorithms 
utilize a target object map (TOM) that is created using multiple sensor measurements for 
correlation. The object of interest is then selected using a probability-based Dempster-Shafer 
discrimination algorithm. To examine the performance of these algorithms, a simulation 
environment was developed. It included relevant characteristics of the sensors in the 
discrimination system, a modeling process for the ballistic trajectories of the CSOs, and a 
decision-making module containing the algorithms for handling the sensor returns and 
correlating and discriminating the object of interest. This simulation environment was iterated to 
assess the effect of varying radar angular and range resolution and discrimination characteristic 
distribution overlap on discrimination performance. This project found there was not a strong 
correlation between changing radar resolution by +/-10% from the nominal values and 
probability of discrimination. However, it was noted that a 35 percent increase in track 
uncertainty for an increase of 0.1 degrees in angular resolution and a six percent increase in zero 
effort miss distance for the same change in angular resolution. This project also noted a strong 
inverse quadratic relationship between the characteristic overlap, which is determined by the 
amount of overlap in the probability of observation for different classes of objects, and 
discrimination performance.  

 
 

 
 
 
 
Keywords: (1) closely-spaced ballistic objects, (2) multiple, dissimilar sensor correlation, (3) 
target object map, (4) Dempster-Shafer discrimination algorithms, (5) simulation environment 
for various operational scenarios, (6) sensitivity analysis 
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Preface 

 Ballistic missiles have long been a challenging tactical, operational, and strategic asset as 
well as problem for militaries around the world. The strategic stability of the Cold War was 
largely predicated on the invulnerability of nuclear-tipped land and submarine launched 
intercontinental ballistic missiles.1 However, as the technologies for these systems have 
matriculated from major strategic powers to smaller, less predictable rogue states, a new tactical 
and strategic threat has emerged.2 The performance of the Patriot system in the Gulf War, 
shooting down 51 of 88 potential threats at a cost of 157 expended interceptors3, highlighted the 
need for better missile defense systems to protect theater forces from ballistic missile threats, 
while the possible threat of a rogue missile attack on the United States homeland motivates a 
system capable of intercepting intercontinental threats4. These systems are necessary not merely 
to defend America and its allies from potential attack but render ineffective the threat of potential 
attack. In this manner, “ballistic missile defense is not simply a shield but an enabler of U.S. 
action.”5 To fail to develop flexible, effective missile defense systems would be to surrender the 
strategic imperative around the world, a fate that should be avoided by the United States.  
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1 Introduction 

Discrimination, at its heart, is nothing more than decision making. It is defined as the 
ability to make fine distinctions. Discrimination in a technical context is then the synthesis of the 
given information in a coherent manner in order to “make a fine distinction.” Various factors 
convolute and confuse this process. For example, the information utilized for making this 
decision is almost always imperfect because of sensor error, and in many cases information from 
different sources can support different decisions. In some scenarios such as military applications, 
the situation often demands dynamic and responsive decisions due to challenging environments. 
In these situations a wrong decision may lead to dire consequences. 

While discrimination in general has a variety of applications, this project is focused on 
discrimination in the context of Ballistic Missile Defense (BMD). In a typical BMD system, a set 
of sensors is responsible for observing a complex of objects, selecting a target to engage, and 
intercepting that target.6 A multiple-sensor discrimination system then utilizes more than one 
sensor to accomplish the discrimination task. In this context, the target object the system needs to 
select is the Re-entry Vehicle (RV), which is the lethal object in the complex. A ballistic missile 
launch will also yield a spent booster section, known as the tank, natural debris from the 
deployment of objects, and countermeasures to deceive a defense system.7 Multiple sensors offer 
the ability to observe different sets of phenomena and, when properly synthesized, can improve 
discrimination performance.8 

This scenario is complicated by three principal factors. First, the physics of 
exoatmospheric ballistic trajectories present difficult viewing conditions for each sensor that 
makes sensor information difficult to correlate. On-orbit objects velocities of approximately 
seven km/s can significantly limit the observation window of the sensors on the ground while 
closing velocities in excess of 10 km/s can limit the observation window for interceptors.9 
Second, Closely-Spaced Objects (CSO) present significant difficulties for sensor observation and 
multiple-sensor correlation as sensor measurement uncertainty makes high fidelity position 
determination difficult. “Closely-spaced,” in this context, can be regarded as objects that are 
spaced closer than the measurement uncertainty band for one or multiple sensors within the 
observation architecture. Resolving targets from one sensor image to another can prove difficult 
under these conditions. Finally, the sensors, such as radar and optical sensors, are corrupted by 
noise and bias making discrimination still more difficult. 

1.1  Problem Statement  

This report describes the development of the necessary algorithms for the multiple sensor 
correlation and discrimination of CSOs10,11 and the evaluation of their performance in a relevant 
simulation environment. These algorithms handle the sensor returns, process them into useful 
metrics, and assess the probability that a given object is the object of interest from these metrics. 
To examine the performance of these algorithms, a simulation environment was developed. It 
included relevant characteristics of the sensors in the discrimination system, a modeling process 
for the ballistic trajectories of the CSOs in the target complex, and a decision-making module 
containing the algorithms for handling the sensor returns and correlating and discriminating the 
object of interest. 
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The measure of discrimination performance on a ballistic missile target complex for a 
multi-sensor system is the probability of the ballistic missile defense system properly 
discriminating the RV from other objects in the target complex. This probability is known as the 
probability of discrimination, Pd, and depends upon the system’s ability to accurately track and 
correlate each object in addition to correctly discriminating each object and selecting the RV. 
The Figure of Merit (FOM) to assess the system’s correlation performance is the probability of 
correlation, Pc. 

1.2  Nominal System Architecture  

A multiple-sensor discrimination system will be comprised of at least two sensors. As 
dictated by the need to conduct early warning, search, sensor cueing, tracking, discrimination, 
and homing, a system can have additional sensors as necessary to meet these needs. However, 
this research is primarily concerned with analyzing the discrimination performance of the 
system. To this end, only the sensor components essential to discrimination will be considered. 
The nominal system consisted of a sea-based radar system and an optical sensor deployed in a 
Kill Vehicle (KV) to intercept the target. This architecture is depicted in Figure 1. 

 

 

Figure 1. Nominal system architecture 

The radar system was responsible for tracking the complex, providing data to calculate a launch 
solution to intercept the target complex, and providing discrimination information. The KV 
possessed an onboard optical sensor for target acquisition, tracking, and discrimination. The 
system fused the tracks and discrimination information from the two sensors to select a target. 



9 
 

2 Simulation Environment Development 

Figure 2 depicts the steps performed in the simulation environment and the requisite 
elements for modeling that particular step.  The simulation depicted the launch of a threat, 
followed by a radar tracking the threat, the launch of an interceptor, and finally the terminal 
acquisition by the Kill Vehicle (KV).  
 

 

Figure 2. Simulation environment developed to support a concept of operation 

2.1  Target Complex Trajectory Modeling  

Two-body orbit dynamics was utilized to generate ballistic trajectories between the 
desired burnout and reentry points. The dispersion of object trajectories within the target 
complex was achieved by varying the velocity of each object at the burnout points. The 
generated trajectories served as the "truth" for the sensor modeling process. The System Tool Kit 
(STK) was utilized to calculate the trajectories of these objects. This interface is depicted in 
Figure 3. The interface allowed STK to be controlled iteratively and autonomously by 
MATLAB. Functions such as simulation control, tracking, correlation, and discrimination took 
place within MATLAB. The necessary information and commands were then passed to STK to 
generate truth and estimated trajectories and calculate the interceptor flight path. The entirety of 
the interface code is contained in Appendix IV. The complete interceptor trajectory, from initial 
launch to target intercept, was considered in the concept of operation. However, only the 
exoatmospheric trajectory of the target complex was modeled, starting immediately after 
complex deployment until re-entry. 
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Figure 3. MATLAB – STK interface 

2.2  Radar Observation Modeling  

A radar system takes measurements of azimuth, elevation, and range for each object it 
detects, and calculates the associated rates of these measurements. To model a radar observation, 
measurement error was added to the truth measurements of the target complex. Measurement 
error consisted of two sources, accuracy and precision. Accuracy was defined as the degree to 
which the sensor was able to measure truth, while precision was the uncertainty associated with a 
measurement. Accuracy was reflected by the bias of the radar system. It was assumed that the 
bias was constant for the radar system, meaning the same error in azimuth, elevation, and range 
was added to each detected target. Precision was reflected by the random noise in each 
subsequent measurement. The noise was assumed to be Gaussian with a mean of zero. The 
standard deviation of the noise distribution was based upon the radar range and angular 
resolution. The measurements were then given by Equation ( 1 ), where zk is the noisy 
measurement, xk is the truth measurement, wk is the noise at a discrete moment in time, and bk is 
the bias. 

 ( 1 ) 

The radar system’s ultimate task was to track the target complex in order to estimate its 
ballistic trajectory. Due to the dynamic nature of the trajectory, a Kalman Filter (KF) was 
implemented to estimate the position and velocity of the target in the topocentric-horizon 
coordinate system, also known as the South, East, Zenith (SEZ) coordinate frame. The 
MATLAB code for the KF is contained in Appendix III. This coordinate frame was centered at 
the radar site. Track information was then converted into the Earth-Centered Inertial (ECI) 
coordinate system for orbit ephemeris determination. The SEZ and ECI coordinate frames are 
depicted in Figure 4. 
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Figure 4. SEZ and ECI coordinate frames12 

2.3  Optical Observation Modeling  

Unlike radar, an optical sensor is only capable of capturing two-dimensional position 
information within the focal plane's field of view. In order to model an optical observation, the 
truth complex had to be projected onto the field of view of the KV. First, the position of the 
target complex was described in the KV-centered coordinate system, depicted in Figure 5, where 
the p-axis is along the boresight from the KV to the RV and the m- and n-axes are the 
perpendicular axes. 
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Figure 5. KV-centered coordinate system (p-m-n axes) 

This description required knowledge of the truth position of the KV and the target 
complex at each measurement instance. The coordinate transformation from ECI to p-m-n was 
then accomplished using Euler angles.13 To transform from the ECI coordinates into the p-m-n 
frame, the relative position of the target complex from the KV was calculated in ECI, using 
Equation ( 2 ). P is the relative position of the target complex from the KV, Rt is the absolute 
position of the target complex, and Ri is the absolute position of the KV. A similar process was 
utilized to calculate the relative velocity of the target complex. 

  ( 2 ) 

With the relative position and velocity known, the ECI coordinates could then be 
transformed into p-m-n using a Direction Cosine Matrix (DCM), which represents rotation about 
the 3 (K) axis followed by rotation about the 2 (J) axis. First, the ECI frame was rotated about 
the K-axis by α, given by Equation ( 3 ), where a and b are the I and J components of the 
relative position, respectively. 
 

 ( 3 ) 

Next, the coordinate frame was rotated around the J-axis by β, given by Equation ( 4 ), 
where c is the K component of the relative position, and d is the magnitude of the I-J 
components. 
  ( 4 ) 

The DCM was then assembled from the constituent components, as shown in Equations   
( 5 ) - ( 7 ), where D is the DCM used to rotate from ECI to p-m-n. 
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  ( 5 ) 

  ( 6 ) 

  ( 7 ) 

 
With the DCM known, the p-m-n position could be calculated via Equation ( 8 ), where 

P’ is the position of the target complex in p-m-n coordinates. Velocity could be found in a 
similar manner. 
  

( 8 ) 

With three-dimensional position and velocity known, range, azimuth, and elevation were 
calculated based upon the Cartesian p-m-n elements. The optical observations were assumed to 
be the truth observations. 
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3 Correlation and Discrimination Algorithms 

3.1  Target Object Map Generation and Correlatio n 

With the state estimates determined by the radar and subsequently observed by the KV 
optical sensor, the information from these two sources needed to be correlated. To accomplish 
this, the system must be able to associate the different sensor returns from the same object. A 
method known as anchor Target Object Map (TOM) is used.  A TOM is essentially a picture of 
the target complex at a discrete time generated by a sensor. The TOM is a matrix containing the 
coordinates of the location of the center of mass of each of the detected objects in the target 
complex in a reference coordinate frame. TOMs from different sensors can then be compared 
provided that each TOM reflects similar viewing geometry and the same instance in time. 
Because the sensors within the architecture rarely observe a target at the same instance from the 
same location, a method was developed to generate similar TOMs both temporally and 
geometrically. The MATLAB code utilized for this method is contained in Appendix V. 

The radar TOM was generated using the tracks from the radar observation. First, the 
target complex track was projected from the time of minimum track uncertainty, defined as the 
normal of the variance elements of the track in the KF estimates, to the desired time. With the 
anticipated position known, the coordinates of the target complex were then rotated and 
projected into the focal plane of the KV, similar to the procedure described in Section 2.3. The 
optical TOM could be obtained directly from the KV observations since the radar TOM is 
projected to the orientation and time during which the KV is observing the complex. 

With a TOM generated for each sensor, the TOMs had to be correlated as depicted in 
Figure 6. First, the sensor bias was eliminated by “anchoring” each TOM to a reference object. 
The reference object is one readily identifiable by both sensors. The anchor was selected using 
the probabilistic discrimination algorithm described in Section 3.2. Each sensor independently 
performed discrimination to select its own anchor for its TOM. After selecting an anchor, the 
anchor was set as the origin of the TOM by subtracting its coordinates from the coordinates of all 
the objects.  
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Figure 6. TOM anchoring and correlation processes  

The two TOMs were then superimposed. Due to sensor uncertainty, the observed location 
of each object may differ between the two sensors. As the spacing between the objects decreases, 
the relative arrangement of the target complex may vary between two TOMs. The differing in 
target position makes the association of objects difficult. To correctly associate the targets, each 
possible configuration of associations was tested. An example of this correlation process for four 
active tracks from the radar and the optical sensor is depicted in Figure 7. Pairings between 
objects are depicted by the green lines between objects. 
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Figure 7. Possible track correlation pairings for four objects 

For each arrangement, a correlation coefficient, r, was calculated using Equation ( 9 ), where A 
and B are the matrices containing the coordinates within the TOM and m and n are the number of 
observations within A and B, respectively. Maximizing r corresponded to minimizing the 
Euclidean distance between the pairings in the TOM. A nominal TOM A matrix is depicted in 
Table 1. Note that the track numbers (shaded in red) are only for reference and are not included 
for the purposes of calculating r. In this case, track 2 was identified as the anchor and as such is 
set as the origin (0, 0). Ā and B̄ are the mean values of the A and B matrices. 

Table 1. Example TOM A matrix 

Track Azimuth (rad) Elevation (rad) 
1 -0.014 0.015 
2 0 0 
3 0.030 -0.045 
4 0.039 -0.049 
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 ( 9 ) 

 
The track correlation pairing generating the greatest r was then selected and the respective tracks 
are associated. 

3.2  Discrimination Algorithm 

The discrimination algorithm was responsible for selecting a target from the sensors’ 
discrimination information. The algorithm used Dempster-Shafer decision logic, which is 
explained in Section 3.2.1 – Section 3.2.4. The MATLAB implementation of this algorithm is 
contained in Appendix VI. 

3.2.1  Dempster-Shafer Decision Logic  

As previously stated, discrimination is the process of transforming measurements into a 
decision. In the context of this project, the discrimination algorithm is utilized to select the RV 
given a set of measurements. Dempster-Shafer logic was employed within this algorithm, as the 
Dempster-Shafer algorithm “is useful when the sensors contributing information cannot associate 
a 100 percent probability of certainty to their output decisions.”14 The Dempster-Shafer method 
captures and combines the certainty each sensor possess in its object discrimination 
capabilities.15 Uncertainty in sensor measurement is of particular concern when discriminating 
targets on a ballistic trajectory. The extreme geometry of the problem, the associated temporal 
constraints, and ambiguous and imperfect sources of information all contribute to the uncertainty 
in selecting the RV from the target complex.  

Dempster-Shafer involves the combination of data from a set of sensors. Each sensor 
observes a certain set of characteristics and generates returns from these observations. From 
these observations, the probability of each measurement resulting from a certain type of object, 
or object class, is calculated. This probability of each class is used to calculate a belief in a given 
hypothesis, known as an Evidence Measure (EM) that reflects the relative certainty of selecting a 
certain hypothesis. The hypotheses are broken into two categories: singleton and combination. 
Singleton hypotheses categorize the observation into one object, such as an RV. Combination 
hypotheses categorize the observation into multiple objects, e.g. RV or decoy. An EM of unity 
indicates absolute certainty in a certain hypothesis. The EMs from every sensor are then 
combined utilizing Dempster’s rule of combination. The hypothesis with the greatest amount of 
accumulated EM is then selected. 

3.2.2  Calculating Evidence Measures  

In order to calculate the EM for each observation, the distribution of measurements must 
be known. This project assumes this distribution to be Gaussian, with the expected value for a 
given class to be the mean of the distribution, μ.16 The sensor measurement uncertainty 
determines the standard deviation of the distribution, σ. From the Gaussian distribution, the 
probability of a given measurement stemming from a given object can be calculated. Figure 8 
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depicts an observation and the calculation of the probability of measurement for a three-class 
hypothesis example. This observed characteristic can be anything the sensor is capable of 
measuring, such as the size or a dynamic characteristic of the object.  This project assumed the 
sensors are equally capable of measuring any class of object. As such, the characteristic 
distributions are symmetric but possess different expected values. Table 2 shows the calculated 
probabilities from these distributions. 

 

Figure 8. Example calculation of measurement probabilities for three-class hypotheses 

Table 2. Example calculated probabilities 

P(X|RV) 0.629 
P(X|Tank) 0.021 
P(X|Other) ~0 

 
A given set of EMs must then be assigned to support a series of hypotheses. The set of all 

the possible hypotheses is referred to as the frame of discernment, denoted by Θ. Any EM can be 
assigned to any of the propositions, a1, a2, …, an, or any of the possible unions, e.g. a1 U a2, or 
finally to Θ itself. A given EM can only be assigned to the extent of the confidence in the 
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measure. For example, if a sensor is 80 percent confident a measurement indicates a1, an EM of 
0.8 is assigned to a1. The remainder, 0.2, is assigned to Θ, which represents all the possible 
propositions simultaneously, or uncertainty. 

3.2.3  Evidence Measure Combination  

With the proper EM assigned to each hypothesis for each sensor observation, the EMs 
can be combined to generate the total support for each hypothesis using Dempster’s rule. 
Dempster’s rule is implemented by forming a matrix with the elements to be combined in the 
first column and first row. The combinations to be formed are those hypotheses which have an 
intersection that exists. For example, hypotheses a1 U a3 and a3 U a4 intersection is a3. 
Combining the EMs for these two hypotheses would yield evidence for a3.17 The matrix elements 
and subsequent combinations are made by multiplying the column element in the first column 
with the row element in the first row. An example for two sensors, sensor A and sensor B, is 
shown in Table 3. For additional sensors, the above method is repeated for each subsequent 
sensor. 

Table 3. Application of Dempster's Rule18 

  mB(a3 U a4) = 0.7 mB(Θ) = 0.3 Sensor A Evidence Measure 
mA(Θ) = 0.4 m(a3 U a4) = 0.28 m(Θ) = 0.12 Sensor B Evidence Measure 
mA(a1 U a3) = 0.6 m(a3) = 0.42 m(a1 U a3) = 0.18 Combined Evidence Measure 

 
A special case of combination occurs when measures support mutually exclusive hypotheses, for 
example a1 and a2 U a3. In this case, the product of these two EMs is assigned to the empty set, 
ϕ, which represents measures that support different and exclusive hypotheses. ϕ, also known as 
conflict, is the complement of Θ, which represents a measure that could represent any and all 
hypotheses. The empty set ϕ is only pertinent in the combination of EMs, as a single measure can 
be uncertain in what hypothesis it supports but cannot conflict itself. 

3.2.4  Resolving Conflict and Uncertainty  

While knowledge of a degree of conflict and uncertainty in some applications may prove 
useful, they are not consistent with BMD discrimination. In this context, uncertainty and conflict 
must be eliminated and assigned to support a hypothesis. To do so, one must calculate the 
“pignistic probability” of a certain hypothesis from the given EMs. Pignistic is derived from the 
Latin term pignus, meaning a bet, and is indicative of the nature of Pignistic Probabilities (PP).19 
PPs are not analytical probabilities in the sense that a PP of 0.5 would not indicate an event is 
expected to occur 50 times in 100 trials. Rather, they are meant to guide a “bet,” or decision, to a 
particular hypothesis. Their absolute value is irrelevant, only their relative magnitudes matter. 
For example, consider the two PPs for hypotheses a and b, where PPa = 0.75 and PPb = 0.25. The 
pignistic probability of a does not indicate three times greater confidence in a, merely that a 
should be selected over b. 

To calculate the PP for a given hypothesis, conflict is first addressed. To eliminate 
conflict, the EMs for the non-empty set hypotheses are normalized by a factor, K, given by 
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Equation ( 10 ).20 K is a measure of the total amount of conflict between two measurements, 
where a K of unity indicates no conflict and an undefined K indicates complete conflict between 
the measurements, causing the sum given by Dempster’s rule to be undefined. 

 
  ( 10 ) 

 
After normalizing, the conflict terms are set to zero. With conflict eliminated, the EMs for 
combination hypotheses and uncertainty are then equally divided between their constituent 
components. For example, if m(a1Ua2)  =  0.5, m(a1) and m(a2) would both be assigned 0.25. The 
uncertainty EM would then be divided equally among all the hypotheses. At this point, the 
remaining hypotheses are the singleton elements (a1, a2, …). The evidence measure now 
assigned to these elements is the PP for each hypothesis. With conflict, uncertainty, and the 
combination hypotheses eliminated, the hypothesis with the highest total PP is then selected. 
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4 Nominal Scenario Simulation and Results 

In order to support future decisions regarding investment in and improvement of the 
ballistic missile defense system, the effect of varying system parameters on Pd was assessed 
using a simulation environment developed as a part of this project. The simulation environment 
depicted a launch event of a threat, tracking by a radar system, and finally engagement by an 
interceptor. The simulation then assessed the success or failure of the engagement. The nominal 
scenario and one iteration of the simulation are described in Section 4.1 through Section 4.4. 

4.1  Nominal Simulation Scenario  

To assess the created simulation environment, a nominal scenario was developed that was 
indicative of a possible engagement of a closely-spaced target complex. The scenario involved 
the launch of a ballistic missile from the Reagan Test Site in the Kwajalein Atoll with a 
destination of Seattle, WA. The missile was assumed to deploy the target complex at an altitude 
of 100 km directly above the Reagan Test Site and re-enter the atmosphere at an altitude of 100 
km directly above Seattle. The target complex consisted of a RV, a tank, and two decoys. The 
trajectories of the complex objects are shown in Figure 9, with the RV, tank, and decoys 
trajectories shown in red, orange, and yellow, respectively. 

 

  

Figure 9. Nominal scenario ballistic trajectories21 

 The defensive system consisted of a sea-based X-band radar (X1) north of Hawaii and an 
interceptor launched from Vandenberg AFB, CA, that deployed the KV. The interceptor was 
assumed to have a range of 2500 km, while X1 was assumed to have a range of 4500 km. The 
interceptor attempted to engage the target at an altitude of 250 km. The KV was assumed to 
acquire the target at a range of 500 km and tracked the complex as it closed. The radar and 
interceptor coverage are depicted in Figure 10, with X1 coverage shown in light blue and the 
interceptor shown in light green. In addition, the portion of the target complex trajectory that can 
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be tracked by X1 is highlighted in light blue and the portion that is in interceptor range 
highlighted in light green. 
 

 

Figure 10. X1 and interceptor coverage 

Using the modeling techniques described in Section 1.2, an engagement of the target complex 
was simulated. The defensive system was responsible for tracking the complex with both the 
radar (X1) and the KV optical sensor, correlating the tracks, fusing the discrimination 
information, and ultimately selecting a target. 

The following describes the results of the simulation using the nominal scenario 
described above. 

4.2  Radar Kalman Filter and Tracking Performance  

As mentioned in Section 2.2, a Kalman filter was employed in order to estimate the target 
complex states from the noisy radar measurements. The performance of the filter was measured 
by two metrics, the residuals of the estimates compared to the truth measurements and the 
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variance of the state estimates. Figure 11 illustrates the position and velocity residuals of the 
estimates for the RV track versus the time after launch. 

 

Figure 11. Residuals of position and velocity estimates for the RV track 

After an initialization period (not shown), the position residual gradually decreased to 
within a magnitude approximately 0.5 km. The velocity residuals fall to within 0.03 km/s. Both 
the position and velocity residuals improve as the target nears 700 seconds after launch. This is a 
result of the range to the target decreasing which decreases the covariance of the measurements. 
The residuals then diverge after the target passes through the closest point of approach as the 
range begins to increase. This is of particular concern for correlation purposes as larger residuals 
and the associated larger errors make associating sensor tracks more difficult since the 
anticipated position of an object and its actual position will vary by a larger amount. After 
approximately 700 seconds after launch, the range to the target begins to increase. This drives an 
increase in the residuals. 

Figure 12 depicts the variance of the position estimates for track 3. The variance of the 
estimates exhibited the same behavior as the residuals, decreasing in magnitude as the target 
range decreased and growing as the range to the target increased.  
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Figure 12. Variance of SEZ position estimates 

4.3  TOM Correlation  

Since the optical measurements were assumed to be truth, tracking and filtering was 
unnecessary. The KV TOM was obtained directly at the correlation time from the optical 
observations. The estimated radar states at this time were then rotated and projected onto the 
focal plane of the KV. First, an anchor was selected by both sensors based upon their 
discrimination information. The anchor to be identified was the tank, as it is typically the largest 
object in the target complex and most easily identified by both sensors. In this example, both 
sensors properly selected the tank as the anchor. This allowed the TOMs to be properly 
anchored. The tracks then were correlated. Figure 7 in Section 3.1 depicts the possible pairings. 
Configuration one yielded an r value of 0.997, while configuration two, three, and four yielded 
0.369, -0.23, and 0.269, respectively. As such, configuration one was selected. This turned out to 
be the correct correlation. 

4.4  Discriminat ion 

With the tracks from the two sensors correlated, discrimination was then performed. Each 
sensor observed one discriminable characteristic. The probability distributions for the radar and 
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optical characteristics are shown in Figure 13 and Figure 14, respectively. The shape of these 
distributions is based upon the expected value for the given characteristic for each class and the 
standard deviation of the measurements from the sensors. 

 

Figure 13. Radar characteristic probability distributions for three classes 

 

Figure 14. Optical characteristic probability distributions for three classes 
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The radar and optical discrimination characteristic observations are contained in Table 4. 

Table 4. Example scenario radar and optical observed discrimination characteristics 

Track Radar Characteristic Optical Characteristic 
1 1.308 4.094 
2 3.234 5.748 
3 1.634 5.357 
4 2.546 4.625 

 
From these observed characteristics, the probability of observation for each class was calculated 
for each set of measurements and is contained in Table 5 and Table 6, respectively. 

Table 5. Example scenario probability of observation from radar characteristic observation 

Track Probability of RV Probability of Tank Probability of Decoy 
1 0.660 0.003 0.306 
2 3.69e-5 0.715 0.038 
3 0.357 0.019 0.611 
4 0.007 0.529 0.440 

Table 6. Example scenario probability of observation from optical characteristic observation 

Track Probability of RV Probability of Tank Probability of Decoy 
1 0.784 ~0 0.155 
2 0.002 0.703 0.260 
3 0.020 0.350 0.618 
4 0.365 0.018 0.603 

 
Based upon these distributions and the measurements collected by the two sensors, EMs were 
calculated and combined with Dempster’s rule of combination. The resulting PPs are contained 
in Table 7. Target 1 was identified as having the greatest PP for RV and was selected as the 
target. In this simulation, target 1 corresponded to the RV. In selecting target 1, the system 
properly discriminated the target complex and selected the proper object for engagement. 

Table 7. Resulting pignistic probabilities for engagement 

Target PP(RV) PP(Tank) PP(Decoy) 
1 0.868 0.025 0.107 
2 0.028 0.896 0.076 
3 0.123 0.122 0.755 
4 0.149 0.606 0.193 

 
The engagement as a whole was successful because the system successfully tracked with both 
sensors, correlated the tracks, and properly discriminated the complex with the available 
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information. While this engagement was successful, the system could still fail when observing 
the same objects and produce an incorrect discrimination decision. This could stem from the 
sensor noise corrupting the TOMs or random variation in the observed characteristics.  
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5 Sensitivity of Sensor Resolution and Characteristic Overlap on Discrimination 

This project further assessed the effect of varying radar angular and range resolution, 
discrimination characteristic overlap (the amount of shared area between the probability of 
observation distributions for the different classes), target complex size, and number of target 
complex objects on the performance of the defense system. The developed simulation 
environment was utilized to perform a Monte Carlo simulation, varying the parameters listed 
above. The MATLAB code utilized to run the simulation is contained in Appendix I and II. The 
ultimate measure of success was Pd. Other metrics were utilized to reflect the performance of the 
tracking, correlation, and discrimination elements of the system as necessary to provide a more 
nuanced perspective on the performance of the system. 

5.1  Effect of Radar Resolution  

The accuracy of the radar measurements in azimuth, elevation, and range can affect the 
radar’s ability to produce quality tracks for the engagement of the threat by the interceptor. In 
order to assess this effect, the radar range and angular resolution were varied by +/- 10 percent of 
the baseline values. Elevation resolution was held at 2.3 times azimuth resolution as angular 
resolution varied. Range and angular bias were set with a uniformly distributed variation with a 
maximum magnitude equal to the range and angular resolution, respectively. Twenty-five 
different combinations of values were tested with three hundred individual trials conducted for 
each individual combination of values. The baseline parameter values for the X-band radar are 
contained in Table 8. 

Table 8. Baseline radar parameters 

Parameter Value 
Pulse repetition frequency (Hz) 45 
Azimuth resolution (deg) 0.44 
Elevation resolution (deg) 1.01 
Range resolution (m) 10 

 
Figure 15 depicts the sensitivity of probability of discrimination with varying range and 

angular resolution. The observed probabilities ranged from 0.9 to 0.95. However, the opposite of 
the anticipated trend was noted, as Pd actually increased as range and angular resolution 
degraded. The difference between minimum and maximum Pd varied by approximately five 
percent, a relatively small variation that may be random rather than reflective of system 
performance. In addition, the implementation of the Kalman filter and the correlation process 
may mitigate the effects of degrading sensor performance. The Kalman filter computed a 
weighted average between the projected position of a track and the observed position. By 
utilizing a projected state, the filter was able to reduce the uncertainty in the measurements to 
less than the uncertainty associated with a direct measurement. The correlation process proved 
able to successfully correlate even imperfect TOMs. Finally, incorrect correlations between RVs 
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and decoys may have reduced the impact of associating the wrong tracks. Since the 
discrimination characteristics for the RV and decoys are relatively similar, a correlation between 
an RV and a decoy may still produce a correct discrimination decision. Since the complex 
contained two decoys, one RV, and one tank, it is more likely in the event of a failed correlation 
that an RV and decoy track be paired than an RV and tank. 

 

Figure 15. Variation of probability of discrimination with radar range and angular resolution 

Figure 16 depicts the variation of probability of correlation with radar range and angular 
resolution. The observed Pc ranged from 0.94 to 0.985. With small exceptions, Pc increased as 
angular and range resolution decreased. This follows expectations, as improving resolution 
should improve the ability of the radar to produce higher quality tracks that will more closely 
match the scene observed by the KV upon target acquisition. 
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Figure 16. Variation of probability of correlation with radar range and angular resolution 

Figure 17 depicts the variation of mean track uncertainty at propagation with radar 
resolution. Greater track uncertainty at propagation can lead to states propagated forward to the 
intercept time with greater uncertainty and errors, leading to a more difficult correlation process. 
Degrading angular resolution resulted in greater track uncertainty. This is expected, as less 
precise sensors produce less certain measurements. Angular resolution had a much larger effect 
on track uncertainty than did range resolution. Due to the range of observation (~2500 km), a 
small change in angular resolution produced a much larger effect on the position uncertainty. For 
example, to produce the same magnitude in Cartesian position uncertainty as a 0.1 degree 
degradation in azimuth resolution at a range of 2,500 km, range resolution would need to 
degrade by 4,360 m. 
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Figure 17. Variation of mean track uncertainty at propagation with radar resolution 

Figure 19 depicts the variation in Zero Effort Miss distance (ZEM) with radar range and 
angular resolution. ZEM is defined as the Pythagorean distance between the aim point of the KV 
and the actual location of the selected target at intercept and is depicted in Figure 18. 

 

 

Figure 18. Zero Effort Miss distance and KV field-of-view 
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Greater ZEM requires a more maneuverable KV to reach the target and a greater on-board sensor 
FOV to detect the target. As angular resolution increased, the ZEM increased. Again, as shown 
in Figure 19, the effect of angular resolution was shown to be much greater than range 
resolution. This trend in ZEM indicates that a more accurate radar will place smaller demands on 
the KV as it acquires and homes on the target. 

 

Figure 19. Variation of zero effort miss distance with radar range and angular resolution 

In summary, improving radar range and angular resolution improved the ability of the 
system to reduce the uncertainty in the radar tracks, properly correlate the radar and KV TOMs, 
and reduce the demands on KV at intercept. However, improved radar resolution did not 
translate into a noted improved ability to discriminate the RV. This may indicate the robust 
ability of the Kalman filter and the correlation algorithm to mitigate the effects of degrading 
sensor performance. Removing the Kalman filter from the simulation and propagating the 
observed states from the radar would allow for direct observation of the effect of range and 
angular resolution on system performance. 

5.2  Discrimination Characteristic Overlap Area  

The amount of overlap between the probability of observation distributions for different 
classes is indicative of the likelihood that a given observation could indicate different classes. An 
example of characteristic overlap is shown in Figure 20. 
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Figure 20. Example of discrimination characteristic overlap area and separation 

The distributions tend to move together for two reasons. First, less capable sensors result in 
distributions with higher standard deviations. Greater standard deviations tend to result in wider, 
more overlapped distributions. Second, objects with similar characteristics will result in 
distributions with more closely spaced expected values and tend towards more overlap. To assess 
the effect of the amount of characteristic overlap area on Pd, the difference between the expected 
values of the classes and the standard deviation of the measurements were varied for the three 
discrimination characteristics. The difference between the means was varied from 0.1 to 5 and the 
standard deviations were varied from 0.4 to 1. The amount of characteristic overlap was calculated for 
each combination of mean values and measurement standard deviation with 1000 trial runs for each 
combination. 
 Figure 21 depicts the variation of Pd with characteristic overlap area. An inverse quadratic 
relationship between characteristic overlap area and Pd was observed, with an r2 of 0.9836 for the 
regression. As expected, as the amount of overlap area increased, the ability of the system to discriminate 
decreased. Further, this relationship was strongly quadratic, indicating that Pd decreases more rapidly as 
the overlap area increases.  Conversely, decreasing the amount of overlap area will yield larger increases 
in Pd. 
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Figure 21. Variation of probability of discrimination with characteristic overlap area 
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6 Conclusions and Future Research 

6.1  Conclusions 

Using multiple, dissimilar sensors operated at different locations, this project developed 
an anchor Target Object Map (TOM) with least-squares based configuration selection for 
correlation and a Dempster-Shafer based discrimination algorithm for selecting the object of 
interest among closely-spaced objects travelling in a ballistic trajectory. A simulation 
environment was developed to conduct relevant operational scenarios and to assess the 
effectiveness of these algorithms with varying system parameters. This project found that 
varying +/-10% of the baseline radar range and angular resolution capability did not have a 
significant impact on the probability of discrimination (Pd ). However, a 0.1 degree increase in 
angular resolution resulted in a 6 percent increase in the zero effort miss distance that increased 
the required KV maneuverability and optical sensor suite field of view of the KV at intercept. 
This project also found a strong inverse quadratic relationship between Pd and discrimination 
characteristic overlap, which is defined by the sensor measurement characteristics for different 
classes of objects. In order to achieve a Pd of 0.9, the characteristic overlap area could not exceed 
2. Approaches to reduce characteristic overlap area should be explored to improve the 
discrimination performance of the system.  

6.2  Future Research 

The simulation capability developed in this project could be improved further to enhance 
the performance of the system via the inclusion of an Extended Kalman Filter22 for tracking and 
a Mahalanobis distance correlation algorithm.23 In addition, the fidelity of the simulation 
environment could be improved by modeling the KV optical sensor utilizing a pinhole optics 
model.  These topics have been explored as stretch goals of the project but were not able to be 
completed in a timely manner.  However, the ground work has been laid and can be employed to 
further enhance the multiple sensor discrimination capabilities.  

6.2.1  Extended Kalman Filter State Estimation  

Due to the nonlinear nature of orbital mechanics, the use of an Extended Kalman Filter 
could be beneficial in improving the state estimation performance. An Extended Kalman Filter 
takes the previously calculated states of the object and the next measurement and calculates the 
true states of the object at the given time step. The states can be calculated using Equation           
( 11 ).24 

  ( 11 ) 

In the preceding equation, are the estimated states,  are the previous estimated states, 
Kk are the Kalman gains for the particular measurement, zk are the measured states, and ) 
are the expected measured states from the predicted states.  is found by integrating the 
nonlinear equations from the previous states to the next state. For example, Euler integration can 
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be utilized to propagate the states forward. The Kalman gains are found using the Riccatti 
equations, Equations ( 12 ), ( 13 ), and ( 14 )25,  

  ( 12 ) 

  ( 13 ) 

  ( 14 ) 

 
where Mk is the covariance matrix representing the errors in the state estimates prior to an 
update, and Pk is the covariance matrix following an update. H is the measurement matrix 
relating the measurements to states. Qk is the process noise representing uncertainty in the 
behavior of the states, and Rk is the discrete measurement noise matrix representing the variances 
of each measurement source. ϕk is the fundamental matrix, found via the Taylor-series expansion 
given in Equation ( 15 ), F is the systems dynamics matrix given by Equation ( 16 ) and Ts is the 
sampling time between measurements. It can be shown that the higher order terms can be 
neglected with minimal impact on the accuracy of the filter. Since the system is nonlinear, F is a 
first-order approximation to linearize the equations. 26 

 ( 15 ) 

 ( 16 ) 

6.2.2  Mahalanobis Distance  

Due to sensor uncertainty, the observed location of each object may differ between the 
two sensors. Mahalanobis distance can be used to calculate the correlation between the 
components of the target complex and is computed by Equation ( 17 ) 27, where r is the 
Mahalanobis distance from the feature vector x to the mean vector mx, and Cx is the covariance 
matrix of x. 

  ( 17 ) 

Mahalanobis distance is utilized as it removes several limitations associated with using 
the Euclidean distance mainly that it accounts for the scaling of the coordinate axes and corrects 
for correlation between different object features.28

 The Mahalanobis distance between two tracks 
is denoted by rm-n,, where m is the radar track number and n is the optical detection track number. 
The selected anchor objects will always be correlated. The remaining targets will be correlated 
based on the arrangement that minimizes Σr for the TOM. 
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6.2.3  Pinhole Optics Model  

The optical sensor onboard the KV can be modeled using a simple pinhole optics model. 
The pinhole optics model involves defining a detector with a certain number of pixels and 
projecting this sensor plane through a “pinhole” to measure the range and bearing of the objects 
in the field of view (FOV). Each pixel can be assumed to have square dimensions. The sensor 
FOV was then divided by the number of pixels, known as the instantaneous FOV (iFOV) for 
each pixel. The FOV and iFOV of the sensor array will be varied to assess their impact on 
system performance. 
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Appendix I: Monte Carlo Simulation Coding 

MIDN Samuel S. Lacinski, 25 April 2014 

Project Abstract 
This project examines the selection of an object of interest (OI) from a cluster of closely-space 
objects (CSOs) utilizing the returns from multiple sensors. 

% This project is conducted in the SI system of units. Care is taken 

% between sensor measurements, taken in units of meters, and orbital 

% mechanics calculations, in units of kilometers. 

 

% This program has five principle components: 1. Turth Target Complex 

% Generation, 2. Radar Observation, 3. Optical Observation, 

% 4. Target-Object Map (TOM) Correlation, and 5. Discrimiation Algorithm. 

% In element will be explained in detail in the respective section of 

% coding. 

Workspace Preparation 

clear 

clc 

format compact 

 

% Declare Path 

global currPath; 

currPath = pwd; 

path([currPath '/CoordinateTransforms/'],path) 

path([currPath '/Discrimination/'],path) 

path([currPath '/Filter/'],path) 

path([currPath '/Sensors/'],path) 

path([currPath '/TimeAndAngles/'],path) 

path([currPath '/Trajectory/'],path) 

path([currPath '/DataFiles/'],path) 

path([currPath '/ECIFilter/'],path) 

path([currPath '/SEZFilter/'],path) 

path([currPath '/AddAxis/'],path) 

 

global plotk; 

plotk = [];              % plot index 

Compute Truth Trajectories and Access Data 

% Earth Paratemeters 

global mu R_e w; 

mu = 3.986004418e5;     % km^3/s^2, Earth Gravitational Parameter 

R_e = 6371;             % km, Earth radius 
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w = [0;0;7.292115856e-5];   % rad/s, Earth angular rotation 

 

% Target Complex Components 

num_1 = 1;              % number of re-entry vehicles 

num_2 = 1;              % number of tanks 

num_3 = 2;              % number of spherical decoys 

num_4 = 0;              % number of conical decoys 

num_5 = 0;              % number of debris objects 

 

target_comp = [num_1 num_2 num_3 num_4 num_5]; 

    % Target components vector 

num_tar = sum(target_comp); % number of targets 

 

% Define target parameters 

global num_class; 

num_class = 3;          % number of object classes 

 

v_const = .01; 

 

% global UTC_launch JD_launch file; 

% file = 'PositionTrackData2.xlsx';         % data file 

 

% Define CONOPs 

global int_aq; 

int_aq = 500;           % km, range of acquisition 

 

% Define X1 position 

radar_lat = 29.6837;               % deg, radar latitude 

radar_long = -165.192;             % deg, radar longitude 

radar_alt = 0;                     % km, radar altitude 

 

X1.data = [radar_lat radar_long radar_alt]; 

Truth Target Complex 
This section of code generates the ballistic trajectory of the components of the CSOs. This 
project is focused on the free-flight portion of the CSOs. This section of code also generates the 
true object charateristics. Each object has six total characteristics: a, b, c, alpha, beta, and 
gamma. a, b, and c are radar observable charateristics while alpha, beta, and gamma are optical 
observable charateristics. 

The generated information is contained in a structured array. target contains a Nx1 cell matrix, 
where N is the true number of target elements. The trajectory element of each cell contains the 
julian day and corresponding J2000 position and velocity elements of the target elements. 

% Compute trajectory of target elements 

[complex,connect] = ScenarioInitial(target_comp,X1.data,v_const); 

app = connect.app; 

root = connect.root; 

scenario = connect.scenario; 
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% Calculate discrimination characteristics and obtain epoch 

in = 1;     % target index 

for k = 1:num_class 

    for n = 1:target_comp(k) 

        if k == 1 

            complex{in}.char = [1 4]; 

        elseif k == 2 

            complex{in}.char = [3 6]; 

        else 

            complex{in}.char = [2 5]; 

        end 

        in = in+1; 

    end 

end 

 

% Declare expected observation for target classes 

global mean_char; 

mean_char = [1 3 2;4 6 5]; 

 

% Determine initial launch time 

global UTC_launch JD_launch; 

UTC_launch = complex{1}.UTClaunch; 

JD_launch = juliandate(UTC_launch); 

 

% Import Access Data 

X1.access = cell(num_tar,1);    % initialize access cell matrix 

 

global JD_hitch 

in = 1; % reset index 

radar = connect.X1stk;     % select radar facility 

for k = 1:num_tar % Loop over all complex objects 

    % Compute access data for each object 

    if k == 1 

        Tar = connect.RVs; 

    elseif k == 2 

        Tar = connect.Tanks; 

    elseif k == 3 

        Tar = connect.Spheres; 

    elseif k == 4 

        Tar = connect.Cones; 

    else 

        Tar = connect.Debrs; 

    end 

    for n = 1:size(Tar,1) 

        satid = Tar{n,1};   % object identifier 

        sat = Tar{n,2};     % object 

        % Compute Access 

        access = radar.GetAccessToObject(sat); 

        access.ComputeAccess; 

        accessDP = access.DataProviders.Item('AER 

Data').Group.Item('Default').Exec(scenario.starttime,scenario.stoptime,1); 

        T = accessDP.DataSets.GetDataSetByName('Time').GetValues; 
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        T = UTC2Scenario(T); 

        T = juliandate(T); 

        az = cell2mat(accessDP.DataSets.GetDataSetByName('Azimuth').GetValues); 

        el = cell2mat(accessDP.DataSets.GetDataSetByName('Elevation').GetValues); 

        r = cell2mat(accessDP.DataSets.GetDataSetByName('Range').GetValues); 

        azdot = cell2mat(accessDP.DataSets.GetDataSetByName('AzimuthRate').GetValues); 

        eldot = cell2mat(accessDP.DataSets.GetDataSetByName('ElevationRate').GetValues); 

        rdot = cell2mat(accessDP.DataSets.GetDataSetByName('RangeRate').GetValues); 

        % Save data 

        X1.access{in} = [T az el r azdot eldot rdot]; 

        % Find discontinunity 

        JD_hitch(in,:) = FindAERDiscon(X1.access{in}(:,1),X1.access{in}(:,2)); 

        in = in+1;  % update index 

    end 

end 

 

% Close STK 

app.Quit(); 

 

% Load scenario values 

load('Scenario.mat') 

Declare Range of Variables for Iteration 
Default Values: sigma_res = .0458 deg sigma_rng = 10/1e3 km 

res = 0.44;                         % deg, baseline angular resolution 

rng = 10/1e3;                       % km, baseline range resolution 

 

sigma_res = [.9*res .95*res res 1.05*res 1.1*res];   % deg, angular resolution to be tested 

sigma_rng = 1.05*rng;   % km, range resolution to be tested 

Perform Iteration 
This section of code implements a Monte Carlo simulation to assess the effect of the variation of 
the parameters of interest. 

% Save globals into structured variable 

globals.plotk = plotk; 

globals.mu = mu; 

globals.R_e = R_e; 

globals.w = w; 

globals.num_class = num_class; 

globals.int_aq = int_aq; 

globals.mean_char = mean_char; 

globals.UTC_launch = UTC_launch; 

globals.JD_launch = JD_launch; 

globals.JD_hitch = JD_hitch; 

 

loops = 300;        % number of iterations at each combination 
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%load('LastRun.mat') 

n_last = 1; 

m_last = 1; 

results = zeros(loops,10); 

P = zeros(length(sigma_res),10,length(sigma_rng)); 

 

for n = n_last:length(sigma_rng) 

    if n == n_last 

        m_loop = m_last; 

    else 

        m_loop = 1; 

    end 

    for m = m_loop:length(sigma_res) 

        m 

        n 

        parfor k = 1:loops 

            test = 0; 

            iter = 0;   % number of attempts 

            while test == 0 && iter < 10 

                try 

                    % Run simulation 

                    results(k,:) = CSOMultiSensorDiscrimLoop(complex,X1,globals,... 

                        sigma_res(m),sigma_rng(n)); 

                    test = 1; 

                catch 

                    % loop repeats 

                    disp('Error detected. Repeating data point.') 

                    iter = iter+1; 

                end 

            end 

            if iter >= 10 

                results(k,:) = NaN(1,8); 

            end 

        end 

    P(m,:,n) = sum(results)/loops; 

    save('LastRun.mat','m','n','P') 

    end 

end 

Published with MATLAB® R2014a 
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Appendix II: Simulation Master Code 

function [results] = CSOMultiSensorDiscrimLoop(complex,X1,globals,sigma_res,sigma_rng) 

Declare Variables 

global plotk mu R_e w num_class int_aq mean_char UTC_launch JD_launch JD_hitch 

plotk = globals.plotk; 

mu = globals.mu; 

R_e = globals.R_e; 

w = globals.w; 

num_class = globals.num_class; 

int_aq = globals.int_aq; 

mean_char = globals.mean_char; 

UTC_launch = globals.UTC_launch; 

JD_launch = globals.JD_launch; 

JD_hitch = globals.JD_hitch; 

Error using CSOMultiSensorDiscrimLoop (line 4) 

Not enough input arguments. 

Create STK Scenario 

% Create scenario 

app = actxserver('STK10.Application'); % open STK 

root = app.personality2; 

scenario = root.Children.New('eScenario','Kwaj2Seattle'); 

% Set start and stop time 

scenario.SetTimePeriod('1 Sep 2014 00:00:00','1 Sep 2014 01:00:00'); 

% Save to connect variable 

connect.app = app; 

connect.root = root; 

connect.scenario = scenario; 

Radar Observation 
This section of code simulates the observation of the target complex by a radar system. The radar 
observes the target for a given period and then generates a TOM that is projected to the "eyes-
open" time for the optical sensor. The return from the complex is the target position, velocity, 
and the radar signal return from the target. 

This project assumed that the radar would add a random error to error element's truth location. 
This error is based on the radar system parameters. In addition, the radar signal return will have 
some random noise added to it based upon the internal noise of the system. 
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The radar simulated in this scenario is a nominal X-Band midcourse tracking and discrimination 
radar, termed the X1. The radar tracking parameters are stored in a structured array that contains 
the parameters of the system in .parameters and target tracks in .tracks. 

% Define the radar system parameters 

X1.sigma_rng = sigma_rng;       % km, range standard deviation 

X1.ang_res = sigma_res;         % deg, angular resolution 

X1.sigma_a = 0.5;               % characteristic a standard deviation 

X1.PRF = 45;                    % Hz, pulse repetition frequency 

 

X1.Pd = 1;                      % Probability of detection 

 

X1.lat = X1.data(1);         % deg, radar latitude 

X1.long = X1.data(2);        % deg, radar longitude 

X1.alt = X1.data(3);         % km, radar altitude 

 

% Generate target tracks 

[X1,KV,complex,connect] = radarOBVwSTK(X1,complex,connect); 

disp('Radar track') 

Optical Observation 
This section of code simulates the observation of the target complex by a space-based optical 
system. The sensor platform is also moving on a ballistic trajectory and observes the complex for 
"eyes open" time to the decision point. At the decision point, the observations are used to 
generate a TOM. The sensor observes the 2D position of the CSOs in the focal plane as well as 
characteristics of interest for discrimination purposes. 

This project assumes the optical sensor would add a random error to each element's truth 
location, based on the system parameters. In addition, the observed characteristics would6 have 
an error resulting from the internal noise of the system. 

% Define system parameters 

KV.sigma_1 = 0.5; 

 

% Observe target and generate TOM 

KV = KVOBV_STK(X1,KV,complex); 

disp('KV Acquired') 

TOM Correlation 
This section of code correlates the final TOMs generated by the radar and optical sensors. The 
correlation parameter generated is based upon the "2-D correlation" of the coordinates and 
measured velocities of the objects. 

This project assumes no mismatches. 
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[optical_obv,TOM_data] = TOMCorr(X1,KV,complex); 

if ~isempty(plotk) 

    disp(['OV selected TOM configuration: ',num2str(TOM_data(2))]) 

    disp(['r = ',num2str(TOM_data(1),4)]) 

end 

Discrimination Algorithm 
This section of code fuses the discrimination information from the two sensors and produces a 
discrimination decision. The algorithm fuses the sensor inputs based upon the TOM correlation 
process in the previous section of code. Objects selected as matches by the correlation process 
will have the sensor returns matched in the object data base. 

% Combine observations based on correlation process. 

char_data = [X1.char KV.char(:,2:end)]; 

 

% Assign evidence measure based on each observation 

num_obj = size(char_data,1);    % number of correlated objects 

num_char = 2;                   % number of characteristics measured 

 

char_sigma = [X1.sigma_a KV.sigma_1]; 

 

PPs = DempsterShaferOpen(mean_char,char_sigma,char_data); 

 

% Identify Object of Interest 

 

[F_imax,h] = max(PPs(:,1)); 

if ~isempty(plotk) 

    disp(['The OI is ',num2str(h)]) 

    disp(['Interest factor is ',num2str(F_imax)]) 

end 

Save Results 
This section of coding determines if correlation, discrimination, and intercept were successful 
and saves information of interest. 

% Determine if discrimination was successful (value of 1 indicates success) 

if h == 1 && ~isnan(TOM_data(1)) 

    Disc_suc = 1; 

else 

    Disc_suc = 0; 

end 

 

% Determine if correct anchors were selected 

if X1.anchor_id == 2 && ~isnan(TOM_data(1)) 

    radar_anc = 1; 

else 

    radar_anc = 0; 
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end 

if KV.anchor_id == 2 && ~isnan(TOM_data(1)) 

    kv_anc = 1; 

else 

    kv_anc = 0; 

end 

 

% Determine if KV selected correct target independently 

if KV.target == 1 && ~isnan(TOM_data(1)) 

    KV_int = 1; 

else 

    KV_int = 0; 

end 

 

% Determine if intercept was successful 

if strcmp(complex{h,1}.ID,'RV') && ~isnan(TOM_data(1)) 

    Int_suc = 1; 

else 

    Int_suc = 0; 

    TOM_data(1) = -1; 

end 

 

% Save results (format - [Corr Discrim Int Corr.coefficient PP_RV]) 

results = [TOM_data(3) Disc_suc Int_suc TOM_data(1) F_imax radar_anc kv_anc ... 

    mean(X1.TU_min) KV_int KV.zem]; 

disp('Intercepted') 

disp(' ') 

 

% Close STK 

if isempty(plotk) 

    app.Quit(); 

end 

Published with MATLAB® R2014a 
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Appendix III: Kalman Filter Code 

function [Xk1,Pk1,Kk,TU,TU_v] = KalmanSEZ(X0,P0,Rk,zk,dt) 

%KalmanSEZ performs one step of a linear Kalman filter on states in the SEZ 

%frame. 

%   The states are expected in the form [S,E,Z,Sdot,Edot,Zdot]', where 

%   position is in km and velocity is in km/s. Pk is a 6x6 covariance 

%   matrix in km^2. Rk is the measurement covariance matrix also in km^2. 

%   Zk is the measurement matrix, expected as [S,E,Z], as velocity is 

%   assumed to not be measured. If Zk is empty, the filter is propagated 

%   without a measurement vector. T is the propagation time in seconds. 

 

global mu R_e; 

 

Rk = [Rk(1,1) 0 0;... 

   0 Rk(2,2) 0; 

   0 0 Rk(3,3)]; 

 

% State transition matrix 

phi = eye(6,6); 

phi(1,2) = dt; 

phi(3,4) = dt; 

phi(5,6) = dt; 

 

% Input matrix 

G = [dt^2/2 0 0;... 

    dt 0 0;... 

    0 dt^2/2 0;... 

    0 dt 0;... 

    0 0 dt^2/2;... 

    0 0 dt]; 

 

% Process matrix 

q = 1e-6;                          % Noise spectral density 

Q = q*[dt^3/3 dt^2/2 0 0 0 0;... 

    dt^2/2 dt 0 0 0 0;... 

    0 0 dt^3/3 dt^2/2 0 0;... 

    0 0 dt^2/2 dt 0 0;... 

    0 0 0 0 dt^3/3 dt^2/2;... 

    0 0 0 0 dt^2/2 dt]; 

 

% Measurement Matrix 

H = zeros(3,6); 

H(1,1) = 1; 

H(2,3) = 1; 

H(3,5) = 1; 

 

% Gravitational Acceleration Matrix 

g = -mu/norm([X0(1) X0(3) X0(5)+R_e])^2;    % estimated gravitational constant 

u_k = [0;0;g]; 
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% Best Estimate States 

Xk = phi*X0+G*u_k;          % km, km/s, best estimate states 

Pk = phi*P0*phi'+Q;         % km^2, best estimate covariance 

 

% Update Estimates - omit if no measurement included 

if ~isempty(zk) 

    Kk = Pk*H'*inv(H*Pk*H'+Rk); % Kalman gain matrix 

    Xk1 = Xk+Kk*(zk-H*Xk);      % km, km/s, updated estimates 

    Pk1 = (eye(6,6)-Kk*H)*Pk;   % km^2, updated covariance matrix 

else  % Use propagated estimates as updates 

    Kk = NaN(6,3); 

    Xk1 = Xk; 

    Pk1 = Pk; 

end 

 

% Calculate Track Uncertainty at measurement instance 

TU = norm([Pk1(1,1) Pk1(2,2) Pk1(3,3)]); 

TU_v = norm([Pk1(4,4) Pk1(5,5) Pk1(6,6)]); 

 

end 

Published with MATLAB® R2014a 
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Appendix IV: MATLAB-STK Interface for Calculating Interceptor Trajectory 

function [radar,KV,connect] = Intercept(radar,intercept_data,connect) 

%Intercept This function determines the time of intercept for a given 

%threat trajectory. 

%   Output is in JD. 

Variable Definiation 

global int_aq; 

 

num_tar = size(radar.trackSEZ,1);   % number of active tracks 

 

% STK scenario data 

app = connect.app; 

root = connect.root; 

scenario = connect.scenario; 

Error using Intercept (line 10) 

Not enough input arguments. 

Select State Estimates 
State estimates with the smallest average covariance normal for all tracked objects are utlized for 
determining the object orbit. 

% % Determine number of loops 

% loops = inf; 

% for k = 1:size(radar.trackSEZ,1) 

%     det = size(radar.trackSEZ{k,2},3); 

%     if det < loops 

%         loops = det; 

%     end 

% end 

% ave = zeros(loops,1); 

% 

% % Loop over each track indicidence 

% for k = 1:loops 

% %    disp(['Loop: ',num2str(k)]) 

%     aves = zeros(num_tar,1); 

%     % Average covariance for each track 

%     for n = 1:num_tar 

% %        disp(['Target: ',num2str(n)]) 

%         aves(n,1) = norm(radar.trackSEZ{n,2}(:,:,k)); 

%     end 

%     ave(k,1) = norm(aves);  % km^2, average covariance for all tracks 

% end 
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% Select point of minimum track uncertainty 

h = zeros(1,num_tar); 

radar.TU_min = zeros(num_tar,1); 

for k = 1:num_tar 

    [radar.TU_min(k),h(k)] = min(radar.trackSEZ{k,4}(:,3)); 

end 

 

% Select states for orbit determination 

%[~,h] = min(ave); 

state_prop = zeros(num_tar,8); 

for k = 1:num_tar 

    statesSEZ = radar.trackSEZ{k,1}(h(k),:); % states for propagation 

    % Convert states to ECI 

    JD = statesSEZ(1,2);        % Julian day for state 

    theta_LST = LST(JD,radar.long); % deg, local sidereal angle 

    [r_ECI,v_ECI] = SEZ2ECI(statesSEZ(3:5)',statesSEZ(6:8)',radar.lat,... 

        theta_LST);             % km, km/s, ECI states 

    state_prop(k,:) = [statesSEZ(1:2) r_ECI' v_ECI']; 

end 

Project Trajectories 
Using the selected state estimates, the tracks are projected forward until impact to determine the 
trajectory of the targets after tracking. 

tars = cell(num_tar,2);         % initialize object handle matrix 

 

root.ExecuteCommand('SetUnits / KM SEC UTCG'); 

for k = 1:num_tar 

    tarid = ['TAR',num2str(k)];                        % target label 

    tar = scenario.Children.New('eSatellite',tarid);    % target STK object 

    % Initialize target with state estimates 

    [year,month,day,hour,minu,sec,~,~] = julian2greg(state_prop(k,2));   % UTC time 

    % Generate time string 

    T = [year month day hour minu sec]; 

    radar.prop_start(k,1) = juliandate(T); 

    T = UTC2Str(T); 

    % Add object 

    cmd = ['SetState */Satellite/',tarid,' Cartesian TwoBody ',T,' "',scenario.StopTime,... 

        '" 5 J2000 ',T,' ',num2str(state_prop(k,3)),' ',num2str(state_prop(k,4)),... 

        ' ',num2str(state_prop(k,5)),' ',num2str(state_prop(k,6)),... 

        ' ',num2str(state_prop(k,7)),' ',num2str(state_prop(k,8))]; 

    root.ExecuteCommand(cmd); 

    tars{k,1} = tarid;         % save object name 

    tars{k,2} = tar;            % save object handle 

    % Extract projected positions 

    satDP = tar.DataProviders.Item('Cartesian 

Position').Group.Item('J2000').Exec(scenario.starttime,scenario.stoptime,1); 

    T = satDP.DataSets.GetDataSetByName('Time').GetValues; 

    T = UTC2Scenario(T); 

    T = juliandate(T); 
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    x = cell2mat(satDP.DataSets.GetDataSetByName('x').GetValues); 

    y = cell2mat(satDP.DataSets.GetDataSetByName('y').GetValues); 

    z = cell2mat(satDP.DataSets.GetDataSetByName('z').GetValues); 

    satDP = tar.DataProviders.Item('Cartesian 

Velocity').Group.Item('J2000').Exec(scenario.starttime,scenario.stoptime,1); 

    xdot = cell2mat(satDP.DataSets.GetDataSetByName('x').GetValues); 

    ydot = cell2mat(satDP.DataSets.GetDataSetByName('y').GetValues); 

    zdot = cell2mat(satDP.DataSets.GetDataSetByName('z').GetValues); 

    % Save data 

    radar.prop_traj{k,1} = [T,x,y,z,xdot,ydot,zdot]; 

end 

Determine Intercept Point 
Based on the provided altitude in intercept_data, the function will determine the time and 
location of intercept. 

int_alt = intercept_data.altitude;      % Desired intercept altitude 

% Identify earliest time object breaks intercept altitude 

T_int = inf;        % initialize intercept time 

for k = 1:num_tar 

    % Select object 

    tarid = tars{k,1}; 

    tar = tars{k,2}; 

    % Compute altitude over flight 

    tarDP = tar.DataProviders.Item('LLA 

State').Group.Item('Fixed').Exec(scenario.starttime,scenario.stoptime,1); 

    T = tarDP.DataSets.GetDataSetByName('Time').GetValues; 

    T = UTC2Scenario(T);        % UTC 

    T = juliandate(T);          % Julian Day 

    alt = cell2mat(tarDP.DataSet.GetDataSetByName('Alt').GetValues); 

    % Compute time at intercept altitude 

    T_low = interp1(alt,T,int_alt); % Julian Day 

    % Update intercept time, if necessary 

    if T_low < T_int 

        T_int = T_low; 

    end 

end 

 

inter_rv = zeros(num_tar,7); 

% Determine cartesion position and velocity at intercept time 

for k = 1:num_tar 

    % Select target 

    tarid = tars{k,1}; 

    tar = tars{k,2}; 

    % Obtain Cartesian position and velocity 

    satDP = tar.DataProviders.Item('Cartesian 

Position').Group.Item('J2000').Exec(scenario.starttime,scenario.stoptime,1); 

    T = satDP.DataSets.GetDataSetByName('Time').GetValues; 

    T = UTC2Scenario(T); 

    T = juliandate(T); 

    x = cell2mat(satDP.DataSets.GetDataSetByName('x').GetValues); 
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    y = cell2mat(satDP.DataSets.GetDataSetByName('y').GetValues); 

    z = cell2mat(satDP.DataSets.GetDataSetByName('z').GetValues); 

    satDP = tar.DataProviders.Item('Cartesian 

Velocity').Group.Item('J2000').Exec(scenario.starttime,scenario.stoptime,1); 

    xdot = cell2mat(satDP.DataSets.GetDataSetByName('x').GetValues); 

    ydot = cell2mat(satDP.DataSets.GetDataSetByName('y').GetValues); 

    zdot = cell2mat(satDP.DataSets.GetDataSetByName('z').GetValues); 

    % Interpolate position and velocity at intercept time 

    X = interp1(T,x,T_int); 

    Y = interp1(T,y,T_int); 

    Z = interp1(T,z,T_int); 

    Xdot = interp1(T,xdot,T_int); 

    Ydot = interp1(T,ydot,T_int); 

    Zdot = interp1(T,zdot,T_int); 

    % Save data 

    inter_rv(k,:) = [T_int X Y Z Xdot Ydot Zdot]; 

end 

 

% Determine aim point (aim point taken as average of all objects position 

% at intercept time) 

aim_point = [T_int mean(inter_rv(:,2)) mean(inter_rv(:,3)) mean(inter_rv(:,4))]; 

KV.aim_point = aim_point; 

Determine Interceptor Trajectory 
This segment of code calculates the trajectory necessary for the interceptor to converge on the 
target. 

% Create interceptor object 

KV1 = scenario.Children.New('eSatellite','KV1'); 

 

% Create target sequence and remove default initial state and propagat 

root.ExecuteCommand('Astrogator */Satellite/KV1 InsertSegment 

MainSequence.SegmentList.Initial_State Target_Sequence'); 

root.ExecuteCommand('Astrogator */Satellite/KV1 DeleteSegment 

MainSequence.SegmentList.Initial_State Target_Sequence'); 

root.ExecuteCommand('Astrogator */Satellite/KV1 DeleteSegment MainSequence.SegmentList.Propagate 

Target_Sequence'); 

 

% Create launch, manuever, and propagate sequence 

root.ExecuteCommand('Astrogator */Satellite/KV1 InsertSegment 

MainSequence.SegmentList.Target_Sequence.SegmentList.- Propagate'); 

root.ExecuteCommand('Astrogator */Satellite/KV1 InsertSegment 

MainSequence.SegmentList.Target_Sequence.SegmentList.Propagate Launch'); 

root.ExecuteCommand('Astrogator */Satellite/KV1 InsertSegment 

MainSequence.SegmentList.Target_Sequence.SegmentList.Propagate Maneuver'); 

 

% Set constants for launch 

root.ExecuteCommand('Astrogator */Satellite/KV1 SetValue 

MainSequence.SegmentList.Target_Sequence.SegmentList.Launch.TimeOfFlight 63 sec'); 

root.ExecuteCommand('Astrogator */Satellite/KV1 SetValue 

MainSequence.SegmentList.Target_Sequence.SegmentList.Launch.Burnout.FixedVelocity 8.3 km/sec'); 
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root.ExecuteCommand('Astrogator */Satellite/KV1 SetValue 

MainSequence.SegmentList.Target_Sequence.SegmentList.Launch.Launch.Geodetic.Latitude 34.7561 

deg'); 

root.ExecuteCommand('Astrogator */Satellite/KV1 SetValue 

MainSequence.SegmentList.Target_Sequence.SegmentList.Launch.Launch.Geodetic.Longitude -120.626 

deg'); 

root.ExecuteCommand('Astrogator */Satellite/KV1 SetValue 

MainSequence.SegmentList.Target_Sequence.SegmentList.Launch.Launch.Geodetic.Altitude 0.01 km'); 

root.ExecuteCommand('Astrogator */Satellite/KV1 SetValue 

MainSequence.SegmentList.Target_Sequence.SegmentList.Maneuver.ImpulsiveMnvr.AttitudeControl 

Thrust Vector'); 

 

% Configure target sequence control parameters 

root.ExecuteCommand('Astrogator */Satellite/KV1 AddMCSSegmentControl 

MainSequence.SegmentList.Target_Sequence.SegmentList.Launch Burnout.LaunchAzDRDAlt.Altitude'); 

root.ExecuteCommand('Astrogator */Satellite/KV1 SetMCSControlValue 

MainSequence.SegmentList.Target_Sequence.Profiles.Differential_Corrector Launch 

Burnout.LaunchAzDRDAlt.Altitude Active true'); 

root.ExecuteCommand('Astrogator */Satellite/KV1 SetValue 

MainSequence.SegmentList.Target_Sequence.SegmentList.Launch.Burnout.LaunchAzDRDAlt.Altitude 225 

km'); 

root.ExecuteCommand('Astrogator */Satellite/KV1 AddMCSSegmentControl 

MainSequence.SegmentList.Target_Sequence.SegmentList.Launch 

Burnout.LaunchAzDRDAlt.DownrangeDistance'); 

root.ExecuteCommand('Astrogator */Satellite/KV1 SetValue 

MainSequence.SegmentList.Target_Sequence.SegmentList.Launch.Burnout.LaunchAzDRDAlt.DownrangeDista

nce 399.399 km'); 

root.ExecuteCommand('Astrogator */Satellite/KV1 SetMCSControlValue 

MainSequence.SegmentList.Target_Sequence.Profiles.Differential_Corrector Launch 

Burnout.LaunchAzDRDAlt.DownrangeDistance Active true'); 

root.ExecuteCommand('Astrogator */Satellite/KV1 AddMCSSegmentControl 

MainSequence.SegmentList.Target_Sequence.SegmentList.Launch Burnout.LaunchAzDRDAlt.LaunchAZ'); 

root.ExecuteCommand('Astrogator */Satellite/KV1 SetValue 

MainSequence.SegmentList.Target_Sequence.SegmentList.Launch.Burnout.LaunchAzDRDAlt.LaunchAz -

17.8115 deg'); 

root.ExecuteCommand('Astrogator */Satellite/KV1 SetMCSControlValue 

MainSequence.SegmentList.Target_Sequence.Profiles.Differential_Corrector Launch 

Burnout.LaunchAzDRDAlt.LaunchAZ Active true'); 

root.ExecuteCommand('Astrogator */Satellite/KV1 AddMCSSegmentControl 

MainSequence.SegmentList.Target_Sequence.SegmentList.Launch Launch.Epoch'); 

root.ExecuteCommand('Astrogator */Satellite/KV1 SetValue 

MainSequence.SegmentList.Target_Sequence.SegmentList.Launch.Launch.Epoch "1 Sep 2014 00:23:00" 

UTCG'); 

root.ExecuteCommand('Astrogator */Satellite/KV1 SetMCSControlValue 

MainSequence.SegmentList.Target_Sequence.Profiles.Differential_Corrector Launch Launch.Epoch 

Active true'); 

root.ExecuteCommand('Astrogator */Satellite/KV1 AddMCSSegmentControl 

MainSequence.SegmentList.Target_Sequence.SegmentList.Maneuver ImpulsiveMnvr.Cartesian.X'); 

root.ExecuteCommand('Astrogator */Satellite/KV1 SetMCSControlValue 

MainSequence.SegmentList.Target_Sequence.Profiles.Differential_Corrector Maneuver 

ImpulsiveMnvr.Cartesian.X Active true'); 

root.ExecuteCommand('Astrogator */Satellite/KV1 AddMCSSegmentControl 

MainSequence.SegmentList.Target_Sequence.SegmentList.Maneuver ImpulsiveMnvr.Cartesian.Y'); 
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root.ExecuteCommand('Astrogator */Satellite/KV1 SetMCSControlValue 

MainSequence.SegmentList.Target_Sequence.Profiles.Differential_Corrector Maneuver 

ImpulsiveMnvr.Cartesian.Y Active true'); 

root.ExecuteCommand('Astrogator */Satellite/KV1 AddMCSSegmentControl 

MainSequence.SegmentList.Target_Sequence.SegmentList.Maneuver ImpulsiveMnvr.Cartesian.Z'); 

root.ExecuteCommand('Astrogator */Satellite/KV1 SetMCSControlValue 

MainSequence.SegmentList.Target_Sequence.Profiles.Differential_Corrector Maneuver 

ImpulsiveMnvr.Cartesian.Z Active true'); 

root.ExecuteCommand('Astrogator */Satellite/KV1 AddMCSSegmentControl 

MainSequence.SegmentList.Target_Sequence.SegmentList.Propagate 

StoppingConditions.Duration.TripValue'); 

root.ExecuteCommand('Astrogator */Satellite/KV1 SetValue 

MainSequence.SegmentList.Target_Sequence.SegmentList.Propagate.StoppingConditions.Duration.TripVa

lue 135.336 sec'); 

root.ExecuteCommand('Astrogator */Satellite/KV1 SetMCSControlValue 

MainSequence.SegmentList.Target_Sequence.Profiles.Differential_Corrector Propagate 

StoppingConditions.Duration.TripValue Active true'); 

 

% Configure constraints 

root.ExecuteCommand('Astrogator */Satellite/KV1 SetValue 

MainSequence.SegmentList.Target_Sequence.SegmentList.Propagate.Results Epoch X Y Z'); 

root.ExecuteCommand(['Astrogator */Satellite/KV1 SetMCSConstraintValue 

MainSequence.SegmentList.Target_Sequence.Profiles.Differential_Corrector Propagate X Desired 

',... 

    num2str(aim_point(2)*1e3)]); 

root.ExecuteCommand('Astrogator */Satellite/KV1 SetMCSConstraintValue 

MainSequence.SegmentList.Target_Sequence.Profiles.Differential_Corrector Propagate X Active 

true'); 

root.ExecuteCommand(['Astrogator */Satellite/KV1 SetMCSConstraintValue 

MainSequence.SegmentList.Target_Sequence.Profiles.Differential_Corrector Propagate Y Desired 

',... 

    num2str(aim_point(3)*1e3)]); 

root.ExecuteCommand('Astrogator */Satellite/KV1 SetMCSConstraintValue 

MainSequence.SegmentList.Target_Sequence.Profiles.Differential_Corrector Propagate Y Active 

true'); 

root.ExecuteCommand(['Astrogator */Satellite/KV1 SetMCSConstraintValue 

MainSequence.SegmentList.Target_Sequence.Profiles.Differential_Corrector Propagate Z Desired 

',... 

    num2str(aim_point(4)*1e3)]); 

root.ExecuteCommand('Astrogator */Satellite/KV1 SetMCSConstraintValue 

MainSequence.SegmentList.Target_Sequence.Profiles.Differential_Corrector Propagate Z Active 

true'); 

[year,month,day,hour,minu,sec,~,~] = julian2greg(T_int); 

T_intUTC = [year month day hour minu sec];      % UTC intercept time 

T_intUTC = UTC2Str(T_intUTC); 

root.ExecuteCommand(['Astrogator */Satellite/KV1 SetMCSConstraintValue 

MainSequence.SegmentList.Target_Sequence.Profiles.Differential_Corrector Propagate Epoch Desired 

',... 

    T_intUTC,' UTCG']); 

root.ExecuteCommand('Astrogator */Satellite/KV1 SetMCSConstraintValue 

MainSequence.SegmentList.Target_Sequence.Profiles.Differential_Corrector Propagate Epoch Active 

true'); 
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% Initialize corrector sequence 

root.ExecuteCommand('Astrogator */Satellite/KV1 SetValue 

MainSequence.SegmentList.Target_Sequence.Profiles.Differential_Corrector.Mode Iterate'); 

root.ExecuteCommand('Astrogator */Satellite/KV1 SetValue 

MainSequence.SegmentList.Target_Sequence.Action Run active profiles'); 

% Run MCS sequence 

root.ExecuteCommand('Astrogator */Satellite/KV1 RunMCS'); 

root.ExecuteCommand('Astrogator */Satellite/KV1 ApplyCorrections 

MainSequence.SegmentList.Target_Sequence'); 

root.ExecuteCommand('Astrogator */Satellite/KV1 ClearDWCGraphics'); 

 

root.ExecuteCommand('Animate * Reset'); 

 

% Extract position elements 

KVDP = KV1.DataProviders.Item('Cartesian 

Position').Group.Item('J2000').Exec(scenario.starttime,scenario.stoptime,1); 

T = KVDP.DataSets.GetDataSetByName('Time').GetValues; 

T = juliandate(T); 

x = cell2mat(KVDP.DataSets.GetDataSetByName('x').GetValues); 

y = cell2mat(KVDP.DataSets.GetDataSetByName('y').GetValues); 

z = cell2mat(KVDP.DataSets.GetDataSetByName('z').GetValues); 

KVDP = KV1.DataProviders.Item('Cartesian 

Velocity').Group.Item('J2000').Exec(scenario.starttime,scenario.stoptime,1); 

xdot = cell2mat(KVDP.DataSets.GetDataSetByName('x').GetValues); 

ydot = cell2mat(KVDP.DataSets.GetDataSetByName('y').GetValues); 

zdot = cell2mat(KVDP.DataSets.GetDataSetByName('z').GetValues); 

% Save Data 

KV.trajectory = [T,x,y,z,xdot,ydot,zdot]; 

Determine Intercept Acquisition Time 
This step calculates the time at which the KV acquires the target based upon the global intercept 
range variable. 

r = inf;        % initialize range to target 

in = 1;         % loop index 

while r > int_aq 

    R_KV = KV.trajectory(in,2:4); 

    R = aim_point(2:4)-R_KV; 

    r = norm(R); 

    in = in+1; 

end 

 

KV.JD_int = KV.trajectory(in,1);        % Julian Day, time at acquisition 

[year,month,day,hour,minu,sec,~,~] = julian2greg(KV.JD_int); 

KV.UTC_int = [year month day hour minu sec]; 

end 

Published with MATLAB® R2014a 
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Appendix V: TOM Correlation Algorithm Script 

function [KV,TOM_data] = TOMCorr(radar,KV,complex) 

%TOMCorr processes all the possible combinations of TOMs and selects the 

%arrangement with the most likely probability. 

%   This function cannot handle mismatches. If a plot_in (plot index) is 

%   provided, this function will plot all the possible TOMs on a subplot. 

Variable Definition 

global plotk; 

 

% Subplot Dimensions 

N = size(KV.TOM,1); 

a = ceil(N/2); 

TOM Correlation 
Correlation is based strictly on the geometric position of the objects in the focal plane. 

% % Calculate azimuth and elevation from radar TOMs 

% [~,radar_ang] = rangeangle(radar.TOM(:,2:4)');  % rad 

%     % output in form [azimuth;elevation] 

% radar_TOM = [(1:N)' deg2rad(radar_ang(1,:))' deg2rad(radar_ang(2,:))']; 

%     % rad 

 

radar_TOM = radar.TOM2; 

 

% All possible optical TOM arrangements 

optical_TOMs = cell(N,1); 

 

optical_TOM = KV.TOM; 

optical_TOMIDs = cell(N,1); 

optical_TOMID = KV.TOMID; 

TOM_actual = KV.TOM; 

 

r = zeros(N,1); 

 

for m = 1:N 

    % Save previous optical TOM 

    prev_optical = optical_TOM; 

    prev_ID = optical_TOMID; 

 

    % Modify previous radar TOM to next arrangement 

    if m > 1 

        for q = 1:N 

            in = q+1;   % index for moving TOM entries 

            if in > size(prev_optical,1) 
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                % correct for index too large 

                in = in-size(prev_optical,1); 

            end 

            optical_TOM(q,:) = prev_optical(in,:); 

            optical_TOMID{q,:} = prev_ID{in,1}; 

        end 

    end 

 

    % Save optical TOM arrangement 

    optical_TOMs{m} = optical_TOM; 

    optical_TOMIDs{m} = optical_TOMID; 

 

    % Calculate Correlation for particular optical TOM arrrangement 

    r(m) = corr2(radar_TOM(:,2:3),optical_TOMs{m}(:,2:3)); 

 

    % Plot Each Correlation 

    if ~isempty(plotk) 

        figure(plotk) 

        if m == 1 

            clf 

        end 

        subplot(a,2,m), hold on 

        h1 = plot(radar_TOM(:,2),radar_TOM(:,3),'vb'); 

        h2 = plot(optical_TOM(:,2),optical_TOM(:,3),'^r'); 

        for k = 1:size(radar_TOM,1) 

            plot([radar_TOM(k,2) optical_TOM(k,2)],[radar_TOM(k,3),... 

                optical_TOM(k,3)],'Color',[.2 k/size(radar_TOM,1) 0]); 

        end 

        title(['TOM ',num2str(m),', r = ',num2str(r(m),4)]) 

        xlabel('Azimuth (rad)') 

        ylabel('Elevation (rad)') 

        axis equal 

        %legend([h1,h2],'Location','EastOutside','Radar Targets',... 

        %'Optical Targets') 

        % Label Targets 

        space = mean(mean([radar_TOM(:,2)-optical_TOM(:,2),radar_TOM(:,3)-... 

            optical_TOM(:,3)]));  % Calculate normalized spacing 

        for p = 1:N 

            text(radar_TOM(p,2)+space,radar_TOM(p,3)+space,num2str(radar_TOM(p,1))) 

            text(optical_TOM(p,2)-space,optical_TOM(p,3)-space,num2str(p)) 

        end 

    end 

end 

% Create additional plot space if needed 

% if m > a*2 

%     a = a+1; 

% end 

% subplot(a,2,m+1), hold on 

 

if ~isempty(plotk) 

    plotk = plotk+1; 

    legend([h1 h2],'Location','Best','Radar Targets','Optical Targets') 

end 

 



60 
 
% Select TOM with best correlation 

 

% r_max is the max correlation 

% h is the index for the max correlation 

[r_max,h] = max(r); 

TOM_data = [r_max,h,0];   % Output correlation and TOM configuration 

 

% Select optical TOM of particular arrangment 

KV.TOM = optical_TOMs{h}; 

KV.TOMID = optical_TOMIDs{h}; 

 

% Re-order optical charateristic observations 

% Original data 

optical_char0 = KV.char; 

m0 = h-1;               % shift required 

 

for k = 1:N 

    m = m0; 

    if (k+m) > N 

        m = m-N; 

    end 

    % Update optical observations 

    KV.char(k,:) = optical_char0(k+m,:); 

end 

% Determine if correlation was successful 

space = max(radar_TOM(:,2))/10; 

suc = 1; 

for k = 1:N 

%     if ~strcmp(KV.TOMID{k,1},complex{k,1}.ID) 

%         suc = 0; 

%     end 

    if KV.TOM(k,1) ~= k 

        suc = 0; 

    end 

end 

% Plot TOM 

if ~isempty(plotk) 

    figure(plotk) 

    clf; hold on 

    for k = 1:N 

        plot(radar_TOM(k,2),radar_TOM(k,3),'^r') 

        plot(KV.TOM(k,2),KV.TOM(k,3),'vb') 

        text(radar_TOM(k,2)+space,radar_TOM(k,3)+space,... 

            num2str(radar_TOM(k,1))) 

        text(TOM_actual(k,2)-space,TOM_actual(k,3)-space,... 

            ['A',num2str(TOM_actual(k,1))]) 

        plot([radar_TOM(k,2) KV.TOM(k,2)],[radar_TOM(k,3) KV.TOM(k,3)],'-',... 

            'Color',[.2 k/size(radar_TOM,1) 0]); 

        xlabel('Azimuth (rad)') 

        ylabel('Elevation (rad)') 

        title(['Selected TOM Configuration, r = ',num2str(r_max,3)]) 

        plotk = plotk+1; 

    end 

end 
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TOM_data(3) = suc; 

end 

Published with MATLAB® R2014a 
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Appendix VI: Dempster-Shafer Discrimination Algorithm Coding 

The code for the Dempster-Shafer algorithm was developed by Dr. Sami Amashi, MIT-
Lincoln Laboratory, Group 31. 
function [PPs] = DempsterShaferOpen(means,sigmas,measures) 

%DempsterShaferOpen calculates the pignistic probabilities of a given 

%series of M measurements belonging to each class given a set of observations 

%and the expected distributions of those measurements for each class. It 

%utilizes an open-world assumption and does not eliminate any conflict in 

%the measurements. N is the number of objects observed 

%   Inputs: means   - expected observations, expected as a MxN row vector 

%           sigmas  - observation standard deviations as a 1xN row vector 

%           obv     - measurements expected as an Mx(N+1) matrix, where 

%                     the first row is object indices. 

% 

%   Outputs:    PPs - Pignistic Probabilities for each class. 

% 

%   The Dempster-Shafer functionality of this program was writen by Sami 

%   Amashi, MIT-Lincoln Laboratories. This function merely assembles his 

%   functions into one function. 

 

global num_class; 

 

N = size(measures,1);       % Number of objects 

M = size(means,1);          % Number of characteristics 

 

PPs = zeros(N,num_class); 

 

for k = 1:N % Loop over each detection 

    for m = 2:(M+1) % Loop over each charateristic 

        obv = measures(k,m);   % observed characteristic 

        % Compute probablity of each measurement from each distribution 

        mus = means(m-1,:);     % expected observations 

        sigma = sigmas(m-1);    % observation SD 

        [pb1,pb2,pb3] = ProbAssign3(obv,mus,sigma); 

        class_prob = [pb1;pb2;pb3]; % probability of each observation from each class 

        % Assign evidence measure 

        EM = DS_Consonant_UnNormalized(class_prob); 

        % Combine previous and current evidence measures 

        if m > 2 % skip combination for first characteristic 

            EM_prev = DS_OWCombination(EM,EM_prev); 

        else 

            EM_prev = EM; 

        end 

    end 

    % Calculate pignistic probabilities based on open world 

    PPs(k,:) = DS_PignisticProbability(EM_prev,1)'; 

end 
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end 

Published with MATLAB® R2014a 
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