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Abstract 

The Sprite network operating system uses large main-memory disk block caches to 

achieve high performance in its file system. It provides non-write-through file caching 

on both client and server machines. A simple cache consistency mechanism permits files 

to be shared by multiple clients without danger of stale data. In order to allow the file 

cache to occupy as much memory as possible, the file system of each machine negotiates 

with the virtual memory system over physical memory usage and changes the size of the 

file cache dynamically. Benchmark programs indicate that client caches allow diskless 

Sprite workstations to perform within 5 percent of workstations with disks. In addition, 

client caching reduces server loading by 50% and network traffic by 75%. 
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1. Introduction 

Caches have been used in many operating systems to improve file system perfor­

mance. Typically, caching is implemented by retaining in main memory a few of the 

most recently accessed disk blocks (e.g., UNIX [THOM78]). Repeated accesses to a 

block in the cache can be handled without involving the disk, which has two advantages. 

First, caching reduces delays:· a block in the cache can usually be returned to a waiting 

process five to ten times more quickly than one that must be fetched from disk. Second, 

caching reduces contention for the disk arm, which may be advantageous if several 

processes are attempting to access files on the same disk. Measurements of timesharing 

systems indicate that even small caches provide substantial benefits, and that the benefits 

are increasing as larger physical memories permit larger caches [LEFF84, OUST85]. 

This paper describes a simple distributed mechanism for caching files among a 

networked collection of workstations. We have implemented it as part of the Sprite 

operating system. In Sprite, file information is cached in the main memories of both 

servers (workstations with disks), and clients (workstations wishing to access files on 

non-local disks), as shown in Figure 1. On machines with disks, the caches achieve the 

same effects described above, namely to reduce disk-related delays and contention. On 

clients, the caches also reduce the communication delays that would otherwise be 

required to fetch blocks from servers. In addition, client caches reduce contention for the 

network and for the server machines. Since server CPU s appear to be the bottleneck in 

several existing network file systems [SATY85, LAZ086], client caching offers the pos­

sibility of greater system scalability as well as increased performance. 

There are two unusual aspects to the Sprite caching mechanism. The first is that 

Sprite guarantees workstations a consistent view of the data in the file system, even when 

multiple workstations access the same file simultaneously and the file is cached in several 

places at once. This is done through a simple cache consistency mechanism that flushes 

portions of caches and disables caching for files undergoing read-write sharing. The 
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Figure 1. File caches in the Sprite system. When a process makes a file access, it is 

presented first to the cache of the process's workstation ("file traffic"). If not satisfied 

there, the request is passed either to the local disk, if any ("disk traffic"), or to the 

server where the file is stored ("server traffic"). Servers also maintain caches in order 

to reduce their disk traffic. 
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result is that file access under Sprite has exactly the same semantics as if all of the 

processes on all of the workstations were executing on a single timesharing system. 

The second unusual feature of the Sprite caches is that they vary in size dynami­

cally. This was a consequence of our desire to provide very large client caches, perhaps 

occupying most of the clients' memories. Unfortunately, large caches may occasionally 

conflict with the needs of the· virtual memory system, which would like to use as much 

memory as possible to run user processes. Sprite provides a simple mechanism through 

which the virtual memory system and file system of each workstation negotiate over the 

machine's physical memory. As the relative needs of the two systems change, the file 

cache changes in size to provide the best performance to user processes. 

We used a collection of benchmark programs to measure the performance of the 

Sprite file system, both in absolute terms and relative to Sun's Network File System 

[SAND85]. On average, client caching resulted in a speedup of about 10-15% for pro­

grams running on diskless workstations, relative to diskless workstations without client 

caches. With client caching enabled, diskless workstations completed the benchmarks 

only 1-5% more slowly than workstations with disks. Client caches reduced the server 

utilization from about 5-15% per active client to only about 1-7% per active client. Since 

normal users are rarely active, our measurements suggest that a single server should be 

able to support 50-100 clients. The benchmark programs typically executed 10-40% fas­

ter under Sprite than under NFS. 

The rest of the paper is organized as follows: Section 2 gives a brief overview of 

Sprite; Section 3 describes prior work that motivated our cache design; Section 4 

presents the basic structure of the Sprite caches; Section 5 describes the consistency pro­

tocols and Section 6 discusses the mechanism for varying the cache sizes; Section 7 

presents the benchmark results; and Section 8 describes work still to be done in the areas 

of recovery and allocation. 

2. Overview of Sprite 

Sprite is a new operating system being implemented at the University of California 

at Berkeley as part of the development of SPUR, a high-performance multiprocessor 

workstation [HILL86]. A preliminary version of Sprite is currently running on Sun-2 and 

Sun-3 workstations, which have about 1-2 MIPS processing power and 4-16 Mbytes of 

main memory. The system is targeted for workstations like these and newer models 

likely to become available in the near future, such as SPURs; we expect the future 

machines to have at least five to ten times the processing power and main memory of our 

current machines, as well as small degrees of multiprocessing. We hope that Sprite will 

be suitable for networks of up to a few hundred of these workstations. Because of 

economic and environmental factors, most workstations will not have local disks; 

instead, large fast disks will be concentrated on a few server machines. 

The interface that Sprite provides to user processes is much like that provided by 

UNIX [RITC74]. The file system appears as a single shared hierarchy accessible equally 

by processes on any workstation in the network (see [WELCH86a] for information on 

how the name space is managed). The user interface to the file system is through UNIX­

like system calls such as open, close, read, and write. 

- 2-
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Although Sprite appears similar in function to UNIX, we have completely re­

implemented the kernel in order to provide better network integration. In particular, 

Sprite's implementation is based around a simple kernel-to-kernel remote-procedure-call 

(RPC) facility [WELCH86b], which allows kernels on different workstations to request 

services of each other using a protocol similar to the one described by Birrell and Nelson 

[BIRR84]. The Sprite file system uses the RPC mechanism extensively for cache 

management 

3. Background Work 

The main motivation for the Sprite cache design came from a trace-driven analysis 

of file activity in several UNIX 4.2 BSD systems (hereinafter referred to as "the BSD 

study") [OUST85]. For those systems (three timeshared V AX-lln80s running program 

development, text processing, and computer-aided design applications) the BSD study 

showed that even small file caches are effective in reducing disk traffic, and that large 

caches (4-16 megabytes) work even better, cutting disk traffic by as much as 90%. For 
the kinds of applications measured in the BSD study it appears that increases in memory 

sizes will soon make it possible to keep entire file working sets in main memory, with 

disks serving primarily as backup devices. Although the BSD study was based on time­

sharing machines rather than networks of personal workstations, we hypothesized that 
the results would apply in a network environment too, and that the overheads associated 

with remote file access could be reduced by caching on clients as well as servers (Sec­
tions 5.3 and 7 provide simulation and measurement data to support this hypothesis). 

An additional motivating factor for us was a concern about server contention. A 

study of remote file access by Lazowska et al. concluded that the server CPU is the pri­

mary bottleneck that limits system scalability [LAZ086]. Independently, the designers 

of the Andrew file system decided to redesign their system in order to offload the servers 
[SA TY85]. These experiences, plus our own informal observations of our computing 

environment, convinced us that client caching could substantially increase the scalability 

of the system. 

4. Basic Cache Design 

This section describes the basic organization of file caches in Sprite, and addresses 

three issues: 

• Where should client caches be kept: main memory or local disk? 

• How should caches be structured and addressed? 

• What policy should be used for writing blocks back to disk? 

The issues of maintaining cache consistency and varying the sizes of caches are dis­

cussed separately in the following two sections. 

4.1. Caches on D!sk or in Main 1\-femory? 

In several previous network file systems (e.g. Andrew [MORR86, SA TY85] and 

Cedar [SCHR85]), clients' file caches were kept on their local disks. For Sprite we chose 

to cache file data in main memory, for four reasons. First, main-memory caches permit 

workstations to be diskless. Second, data can be accessed more quickly from a cache in 
main memory than a cache on disk. Third, physical memories on client workstations are 
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already large enough to provide high hit ratios (e.g. a 1-Mbyte client cache provides 

greater than 80% read hits). As memories get larger, main-memory caches will grow to 

achieve even higher hit ratios. Fourth, the server caches will be in main memory regard­

less of where client caches are located: by using main-memory caches on clients too, we 

were able to build a single caching mechanism for use by both servers and clients. 

4.2. Cache Structure 

The Sprite caches are organized on a block basis using a fixed block size of 4 

kbytes. We made this choice largely for simplicity and are prepared to revise it after we 

have more experience with the system. Cache blocks are addressed virtually, using a 

unique file identifier provided by the server and a block number within the file. We used 

virtual addresses instead of physical disk addresses so that clients could create new 

blocks in their caches without first contacting a server to find out their physical locations. 

Virtual addressing also allows blocks in the cache to be located without traversing the 

file's disk map. 

For files accessed remotely, client caches hold only data blocks. Servers also cache 

file maps and other disk management information. These blocks are addressed in the 

cache using the blocks' physical disk addresses along with a special "file identifier" 

corresponding to the physical device. 

4.3. Writing Policy 

The policy used to write dirty blocks back to the server or disk has a critical effect 

on the system's performance and reliability. The simplest policy is to write data through 

to disk as soon as it is placed in any cache. The advantage of write-through is its reliabil­

ity: little information is lost when a client or server crashes. However, this policy 

requires each write access to wait until the information is written to disk, which results in 

poor write performance. Since about 1/3 of all file accesses are writes [OUST85], a 

caching scheme based on write-through cannot reduce disk/server traffic by more than 

2/3. 
An alternate write policy is to delay write-backs: all blocks are written to the cache 

and then written through to the disk or server some time later. This policy has two 

advantages over write-through. First, since writes are to the cache, write accesses com­

plete much more quickly. Second, data may be deleted before it is written back, in which 

case it need never be written at all. In the BSD study, 20 to 30 percent of new data was 

deleted within 30 seconds, and 50 percent was deleted within 5 minutes. Thus, a policy 

that delays writes several minutes can substantially reduce the traffic to the server or 

disk. Unfortunately, delayed-write schemes introduce reliability problems, since unwrit­

ten data will be lost whenever a server or client crashes. 

For Sprite, we chose a delayed-write policy similar to the one used in UNIX: every 

30 seconds, all dirty blocks that haven't been modified in the last 30 seconds are written 

back. A block written on a client will be written to the server's cache in 30-60 seconds, 

and will be written to disk in 30-60 more seconds. This policy avoids delays when writ­

ing files and permits modest reductions in disk/server traffic, while limiting the damage 

that can occur in a crash. We plan to experiment with longer write-back intervals in the 

future. 

. 4. 
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Another alternative is to write data back to the server when the file is closed. This 

approach is used in the Andrew system and NFS. Unfortunately, the BSD study found 

that 75 percent of files are open less than 0.5 seconds and 90 percent are open less than 

10 seconds. This indicates that a write-on-close policy will not significantly reduce disk 

or server traffic. In addition, the write-on-close policy requires the closing process to 

delay while the file is written through, which reduces the performance advantages of 

delayed writes. 

S. Cache Consistency 

Allowing clients to cache files introduces a consistency problem: what happens if a 

client modifies a file that is also cached by other clients? Can subsequent references to 

the file by other clients return "stale" data? Most existing network file systems provide 

only limited guarantees about consistency. For example, the NFS and Andrew systems 

guarantee that once a file is closed all data is back on the server and future opens by other 

clients will cause their caches to be updated to contain the new version. Under condi­

tions of "sequential write-sharing" (a file is shared but is never open simultaneously for 

reading and writing on different clients), each client will always see the most up-to-date 

version of the file. However, if a file in NFS or Andrew is open simultaneously on 

several clients and one of them modifies it, the other clients will not see the changes 

immediately; users are warned not to attempt this kind of sharing (which we call "con­

current write-sharing''). 

For Sprite we decided to permit both concurrent and sequential write-sharing. 

Sprite guarantees that whenever a process reads data from a file, it receives the most 

recently written data, regardless of when and where the data was last written. We did 

this in order to make the user view of the file system as clean and simple as possible, and 

to encourage use of the file system as a shared system-wide store for exchanging infor­

mation between different processes on different machines. We hope that shared files will 

be used to simplify the implementation of system services such as print spoolers and 

mailers. Of course, we still expect that concurrent write-sharing will be infrequent, so 

the consistency algorithm is optimized for the case where there is no sharing. 

The only other network file system we know of that permits concurrent write­

sharing is Locus [POPEK85]. It uses a complex mechanism based on passing tokens 

between the workstations that are accessing the file. For Sprite, we adopted a simpler 

approach that uses the servers as centralized control points for cache consistency. Each 

server guarantees cache consistency for all the files on its disks, and clients deal only 

with the server for a file: there are no direct client-client interactions. The following 

subsections deal separately with the problems of concurrent write-sharing and sequential 

write-sharing. 

The Sprite algorithm depends on the fact that the server is notified whenever one of 

its files is opened or closed, so it can detect when concurrent write-sharing is about to 

occur. This approach prohibits performance optimizations (such as name caching) that 

cause clients to open files without contacting the files' servers. The benchmark results of 

Section 7 suggest that such optimizations would only provide small additional perfor­

mance improvements. 
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5.1. Concurrent Write-Sharing 

Concurrent write-sharing occurs for a file when it is open on multiple clients and at 

least one of them has it open for writing. Sprite deals with this situation by disabling 

client caching for the file, so that all reads and writes for the file go through to the server. 

When a server detects (during an "open" operation) that concurrent write-sharing is 

about to occur for a file, it takes two actions. First, it notifies the client that has the file 

open for writing, if any, telling it to write all dirty blocks back to the server. There can 

be at most one such client. Second, the server notifies all clients that have the file open, 

telling them that the file is no longer cacheable. This causes the clients to remove all of 

the file's blocks from their caches. Once these two actions are taken, clients will send all 

future accesses for that file to the server. The server's kernel serializes the accesses to its 

cache, producing a result identical to running all the client processes on a single 

timeshared machine. 

Caching is disabled on a file-by-file basis, and only when concurrent write-sharing 

occurs. A file can be cached simultaneously by many clients as long as none of them is 

writing the file, and a writing client can cache the file as long as there are no concurrent 

readers or writers on other workstations. When a file becomes non-cacheable, only those 

clients with the file open are notified; if other clients have some of the file's data in their 

caches, they will take consistency actions the next time they open the file, as described 

below. A non-cacheable file does not become cacheable again until it has been closed on 

all clients. 

5.2. Sequential Write-Sharing 

Sequential write-sharing occurs when a file is modified by one client, closed, then 

opened by some other client. There are two potential problems associated with sequen­

tial write-sharing. First, when a client opens a file it may have out-of-date blocks in its 

cache. To solve this problem, servers keep a version number for each file, which is incre­

mented each time the file is opened for writing. Each client keeps the version numbers of 

all the files in its cache. When a file is opened, the client compares the server's version 

number for the file with its own. If they differ, the client flushes the file from its cache. 

The second potential problem with sequential write-sharing is that the current data 

for the file may be in some other client's cache (the last writer need not have flushed 

dirty blocks back to the server when it closed the file). Servers handle this situation by 

keeping track of the last writer for each file; this client is the only one that could poten­

tially have dirty blocks in its cache. When a client opens a file the server notifies the last 

writer (if there is one and if it is a different client than the opening client), and waits for it 

to write its dirty blocks through to the server. This ensures that the reading client will 

receive up-to-date information when it requests blocks from the server. 

5.3. Simulation Results 

We used the trace data from the BSD study to estimate the overheads associated 

with cache consistency, and also to estimate the overall effectiveness of client caches. 

The data were used as input to a simulator that treated each timesharing user as a 

separate client workstation in a network with a single file server. The results are shown 

in Table 1. Client caching reduced server traffic by over 70% and resulted in read hit 

ratios of more than 80%. 
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Server Traffic With Cache Consistency_ 

Client Cache Size Blocks Read Blocks Written Total Traffic Ratio 

0 Mbyte 445815 172546 618361 100% 

0.5 Mbyte 102469 96866 199335 32% 

1 Mbyte 84017 96796 180813 29% 

2 Mbytes 77445 96796 174241 28% 

4 Mbytes 75322 96796 172118 28% 

8 Mbytes 75088 96796 171884 28% 

Table 1. Oient caching simulation results, based on trace data from BSD study. Each 

user was treated as a different client, with client caching and a 30-second delayed-write 

policy. The table shows the number of read and write requests made by client caches to 

the server, for different client cache sizes. The "Traffic Ratio" column gives the total 

server traffic as a percentage of the total file traffic presented to the client caches. 

Write-sharing is infrequent: of the write traffic, 4041 blocks were written through be­

cause of concurrent write-sharing and 6887 blocks were flushed back because of sequen­

tial write-sharing. 

Server Traffic, Ignoring Cache Consistency 

Client Cache Size Blocks Read Blocks Written Total Traffic Ratio 

0 Mbyte 445815 172546 618361 100% 

0.5 Mbyte 80754 93663 174417 28% 

1 Mbyte 52377 93258 145635 24% 

2 Mbytes 41767 93258 135025 22% 

4 Mbytes 38165 93258 131423 21% 

8 Mbytes 37007 93258 130265 21% 

Table 2. Traffic without cache consistency. Similar to Table 1 except that cache con­

sistency issues were ignored completely. 

Table 2 presents similar data for a simulation where no attempt was made to 

guarantee cache consistency. A comparison of Tables 1 and 2 shows that about 25% of 

all server traffic is due to cache consistency, and that most of the cache consistency over­

head is from blocks that are flushed from client caches and must be re-loaded. Table 2 is 

not realistic, in the sense that it simulates a situation where incorrect results would have 

been produced; nonetheless, it provides an upper bound on the cache consistency over­

heads. 

6. Virtual Memory and the File System 

In addition to guaranteeing coherency between the client caches, we wanted to per­

mit each client cache to be as large as possible. For example, applications that don't 

require much virtual memory should be able to use most of the physical memory as a file 

cache. However, if the caches were fixed in size (as they are in UNIX), then large caches 

would leave little physical memory for running user programs, and it would be difficult 

to run applications with large virtual memory needs. In order to get the best overall 
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performance, Sprite allows each file cache to grow and shrink dynamically in response to 

changing demands on the machine's virtual memory system and file system. This is 

accomplished by having the two modules negotiate over physical memory usage. 

The file system module (FS) and the virtual memory module (VM) each manage a 

separate pool of physical memory pages. VM keeps its pages in approximate LRU order 

through a version of the clock· algorithm [NELS86]. FS keeps its cache blocks in perfect 

LRU order since all block accesses are through the "read" and "write" system calls. 

Each system keeps a time-of-last-access for each page or block. Whenever either module 

needs additional memory (because of a page fault or a miss in the file cache), it compares 

the age of its oldest page with the age of the oldest page from the other module. If the 

other module has the oldest page, then it is forced to give up that page; otherwise the 

module recycles its own oldest page. 

The approach just described has two potential problems: double-caching and multi­
block pages. Double-caching can occur because VM is a user of the file system: backing 

storage is implemented using ordinary files, and read-only code is demand-loaded 

directly from executable files. A naive implementation might cause pages being read 

from backing files to end up in both the file cache and the VM page pool; pages being 

eliminated from the VM page pool might simply get moved to the file cache, where they 

would have to age for another 30 seconds before being sent to the server. To avoid these 

inefficiencies, the VM system bypasses the local file cache when reading and writing 

backing files. A similar problem occurs when demand-loading code from its executable 

file. In this case, the pages may already be in the file cache (e.g. because the program 

was just recompiled). If so, the page is copied to the virtual memory page pool and the 

block in the file cache is given an "infinite" age so that it will be replaced before any­

thing else in memory. 

Although VM bypasses its local file cache when reading and writing backing files, 

the backing files will be cached on servers. This makes servers' memories into an 

extended main memory for their clients. 

The second problem with the negotiation between VM and FS occurs when virtual 

memory pages are large enough to hold several file blocks. Is the LRU time of a page in 

the file cache the age of the oldest block in the page, the age of the youngest block in the 

page, or the average age of the blocks in the page? Once it is determined which page to 

give back to virtual memory, what should be done with the other blocks in the page if 

they have been recently accessed? For our Sun-3 implementation of Sprite, which has 

8-kbyte pages but 4-kbyte file blocks, we used a simple solution: the age of a page is the 

age of the youngest block in the page, and when a page is relinquished all blocks in the 

page are removed. We are currently investigating the effect of this policy on file system 

performance. 

We also considered more centralized approaches to trading off physical memory 

between the VM page pool and the file cache. One possibility would be to access all 

information through the virtual memory system. To access a file, it would first be 

mapped into a process's virtual address space and then read and written just like virtual 

memory, as in Apollo's DOMAIN system [LEACH83]. This approach would eliminate 

the file cache entirely; the standard page replacement mechanisms would automatically 

balance physical memory usage between file and program information. We rejected this 

approach for several reasons, the most important of which is that it would have forced us 
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to use a more complicated cache consistency scheme. A mapped-file approach requires a 

file's pages to be cached in a workstation's memory before they can be accessed, so we 

would not have been able to implement cache consistency by refusing to cache shared 

files. 

Another possible approach would have been to implement a centralized physical 

memory manager, from which both VM and FS would make page requests. The central­

ized manager would compute page ages and make all replacement decisions. We 

rejected this approach because the most logical way to compute page ages is different in 

VM than in FS. The only thing the two modules have in common is the notion of page 

age and LRU replacement. These shared notions are retained in our distributed mechan­

ism, while leaving each module free to age its own pages in the most convenient way. 

Our approach also permits us to adjust the relative aging rates for VM and FS pages, if 

that should turn out to be desirable .. 

7. Benchmarks 

This section describes a series of benchmarks we ran to measure the performance of 

the Sprite file system. Our goal was to measure the benefits provided by client caches in 

reducing delays and contention: 

• How much more quickly can file-intensive programs execute with client caches than 

without? 

• How much do client caches reduce the load placed on server CPUs? 

• How much do client caches reduce the network load? 

In addition to answering these questions for our current machines, we have tried to 

predict how the benefits of client caches are likely to change in the future, as CPU speeds 

and memory sizes increase. See Table 3 for information about the machines on which 

the benchmarks were run. 

7.1. Micro-benchmarks 

To determine the raw read and write performance of the Sprite file system, we wrote 

simple programs that read or write large volumes of data. Before running the programs, 

we rigged the system so that all the accesses would be satisfied in a particular place (e.g. 

the client's cache). Table 4 shows the I/0 speeds achieved to and from caches and disks 

in different locations. 

Type CPU Speed Memory Disk 

Sun-2/50 0.7 MIPS 4 Mbytes None 

Sun-2/120 0.7 MIPS 4 Mbvtes 70 Mbvte Microoolis 

Sun-3n5 2MIPS 8 Mbytes None 

Sun-3/180 2MIPS 16 Mbytes 400 Mbyte Fujitsu Eagle 

Table 3. Machine configurations. Each benchmark was run in either a Sun-2 

configuration (Sun-2/50 and Sun-2/120 clients, Sun-2/120 server) or a Sun-3 

configuration (Sun-3n5 clients, Sun-3/180 server). 
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Read & Write Throughput, kbytes/second 

System Local Cache Server Cache Local Disk Server Disk 

Sun-2 
Read 1048 165 135 80 

Write 725 138 100 75 

Sun-3 
Read 3300 415 224 216 

Write 1905 350 205 190 

Table 4. Maximum rates at which programs can read and write file data in various 

places, using large files accessed sequentially. 

Table 4 contains two important results. First, a client can access bytes in its own 

cache 5-8 times faster than those in the server's cache. This means that, in the best case, 

client caching could permit an application program to run as much as 5-8 times faster 

than it could without client caching. The second important result is that a client can read 

and write the server's cache almost as fast as a local disk (in our measurements the server 

cache is faster than local disk, but Sprite's disk-reading code is not very efficient; UNIX 

can access a local disk 10-20% faster than Sprite can access a server cache). In the 

future, as CPUs get much faster but disks don't, the server's cache should become much 

faster than a local disk. Even for paging traffic, this suggests that a large server cache 

may provide better performance than a local disk. 

7.2. Macro-benchmarks 

The micro-benchmarks give an upper limit on the possible benefits of client cach­

ing. To see how much of this potential speedup can be achieved in real applications, we 

ported several widely-used programs from UNIX to Sprite and measured them under 

varying conditions. Table 5 describes the benchmark programs. We were surprised at 

Program Description 
1/0 (kbytes/sec) 
Read Write 

Fs-make Use the "make" program to recompile 15 3.8 

the Sprite file system: 31 source files, 
28,000 lines of C source code. 

Csh-make Recompile csh program: 26 source 12 3.6 

files, 16,000 lines of C source code. 

Simulator Simulate set-associative cache memory 9.6 0 

using 1057-kbyte address trace. 

Sort Sort a 635-kbyte file. 9.5 9.5 

Diff Compare 2 identical 600-kbvte files. 32 0 

Nroff Format the text of this paper. 6.0 5.6 

Table 5. Macro-benchmarks. The 1/0 columns give the average rates at which file data 

were read and written by the benchmark when run on Sun-2 's with local disks; they 

measure the benchmark's 1/0 intensity. 
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how little I/0 is performed even by these file-intensive programs: the most intensive of 

them only required about 32 kbytes/second of I/0 on a Sun-2. 

7.2.1. Application Speedups 

Table 6 gives the total elapsed time to execute each of the macro-benchmarks with 

local or remote disks and with client caches enabled or disabled. Even without client 

caching, diskless machines were generally only about 10-20% slower than those with 

disks. With client caching enabled and a warm start (caches already loaded by previous 

activity), the difference between diskless machines and those with disks was almost 

unmeasurable; in the worst case, it was only about 5%. Figure 2 shows how the perfor­

mance varied with the size of the client cache. 

We expect the advantages of client caching to improve over time, for two reasons. 

First, increasing memory sizes will make larger and larger caches feasible, which will 

increase their effectiveness. Second, processor speeds are increasing faster than network 

or disk speeds; without caches, workstations will end up spending more and more of 

their time waiting for the network or disk. 

Local Disk, Diskless, Diskless, 

Benchmark with Cache Server Cache Only Client & Server Caches 

Cold Warm Cold Warm Cold Warm 

Fs-make 
24:15 24:16 30:37 30:20 25:47 25:26 

100% 100% 126% 125% 106% 105% 

Csh-make 
9:01 8:51 10:23 10:18 9:15 9:01 

102% 100% 118% 116% 105% 102% 

Simulator 
1:59 1:52 2:04 1:57 2:04 1:52 

106% 100% 111% 105% 111% 100% 

Sort 
2:13 2:08 2:28 2:22 2:18 2:09 

104% 100% 116% 111% 108% 101% 

Diff 
0:35 0:18 0:41 0:24 0:41 0:18 

184% 100% 216% 121% 216% 100% 

Nroff 
2:13 2:11 2:25 2:24 2:14 2:11 

102% 100% 111% 110% 102% 100% 

Table 6. Execution times with and without local disks and caching, measured on Sun-

2's. The top number for each run is total elapsed time, in minutes and seconds. The 

bottom number is normalized relative to the warm-start time with a local disk. "Cold" 

means that all caches, both on server and client, were empty at the beginning of the run. 

"Warm" means that the program was run once to load the caches, then timed on a 

second run. In the "Diskless, Server Cache Only" case, the client cache was disabled 

but the server cache was still enabled. In all other cases, caches were enabled on all 

machines. All caches were allowed to vary in size using the VM-FS negotiation 

scheme. 
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7 .2.2. Server Contention 
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One of the most beneficial effects of client caching is its reduction in the load 

placed on server CPUs. Figure 3 shows the server CPU utilization with and without 

client caching. In general, a diskless client without client cache utilized about 5-20% of 

the server's CPU. With client caching, the server utilization dropped by a factor of two 

or more, to 2-7%. 

We also tested the effects of contention for servers by running several versions of 

the Csh-make benchmark simultaneously on different clients. Each client used a dif­

ferent copy of the input and output files, so there was no cache consistency overhead. 

Figure 4 shows the effects of loading on the client speed and on the server's CPU, with 

and without client caches. Without client caches, there was significant performance 

degradation when more than a few clients were active at once. With client caches and 

six active clients, each ran at a speed within 10% of what it could have achieved with a 

local disk; server utilization in this. situation was only about 30%. 

The measurements of Figure 4 suggest that with client caches a single Sun-2 server 

can support the needs of at least ten Sun-2 clients simultaneously running file-intensive 

programs. However, typical 'users spend only a small fraction of their time running such 

programs. For example, the BSD study measured average 1/0 rates per user of .2-2 

kbytes/second whereas the application shown in Figure 4 had an average l/0 rate of 15 

kbytes/second. These numbers suggest that one Sun-2 Sprite file server should be able to 

support at least 50-100 Sun-2 users, if the users are similar to those measured in the BSD 
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study. The server capacity should not change much with increasing CPU speeds, as long 
as both client and server CPU speeds increase at about the same rate. In a system with 

servers that are more powerful than clients, the server capacity should be even higher 
than this. 

7.2.3. Network Contention 

In their analysis of diskless file access, Lazowska et al. concluded that network 
loading is not a major factor in today's network file systems [LAZ086]. For today's 
machines, our measurements support their conclusion: even without client caching, the 

most intensive Sun-2 benchmark only required only about 80 kbits/second of the 10000-
kbits/second of available bandwidth. 

In the future, though, we expect network traffic to become more and more of an 
issue. The same benchmarks running on diskless Sun-3's instead of Sun-2's produced a 
network load of about 250 kbits/second, or 2.5% of the total Ethernet bandwidth. It 
seems likely that machines at least five times faster than Sun-3's will be available within 
a few years (e.g., the SPUR workstations under development at Berkeley); a single one of 

these machines would utilize 10-15% of the Ethernet bandwidth running the benchmarks 
without client caching. For these machines, and the even faster ones to follow, one of the 
main advantages of client caching is that it reduces network loading by a factor of 4 or 
more (see Figure 5). Without client caches, application performance may be limited by 

network transmission delays, and the number of workstations on a single Ethernet may 
be limited by the bandwidth available on the network. 
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Figure 6. Raw read and write throughput for Sprite and NFS, measured on Sun-3's in 

the same way as Table 4. There is no way to write to the server's cache in NFS without 

also writing to disk, so those two numbers are the same. 

Sprite vs. NFS 

NFS Sprite Limited Sprite Max 

Benchmark 
Local 

Diskless 
Local 

Diskless 
Local 

Diskless 
Disk Disk Disk 

Fs-make 10:51 15:52 9:12 9:54 8:54 9:31 

Csh-make 3:52 4:58 3:25 3:35 3:17 3:28 

Simulator :40 :42 :40 :42 :40 :40 

Sort :44 :50 :43 :47 :41 :41 

Diff :04 :06 :05 :08 :05 :05 

Nroff :52 :53 :51 :51 :51 :51 

Table 8. A comparison between Sprite and NFS. All benchmarks were run on Sun-3 

configurations. The NFS numbers were measured with Sun's UNIX release 3.0, with 4k 

blocks. All numbers are elapsed times for warm starts, in minutes and seconds. Two 

Sprite cases are shown, one where the Sprite caches were restricted to be no larger than 

the NFS caches ("Sprite Limited"), and one where Sprite caches were allowed to grow 

as large as possible ("Sprite Max"). 

7.2.4. Sprite vs. NFS 

As a final measurement of the performance of Sprite's file system, we compared it 

to Sun's NFS, which has become a commercial standard. See Figures 6 and 7 and Table 

8. In almost all cases Sprite performs as well as NFS or better, and Sprite provides as 

much as 40% better performance for some benchmarks. The two systems are sufficiently 

different that it is hard to attribute the performances differences to any one thing, but two 

features of the systems appear to have a major impact on the comparison: write-through 

and read-ahead. 
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Sprite does not perform either write-through or read-ahead, while NFS does both. 

Write-through is used in NFS to simplify recovery after server crashes, but it results in 

poor write performance. The raw write bandwidth of NFS is only one-fifth of the write 

bandwidth in Sprite (see Figure 5), and this appears to account for most of the perfor­

mance differential in the Fs-make and Csh-make applications. 

The second factor is read-ahead, which NFS uses to its advantage. For example, 

Figure 6 shows that NFS can retrieve data from the server's disk just as quickly as it can 

from the server's cache; this is due to read-ahead on the server. Sprite does not currently 

do any read-ahead, which causes a noticeable performance degradation for applications 

that read large files sequentially, such as the Diff benchmark. Only when the entire file 

fits in the cache does Sprite perform as well on this benchmark as NFS. Although high 

cache hit ratios reduce the benefit of read-ahead, there still appear to be applications 

where read-ahead is beneficial; we plan to implement read-ahead in Sprite. 

8. Future Work 

There are two issues concerning client caching that we have not yet resolved in the 

Sprite implementation: crash recovery and disk overflow. The current system is fragile 

due to the amount of state kept in the main memory of each server. If a server crashes, 

then all the information in its memory is lost, including dirty blocks in its cache and 

information about open files. As a result, all client processes using files from the server 

usually have to be killed. In contrast, the servers in Sun's NFS are stateless. This results 

in less efficient operation (since all important information must be written through to 

disk), but it means that clients can recover from server crashes: the processes are put to 

sleep until the server reboots, then they continue with no ill effects. 
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Figure 7. Sprite perfonnance relative to NFS on Sun-3 configurations. This is the same 

data as in Table 8, except that Sprite's completion times are characterized as percentages 

better or worse than than the corresponding NFS time (e.g. Sprite diskless times are 

compared to NFS diskless times). 
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We are currently exploring ways to provide better crash recovery in Sprite. It 

appears from our performance measurements that server caches could be made write­

through without significant performance degradation. This would guarantee that no file 

data would be lost on server crashes. Client caches would still use a delayed-write pol­

icy, so the extra overhead of writing through the server cache would only be incurred by 

the background processes that clean client caches. In addition, clients should be able to 

provide servers with enough information to re-open files after a server crash. We hope 

that these two features will enable clients to continue transparently after server crashes. 

The second unresolved issue has to do with "disk-full" conditions. In the current 

implementation, a client does not notify the server when it allocates new blocks for files. 

This means that when the client eventually writes the new block to the server (as much as 

30 seconds later), there may be no disk space available for the block. In UNIX, a process 

is notified at the time of the ''write'' system call if the disk is fulL We plan to provide 

similar behavior in Sprite with a simple quota system in which each client is given a 

number of blocks from which it can allocate disk space. If the client uses up its quota, it 

requests more blocks from the server. When the amount of free disk space is too small to 

give quotas to clients, clients will have to submit explicit disk allocation requests to the 

server whenever they create new blocks. 

9. Conclusions 

Sprite's file system demonstrates the viability of large caches for providing high­

performance access to shared file data. Large caches on clients allow diskless client 

workstations to attain performance comparable to workstations with disks. This perfor­

mance is attained while utilizing only a small portion of servers' CPU cycles. The 

caches can be kept consistent using a simple algorithm because write-sharing is rare. By 

varying the cache sizes dynamically, Sprite permits the file caches to become as large as 

possible without impacting virtual memory performance. 

The high performance attainable with client caches casts doubts on the need for 

local disks on client workstations. For users considering the purchase of a local disk, our 

advice is to spend the same amount of money on additional memory instead. We believe 

that this would improve the performance of the workstation more than the addition of a 

local disk: it would not only improve file system perlormance by allowing a larger 

cache, but it would also improve virtual memory perlormance. 
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