
Caching in the Sprite
Network File System

Michael Nelson, Brent Welch and John Ousterhout

Report No. UCB/CSD 87/345

March 1987

Computer Science Division (EECS)
University of California
Berkeley, California 94720

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
MAR 1987 2. REPORT TYPE

3. DATES COVERED
 00-00-1987 to 00-00-1987

4. TITLE AND SUBTITLE
Caching in the Sprite Network File System

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The Sprite network operating system uses large main-memory disk block caches to achieve high
performance in its file system. It provides non-write-through file caching on both client and server
machines. A simple cache consistency mechanism permits files to be shared by multiple clients without
danger of stale data. In order to allow the file cache to occupy as much memory as possible, the file system
of each machine negotiates with the virtual memory system over physical memory usage and changes the
size of the file cache dynamically. Benchmark programs indicate that client caches allow diskless Sprite
workstations to perform within 5 percent of workstations with disks. In addition, client caching reduces
server loading by 50% and network traffic by 75%.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

21

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Caching in the Sprite Network File System

Michael Nelson
Brent Welch

John Ousterhout

Computer Science Division
Electrical Engineering and Computer Sciences

University of California
Berkeley, CA 94720

Abstract

The Sprite network operating system uses large main-memory disk block caches to

achieve high performance in its file system. It provides non-write-through file caching

on both client and server machines. A simple cache consistency mechanism permits files

to be shared by multiple clients without danger of stale data. In order to allow the file

cache to occupy as much memory as possible, the file system of each machine negotiates

with the virtual memory system over physical memory usage and changes the size of the

file cache dynamically. Benchmark programs indicate that client caches allow diskless

Sprite workstations to perform within 5 percent of workstations with disks. In addition,

client caching reduces server loading by 50% and network traffic by 75%.

Caching in the Sprite Network File System February 27, 1987

1. Introduction

Caches have been used in many operating systems to improve file system perfor­

mance. Typically, caching is implemented by retaining in main memory a few of the

most recently accessed disk blocks (e.g., UNIX [THOM78]). Repeated accesses to a

block in the cache can be handled without involving the disk, which has two advantages.

First, caching reduces delays:· a block in the cache can usually be returned to a waiting

process five to ten times more quickly than one that must be fetched from disk. Second,

caching reduces contention for the disk arm, which may be advantageous if several

processes are attempting to access files on the same disk. Measurements of timesharing

systems indicate that even small caches provide substantial benefits, and that the benefits

are increasing as larger physical memories permit larger caches [LEFF84, OUST85].

This paper describes a simple distributed mechanism for caching files among a

networked collection of workstations. We have implemented it as part of the Sprite

operating system. In Sprite, file information is cached in the main memories of both

servers (workstations with disks), and clients (workstations wishing to access files on

non-local disks), as shown in Figure 1. On machines with disks, the caches achieve the

same effects described above, namely to reduce disk-related delays and contention. On

clients, the caches also reduce the communication delays that would otherwise be

required to fetch blocks from servers. In addition, client caches reduce contention for the

network and for the server machines. Since server CPU s appear to be the bottleneck in

several existing network file systems [SATY85, LAZ086], client caching offers the pos­

sibility of greater system scalability as well as increased performance.

There are two unusual aspects to the Sprite caching mechanism. The first is that

Sprite guarantees workstations a consistent view of the data in the file system, even when

multiple workstations access the same file simultaneously and the file is cached in several

places at once. This is done through a simple cache consistency mechanism that flushes

portions of caches and disables caching for files undergoing read-write sharing. The

File
Traffic

Network

Server
Traffic

Disk
Traffic

Server
Disk

Disk
Traffic

Local
Disk

File
Traffic

Figure 1. File caches in the Sprite system. When a process makes a file access, it is

presented first to the cache of the process's workstation ("file traffic"). If not satisfied

there, the request is passed either to the local disk, if any ("disk traffic"), or to the

server where the file is stored ("server traffic"). Servers also maintain caches in order

to reduce their disk traffic.

. 1-

Caching in the Sprite Network File System February 27, 1987
'

result is that file access under Sprite has exactly the same semantics as if all of the

processes on all of the workstations were executing on a single timesharing system.

The second unusual feature of the Sprite caches is that they vary in size dynami­

cally. This was a consequence of our desire to provide very large client caches, perhaps

occupying most of the clients' memories. Unfortunately, large caches may occasionally

conflict with the needs of the· virtual memory system, which would like to use as much

memory as possible to run user processes. Sprite provides a simple mechanism through

which the virtual memory system and file system of each workstation negotiate over the

machine's physical memory. As the relative needs of the two systems change, the file

cache changes in size to provide the best performance to user processes.

We used a collection of benchmark programs to measure the performance of the

Sprite file system, both in absolute terms and relative to Sun's Network File System

[SAND85]. On average, client caching resulted in a speedup of about 10-15% for pro­

grams running on diskless workstations, relative to diskless workstations without client

caches. With client caching enabled, diskless workstations completed the benchmarks

only 1-5% more slowly than workstations with disks. Client caches reduced the server

utilization from about 5-15% per active client to only about 1-7% per active client. Since

normal users are rarely active, our measurements suggest that a single server should be

able to support 50-100 clients. The benchmark programs typically executed 10-40% fas­

ter under Sprite than under NFS.

The rest of the paper is organized as follows: Section 2 gives a brief overview of

Sprite; Section 3 describes prior work that motivated our cache design; Section 4

presents the basic structure of the Sprite caches; Section 5 describes the consistency pro­

tocols and Section 6 discusses the mechanism for varying the cache sizes; Section 7

presents the benchmark results; and Section 8 describes work still to be done in the areas

of recovery and allocation.

2. Overview of Sprite

Sprite is a new operating system being implemented at the University of California

at Berkeley as part of the development of SPUR, a high-performance multiprocessor

workstation [HILL86]. A preliminary version of Sprite is currently running on Sun-2 and

Sun-3 workstations, which have about 1-2 MIPS processing power and 4-16 Mbytes of

main memory. The system is targeted for workstations like these and newer models

likely to become available in the near future, such as SPURs; we expect the future

machines to have at least five to ten times the processing power and main memory of our

current machines, as well as small degrees of multiprocessing. We hope that Sprite will

be suitable for networks of up to a few hundred of these workstations. Because of

economic and environmental factors, most workstations will not have local disks;

instead, large fast disks will be concentrated on a few server machines.

The interface that Sprite provides to user processes is much like that provided by

UNIX [RITC74]. The file system appears as a single shared hierarchy accessible equally

by processes on any workstation in the network (see [WELCH86a] for information on

how the name space is managed). The user interface to the file system is through UNIX­

like system calls such as open, close, read, and write.

- 2-

Caching in the Sprite Network File System February 27, 1987

Although Sprite appears similar in function to UNIX, we have completely re­

implemented the kernel in order to provide better network integration. In particular,

Sprite's implementation is based around a simple kernel-to-kernel remote-procedure-call

(RPC) facility [WELCH86b], which allows kernels on different workstations to request

services of each other using a protocol similar to the one described by Birrell and Nelson

[BIRR84]. The Sprite file system uses the RPC mechanism extensively for cache

management

3. Background Work

The main motivation for the Sprite cache design came from a trace-driven analysis

of file activity in several UNIX 4.2 BSD systems (hereinafter referred to as "the BSD

study") [OUST85]. For those systems (three timeshared V AX-lln80s running program

development, text processing, and computer-aided design applications) the BSD study

showed that even small file caches are effective in reducing disk traffic, and that large

caches (4-16 megabytes) work even better, cutting disk traffic by as much as 90%. For
the kinds of applications measured in the BSD study it appears that increases in memory

sizes will soon make it possible to keep entire file working sets in main memory, with

disks serving primarily as backup devices. Although the BSD study was based on time­

sharing machines rather than networks of personal workstations, we hypothesized that
the results would apply in a network environment too, and that the overheads associated

with remote file access could be reduced by caching on clients as well as servers (Sec­
tions 5.3 and 7 provide simulation and measurement data to support this hypothesis).

An additional motivating factor for us was a concern about server contention. A

study of remote file access by Lazowska et al. concluded that the server CPU is the pri­

mary bottleneck that limits system scalability [LAZ086]. Independently, the designers

of the Andrew file system decided to redesign their system in order to offload the servers
[SA TY85]. These experiences, plus our own informal observations of our computing

environment, convinced us that client caching could substantially increase the scalability

of the system.

4. Basic Cache Design

This section describes the basic organization of file caches in Sprite, and addresses

three issues:

• Where should client caches be kept: main memory or local disk?

• How should caches be structured and addressed?

• What policy should be used for writing blocks back to disk?

The issues of maintaining cache consistency and varying the sizes of caches are dis­

cussed separately in the following two sections.

4.1. Caches on D!sk or in Main 1\-femory?

In several previous network file systems (e.g. Andrew [MORR86, SA TY85] and

Cedar [SCHR85]), clients' file caches were kept on their local disks. For Sprite we chose

to cache file data in main memory, for four reasons. First, main-memory caches permit

workstations to be diskless. Second, data can be accessed more quickly from a cache in
main memory than a cache on disk. Third, physical memories on client workstations are

- 3-

Caching in the Sprite Network File System February 27, 1987

already large enough to provide high hit ratios (e.g. a 1-Mbyte client cache provides

greater than 80% read hits). As memories get larger, main-memory caches will grow to

achieve even higher hit ratios. Fourth, the server caches will be in main memory regard­

less of where client caches are located: by using main-memory caches on clients too, we

were able to build a single caching mechanism for use by both servers and clients.

4.2. Cache Structure

The Sprite caches are organized on a block basis using a fixed block size of 4

kbytes. We made this choice largely for simplicity and are prepared to revise it after we

have more experience with the system. Cache blocks are addressed virtually, using a

unique file identifier provided by the server and a block number within the file. We used

virtual addresses instead of physical disk addresses so that clients could create new

blocks in their caches without first contacting a server to find out their physical locations.

Virtual addressing also allows blocks in the cache to be located without traversing the

file's disk map.

For files accessed remotely, client caches hold only data blocks. Servers also cache

file maps and other disk management information. These blocks are addressed in the

cache using the blocks' physical disk addresses along with a special "file identifier"

corresponding to the physical device.

4.3. Writing Policy

The policy used to write dirty blocks back to the server or disk has a critical effect

on the system's performance and reliability. The simplest policy is to write data through

to disk as soon as it is placed in any cache. The advantage of write-through is its reliabil­

ity: little information is lost when a client or server crashes. However, this policy

requires each write access to wait until the information is written to disk, which results in

poor write performance. Since about 1/3 of all file accesses are writes [OUST85], a

caching scheme based on write-through cannot reduce disk/server traffic by more than

2/3.
An alternate write policy is to delay write-backs: all blocks are written to the cache

and then written through to the disk or server some time later. This policy has two

advantages over write-through. First, since writes are to the cache, write accesses com­

plete much more quickly. Second, data may be deleted before it is written back, in which

case it need never be written at all. In the BSD study, 20 to 30 percent of new data was

deleted within 30 seconds, and 50 percent was deleted within 5 minutes. Thus, a policy

that delays writes several minutes can substantially reduce the traffic to the server or

disk. Unfortunately, delayed-write schemes introduce reliability problems, since unwrit­

ten data will be lost whenever a server or client crashes.

For Sprite, we chose a delayed-write policy similar to the one used in UNIX: every

30 seconds, all dirty blocks that haven't been modified in the last 30 seconds are written

back. A block written on a client will be written to the server's cache in 30-60 seconds,

and will be written to disk in 30-60 more seconds. This policy avoids delays when writ­

ing files and permits modest reductions in disk/server traffic, while limiting the damage

that can occur in a crash. We plan to experiment with longer write-back intervals in the

future.

. 4.

Caching in the Sprite Network File System February 27, 1987

Another alternative is to write data back to the server when the file is closed. This

approach is used in the Andrew system and NFS. Unfortunately, the BSD study found

that 75 percent of files are open less than 0.5 seconds and 90 percent are open less than

10 seconds. This indicates that a write-on-close policy will not significantly reduce disk

or server traffic. In addition, the write-on-close policy requires the closing process to

delay while the file is written through, which reduces the performance advantages of

delayed writes.

S. Cache Consistency

Allowing clients to cache files introduces a consistency problem: what happens if a

client modifies a file that is also cached by other clients? Can subsequent references to

the file by other clients return "stale" data? Most existing network file systems provide

only limited guarantees about consistency. For example, the NFS and Andrew systems

guarantee that once a file is closed all data is back on the server and future opens by other

clients will cause their caches to be updated to contain the new version. Under condi­

tions of "sequential write-sharing" (a file is shared but is never open simultaneously for

reading and writing on different clients), each client will always see the most up-to-date

version of the file. However, if a file in NFS or Andrew is open simultaneously on

several clients and one of them modifies it, the other clients will not see the changes

immediately; users are warned not to attempt this kind of sharing (which we call "con­

current write-sharing'').

For Sprite we decided to permit both concurrent and sequential write-sharing.

Sprite guarantees that whenever a process reads data from a file, it receives the most

recently written data, regardless of when and where the data was last written. We did

this in order to make the user view of the file system as clean and simple as possible, and

to encourage use of the file system as a shared system-wide store for exchanging infor­

mation between different processes on different machines. We hope that shared files will

be used to simplify the implementation of system services such as print spoolers and

mailers. Of course, we still expect that concurrent write-sharing will be infrequent, so

the consistency algorithm is optimized for the case where there is no sharing.

The only other network file system we know of that permits concurrent write­

sharing is Locus [POPEK85]. It uses a complex mechanism based on passing tokens

between the workstations that are accessing the file. For Sprite, we adopted a simpler

approach that uses the servers as centralized control points for cache consistency. Each

server guarantees cache consistency for all the files on its disks, and clients deal only

with the server for a file: there are no direct client-client interactions. The following

subsections deal separately with the problems of concurrent write-sharing and sequential

write-sharing.

The Sprite algorithm depends on the fact that the server is notified whenever one of

its files is opened or closed, so it can detect when concurrent write-sharing is about to

occur. This approach prohibits performance optimizations (such as name caching) that

cause clients to open files without contacting the files' servers. The benchmark results of

Section 7 suggest that such optimizations would only provide small additional perfor­

mance improvements.

Caching in the Sprite Network File System February 27, 1987

5.1. Concurrent Write-Sharing

Concurrent write-sharing occurs for a file when it is open on multiple clients and at

least one of them has it open for writing. Sprite deals with this situation by disabling

client caching for the file, so that all reads and writes for the file go through to the server.

When a server detects (during an "open" operation) that concurrent write-sharing is

about to occur for a file, it takes two actions. First, it notifies the client that has the file

open for writing, if any, telling it to write all dirty blocks back to the server. There can

be at most one such client. Second, the server notifies all clients that have the file open,

telling them that the file is no longer cacheable. This causes the clients to remove all of

the file's blocks from their caches. Once these two actions are taken, clients will send all

future accesses for that file to the server. The server's kernel serializes the accesses to its

cache, producing a result identical to running all the client processes on a single

timeshared machine.

Caching is disabled on a file-by-file basis, and only when concurrent write-sharing

occurs. A file can be cached simultaneously by many clients as long as none of them is

writing the file, and a writing client can cache the file as long as there are no concurrent

readers or writers on other workstations. When a file becomes non-cacheable, only those

clients with the file open are notified; if other clients have some of the file's data in their

caches, they will take consistency actions the next time they open the file, as described

below. A non-cacheable file does not become cacheable again until it has been closed on

all clients.

5.2. Sequential Write-Sharing

Sequential write-sharing occurs when a file is modified by one client, closed, then

opened by some other client. There are two potential problems associated with sequen­

tial write-sharing. First, when a client opens a file it may have out-of-date blocks in its

cache. To solve this problem, servers keep a version number for each file, which is incre­

mented each time the file is opened for writing. Each client keeps the version numbers of

all the files in its cache. When a file is opened, the client compares the server's version

number for the file with its own. If they differ, the client flushes the file from its cache.

The second potential problem with sequential write-sharing is that the current data

for the file may be in some other client's cache (the last writer need not have flushed

dirty blocks back to the server when it closed the file). Servers handle this situation by

keeping track of the last writer for each file; this client is the only one that could poten­

tially have dirty blocks in its cache. When a client opens a file the server notifies the last

writer (if there is one and if it is a different client than the opening client), and waits for it

to write its dirty blocks through to the server. This ensures that the reading client will

receive up-to-date information when it requests blocks from the server.

5.3. Simulation Results

We used the trace data from the BSD study to estimate the overheads associated

with cache consistency, and also to estimate the overall effectiveness of client caches.

The data were used as input to a simulator that treated each timesharing user as a

separate client workstation in a network with a single file server. The results are shown

in Table 1. Client caching reduced server traffic by over 70% and resulted in read hit

ratios of more than 80%.

- 6-

Caching in the Sprite Network File System February 27, 1987

Server Traffic With Cache Consistency_

Client Cache Size Blocks Read Blocks Written Total Traffic Ratio

0 Mbyte 445815 172546 618361 100%

0.5 Mbyte 102469 96866 199335 32%

1 Mbyte 84017 96796 180813 29%

2 Mbytes 77445 96796 174241 28%

4 Mbytes 75322 96796 172118 28%

8 Mbytes 75088 96796 171884 28%

Table 1. Oient caching simulation results, based on trace data from BSD study. Each

user was treated as a different client, with client caching and a 30-second delayed-write

policy. The table shows the number of read and write requests made by client caches to

the server, for different client cache sizes. The "Traffic Ratio" column gives the total

server traffic as a percentage of the total file traffic presented to the client caches.

Write-sharing is infrequent: of the write traffic, 4041 blocks were written through be­

cause of concurrent write-sharing and 6887 blocks were flushed back because of sequen­

tial write-sharing.

Server Traffic, Ignoring Cache Consistency

Client Cache Size Blocks Read Blocks Written Total Traffic Ratio

0 Mbyte 445815 172546 618361 100%

0.5 Mbyte 80754 93663 174417 28%

1 Mbyte 52377 93258 145635 24%

2 Mbytes 41767 93258 135025 22%

4 Mbytes 38165 93258 131423 21%

8 Mbytes 37007 93258 130265 21%

Table 2. Traffic without cache consistency. Similar to Table 1 except that cache con­

sistency issues were ignored completely.

Table 2 presents similar data for a simulation where no attempt was made to

guarantee cache consistency. A comparison of Tables 1 and 2 shows that about 25% of

all server traffic is due to cache consistency, and that most of the cache consistency over­

head is from blocks that are flushed from client caches and must be re-loaded. Table 2 is

not realistic, in the sense that it simulates a situation where incorrect results would have

been produced; nonetheless, it provides an upper bound on the cache consistency over­

heads.

6. Virtual Memory and the File System

In addition to guaranteeing coherency between the client caches, we wanted to per­

mit each client cache to be as large as possible. For example, applications that don't

require much virtual memory should be able to use most of the physical memory as a file

cache. However, if the caches were fixed in size (as they are in UNIX), then large caches

would leave little physical memory for running user programs, and it would be difficult

to run applications with large virtual memory needs. In order to get the best overall

- 7-

Caching in the Sprite Network File System February 27, 1987

performance, Sprite allows each file cache to grow and shrink dynamically in response to

changing demands on the machine's virtual memory system and file system. This is

accomplished by having the two modules negotiate over physical memory usage.

The file system module (FS) and the virtual memory module (VM) each manage a

separate pool of physical memory pages. VM keeps its pages in approximate LRU order

through a version of the clock· algorithm [NELS86]. FS keeps its cache blocks in perfect

LRU order since all block accesses are through the "read" and "write" system calls.

Each system keeps a time-of-last-access for each page or block. Whenever either module

needs additional memory (because of a page fault or a miss in the file cache), it compares

the age of its oldest page with the age of the oldest page from the other module. If the

other module has the oldest page, then it is forced to give up that page; otherwise the

module recycles its own oldest page.

The approach just described has two potential problems: double-caching and multi­
block pages. Double-caching can occur because VM is a user of the file system: backing

storage is implemented using ordinary files, and read-only code is demand-loaded

directly from executable files. A naive implementation might cause pages being read

from backing files to end up in both the file cache and the VM page pool; pages being

eliminated from the VM page pool might simply get moved to the file cache, where they

would have to age for another 30 seconds before being sent to the server. To avoid these

inefficiencies, the VM system bypasses the local file cache when reading and writing

backing files. A similar problem occurs when demand-loading code from its executable

file. In this case, the pages may already be in the file cache (e.g. because the program

was just recompiled). If so, the page is copied to the virtual memory page pool and the

block in the file cache is given an "infinite" age so that it will be replaced before any­

thing else in memory.

Although VM bypasses its local file cache when reading and writing backing files,

the backing files will be cached on servers. This makes servers' memories into an

extended main memory for their clients.

The second problem with the negotiation between VM and FS occurs when virtual

memory pages are large enough to hold several file blocks. Is the LRU time of a page in

the file cache the age of the oldest block in the page, the age of the youngest block in the

page, or the average age of the blocks in the page? Once it is determined which page to

give back to virtual memory, what should be done with the other blocks in the page if

they have been recently accessed? For our Sun-3 implementation of Sprite, which has

8-kbyte pages but 4-kbyte file blocks, we used a simple solution: the age of a page is the

age of the youngest block in the page, and when a page is relinquished all blocks in the

page are removed. We are currently investigating the effect of this policy on file system

performance.

We also considered more centralized approaches to trading off physical memory

between the VM page pool and the file cache. One possibility would be to access all

information through the virtual memory system. To access a file, it would first be

mapped into a process's virtual address space and then read and written just like virtual

memory, as in Apollo's DOMAIN system [LEACH83]. This approach would eliminate

the file cache entirely; the standard page replacement mechanisms would automatically

balance physical memory usage between file and program information. We rejected this

approach for several reasons, the most important of which is that it would have forced us

-8-

Caching in the Sprite Network File System February 27,1987

to use a more complicated cache consistency scheme. A mapped-file approach requires a

file's pages to be cached in a workstation's memory before they can be accessed, so we

would not have been able to implement cache consistency by refusing to cache shared

files.

Another possible approach would have been to implement a centralized physical

memory manager, from which both VM and FS would make page requests. The central­

ized manager would compute page ages and make all replacement decisions. We

rejected this approach because the most logical way to compute page ages is different in

VM than in FS. The only thing the two modules have in common is the notion of page

age and LRU replacement. These shared notions are retained in our distributed mechan­

ism, while leaving each module free to age its own pages in the most convenient way.

Our approach also permits us to adjust the relative aging rates for VM and FS pages, if

that should turn out to be desirable ..

7. Benchmarks

This section describes a series of benchmarks we ran to measure the performance of

the Sprite file system. Our goal was to measure the benefits provided by client caches in

reducing delays and contention:

• How much more quickly can file-intensive programs execute with client caches than

without?

• How much do client caches reduce the load placed on server CPUs?

• How much do client caches reduce the network load?

In addition to answering these questions for our current machines, we have tried to

predict how the benefits of client caches are likely to change in the future, as CPU speeds

and memory sizes increase. See Table 3 for information about the machines on which

the benchmarks were run.

7.1. Micro-benchmarks

To determine the raw read and write performance of the Sprite file system, we wrote

simple programs that read or write large volumes of data. Before running the programs,

we rigged the system so that all the accesses would be satisfied in a particular place (e.g.

the client's cache). Table 4 shows the I/0 speeds achieved to and from caches and disks

in different locations.

Type CPU Speed Memory Disk

Sun-2/50 0.7 MIPS 4 Mbytes None

Sun-2/120 0.7 MIPS 4 Mbvtes 70 Mbvte Microoolis

Sun-3n5 2MIPS 8 Mbytes None

Sun-3/180 2MIPS 16 Mbytes 400 Mbyte Fujitsu Eagle

Table 3. Machine configurations. Each benchmark was run in either a Sun-2

configuration (Sun-2/50 and Sun-2/120 clients, Sun-2/120 server) or a Sun-3

configuration (Sun-3n5 clients, Sun-3/180 server).

- 9-

Caching in the Sprite Network File System February 27, 1987
'

Read & Write Throughput, kbytes/second

System Local Cache Server Cache Local Disk Server Disk

Sun-2
Read 1048 165 135 80

Write 725 138 100 75

Sun-3
Read 3300 415 224 216

Write 1905 350 205 190

Table 4. Maximum rates at which programs can read and write file data in various

places, using large files accessed sequentially.

Table 4 contains two important results. First, a client can access bytes in its own

cache 5-8 times faster than those in the server's cache. This means that, in the best case,

client caching could permit an application program to run as much as 5-8 times faster

than it could without client caching. The second important result is that a client can read

and write the server's cache almost as fast as a local disk (in our measurements the server

cache is faster than local disk, but Sprite's disk-reading code is not very efficient; UNIX

can access a local disk 10-20% faster than Sprite can access a server cache). In the

future, as CPUs get much faster but disks don't, the server's cache should become much

faster than a local disk. Even for paging traffic, this suggests that a large server cache

may provide better performance than a local disk.

7.2. Macro-benchmarks

The micro-benchmarks give an upper limit on the possible benefits of client cach­

ing. To see how much of this potential speedup can be achieved in real applications, we

ported several widely-used programs from UNIX to Sprite and measured them under

varying conditions. Table 5 describes the benchmark programs. We were surprised at

Program Description
1/0 (kbytes/sec)
Read Write

Fs-make Use the "make" program to recompile 15 3.8

the Sprite file system: 31 source files,
28,000 lines of C source code.

Csh-make Recompile csh program: 26 source 12 3.6

files, 16,000 lines of C source code.

Simulator Simulate set-associative cache memory 9.6 0

using 1057-kbyte address trace.

Sort Sort a 635-kbyte file. 9.5 9.5

Diff Compare 2 identical 600-kbvte files. 32 0

Nroff Format the text of this paper. 6.0 5.6

Table 5. Macro-benchmarks. The 1/0 columns give the average rates at which file data

were read and written by the benchmark when run on Sun-2 's with local disks; they

measure the benchmark's 1/0 intensity.

- 10-

Caching in the Sprite Network File System February 27, 1987

how little I/0 is performed even by these file-intensive programs: the most intensive of

them only required about 32 kbytes/second of I/0 on a Sun-2.

7.2.1. Application Speedups

Table 6 gives the total elapsed time to execute each of the macro-benchmarks with

local or remote disks and with client caches enabled or disabled. Even without client

caching, diskless machines were generally only about 10-20% slower than those with

disks. With client caching enabled and a warm start (caches already loaded by previous

activity), the difference between diskless machines and those with disks was almost

unmeasurable; in the worst case, it was only about 5%. Figure 2 shows how the perfor­

mance varied with the size of the client cache.

We expect the advantages of client caching to improve over time, for two reasons.

First, increasing memory sizes will make larger and larger caches feasible, which will

increase their effectiveness. Second, processor speeds are increasing faster than network

or disk speeds; without caches, workstations will end up spending more and more of

their time waiting for the network or disk.

Local Disk, Diskless, Diskless,

Benchmark with Cache Server Cache Only Client & Server Caches

Cold Warm Cold Warm Cold Warm

Fs-make
24:15 24:16 30:37 30:20 25:47 25:26

100% 100% 126% 125% 106% 105%

Csh-make
9:01 8:51 10:23 10:18 9:15 9:01

102% 100% 118% 116% 105% 102%

Simulator
1:59 1:52 2:04 1:57 2:04 1:52

106% 100% 111% 105% 111% 100%

Sort
2:13 2:08 2:28 2:22 2:18 2:09

104% 100% 116% 111% 108% 101%

Diff
0:35 0:18 0:41 0:24 0:41 0:18

184% 100% 216% 121% 216% 100%

Nroff
2:13 2:11 2:25 2:24 2:14 2:11

102% 100% 111% 110% 102% 100%

Table 6. Execution times with and without local disks and caching, measured on Sun-

2's. The top number for each run is total elapsed time, in minutes and seconds. The

bottom number is normalized relative to the warm-start time with a local disk. "Cold"

means that all caches, both on server and client, were empty at the beginning of the run.

"Warm" means that the program was run once to load the caches, then timed on a

second run. In the "Diskless, Server Cache Only" case, the client cache was disabled

but the server cache was still enabled. In all other cases, caches were enabled on all

machines. All caches were allowed to vary in size using the VM-FS negotiation

scheme.

-11-

Caching in the Sprite Network File System February 27, 1987

p
c
r
c
c
n
t

s
1
0
w
d
0
w
n

30% .. _ _
' ' ' ! --+- ! Fs-makc !

I =:i~~, i
20%

···--------~-------··r--·---1

10% i--·:.:. ----------··j···------------------r------·-············.
.......... ! l

+-..... i
\ •, :
i ,
\ ""+·····---~ i _ : * -i--~

0+-~~~-.~~~~~~~--~

0 2

Maximum Oicnt Cache Size (Mbytcs)

Figure 2. Client degradation (diskless Sun-2 's with client caches, wann start) as a func­

tion of maximum client cache size. ''Degradation'' is relative to the time required to

execute the benchmark with a local disk and wann cache. For each point, the maximum

size of the client cache was limited to a particular value. We believe that the slight up­

tum when the cache size becomes unlimited is due to the overhead of negotiation

between the file system and virtual memory system.

20%

r
I

s
e
r v 15% ••••••

. .. .
I

e
r

u
~ 10% ··--.
1
i
z
• t 5% ··--. ----· • 'f;" :. •••••••••• -

~ . 0
n

Fa-make

~ II
Csh·makc Simulator

c:::J No client cache, cold

~ No client cache, wum

:

Sort Diff

c::J Client cache, cold

- Client cache, wann

Nroff

Figure 3. Client caching reduces server loading by a factor of 2-5 (measured on Sun-2's

with variable-size client caches).

7 .2.2. Server Contention

• 12.

Caching in the Sprite Network File System February 27, 1987

One of the most beneficial effects of client caching is its reduction in the load

placed on server CPUs. Figure 3 shows the server CPU utilization with and without

client caching. In general, a diskless client without client cache utilized about 5-20% of

the server's CPU. With client caching, the server utilization dropped by a factor of two

or more, to 2-7%.

We also tested the effects of contention for servers by running several versions of

the Csh-make benchmark simultaneously on different clients. Each client used a dif­

ferent copy of the input and output files, so there was no cache consistency overhead.

Figure 4 shows the effects of loading on the client speed and on the server's CPU, with

and without client caches. Without client caches, there was significant performance

degradation when more than a few clients were active at once. With client caches and

six active clients, each ran at a speed within 10% of what it could have achieved with a

local disk; server utilization in this. situation was only about 30%.

The measurements of Figure 4 suggest that with client caches a single Sun-2 server

can support the needs of at least ten Sun-2 clients simultaneously running file-intensive

programs. However, typical 'users spend only a small fraction of their time running such

programs. For example, the BSD study measured average 1/0 rates per user of .2-2

kbytes/second whereas the application shown in Figure 4 had an average l/0 rate of 15

kbytes/second. These numbers suggest that one Sun-2 Sprite file server should be able to

support at least 50-100 Sun-2 users, if the users are similar to those measured in the BSD

c
1
i
e
n
t

D
e
g
r
a
d
a
t
i
0
n

: -~~IJ=~rJ=II~:::::
l l No Clierit Cach~s l i

60%

50%
s

... -............... ___ ... __________
0 I I I o t o

I I I I I I I

I I I I 0 I 0

I I I I 0 0 I

0 I I I I I I

I I I I I o I

I I I I I I 0

I t I I I 0 0

I I I I I I I

• • • 0 • • •

• • • • 0 • •

··-···--i········i········+.Na~C4clleJ. .. f·······-j
: : : : ;t : :

i i i i A i i
40% --------i·-------J--------t-------;-~~--f--------r··------1

: : : /: : ! :

f ~ i / / i ~ i j
30% ·-······r-·····-1·······-;··-····r···-··-r·······r······-·;

e
r
v

40% e
r

u
t 30%

: : : : ; : : :

~ ~ i : , l ! ;
' ' ' ;:' ' ' '

-· --··· ·!····· --·j·······-~·-···-,·t···-···t······-·t ········!
i i i I i i i i
: : : I : : : :

l l ~ l l i l
................. ~ ~-·-·-~-+------·..;.-------+----· ·~·-------:

: : I : : : : :

! : .;' : : : i :
: ! , : : : : :

i / f ! i l ! ~
20% ········f····r··i·······-~·-·-···-+·······+·······+········i

: / : : : : : :

~ i i i i i i
l i i WiJ. Qient CachcJs i

10% --·····-+·-··-··-i--------~-----··-~---··-··+·-··· ·-··---i
: : : : :
: : : 0 :

: : 1

0+---~~---+--~--~--~~

z
a 20%
t
i
0
n

10%

: : I : : : :

: ¥ : : : :
! I! ! ; ! !

-·-·····i·····t··i··-····-~---·· 7·······+········r········:
: I : I : : ! :
i I i : With bient Cachesi
~ : l i : l

----+-- r·---r--·-r--r·r---~
0+---~~---+--~--~--~~

0 2 3 4 5 6 7 0 2 3 4 5 6 7

Nmnber of Clients Number of Clients

w 00

Figure 4. Effect of multiple diskless clients running the Csh-make benchmark simul­

taneously on different files in a Sun-2 configuration with variable-size client caches. (a)

shows additional time required by each diskless client to complete the benchmark, rela­

tive to a single client running with local disk. (b) shows server utilization .

. 13.

Caching In the Sprite Network File System February 27, 1987

study. The server capacity should not change much with increasing CPU speeds, as long
as both client and server CPU speeds increase at about the same rate. In a system with

servers that are more powerful than clients, the server capacity should be even higher
than this.

7.2.3. Network Contention

In their analysis of diskless file access, Lazowska et al. concluded that network
loading is not a major factor in today's network file systems [LAZ086]. For today's
machines, our measurements support their conclusion: even without client caching, the

most intensive Sun-2 benchmark only required only about 80 kbits/second of the 10000-
kbits/second of available bandwidth.

In the future, though, we expect network traffic to become more and more of an
issue. The same benchmarks running on diskless Sun-3's instead of Sun-2's produced a
network load of about 250 kbits/second, or 2.5% of the total Ethernet bandwidth. It
seems likely that machines at least five times faster than Sun-3's will be available within
a few years (e.g., the SPUR workstations under development at Berkeley); a single one of

these machines would utilize 10-15% of the Ethernet bandwidth running the benchmarks
without client caching. For these machines, and the even faster ones to follow, one of the
main advantages of client caching is that it reduces network loading by a factor of 4 or
more (see Figure 5). Without client caches, application performance may be limited by

network transmission delays, and the number of workstations on a single Ethernet may
be limited by the bandwidth available on the network.

K
b
y
t
e
s
I
s
e
c
0
n
d

20 --------------------:--------------- -----:·-------------------:

i - i Fs-make i : : :
-+..,. i --------+- i Csh-make i '

.... ---+-:Sort :
'' I I ! ' -----te- ; Nroff l

, ···---··--r··\:~~--··r---····-1
i ' i i

~ : ' : :
10 1"" --------------:--------------------,:-:.:.--..:.--"+"·--------:

* i l : I • : : :

\ \ 1 i i
i ... _ i i i

s t·----::__ -..-:.::i--------------------f------------------- :
i i

: ·-..... . i i ··.. --r----+---+
i ! ··-------·+--------+

0)e....,._ ------·------

0 2

Maximum Oient Cache Size (Mbytes)

FigureS. Network traffic (Kbytes per second, averaged over the life of the benchmark)

as a function of client cache size (diskless Sun-2's, warm start). Only bits of file data

were counted; bits transmitted in packet headers and control packets were not counted.

- 14-

Caching in the Sprite Network File System February 27, 1987

K
b
y
t
e
s
I
s
e
c

3500

3000 ---1------I---

2500 ---~E~:---~~---

2000

1500

1000

500

0
Read Write Read Write Read Write Read Write

Local Cache Server Cache Local Disk Server Disk

Figure 6. Raw read and write throughput for Sprite and NFS, measured on Sun-3's in

the same way as Table 4. There is no way to write to the server's cache in NFS without

also writing to disk, so those two numbers are the same.

Sprite vs. NFS

NFS Sprite Limited Sprite Max

Benchmark
Local

Diskless
Local

Diskless
Local

Diskless
Disk Disk Disk

Fs-make 10:51 15:52 9:12 9:54 8:54 9:31

Csh-make 3:52 4:58 3:25 3:35 3:17 3:28

Simulator :40 :42 :40 :42 :40 :40

Sort :44 :50 :43 :47 :41 :41

Diff :04 :06 :05 :08 :05 :05

Nroff :52 :53 :51 :51 :51 :51

Table 8. A comparison between Sprite and NFS. All benchmarks were run on Sun-3

configurations. The NFS numbers were measured with Sun's UNIX release 3.0, with 4k

blocks. All numbers are elapsed times for warm starts, in minutes and seconds. Two

Sprite cases are shown, one where the Sprite caches were restricted to be no larger than

the NFS caches ("Sprite Limited"), and one where Sprite caches were allowed to grow

as large as possible ("Sprite Max").

7.2.4. Sprite vs. NFS

As a final measurement of the performance of Sprite's file system, we compared it

to Sun's NFS, which has become a commercial standard. See Figures 6 and 7 and Table

8. In almost all cases Sprite performs as well as NFS or better, and Sprite provides as

much as 40% better performance for some benchmarks. The two systems are sufficiently

different that it is hard to attribute the performances differences to any one thing, but two

features of the systems appear to have a major impact on the comparison: write-through

and read-ahead.

- 15-

Caching in the Sprite Network File System February 27, 1987

Sprite does not perform either write-through or read-ahead, while NFS does both.

Write-through is used in NFS to simplify recovery after server crashes, but it results in

poor write performance. The raw write bandwidth of NFS is only one-fifth of the write

bandwidth in Sprite (see Figure 5), and this appears to account for most of the perfor­

mance differential in the Fs-make and Csh-make applications.

The second factor is read-ahead, which NFS uses to its advantage. For example,

Figure 6 shows that NFS can retrieve data from the server's disk just as quickly as it can

from the server's cache; this is due to read-ahead on the server. Sprite does not currently

do any read-ahead, which causes a noticeable performance degradation for applications

that read large files sequentially, such as the Diff benchmark. Only when the entire file

fits in the cache does Sprite perform as well on this benchmark as NFS. Although high

cache hit ratios reduce the benefit of read-ahead, there still appear to be applications

where read-ahead is beneficial; we plan to implement read-ahead in Sprite.

8. Future Work

There are two issues concerning client caching that we have not yet resolved in the

Sprite implementation: crash recovery and disk overflow. The current system is fragile

due to the amount of state kept in the main memory of each server. If a server crashes,

then all the information in its memory is lost, including dirty blocks in its cache and

information about open files. As a result, all client processes using files from the server

usually have to be killed. In contrast, the servers in Sun's NFS are stateless. This results

in less efficient operation (since all important information must be written through to

disk), but it means that clients can recover from server crashes: the processes are put to

sleep until the server reboots, then they continue with no ill effects.

+40%

Sprite faster

+10% ····-· -

-10% ... ----------····----- - ~: ... ----------····-·-

NFS faster

-2(}t1o ------·-·----·---------------· ----- ... ------------ ------------ ------- ---· ~. ... :~:i -------

-30% ... :·:·::: --·-·································

D I [d . I
Sprite Limited, Sprite Max, Sprite Limited, Sprite Max.,

Local Disk Local Disk Diskless Diskless

Figure 7. Sprite perfonnance relative to NFS on Sun-3 configurations. This is the same

data as in Table 8, except that Sprite's completion times are characterized as percentages

better or worse than than the corresponding NFS time (e.g. Sprite diskless times are

compared to NFS diskless times).

- 16-

Caching in the Sprite Network File System February 27,1987

We are currently exploring ways to provide better crash recovery in Sprite. It

appears from our performance measurements that server caches could be made write­

through without significant performance degradation. This would guarantee that no file

data would be lost on server crashes. Client caches would still use a delayed-write pol­

icy, so the extra overhead of writing through the server cache would only be incurred by

the background processes that clean client caches. In addition, clients should be able to

provide servers with enough information to re-open files after a server crash. We hope

that these two features will enable clients to continue transparently after server crashes.

The second unresolved issue has to do with "disk-full" conditions. In the current

implementation, a client does not notify the server when it allocates new blocks for files.

This means that when the client eventually writes the new block to the server (as much as

30 seconds later), there may be no disk space available for the block. In UNIX, a process

is notified at the time of the ''write'' system call if the disk is fulL We plan to provide

similar behavior in Sprite with a simple quota system in which each client is given a

number of blocks from which it can allocate disk space. If the client uses up its quota, it

requests more blocks from the server. When the amount of free disk space is too small to

give quotas to clients, clients will have to submit explicit disk allocation requests to the

server whenever they create new blocks.

9. Conclusions

Sprite's file system demonstrates the viability of large caches for providing high­

performance access to shared file data. Large caches on clients allow diskless client

workstations to attain performance comparable to workstations with disks. This perfor­

mance is attained while utilizing only a small portion of servers' CPU cycles. The

caches can be kept consistent using a simple algorithm because write-sharing is rare. By

varying the cache sizes dynamically, Sprite permits the file caches to become as large as

possible without impacting virtual memory performance.

The high performance attainable with client caches casts doubts on the need for

local disks on client workstations. For users considering the purchase of a local disk, our

advice is to spend the same amount of money on additional memory instead. We believe

that this would improve the performance of the workstation more than the addition of a

local disk: it would not only improve file system perlormance by allowing a larger

cache, but it would also improve virtual memory perlormance.

10. Acknowledgments

This work was supported in part by the Defense Advanced Research Projects

Agency under contract N00039-85-C-0269, in part by the National Science Foundation

under grant ECS-8351961, and in part by General Motors Corporation. Andrew Cheren­

son, Fred Douglis, Garth Gibson, Mark Hill, Randy Katz, and Dave Patterson provided

numerous helpful comments that improved the presentation of the paper.

11. References

[BIRR84]
Birrell, A.D., Nelson, B.J. "Implementing Remote Procedure Calls." ACM Tran­

sactions on Computer Systems, Vol. 2, No. 1, February 1984, pp. 39-59.

- 17-

Caching in the Sprite Network File System February 27, 1987

[HILL86]
Hill, M.D., et al. "Design Decisions in SPUR." IEEE Computer, VoL 19, No. 11,
November 1986, pp. 8-22.

[KLEI86]
Kleiman, S.R. "Vnodes: An Architecture for Multiple File System Types in Sun
UNIX." Proceedings of the USENIX 1986 Summer Conference, June 1986, pp.
238-247.

[LAZ086]
Lazowska, E.D., Zahorjan, J., Cheriton, D., and Zwaenepoel, W. "File Access Per­
formance of Diskless Workstations." ACM Transactions on Computer Systems,
Vol. 4, No.3, August 1986, pp. 238-268.

[LEACH83]
Leach, P.J., et al. "The Architecture of an Integrated Local Network." IEEE Jour­
nal on Selected Areas in Communications, Vol. SAC-1, No.5, November 1983, pp.
842-857.

[LEFF84]
Leffler, S., Karels, M., and McKusick, M.K. "Measuring and Improving the Per­
formance of 4.2BSD", Proceedings of the USENIX 1984 Summer Conference, June
1984, pp. 237-252.

[MORR86]
Morris, J.H., et al. "Andrew: A Distributed Personal Computing Environment."
Communications of the ACM, VoL 29, No.3, March 1986, pp 184-201.

[NELS86]
Nelson, M. "Virtual Memory for the Sprite Operating System." Technical Report
UCB/CSD 86/301, Computer Science Division (EECS), University of California,
Berkeley, 1986.

[OUST85]
Ousterhout, J.K. eta!. "A Trace-Driven Analysis of the 4.2 BSD UNIX File Sys­
tem." Proceedings of the lOth Symposium on Operating Systems Principles,
December 1985, pp. 15-24.

[POPEK85]
G.J., Walker, B.J, editors. "The LOCUS Distributed System Architecture." The
MIT Press, Cambridge, Mass., 1985.

[RITC74]
Ritchie, D.M., and Thompson, K. "The UNIX Time-Sharing System." Communi­
cations of the ACM, VoL 17, No.7, July 1974, pp. 365-375.

[SAND85]
Sandberg, R. et al. "Design and Implementation of the Sun Network Filesystem."
Proceedings of the USENIX 1985 Summer Conference, June 1985, pp. 119-130.

[SATY85]
Satyanarayanan, M. et al. "The ITC Distributed File System: Principles and
Design." Proceedings of the lOth Symposium on Operating Systems Principles,
December 1985, pp. 35-50.

- 18-

Caching in the Sprite Network File System February 27, 1987

[SCHR85]
Schroeder, M.D., Gifford, D.K. and Needham, R.M. ''A Caching File System for a

Programmer's Workstation." Proceedings of the lOth Symposium on Operating

Systems Principles, December 1985, pp. 25-34.

[THOM78]
Thompson, K. ''UNIX Time-Sharing System: UNIX Implementation.'' Bell System

Technical Journal, Vol. 57, No.6, July-August 1978, pp. 1931-1946.

[WELCH86a]
Welch, B., Ousterhout, J. "Prefix Tables: A Simple Mechanism for Locating Files

in a Distributed Filesystem." Proceedings of the 6th International Conference on

Distributed Computing Systems, May 1986, pp. 184-189.

[WELCH86b]
Welch, B. "The Sprite Remote Procedure Call System." Technical Report

UCB/CSD 86/302, Computer Science Division (EECS), University of California,

Berkeley, 1986.

- 19-

