1. REPORT DATE
MAR 2015

2. REPORT TYPE

3. DATES COVERED
00-00-2015 to 00-00-2015

4. TITLE AND SUBTITLE
Angular distribution of uplight at 10,000 ft over Berlin

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
US Naval Observatory Flagstaff Station, 10391 West Naval Observatory Road, Flagstaff, AZ, 86001

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Highlights of Astronomy, Volume 16 XXVIIIth IAU General Assembly, August 2012 T. Montmerle, ed.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
a. REPORT unclassified
b. ABSTRACT unclassified
c. THIS PAGE unclassified

17. LIMITATION OF ABSTRACT Same as Report (SAR)

18. NUMBER OF PAGES 2

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
Angular distribution of uplight at 10,000 ft over Berlin

Christopher C. M. Kyba1,2, Thomas Ruhtz1, Carsten Lindemann1, Jürgen Fischer1, Franz Hölker2 and Christian B. Luginbuhl3

1Institute for Space Sciences, Freie Universität Berlin, Carl-Heinrich-Becker-Weg 6-10, 12165 Berlin, Germany
email: christopher.kyba@wew.fu-berlin.de

2Leibniz Institute of Freshwater Ecology and Inland Fisheries Müggelseedamm 310, 12587, Berlin, Germany
email: hoelker@igb-berlin.de

3US Naval Observatory Flagstaff Station 10391 West Naval Observatory Road, Flagstaff, Arizona 86001-8521 USA
email: cbl@nofs.navy.mil

Abstract. The upward emission direction of artificial light from cities is unknown, and is the most important systematic uncertainty in simulations of skyglow. We present a technique for measuring the emission for zenith angles up to 70°.

Keywords. instrumentation: detectors, radiative transfer

1. Overview

The airmass from Earth’s surface to the top of atmosphere is greatest for horizontally propagating light, so the scattering probability is far higher for horizontally directed light. Understanding the angular distribution of artificial light emitted by cities is thus of crucial importance for simulating skyglow accurately. Because the distribution has not been measured, until now it has only be inferred from comparing skyglow observations to simulations (Luginbuhl et al. 2009).

By mounting two cameras on an aerial measurement platform, we performed measurements of the angular distribution of uplight at an elevation of 10,000 ft over Berlin, Germany. This system is able to measure the upwards emission from zenith to an angle of 70°, for any given azimuthal direction. Testing whether the upward emitted light is azimuthally symmetric is of interest, because it could explain the polarization of skyglow observed by Kyba et al. (2011). Azimuthally symmetric emission is generally assumed by skyglow models (e.g. Aubé & Kocifaj (2012), Falchi & Cinzano (2012)).

This technique is described more completely in “Two Camera System for Measurement of Urban Uplight Angular Distribution”, a forthcoming proceedings paper from the 2012 International Radiation Symposium.

References

