Research review

In vivo modeling of biofilm-infected wounds: A review

Akhil K. Seth, MD, Matthew R. Geringer, BS, Seok J. Hong, PhD, Kai P. Leung, PhD, Thomas A. Mustoe, MD, and Robert D. Galiano, MD

Division of Plastic Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
Microbiology Branch, US Army Dental and Trauma Research Detachment, Institute of Surgical Research, Fort Sam Houston, Texas

ARTICLE INFO

Article history:
Received 13 February 2012
Received in revised form
17 May 2012
Accepted 21 June 2012
Available online 15 July 2012

Keywords:
Biofilm
Bacteria
In vivo
Animal model
Chronic wound

ABSTRACT

Chronic wounds continue to represent a difficult and complex problem for both patients and healthcare providers. Bacterial biofilms represent a critical component of nonhealing wounds, utilizing several different mechanisms to inhibit innate inflammatory pathways and resist traditional therapeutics. Although in vitro biofilm systems have been well described and studied, understanding the intricacies of wound biofilm pathology requires appropriate in vivo models to understand the interactions between bacteria and host. In an effort to clarify the available literature, this review describes and critically evaluates all of the in vivo wound biofilm models currently published to date, including model advantages and clinical applicability. We will also address the need for continued therapeutic development and testing using these currently available in vivo models.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

The management and treatment of chronic wounds represents a significant burden on both millions of patients and on the healthcare system [1–4]. With the majority of research historically aimed at understanding lifestyle and genetically dependent contributors to wound pathogenesis, the impact of bacterial biofilms on wound healing has only recently gained interest within the scientific community [5–19]. The inherent defense and survival mechanisms of microbial biofilms, including avoidance of host inflammatory cells [20,21], resistance to antibiotics [22–24], and dynamic cell cell communication pathways [11,25] makes them a remarkably durable constituent of the nonhealing wound. Until recently, the majority of studies within this field have been performed using in vitro systems [26–29], restricting the adaptability of these findings to clinical situations. Several in vivo wound biofilm models have been published within the last few years [30–39], each bringing distinct strengths and weaknesses in their attempt to simulate human chronic wounds. In this review, we discuss the clinical relevance of in vivo models of biofilm infected wounds, as well as critically evaluate those models that have been published to date. Although a variety of models have been published examining foreign body infections as well as osteomyelitis, we focus specifically in this review on

* Corresponding author. Robert D. Galiano, MD, Division of Plastic Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, 675 N. St. Clair Street, Galter 19 250, Chicago, IL 60611. Tel.: +1 312 695 6022; fax: +1 312 695 5672.
E-mail address: rgaliano@nmh.org (R.D. Galiano).
0022 4804/$ see front matter © 2012 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jsr.2012.06.048
In vivo modeling of biofilm-infected wounds: a review

Seth A. K., Geringer M. R., Hong S. J., Leung K. P., Mustoe T. A., Galiano R. D.,

United States Army Institute of Surgical Research, JBSA Fort Sam Houston, TX

Approved for public release, distribution unlimited

Abstract

In vivo modeling of biofilm-infected wounds: a review

1. REPORT DATE
01 NOV 2012

2. REPORT TYPE
N/A

3. DATES COVERED
-

4. TITLE AND SUBTITLE
In vivo modeling of biofilm-infected wounds: a review

5a. CONTRACT NUMBER
-

5b. GRANT NUMBER
-

5c. PROGRAM ELEMENT NUMBER
-

5d. PROJECT NUMBER
-

5e. TASK NUMBER
-

5f. WORK UNIT NUMBER
-

6. AUTHOR(S)
Seth A. K., Geringer M. R., Hong S. J., Leung K. P., Mustoe T. A., Galiano R. D.,

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
United States Army Institute of Surgical Research, JBSA Fort Sam Houston, TX

8. PERFORMING ORGANIZATION REPORT NUMBER
-

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
-

10. SPONSOR/MONITOR’S ACRONYM(S)
-

11. SPONSOR/MONITOR’S REPORT NUMBER(S)
-

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
-

14. ABSTRACT
-

15. SUBJECT TERMS
-

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a REPORT</th>
<th>b ABSTRACT</th>
<th>c THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>unclassified</td>
<td>unclassified</td>
<td>unclassified</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT
UU

18. NUMBER OF PAGES
9

19a. NAME OF RESPONSIBLE PERSON
-

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
samples that have a direct clinical relevance to an open cutaneous wound.

2. Significance of biofilm in wounds

Chronic wounds are a significant and growing problem in healthcare today. Healthcare costs associated with chronic wound management and treatment in the United States were estimated to be upwards of $20 billion $25 billion annually in 2008 [1–4,40–49]. However, these costs do not include the impact on patient lifestyle, financial security, and overall well-being, which in aggregate represent an immeasurable burden [50–53]. The management of chronic wounds has long relied on the basic principles of debridement, lavage, wound tailored dressings, and antimicrobial therapy when necessary as a systematic means to increase the potential for healing either naturally or through surgical intervention [54–60]. A tremendous investment in research funding and a broader interest on the part of clinicians and scientists has led to significant progress in wound science, but the incidence of chronic wounds and associated complications, such as amputations, continues to grow at an epidemic rate. This is in part due to the growing rate of other chronic diseases that can impact healing within this vulnerable population, most notably obesity, diabetes mellitus, and peripheral vascular disease [61–67], but it is likely due to an incomplete understanding of the contributing factors that result in a chronic wound.

Bacterial biofilms are a key factor whose importance to wound chronicity and persistence has only recently become widely appreciated [5–19]. A bacterial biofilm can be defined as a complex community of aggregated bacteria embedded within a self-secreted matrix of extracellular polymeric substance, or EPS [5,11,13,22] (Fig. 1). This phenotype, thought to be the preferred state of bacteria in their native habitats, is distinct from the free-floating, so-called “planktonic” bacteria that have been extensively studied and manipulated by microbiologists in laboratory settings for over a century [68]. Biofilms are harbored on surfaces throughout the body such as dental enamel, nasal epithelium, urinary tract mucosa, and endocardium, forming relationships that are either purely commensal (e.g., gastrointestinal mucosa) or pathogenic when established ectopically in tissue that has not developed the immunologic defenses to clear or coexist with the bacterial biofilm (e.g., lung mucosa in association with cystic fibrosis) [10,11,22,69–71]. In addition, infections in foreign materials such as implantable orthopedic and cosmetic prosthetics or intravenous catheters are now thought to be secondary to surface biofilms that form on the implant at the time of insertion or later as a result of hematologic seeding [22,69,72–75]. Human skin represents the largest barrier to outside environmental pathogens in the body, however, its protective mechanisms become compromised on creation of a wound, allowing for exposure to a variety of bacterial flora. The moist, nutritionally supportive microenvironment of the wound bed matrix becomes an ideal setting for formation of bacterial biofilm, creating a destructive and sustainable interaction that impairs host wound healing [13,76]. In most wounds, the inflammatory phase of healing promptly removes devitalized tissue debris and bacteria, thereby enabling the progression into the synthetic and remodeling phases of healing, but in the impaired host (e.g., vascular insufficiency, microvascular disease, diabetes, ischemia reperfusion injury), the uncleared, excessive bacterial burden triggers an elevated, but ineffective, inflammatory response [13,77]. This prolonged, chronic inflammatory state further contributes to the inhibition of wound healing pathways [13].

Understanding the structure and physiology of bacterial biofilms is crucial when discussing its inhibitory effects on wound healing (Fig. 2). The presence of bacterial biofilms in chronic wounds has been confirmed by both imaging and other sophisticated molecular sampling techniques [11,14]. The emergence of molecular techniques over traditional culture-dependent methods, which rely on a swab or tissue biopsy, has led to a number of significant findings [15,78,79]. It is now appreciated that the amount of bacteria within a chronic wound is often underestimated when analyzed with traditional microbial assays, particularly in wounds with slow or fastidious growing bacteria [14,80–83]. Furthermore, the majority of chronic wound biofilms have been shown to consist of a mixed population of multiple bacterial species [11,13,18]. Predominant bacteria isolated include various anaerobes, Serratia, Staphylococcus, and Pseudomonas, with one study demonstrating an average of 5.4 species of bacteria in each chronic human wound [84]. In addition to their polybacterial nature, all biofilms (including those in wounds) are inherently robust and resistant to host defense mechanisms. The EPS generated by biofilm state bacteria creates a physical barrier that reduces the efficacy of phagocytosis by inflammatory cells such as neutrophils and macrophages, while also inhibiting activation of the

Fig. 1 – Morphology of bacterial biofilm on scanning electron microscopy. Images demonstrate consistency of biofilms formed by Staphylococcus aureus (A) and Pseudomonas aeruginosa (B) in wounds of the rabbit ear. Note the presence of cocci (A) and rod-shaped (B) bacterial cells within a matrix of extracellular polymeric substance, or EPS. (Magnification: x2000)
complement cascade [20,21,85]. As stated earlier, this ineffec-
tiveness can result in chronic release of proinflamma-
tory cytokines that can damage nearby tissue [22]. An innate resis-
tance to antimicrobials, potentially up to 1000 times more than
their planktonic counterparts, is also characteristic of bacterial
biofilm [86]. This has been explained by the inability of antibi-
otics to penetrate the EPS, and their potential inactivation by
alterations within the biofilm microenvironment [22–24].
Furthermore, biofilm bacteria demonstrate a decreased growth
rate, leaving them in a sessile state that is less susceptible to
most antibiotics, which are typically designed to target rapidly
dividing, planktonic bacteria [5,69]. There is also evidence that
cell to cell signaling between bacteria within a biofilm, so
called quorum sensing, is integral to biofilm development and
maintenance [11,25], while alterations in bacterial gene
expression and transfer of genetic material between bacteria
may enhance inherent survival mechanisms [86]. Finally, the
shedding of planktonic bacteria as well as the maintenance of
a phenotypically different “persister” cell population are
mechanisms for biofilm sustainability and durability within
a hostile environment [11,12].

3. Importance of in vivo modeling

Although a rapidly growing field of study, there remains an
immense gap in basic knowledge about many aspects of biofilm
behavior and formation, particularly in the in vivo setting. Given
the need for new therapeutic approaches in the management of
chronic wounds, the importance of understanding the intrica-
cies of biofilm infected wounds cannot be overstated. Research
aimed at elucidating the properties of bacterial biofilm and its
interactions with the host inflammatory cascade is critical to
improving this knowledge base. In particular, the interplay
between bacteria and host, represented locally by the wound
bed itself, is responsible for some of the defining characteristics
of chronic wounds [87,88], and this interplay is not evaluable
with in vitro models and assays [26–29]. Although such experi-
ments have provided essential knowledge regarding biofilm
resistance and survival mechanisms, such as the inhibitory
effect of biofilm against cultured human keratinocytes [89],
the complexity of the interaction between bacterial biofilms and
human wound healing pathways is difficult to extrapolate from
in vitro biofilm studies.

The lack of adequate in vivo models has made it difficult to
faithfully model wound biofilms. Human studies are logisti-
cally and ethically prohibitive, leaving animal models as the
sole practical alternative for systematic investigation and
modulation of clinically relevant biofilms. The use of an
animal model allows for multiple iterations of experimenta-
tion and analysis that cannot be afforded with human
research, while allowing for a closer semblance of the biofilm
host interaction that is lacking with in vitro models. Addition-
ally, the translational nature of in vivo modeling provides
a more immediate understanding of parallel pathways and
mechanisms in human biofilm infected chronic wounds, thus,
potentially driving further clinical research. Therefore, an
effective in vivo model should not only contribute to our
scientific and conceptual understanding of biofilm in, but
should also provide a foundation and methodology for
systematically examining biofilm infected wounds in
a precise and quantitative manner.

4. Published in vivo models

We believe that an appropriate, consistent, and translatable
in vivo model of wound biofilm should possess several
different, but important, characteristics upon which the
strength of a model can be determined (Table 1). A growing

Fig. 2 – Schematic diagram of different characteristics of bacterial biofilm, including mechanisms of virulence, defense, and
 persistence.
Table 1 – Characteristics necessary for appropriate modeling of in vivo wound biofilm.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Reproducible and validated (e.g., scanning electron microscopy) presence of wound biofilm</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Development of biofilm in vivo within wounds, similar to human wounds</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Consistency in findings, and ease-of-use, across multiple users</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Uninfected (control) wound healing with translatability to the healing seen in normal human wounds</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Flexibility to substitute in different bacterial species</td>
<td>Unclear (only used S. aureus)</td>
<td>Clear</td>
<td>Yes</td>
<td>Unclear (only used P. aeruginosa)</td>
<td>Yes</td>
<td>Unclear (only used P. aeruginosa)</td>
<td>Yes</td>
<td>Unclear (only used P. aeruginosa)</td>
<td>Yes</td>
</tr>
<tr>
<td>Ability to perform data analysis with multiple quantitative and qualitative endpoints, and at several time-points</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Ability to introduce and evaluate potential therapeutic agents</td>
<td>Unclear (not previously done)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

In 2003, Rashid et al. [34] examined the role of the Pseudomonas aeruginosa type III secretion system in biofilm formation. They showed that the presence of a functional type III secretion system is crucial for biofilm development. However, the role of this system in the formation of in vivo biofilms remains unclear. In a separate study, Akiyama et al. [35] demonstrated that the formation of in vivo biofilms is dependent on the presence of specific bacterial strains. They used a transgenic mouse model to show that the expression of certain bacterial genes is essential for biofilm formation. However, the role of these genes in the formation of human wound biofilms remains unclear.

In 2005, Apidianakis et al. [36] investigated the role of matrix metalloproteinases in the invasion of human skin by S. aureus. They showed that matrix metalloproteinase production by S. aureus is essential for the invasion of human skin. However, the role of matrix metalloproteinases in the formation of in vivo biofilms remains unclear.

In 2010, Davis et al. [37] studied the role of bacterial genes in the formation of in vivo biofilms. They showed that the expression of certain bacterial genes is essential for biofilm formation. However, the role of these genes in the formation of human wound biofilms remains unclear.

In 2013, Nakagami et al. [38] investigated the role of bacterial genes in the formation of in vivo biofilms. They showed that the expression of certain bacterial genes is essential for biofilm formation. However, the role of these genes in the formation of human wound biofilms remains unclear.

In 2015, Simonetti et al. [39] studied the role of bacterial genes in the formation of in vivo biofilms. They showed that the expression of certain bacterial genes is essential for biofilm formation. However, the role of these genes in the formation of human wound biofilms remains unclear.

In 2016, Schierle et al. [40] investigated the role of bacterial genes in the formation of in vivo biofilms. They showed that the expression of certain bacterial genes is essential for biofilm formation. However, the role of these genes in the formation of human wound biofilms remains unclear.

In 2017, Zhao et al. [41] studied the role of bacterial genes in the formation of in vivo biofilms. They showed that the expression of certain bacterial genes is essential for biofilm formation. However, the role of these genes in the formation of human wound biofilms remains unclear.

In 2018, Gurjala et al. [42] investigated the role of bacterial genes in the formation of in vivo biofilms. They showed that the expression of certain bacterial genes is essential for biofilm formation. However, the role of these genes in the formation of human wound biofilms remains unclear.
to a greater amount of local and systemic bacterial spread, resulting in higher rates of lethality. However, the majority of the key findings, including identifying the presence of biofilm visually, were performed in vitro. Furthermore, similar to Akiyama et al. [31,32] no assessment of wound healing or host inflammatory mechanisms was performed despite the demonstration of wild type virulence in vivo.

In a departure from murine models, a partial thickness, cutaneous porcine wound model was developed by Davis et al. [34] to study the development of S. aureus biofilm, including following a topical antimicrobial challenge. Wounds were inoculated with a 10^7 CFU/mL concentration of bacteria by scraping off suspended bacteria from a culture media plate onto each wound, with multiple endpoints including scanning electron, light, and epifluorescence microscopy, as well as bacterial count measurements. To form biofilm, wounds were allowed to proliferate for 48 h following inoculation and Tegaderm (3M Health Care, St. Paul, MN) occlusion to closely model the seeding of bacteria in wounds that occurs clinically. Through different microscopic modalities, they histologically identified biofilm within wounds at 48 h, with differential effects of topical antimicrobial treatments against planktonic versus biofilm wounds over time. These results were the first in vivo evidence of a phenotypic difference between planktonic and biofilm bacteria. However, the use of partial thickness wounds limits a direct correlation to many human chronic wounds, which typically demonstrate full thickness dermal loss as part of their healing impairment. Furthermore, all major endpoints were evaluated relatively early (48 h) after inoculation and, again, the authors did not assess the effects of the bacteria on the healing of the partial thickness wounds.

To simulate a more chronic wound setting, Nakagami et al. [35] have published the use of a pressure induced ischemic wound model in rats to evaluate quorum sensing mechanisms of P. aeruginosa. Following inoculation with approximately 10^7 CFU/mL, a known P. aeruginosa autoinducer that functions to regulate many of the bacteria’s virulence factors, was quantified along with wound viable bacterial counts. Histologic analysis showed qualitatively higher levels of tissue destruction and polymorphonuclear leukocytes infiltration in infected wounds, with increasing amounts of the bacterial autoinducer and viable bacterial counts over time. The authors advocated that quantification of such autoinducers may be a useful tool for clinical chronic wound diagnosis. However, similar to previously discussed models, there was no assessment of the wound healing impairment or host inflammatory response that occurs following release of the autoinducer. In addition, visual evidence of biofilm morphology within the ischemic wounds was not presented, which would have helped further validate their model and results.

Simonetti et al. [36] also addressed quorum sensing pathways using a standard murine wound model, inoculating 5 × 10^7 CFU/mL of methicillin resistant S. aureus into wounds. Wounds were treated with different combinations of an adhesive dressing, with or without RNAIII inhibiting peptide (RIP), a quorum sensing inhibitor, and/or the antibiotic teicoplanin. Quantitative measurement of histological wound healing parameters, wound bacterial burden, and vascular endothelial growth factor expression were performed, demonstrating that RIP combined with teicoplanin was found to show the greatest improvements in all measured endpoints as compared to control. However, like many murine, wound healing models, histological wound measurements may be of unclear significance given the wound contracture associated with murine healing.

In an effort to better recapitulate human wound healing, work from our laboratory (Schierle et al. [37]) utilized an established splinted mouse model to minimize contracture. The importance of minimizing contracture in rodent models of healing is worth emphasizing, as this variable is ignored by most rodent wound healing studies. By minimizing contracture, wounds are allowed to heal by new tissue ingrowth, more akin to human wounds, as opposed to myofibroblast mediated contraction of the loose rodent skin. Treatment of S. aureus and Staphylococcus epidermidis wounds with RIP showed a return of wound healing kinetics to that of control wounds, along with a significant decrease in wound bacterial load. In addition, the use of a biofilm deficient S. aureus strain also demonstrated improved rates of wound healing over wild type wounds. In contrast, oxacillin treatment of wild type wounds was unable to restore a healing phenotype, presumably due to its inability to eradicat biofilm. These results suggested that the biofilm state of S. aureus had a direct effect on delaying cutaneous wound healing in vivo, and confirmed that therapeutics targeting the biofilm or quorum sensing pathways of skin pathogens may have a clinical role in improving wound healing. It should be noted, however, that no direct visualization of bacterial biofilm and its extracellular matrix were performed, instead relying on Gram stains and quantitative cultures to verify the presence of bacteria presumed to be in a biofilm state in the wounds.

Incorporating another pillar of chronic wound pathogenesis, a diabetic murine model with wound biofilm has been described by Zhao et al. [38]. Using full thickness circular punch wounds in diabetic strain (db/db) mice, P. aeruginosa biofilms incubated on agar plates for 72 h were directly transferred onto wounds 48 h post wounding, followed by dressing occlusion for 2 wk. Dressings were then removed and wounds allowed to scab, with basic evaluation of gross and histological healing, measurement of bacterial counts within the scabs and wound beds, transmission electron microscopy of wound scabs to determine morphology and the presence of immune cells. Compared with control wounds, biofilm wounds demonstrated significantly delayed wound healing, as well as inflammatory cell infiltration and tissue changes. Furthermore, when wounds were allowed to scab, the majority of bacteria was found to reside within the scabs of biofilm wounds, with associated neutrophils as seen on transmission electron microscopy. They reported reproducibility and consistency in their results, and thus advocated their model as another in vivo approach to study biofilm related delays in chronic wound healing. However, inoculation was performed using the transfer of in vitro biofilms on artificial filters. Although this technique is potentially effective, it is not a physiologic representation of how biofilm develops naturally develops within human wounds. In addition, with no evidence of biofilm within the wounds but rather in scabs, it is unclear the applicability of this model to
understanding the direct effects of biofilm on wound healing, particularly of human chronic wounds, the vast majority of which either do not form scabs are not permitted to scab by clinicians.

Most recently, our lab has developed a biofilm adaptation of the rabbit dermal ulcer model [39], an Food and Drug Administration recognized model of wound healing that has been utilized by our lab and others for 20 years [91–99], which we believe embraces a number of the characteristics necessary for the appropriate modeling of wound biofilm in vivo (Table 1). In this model, full thickness, circular punch wounds are made in the ears of New Zealand White rabbits down to cartilage, with multiple identical wounds made in one animal with contralateral, internal controls. Inoculation of wounds is done using culture medium grown bacteria with a measured inoculant concentration of approximately 10^6 bacteria. However, in a significant departure from other published animal models, following in vivo proliferation of the inoculated bacteria, wounds are treated with topical antibiotic. This reduces the presence of active, planktonic phase bacteria, but also by definition leaves behind biofilm phase bacteria, more resistant to antimicrobial challenge due to a protective EPS. This is followed by a combination of an occlusive dressing (Tegaderm) with an underlying antimicrobial (polyhexa methylene biguanide) absorbent gauze pad (AMD Telfa; Tyco Healthcare, Mansfield, MA). This form of wound coverage maintains the predominance of biofilm phase bacteria in two ways. First, the antimicrobial impregnation of the gauze helps limit proliferation of planktonic bacteria. Second, the use of absorbive gauze helps to minimize the formation of seromas from bacterial purulent exudates. Frequent dressing changes are performed at set time points prior to harvest. Beyond quantitative histologic analysis, the model allows for the analysis of several different endpoints after harvest, including the host inflammatory response to biofilm, quantification of wound bacterial burden, and visualization of biofilm morphology and host defense cells through fluorescent and electron microscopy.

By validating the consistent development of a distinct biofilm phenotype within wounds, and demonstrating subsequent effects on wound healing and host inflammatory response, our rabbit model [39] provides several advantages. During wound creation, the removal of demis, in contrast to partial thickness wounds, more closely models the dermal loss seen in human chronic wounds. Additionally, the majority of human wounds heal through epithelialization and granulation, in contrast to the contracture based healing seen in mice [37]. The underlying cartilage of the rabbit ear serves as a natural splint, preventing healing by contracture, and thus allowing for accurate quantification of epithelial and granulation tissue formation from the periphery of the wound. The creation of multiple wounds, with contralateral internal controls, creates a standardized and high throughput wound model, which avoids cross contamination between wounds by ensuring that each wound within one ear undergoes the same bacterial inoculation and/or treatments. The presence of multiple wounds also does not increase its systemic impact on the host, given their relatively small size and only a localized inflammatory response following bacterial inoculation [39]. Furthermore, using an absorptive dressing in contrast to the occlusive dressing utilized in other models, prevents the creation of a seroma within the dead space beneath the dressing, which can act as an ideal culture medium for planktonic phase bacteria proliferation. In this setting a mixed planktonic biofilm infection can become a predominantly planktonic, purulent infection, more similar to a superficial abscess than the wound surface biofilms seen in chronic wounds.

The flexibility of the rabbit ear biofilm model also provides a distinct advantage over previously published in vivo systems. The rabbit ear allows for the introduction of other classic pathologies associated with chronic wounds, such as ischemia [91]. By modulating blood supply to the ears prior to wounding, a host related variable is introduced into the interaction between wound bed and bacteria, which is difficult to appropriately simulate in vitro or with other published in vivo models. Frequent dressing changes prior to wound harvest, modeling the common clinical management of chronic wounds, allow simultaneous introduction of therapeutic agents or regimens. For example, this model has been used to understand the efficacy of different classical treatments, such as lavage, silver sulfadiazene, and debridement, on established P aeruginosa biofilm wounds [100]. As novel treatments targeting different aspects of biofilm virulence and maintenance are developed, the rabbit ear model provides an established in vivo platform for testing these treatments that is directly translatable to the human patient. There are however some drawbacks to the rabbit model. For example, the rabbit lacks the ready availability of genetic knockouts and sophisticated tools for molecular analysis that are common in rodents. Furthermore, the benefit of high throughput animals must be weighed against the increased costs associated with purchasing, husbandry, and US Department of Agriculture records maintenance when compared to rodents.

5. Future directions and conclusions

Developing an in depth understanding of wound biofilms and potential therapeutics (Table 2), requires an in vivo model that can be utilized to understand the complex interactions that occur between bacteria and host. With the field of biofilm research continuing to grow, several animal models that address different aspects of wound biofilms have been developed, each with distinct advantages and disadvantages. As these models continue to be used and validated, researchers will be able to recognize the utility of one model over another based on the questions they hope to answer.

<table>
<thead>
<tr>
<th>Table 2 — Tested, or potential, biofilm therapeutics.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traditional wound care (sharp debridement, lavage, antibiotics)</td>
</tr>
<tr>
<td>Antimicrobial or silver impregnated dressings</td>
</tr>
<tr>
<td>D amino acids</td>
</tr>
<tr>
<td>Bacteriophages</td>
</tr>
<tr>
<td>Energy based (e.g., ultrasound) wound care devices</td>
</tr>
<tr>
<td>Virulence factor inhibitors (e.g., quorum sensing inhibition by RNAI inhibiting peptide in S aureus)</td>
</tr>
<tr>
<td>Anti biofilm agents (e.g., lactoferrin aimed at decreasing surface attachment)</td>
</tr>
</tbody>
</table>
With a goal of clinically translatable results, further model development and improvement must continue to achieve a faithful representation of the biofilms seen in human chronic wounds. This may include modifications such as the introduction of polybacterial species within a single biofilm or the concurrent presence of systemic pathologies such as diabetes or venous insufficiency. In addition, mechanistic studies using bacterial mutants and/or targeted therapeutic agents in these models will improve our understanding of the in vivo pathways that dictate the resistance and defense mechanisms of biofilm phase bacteria. As the sophistication of in vivo biofilm modeling continues to grow, so will its practical impact on understanding and treating human chronic wounds, particularly when testing new hypotheses that will better help us elucidate the organization and persistence of biofilm communities in the susceptible human wound.

It is notable that most chronic wounds are not malignant and can persist in a state of coexistence with the patient for years. We hypothesize that the complex interactions between the multi species biofilm phenotype and the cutaneous wound likely involves a type of mutualism, whereby the bacteria employ a variety of decoy and signal manipulations to impede epithelialization, thereby prolonging the persistence of the wound “niche” in which they flourish and exist. Biofilms are also known to exhibit decreased levels of bacterial proliferation while triggering only a low grade inflammatory response from their host, further contributing to their main tenance within a wound [13]. Having likely evolved as a means to prevent their eradication from the wound habitat, it will be difficult to restore biofilm infected wounds to a healing phenotype without additional interventions. Through in vivo biofilm modeling, we aim to validate this hypothesis while testing those potential interventions that may have a significant impact on the future of chronic wound care.

REFERENCES

