Air Force Space Command

SPACE AND MISSILE SYSTEMS CENTER
STANDARD

PARTS, MATERIALS, AND
PROCESSES CONTROL PROGRAM
FOR LAUNCH VEHICLES

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED

USAF Space and Missile Systems Center

Approved for public release, distribution unlimited

Security Classification: Unclassified

Limitation of Abstract: UU

Number of Pages: 207
FOREWORD

1. This standard defines the Government's requirements and expectations for contractor performance in defense system acquisitions and technology developments.

2. This revised SMC standard comprises the text of The Aerospace Corporation report number TOR-1998(1412)-1 Rev B, dated July 1, 2011, entitled Parts, Materials, and Processes Control Program for Launch Vehicles and contains the following major changes:

 • Updates compliance documents for subject programs, i.e., Military specifications designated as MIL-PRF, and/or Industry Specs and Standards that supersede inactive or canceled military specifications
 • Plans and procedures for qualification of PMP, qualification updating, and to include New Technology insertion.
 • Appendix B – Microcircuit, Hybrid and Semiconductor Upscreening and Custom Process Requirements
 - Changes made to Tables B-2a, B-2b, B-3b, B-5b, B-5c, B-6b, B-6c to reflect the current specification and test requirements
 • Appendix C – Printed Wiring Boards, Manufacturing and Screening Requirements
 - Section 3 Design and Construction
 ▪ Moved referenced specifications and standards to Section 2.0 Applicable Documents
 • Appendix E – ELV Quality Baseline Wire Construction
 - Section 1 Unlimited Use Construction
 ▪ Replaced MIL-W-81381/7-14, 17, 19 with MIL-DTL-81381/7-14, 17,19
 - Section 2 Limited Use Construction
 ▪ Replaced MIL-W-22759/28-31 with SAE-AS22759/28-31

3. Beneficial comments (recommendations, changes, additions, deletions, etc.) and any pertinent data that may be of use in improving this standard should be forwarded to the following addressee using the Standardization Document Improvement Proposal appearing at the end of this document or by letter:

 Division Chief, SMC/ENE
 SPACE AND MISSILE SYSTEMS CENTER
 Air Force Space Command
 483 N. Aviation Blvd.
 El Segundo, CA 90245

4. This standard has been approved for use on all Space and Missile Systems Center/Air Force Program Executive Office - Space development, acquisition, and sustainment contracts.

THOMAS A. FITZGERALD, SES, DAF
Director, Engineering
Contents

1. SCOPE.. 1
 1.1 Purpose .. 1
 1.2 Application ... 1

2. APPLICABLE DOCUMENTS ... 3
 2.1 Compliance Documents .. 3
 2.1.1 Military Specifications .. 3
 2.1.2 Military Standards ... 6
 2.1.3 Military Handbooks ... 6
 2.1.4 NASA Publications .. 6
 2.1.5 Industry Specifications ... 7
 2.2 Guidance Documents ... 7
 2.2.1 Military Specifications .. 7
 2.2.2 Military Standards ... 8
 2.2.3 Military Handbooks ... 8
 2.2.4 Industry Specifications ... 9
 2.3 Order of Precedence .. 10

3. DEFINITIONS AND ACRONYMS ... 11
 3.1 Definitions .. 11
 3.1.1 Catastrophic Electronic Part Failures .. 11
 3.1.2 Categories of Contractor ... 11
 3.1.3 Categories of Electronic Components ... 11
 3.1.4 Component ... 11
 3.1.5 Connector/Pins ... 12
 3.1.6 Contracting Officer ... 12
 3.1.7 Critical Non-electronic Part (Mechanical) or Material .. 12
 3.1.8 Custom Part .. 12
 3.1.9 Electronic Component .. 12
 3.1.10 Electronic Parts .. 12
 3.1.11 Established Reliability ... 12
 3.1.12 Expendable Launch Vehicle Quality PMP Baseline ... 13
 3.1.13 Heritage Design Components .. 14
 3.1.14 Inspection (Up-screening) Lot .. 14
 3.1.15 Lot Acceptance Testing (LAT) ... 15
 3.1.16 Lot Date Code ... 15
 3.1.17 Lot Rejection ... 15
 3.1.18 Manufacturing Baseline .. 15
 3.1.19 Material .. 15
 3.1.20 Material Lot .. 15
 3.1.21 Mission Critical Component ... 15
 3.1.22 Modified Design Component ... 16
 3.1.23 Monitor .. 16
 3.1.24 New Design Component .. 16
 3.1.25 Non-Mission Critical Component ... 16
 3.1.26 Off-the-Shelf Item ... 16
 3.1.27 Parts, Materials, and Processes Control Board (PMPCB) 16
 3.1.28 Parts, Materials, and Processes Control Board (PMPCB) Action Form 16
 3.1.29 Parts, Materials, and Processes Selection List (PMPSL) .. 17
 3.1.30 Piece Part ... 17
 3.1.31 Process ... 17
4. REQUIREMENTS

4.1 Parts, Materials, and Processes Control Program Planning... 21
 4.1.1 Parts, Materials, and Processes Control Program Plan(s) ... 21
4.2 Parts, Materials, and Processes Control Board(s) (PMPCB) .. 22
 4.2.1 Membership ... 23
 4.2.2 Delegation ... 23
 4.2.3 PMPCB Meeting Schedules 23
 4.2.4 PMPCB Responsibilities ... 24
 4.2.5 PMPCB Authority ... 25
 4.2.6 Responsibilities of the Program PMP Contractor 26
4.3 Management of PMP Selection .. 26
 4.3.1 PMP Selection for Systems Designs .. 26
 4.3.2 PMP Selection Approval .. 28
 4.3.3 Parts, Materials, and Processes Selection List (PMPSL) .. 29
 4.3.4 Changes to the PMPSL .. 29
 4.3.5 PMPSL Records .. 29
 4.3.6 Part Approval Request (PAR) 30
 4.3.7 Material Approval Request (MAR) 30
 4.3.8 As-designed Parts and Materials List 30
4.4 Management of Part and Material Procurement .. 30
 4.4.1 New Design Components .. 31
 4.4.2 Heritage Design Components 31
 4.4.3 Off-The-Shelf Equipment ... 31
 4.4.4 Electronic Parts Procurement Order of Precedence 31
 4.4.5 Electronic Part Manufacturer/Screening Surveillance (Monitoring) .. 31
 4.4.6 Manufacturing Baseline ... 32
 4.4.7 DCSS Space Quality Operating Stock 32
4.5 Management of PMP Quality Assurance ... 33
 4.5.1 General Workmanship ... 33
 4.5.2 Rework/Repair of Electronic Parts 33
 4.5.3 Reuse of Parts and Materials 33
 4.5.4 PMP Qualification .. 33
 4.5.5 Incoming Inspection Requirements 34
 4.5.6 Up-screening and DPA Facilities 36
 4.5.7 Electronic Part Configuration Control 36
 4.5.8 Failure Analysis .. 36
 4.5.9 Data Requirements .. 37
 4.5.10 Traceability and Lot Control 39
 4.5.11 Inventory Control .. 39
 4.5.12 Preservation and Packaging 39
 4.5.13 Electrostatic Discharge Sensitive (ESD) Parts 39
 4.5.14 Handling and Storage ... 40
 4.5.15 Suspect Parts and Materials Control Program 40
4.6 Management of Part and Material Application ... 41
4.6.1 Electronic Part Derating .. 41
4.6.2 Radiation Hardness ... 41

Appendix A. Material and Process Guidelines and Requirements ... 1
Appendix B. Microcircuit, Hybrid, and Semiconductor Upscreening and Custom Process Requirements 1
Appendix C. Printed Wiring Board Manufacturing and Screening Requirements 4
Appendix D. Custom Relay Requirements ... 0
Appendix E. ELV Quality Baseline Wire Constructions ... 0
Appendix F. Prohibited Parts and Material .. 1
Appendix G. Electronic Piece Part Derating Criteria .. 1
Appendix H. General Sampling Plan .. 26
Appendix I. Small Lot Sampling Plan for Custom Devices .. 1
Appendix J. Radiation Hardness Assurance .. 0
Appendix K. Data Item Descriptions ... 0
Appendix L. Electronic Part Procurement Order of Precedence .. 0
SECTION 1

1. SCOPE

1.1 PURPOSE

This document establishes the requirements for the preparation, implementation, and operation of a parts, materials, and processes control program for use during the design, development, and production of expendable launch vehicles (ELVs). The implementation of these requirements is intended to:

1. Assure integrated management of the selection, application, procurement, control, and standardization of parts, materials, and processes (PMP)

2. Improve the reliability of program PMP to reduce PMP failures at all levels of assembly and test

3. Reduce program life cycle cost

4. Improve procurement and test of small quantities of parts and materials that meet system requirements.

1.2 APPLICATION

This document is intended for use in acquisition contracts for launch vehicle programs. The document should be cited in the contract schedule or the statement of work. The document defines the minimum acceptable requirements for ELV applications and as such shall not be tailored except where allowed by the PMPCB as specified herein. The requirements are intended to be used to coordinate at the program level the selection, application, management, and procurement of PMP throughout the design, development, and production cycles of an acquisition.
SECTION 2
2. APPLICABLE DOCUMENTS

2.1 COMPLIANCE DOCUMENTS

Unless otherwise specified, the following specifications, standards, and handbooks of the revision in effect at the time of invitation to bid to the Government acquisition activity form part of this document to the extent specified herein. Documents not identified by revision or date shall be the latest issue in effect. Piece parts and materials are acceptable for program use to depletion provided they meet the requirements of the revisions in effect at the date of manufacture.

2.1.1 Military Specifications

- MIL-PRF-20 Capacitors, Fixed, Ceramic Dielectric (Temperature Compensating) Established Reliability and Non-Established Reliability, General Specification for
- MIL-PRF-27 Transformers and Inductors (Audio, Power, and High Power Pulse), General Specification for
- MIL-PRF-123 Capacitors, Fixed, Ceramic Dielectric, (Temperature Stable and General Purpose), High Reliability, General Specification for
- MIL-PRF-3098 Crystal Units, Quartz, General Specification for
- MIL-DTL-3655 Connectors, Plug and Receptacle, Electrical (Coaxial Series Twin), and Associated Fittings, General Specification for
- MIL-DTL-5015 Connectors, Electrical, Circular Threaded, AN Type, General Specification for
- MIL-PRF-6106 Relays, Electromagnetic (Including Established Reliability (ER) Types), General Specification for
- MIL-S-13949 Sheet, Printed Wiring Boards, General Specification for
- MIL-PRF-19500 Semiconductor Devices, General Specification for
- MIL-PRF-19978 Capacitors, Fixed, Plastic (or Paper-plastic) Dielectric, (Hermetically Sealed in Metal, Ceramic or Glass Cases) Established and Non Established Reliability, General Specification for
- MIL-PRF-21038 Transformers, Pulse, Low Power, General Specification for
MIL-PRF-23269 Capacitors, Fixed, Glass Dielectric, Established Reliability, General Specification for
MIL-PRF-23419 Fuse, Instrument Type, General Specification for
MIL-PRF-23648 Resistors, Thermal (Thermistor) Insulated, General Specification for
MIL-PRF-24236 Switches, Thermostatic, (Metallic and Bimetallic), General Specification for
MIL-DTL-26482 Connectors, Electrical, (Circular, Miniature, Quick Disconnect, Environment Resisting) Receptacles and Plugs, General Specification for
MIL-PRF-28861 Filters and Capacitors, Radio Frequency/Electromagnetic Interference Suppression, General Specification for
MIL-PRF-38534 Hybrid Microcircuits, General Specification for
MIL-PRF-38535 Integrated Circuits (Microcircuits) Manufacturing, General Specification for
MIL-PRF-38999 Connector, Electrical, Circular, Miniature, High Density, Quick Disconnect (Bayonet, Threaded, and Breach Coupling), Environment Resistant, Removable Crimp and Hermetic Solder Contacts, General Specification for
MIL-PRF-39003 Capacitors, Fixed, Electrolytic (Solid Electrolyte), Tantalum, Established Reliability, General Specification for
MIL-PRF-39005 Resistors, Fixed, Wirewound (Accurate), Established Reliability and Non-Established Reliability, General Specification for
MIL-PRF-39006 Capacitors, Fixed Electrolytic (Nonsolid Electrolyte), Tantalum, Established Reliability and Non-Established Reliability, General Specification for
MIL-PRF-39007 Resistor, Fixed, Wirewound (Power Type), Established Reliability and Non-Established Reliability, and Space Level, General Specification for
MIL-PRF-39009 Resistors, Fixed, Wirewound (Power Type, Chassis Mounted), Established Reliability and Non-Established Reliability, General Specification for
MIL-PRF-39010 Coils, Fixed, Radio Frequency, Molded, Established Reliability and Non-Established Reliability, General Specification for
| MIL-PRF-39012 | Connectors, Coaxial, Radio Frequency, General Specification for |
| MIL-PRF-39014 | Capacitors, Fixed, Ceramic Dielectric (General Purpose), Established Reliability and Non-Established Reliability, General Specification for |
| MIL-PRF-39015 | Resistors, Variable, Wirewound (Lead Screw Actuated), Established Reliability and Non-Established Reliability, General Specification for |
| MIL-PRF-39016 | Relays, Electromagnetic, Established Reliability and Non-Established Reliability, General Specification for |
| MIL-PRF-39017 | Resistors, Fixed Film (Insulated), Established Reliability and Non-Established Reliability, General Specification for |
| MIL-PRF-39035 | Resistor, Variable, Non-wirewound (Adjustment Type), Established Reliability, General Specification for |
| MIL-PRF-55182 | Resistors, Fixed, Film, Established Reliability and Non-Established Reliability, General Specification for |
| MIL-DTL-55302 | Connectors, Printed Circuit Subassembly and Accessories |
| MIL-PRF-55310 | Oscillators, Crystal Controlled, General Specification for |
| MIL-PRF-55342 | Resistors, Fixed, Film, Chip, Established Reliability and Non-Established Reliability, General Specification for |
| MIL-PRF-55365 | Capacitors, Fixed, Electrolytic (Tantalum) Chip, Established Reliability, Non-Established Reliability and High Reliability |
| MIL-PRF-55681 | Capacitors, Chip, Multiple Layer, Fixed, Encapsulated, Ceramic Dielectric, Established Reliability and Non-Established Reliability, General Specification for |
| MIL-DTL-81381 | Wire, Electric, Polyimide - Insulated, Copper or Copper Alloy |
| MIL-PRF-83401 | Resistor Networks, Fixed, Film, General Specification for |
| MIL-PRF-83421 | Capacitors, Fixed, Metallized, Plastic Film Dielectric, (DC and AC), Hermetically Sealed in Metal Cases, Established Reliability |
| MIL-DTL-83723 | Connectors, Electrical, (Circular, Environment Resisting), Receptacles and Plugs, General Specification for |
2.1.2 Military Standards

MIL-STD-403 Preparation for and Installation of Rivets and Screws, Rocket, Missile, and Airframe structures

MIL-STD-750 Test Methods for Semiconductor Devices

MIL-STD-883 Test Methods and Procedures for Microelectronics

MIL-STD-981 Design, Manufacturing, and Quality Standards for Custom Electromagnetic Devices for Space Applications

MIL-STD-1580 Destructive Physical Analysis for Space Quality Parts

MIL-STD-1772 Certification Requirements for Hybrid Microcircuit Facilities and Lines

MIL-STD-1916 DOD Preferred Methods for Accepting Product

MIL-STD-1686 Electrostatic Discharge Control Program for Protection of Electrical and Electronic Parts, Assemblies, and Equipment (Excluding Electrically Initiated Explosive Devices)

2.1.3 Military Handbooks

MIL-HDBK-454 Standard General Requirements for Electronic Equipment

(Copies of specifications, standards, handbooks, drawings, and publications required by contractors in connection with specified acquisition functions should be obtained from the contracting activity or as directed by the contracting officer.)

2.1.4 NASA Publications

NASA-STD-8739.3 Soldered Electrical Connections
2.1.5 Industry Specifications

SAE-AS 9100 Model for Quality Assurance in Design, Development, Production, Installation and Servicing

2.2 GUIDANCE DOCUMENTS

2.2.1 Military Specifications

MIL-C-7438 Core Material, Aluminum, for Sandwich Construction

MIL-B-7883 Brazing of Steels, Copper, Copper Alloys, Nickel Alloys, Aluminum and Aluminum Alloys

MIL-W-8939 Welding, Resistance, Electronic Circuit Modules

MIL-T-9047 Titanium and Titanium Alloy Bars (Rolled or Forged) and Re-forging Stock, Aircraft Quality

MIL-C-15305 Coils, Fixed and Variable, Radio Frequency, General Specification for

MIL-A-21180 Aluminum Alloy Castings, High Strength

MIL-DTL-24308 Connectors, Electrical, Rectangular, Miniature Polarized Shell, Rack and Panel, General Specification for

MIL-C-28809 Circuit Card Assemblies, Rigid, Flexible and Rigid Flex

MIL-M-38510 Microcircuits, General Specification for

MIL-C-38999 Connector, Electrical, Circular, Miniature, High Density, Quick Disconnect (Bayonet, Threaded, and Breach Coupling), Environment Resistant, Removable Crimp and Hermetic Solder Contacts, General Specification for

MIL-PRF-39008 Resistor Fixed, Composition (Insulated), Established Reliability, General Specification for

MIL-S-45743 Soldering, Manual Type, High Reliability Electrical and Electronic Equipment

MIL-I-46058 Insulating Compound, Electrical (for Coating Printed Circuit Assemblies)

MIL-A-46106 Adhesive-Sealants, Silicone, RTV, One Component
MIL-A-46146 Adhesives – Sealants, Silicone, RTV, Noncorrosive (For use with sensitive metals and equipment)
MIL-S-46844 Solder Bath Soldering of Printed Wiring Assemblies
MIL-P-50884 Printed Wiring, Flexible and Rigid Flex
MIL-P-55110 Printed Wiring Boards, General Specification for

2.2.2 Military Standards

MIL-STD-401 General Test Methods, Sandwich Construction and Core Materials
MIL-STD-810 Environmental Test Methods and Engineering Guidelines
MIL-STD-1522 Standard General Requirements for Safe Design and Operation of Pressurized Missile and Space Systems
MIL-STD-1523 Age Controls of Age-sensitive Elastomeric Material (for Aerospace Applications)
MIL-STD-1540 Test Requirements for Space Vehicles
MIL-STD-2073 DOD Material Procedures for Development and Application of Packaging Requirements

2.2.3 Military Handbooks

MIL-HDBK-5 Metallic Materials and Elements for Aerospace Vehicle Structures
MIL-HDBK-17 Polymer Matrix Composites, Volume 1, Guidelines
MIL-HDBK-23 Structural Sandwich Composites
MIL-HDBK-83377 Adhesive Bonding (Structural), For Aerospace and Other Systems, Requirements for

(Copies of specifications, standards, handbooks, drawings, and publications required by contractors in connection with specified acquisition functions should be obtained from the contracting activity or as directed by the contracting officer.)

NASA PUBLICATIONS

2.2.4 Industry Specifications

- **ANSI/ASQ Z1.4** Sampling Procedures and Tables for Inspection by Attributes
- **ANSI/IPC-DW-425** Design and End Product Requirements for Discrete Wiring Boards
- **ANSI- NEMA-MW1000** Wire, Magnet, Electrical, General Specification for
- **AWS-C3.4** Torch Brazing, Specification for
- **AWS-C3.5** Induction Brazing, Specification for
- **AWS-C3.6** Furnace Brazing, Specification for
- **AWS-C3.7** Aluminum Brazing, Specification for
- **AWS D17.1** Fusion Welding for Aerospace Applications, Specification for
- **AWS D17.2/17.2M: 2007** Specification for Resistance Welding for Aerospace Applications
- **IPC-TM-650** IPC Test Methods Manual
- **IPC 2221** Generic Standard on Printed Board Design
- **IPC 2222** Sectional Design Standard for Rigid Organic Printed Boards
- **IPC 6012** Qualification and Performance Specification for Rigid Printed Boards
- **ISO14644-1** Cleanrooms and Associated Controlled Environments – Part 1 Classification of Air Cleanliness
- **J-STD-001** Requirements for Soldered Electrical and Electronic Assemblies
SAE-AMS-H-6875 Heat Treatment of Steels (Aircraft Practice), Process for
SAE-AMS-H-81200 Heat Treat of Titanium and Titanium Alloys
SAE-AMS-STD-1595 Qualification of Aircraft, Missile, and Aerospace Fusion Welders
SAE-AMS-STD-2154 Inspection, Ultrasonic, Wrought Metals, Process for
SAE-AMS-2770 Heat Treatment of Wrought Aluminum Alloy Parts

2.3 ORDER OF PRECEDENCE

In the event of a conflict between the text of this document and the references cited herein, the text of this document shall take precedence. Nothing in this document, however, shall supersede applicable laws and regulations.
SECTION 3

3. DEFINITIONS AND ACRONYMS

3.1 DEFINITIONS

3.1.1 Catastrophic Electronic Part Failures

A catastrophic failure shall be defined as any open or short or any parametric measurement which exceeds its specified limits by 100% or more. The PMPCB may define a tighter requirement based upon the device application.

3.1.2 Categories of Contractor

A contractor for the extent of this document shall be defined as a producer of modules or higher level items of equipment. A contractor that provides items to another contractor shall be identified as a subcontractor. If only one major contractor is responsible directly to the Government acquisition activity, that contractor shall be identified as the prime contractor and shall be responsible for managing the program Parts, Materials, and Processes Control Program. If two or more contractors are responsible directly to the Government acquisition activity, those contractors shall be identified as associate contractors. The Government acquisition activity may designate one associate contractor as responsible for managing the program Parts, Materials, and Processes Control Program. In this document, when the term contractor is used, it applies to the prime, the associate, or the subcontractor, whichever is applicable.

3.1.3 Categories of Electronic Components

3.1.3.1 Category I

Any component that is defined as both mission critical and single string or is part of the flight termination system.

3.1.3.2 Category II

Any component that is defined as either non-mission critical or redundant excluding flight termination system components.

3.1.4 Component

A component is an assembly of two or more parts which in their assembled form combine to perform a vehicle level function. A component is replaceable as a unit and, through proper disassembly, is subject to repair and rework. Examples of assemblies classified as components are actuators, valves, batteries, electrical harnesses, and individual electronic boxes.
3.1.5 Connector/Pins

A connector shall consist of the connector shell, insert, and contacts.

3.1.6 Contracting Officer

A contracting officer is a person with the authority to enter into, administer, or terminate contracts and make related determinations and findings. The term includes authorized representatives of the contracting officer acting within the limits of their authority as delegated by the contracting officer.

3.1.7 Critical Non-electronic Part (Mechanical) or Material

Critical non-electronic parts or materials are any one Non-EEE (Mechanical) part or material in any one application which with one single failure would cause the loss of primary mission objectives or flight safety requirements.

3.1.8 Custom Part

A Custom Part is an electronic part procured to a non-military specification. Active custom electronic parts shall be built, tested, and qualified in full accordance with the minimum Custom processing and screening requirements specified in Sections IV (Microcircuits), V (Hybrids), and VI (Transistors and Diodes) of Appendix B and Tables D-1 through D-4 (Relays) of Appendix D. Custom parts will look similar to JANS/Class S parts with the contractor acquisition activity performing those tasks specified in Appendix B and Appendix D on the Custom product that DESC normally performs on the Space Quality product.

3.1.9 Electronic Component

An electronic component is a component, as defined in paragraph 3.1.4, which provides electrical signals to or receives electrical signals from other components on the vehicle or on the ground.

3.1.10 Electronic Parts

For the purposes of this document, electronic parts shall be defined as all electronic, electromechanical, electro-optical and electrical (EEE) parts.

3.1.11 Established Reliability

Established reliability (ER) codes are assigned to certain military specification, QPL’d parts based upon continuous sample testing of each lot date code. Test results are expressed as either an Exponential or a Weibull failure rate level. For the purposes of this document, Exponential failure rate “S” shall be equivalent to Weibull failure rates “E”, “D”, “C”, and “B”.
3.1.12 Expendable Launch Vehicle Quality PMP Baseline

For the purposes of this document the ELV Quality PMP Baseline is defined as:

1. Semiconductors (transistors and diodes) procured to:
 a. MIL-PRF-19500, Appendix E, Table IV, JANS.
 b. The Custom processing and screening requirements called out in Section VI (Tables B-6a through B-6d) of Appendix B.
 c. MIL-PRF-19500, Appendix E, Table IV, JANTXV, PIND & XRAY, listed on the QPL, and upscreened to the requirements of Section III (Tables B-3a through B-3c) of Appendix B.

2. Microcircuits procured to:
 a. The detailed specifications of MIL-PRF-38535, Class V.
 b. The Custom processing and screening requirements called out in Section IV (Tables B-4a through B-4d) of Appendix B.
 c. The detailed specifications of MIL-PRF-38535, Class Q, or MIL-M-38510, Class B listed on the applicable specification's QPL/QML, and up-screened to the requirements of Section I (Tables B-1a through B-1c) of Appendix B.

3. Hybrids procured to:
 a. The detailed specifications of MIL-PRF-38534, Class K, Appendix C.
 b. The custom processing and screening requirements called out in Section V (Tables B5-a through B5-d) of Appendix B.
 c. The detailed specifications of MIL-PRF-38534, Class H listed on the QPL, and up-screened to the requirements called out in Section II (Tables B2-a through B2-c) of Appendix B.

4. Relays procured to:
 a. The custom processing and screening requirements called out in Appendix D, Tables D-1 through D-4.
 b. The detailed specifications of MIL-PRF-39016, failure rate level “P” or better, and listed on the applicable specification’s QPL.

5. Magnetic devices manufactured and screened in accordance with MIL-T-27, MIL-STD-981, Class S, with the exceptions noted herein, MIL-T-21038, or MIL-PRF-39010, whichever is applicable.
6. Resistors/thermistors procured to:
 a. The detailed specification of MIL-PRF-55182 and listed on the applicable QPL.
 b. The detailed specifications of MIL-PRF-39005, MIL-PRF-39007, MIL-PRF-39009, MIL-PRF-55182, MIL-PRF-55342, Exponential failure rate “S” or “R”
 c. The detailed specifications of MIL-PRF-23648, MIL-PRF-83401 (“M” level part numbers only) and listed on the applicable QPL.

7. Capacitors procured to:
 a. The detailed specifications of MIL-PRF-123, MIL-PRF-49467, MIL-PRF-87164, or MIL-C-39003/10, failure rate “C”, and listed on the applicable QPL.

8. Wire and cable constructions listed in Appendix E

10. Crystal Oscillators manufactured and screened in accordance with MIL-PRF-3098 or MIL-PRF-55310

11. Fuses manufactured and screened in accordance with MIL-PRF-23419.

12. Filters manufactured and screened in accordance with the Class B requirements of MIL-PRF-28861, with the exception that all piece parts utilized in the filter meet the requirements of the ELV quality PMP baseline

13. Materials and processes listed in the approved Parts, Materials, and Processes Selection List (PMPSL) for unlimited use

3.1.13 Heritage Design Components

For purposes of PMP requirements only, all components that are not defined as new design and that have been previously used in ELV class launch vehicle shall be considered heritage design.

3.1.14 Inspection (Up-screening) Lot

For the purposes of testing to be performed by the contractor acquisition activity only, an inspection lot shall be defined as a group of parts of the same device type with the same lot date code produced by the same manufacturer and procured at one time. Inspection lots of resistors and capacitors may contain different resistance or capacitance values built with
the same lot date code. For device types requiring 100% screening and lot acceptance
testing, Percent Defective Allowable and Lot Tolerance Percent Defective shall be applied
across the entire inspection lot.

3.1.15 Lot Acceptance Testing (LAT)

Testing performed, where specified, on a sample of each inspection lot after 100%
screening has been successfully completed to assure that the device and lot quality
conforms with the requirements of the applicable procurement document.

3.1.16 Lot Date Code

A unique device type lot date code is defined as the four digit manufacturer’s date code,
and all prefixes and suffixes.

3.1.17 Lot Rejection

Lot rejection is the failure of an inspection lot to meet one or more of the screening and
acceptance criteria specified herein. Lot failures shall be submitted to the PMPCB for
further technical evaluation, if further consideration is requested. Where a one-time
automatic resubmission or retesting is specified herein, that action may be taken without
PMPCB evaluation or approval.

3.1.18 Manufacturing Baseline

The manufacturing baseline is an engineering drawing(s), normally in the form of a flow
chart, of the sequence of manufacturing operations necessary to produce a specific part,
including all process specifications and revisions, lot travelers, and the construction
analysis.

3.1.19 Material

Material is a metallic or nonmetallic element, alloy, mixture, or compound used in a
manufacturing operation which becomes a permanent portion of the manufactured item.

3.1.20 Material Lot

A lot for material refers to material produced as a single batch or in a single continuous
operation or production cycle and offered for acceptance at any one time.

3.1.21 Mission Critical Component

Any system/circuit installed on an ELV whose failure could cause loss of primary mission
objectives or flight safety requirements.
3.1.22 Modified Design Component

For purposes of PMP requirements only, when any modification changes a component to the extent that some form of requalification, other than qualification by similarity, is required, the hardware modified, not the entire component, shall be considered modified design hardware.

3.1.23 Monitor

Monitoring shall be defined as physically witnessing tests. Monitoring shall be performed, as a minimum, on a sample basis.

3.1.24 New Design Component

For purposes of PMP requirements only, any component not previously qualified to Atlas, Delta, Titan, Centaur, or Inertial Upper Stage (IUS) class launch vehicle requirements or not previously flown on an Atlas, Delta, Titan, Centaur, or IUS class launch vehicle shall be considered new design.

3.1.25 Non-Mission Critical Component

Any system/circuit installed on an ELV whose failure could not cause loss of primary mission objectives or flight safety requirements.

3.1.26 Off-the-Shelf Item

An off-the-shelf item is a part or component which has been developed and produced to military or commercial standards and specifications and is readily available for delivery from an industrial source. The internal configuration of off-the-shelf items is typically not controlled by the buyer.

3.1.27 Parts, Materials, and Processes Control Board (PMPCB)

The PMPCB is a formal organization established by this document to assist the contractor in managing and controlling and the acquisition activity in overseeing the selection, application, procurement, and documentation of parts, materials, and processes used in equipment, systems, or subsystems.

3.1.28 Parts, Materials, and Processes Control Board (PMPCB) Action Form

The PMPCB action form is a one page document utilized to submit and track PMPCB decisions requiring Government PMPCB member approval. As a minimum, the PMPCB action form contains a log number, description of request, justification for the request, and signature and comment blocks for Government disposition. A sample action form is included in Appendix K.
3.1.29 Parts, Materials, and Processes Selection List (PMPSL)

The PMPSL is a list of all parts, materials, and processes which are approved for new and/or modified designs in a specific contract.

3.1.30 Piece Part

A piece part is one piece, or two or more pieces joined together, which are not normally subjected to disassembly without destruction or impairment of its designed use. For the purposes of this document, all uses of the term “part” shall mean “piece part”.

3.1.31 Process

A process is an operation, treatment, or procedure used during a step in the manufacture of a material, part, or assembly.

3.1.32 Product Baseline Record

The product baseline record is a listing of all process/manufacturing documents, including revision level and date, used in the manufacture/assembly of the part.

3.1.33 Production Lot (Electronic Parts)

A production lot of electronic parts shall be as defined in the appropriate military specifications. All parts in the same production lot shall be segregated by lot date code in accordance with the applicable specifications.

3.1.34 Production Lot (Non-electronic Parts)

A production lot shall consist of parts of the same type, of the same physical dimensions, manufactured from the same material (the same heat treat lot of material where applicable), and processed as one batch in one continuous run and submitted for the manufacturer’s final inspection at the same time.

3.1.35 Redundant System/Circuit

Any system/circuit, consisting of two independent paths performing the same function, which can function within the required performance limits with the failure of either but not both paths shall be considered redundant.

3.1.36 Single String System/Circuit

Any system/circuit which cannot be defined as redundant shall be considered single string.

3.1.37 Screening Lot

A screening lot is a subset of an inspection (up-screening) lot split for the convenience of 100% screening.
3.1.38 Supplier/Vendor

A supplier/vendor is any organization that provides parts or components to other contractors for use in higher order assemblies and is not considered a subcontractor.

3.1.39 Space Quality Part

A Space Quality part is an electronic part that is built, tested, qualified, and procured in full accordance with the space quality level requirements as specified in the part’s general and detailed military specification and is listed on the appropriate military specification’s Qualified Products List (QPL) or Qualified Manufacturers List (QML). A list of designators for space quality parts for the applicable specifications is shown below:

1. MIL-PRF-123 - All QPL’d devices
2. MIL-PRF-19500 - JANS
3. MIL-PRF-28861 - Class S
4. MIL-PRF-38510 - Class S
5. MIL-PRF-38534 - Class K
6. MIL-PRF-38535 - Class V
7. MIL-PRF-39003 - All /10, failure rate level C, QPL’d devices
8. MIL-PRF-87164 - All QPL’d devices
9. MIL-PRF-87217 - All /1, /3, and /4 QPL’d devices
10. MIL-PRF-87254 - All QPL’d devices
11. MIL-STD-981 - Class S with exceptions noted herein.
3.2 ACRONYMS

AQL – Acceptable Quality Level
CDRL – Contract Data Requirements List
DODISS – Department of Defense Index of Specifications and Standards
DPA – Destructive Physical Analysis
DSCC – Defense Supply Center Columbus
EEE – Electronic, Electromechanical, Electro-optical, and Electrical
ELV – Expendable Launch Vehicle
ER – Established Reliability
ESD – Electrostatic Discharge
GIDEP – Government-Industry Data Exchange Program
LAT – Lot Acceptance Test
LTPD – Lot Tolerance Percent Defective
MAR – Material Approval Request
OEM – Original Equipment Manufacturer
PAR – Part Approval Request
PEM – Plastic Encapsulated Microcircuits
PED – Plastic Encapsulated Devices
PDA – Percent Defective Allowable
PMP – Parts, Materials, and Processes
PMPCB – Parts, Materials, and Processes Control Board
PMPSL – Parts, Materials, and Processes Selection List
QML – Qualified Manufacturers List
QPL – Qualified Products List
SCD – Source Control Drawing
SECTION 4

4. REQUIREMENTS

4.1 PARTS, MATERIALS, AND PROCESSES CONTROL PROGRAM PLANNING

The contractor shall establish a Parts, Materials, and Processes Control Program in accordance with the requirements of this document. Subcontractor’s shall also be compliant to these requirements.

4.1.1 Parts, Materials, and Processes Control Program Plan(s)

The parts, materials, and processes control program shall be documented in a plan(s), prepared by the contractor identified and tasked by the Government acquisition activity to plan, manage, and coordinate the program level PMP. The plan shall be comprehensive and shall describe how the contractor’s effort is to be organized, managed, and conducted to meet the requirements of this document. The plan shall also address how the contractor ensures the flow down of the applicable parts, materials, and processes control program requirements to all the applicable subcontractors and suppliers/vendors. Individual topics or subordinate plans may be prepared as separate documents and incorporated by reference into the overall parts, materials, and processes control program plan. Existing contractor nonproprietary in-house documentation may be used and referenced in the plan when applicable. The use of this existing documentation is encouraged. Contractor documents referenced in the plan shall be made available for review by the Government acquisition activity upon request.

The parts, materials, and processes control program plan shall address the following major topics:

1. A PMPCB operating procedure, including membership, membership responsibilities in supporting PMPCB meetings, preparing PMP documentation, and providing timely information on and resolution of PMP problems, membership authority, PMP review procedures, PMP approval procedures, and plans for updating the operating procedure. The contractor may selectively establish more than one control board based upon the product types, parts, materials, and processes. Each control board shall have a single focal point who shall be subordinate to the PMPCB chairman. The responsibilities and authority of each board shall be clearly defined within the PMP Control Program Plan.

2. Definition of the contents of the PMPSL and procedures for updating, approving, and ensuring the appropriate distribution of the PMPSL.

3. Inventory control plan in accordance with paragraph 4.5.11.

4. Application and derating documents to meet program derating policy and the requirements stated herein.
5. Plans and procedures for manufacturer and subcontractor surveillance and auditing, where applicable.

6. Plans and procedures for qualification of PMP and qualification updating. *

7. Policies and procedures to ensure that design engineers select PMP described by the ELV Quality PMP Baseline to the maximum extent possible.

8. Plans and procedures for conducting destructive physical analysis of piece parts, where required, and related review and approval procedures.

10. Program integration of PMP requirements, reliability requirements, and quality control efforts. Include methods for coordination between the PMPCB, Failure Review Board or similar Quality Board, Material Review Board, and other applicable boards or groups.

11. Definition of the authority of the PMPCB as it relates to various groups within the prime, associate, and subcontractor organizations.

12. Radiation Hardness Assurance Program per Appendix J, if applicable.

13. Plans and procedures to meet the electrostatic discharge protection requirements of MIL-STD-1686 for PMP.

14. Plans and procedures for contamination control of critical surfaces of piece parts and materials during shipping, storage, manufacturing, and handling.

15. Plans and procedures for review and disposition of PARs, MARs, and PMPCB Action Forms, including resolution of disputed interpretations of requirements.

16. Descriptions and definitions of general requirements, standard clauses, format requirements, and content outlines of up-screening and Custom S drawings.

17. Ground rules defining conditions which necessitate the revision and resubmittal of a previously approved PAR or MAR.

18. Plans and procedures for conducting failure analysis, where required, and related review and approval procedures.

4.2 PARTS, MATERIALS, AND PROCESSES CONTROL BOARD(S) (PMPCB)

A Parts, Materials, and Processes Control Board(s) (PMPCB) shall be implemented by the contractor who is identified and tasked by the Government acquisition activity to plan, manage, and coordinate at the program level, the selection, application, and procurement requirements of all PMP. PMPCB findings and decisions shall be within the contractual scope of this document and the contract and shall be implemented by all applicable
contractors. The Government acquisition activity shall have the right of disapproval of PMPCB decisions.

4.2.1 Membership

The PMPCB membership shall include at least one member from each contractor and each appropriate subcontractor. However, representation at individual meetings shall be based upon subject matter and topics scheduled on the agenda and any special walk-in items. The Government acquisition activity shall be represented by an active member on the PMPCB. Other members may be designated by the Government acquisition activity and/or the Chairman of the PMPCB. Each member shall be capable of being supported in technical matters as required. Each member shall have the authority to commit his organization or company to PMPCB decisions which are within the scope of this document.

4.2.2 Delegation

The authority to conduct PMPCBs may be delegated by the PMPCB to major subcontractors. Each major subcontractor granted this delegation shall supply the prime PMPCB with meeting minutes documenting their decisions in a timely manner. This information shall be made available to the Government acquisition activity. The prime PMPCB and Government acquisition activity shall retain the right of disapproval of decisions made at all delegated PMPCBs.

4.2.3 PMPCB Meeting Schedules

PMPCB meetings shall be held as follows:

1. A post-award PMPCB organizational meeting shall be convened by the contractor designated the program PMPCB manager. The chairman of the PMPCB shall coordinate the date and location of the meeting with the Government acquisition activity, and inform proposed members and representatives of the schedule. This meeting is intended to establish initial working relationships, responsibilities, and procedures for implementation of the PMP Control Program. This initial meeting shall also be used as a forum to present and answer any questions regarding the requirements of the PMP control program. This meeting may be held in conjunction with other scheduled contract review meetings.

2. Subsequent PMPCB meetings shall be held as necessary to implement the PMP program in a timely manner consistent with other program activities and schedules. Meetings shall be held quarterly or as designated by the PMPCB Chairman. These meetings shall address a full PMP program agenda as agreed to by the PMPCB.

3. Special PMPCB meetings may be called by the PMPCB chairman to discuss special agenda items which require expeditious resolution. Adequate notification must be provided to all the PMPCB members and representatives.
4.2.4 PMPCB Responsibilities

1. The PMPCB Chairman shall establish PMPCB operating procedures in accordance with this document. These operating procedures shall be approved by the PMPCB.

2. The PMPCB Chairman shall ensure the establishment and maintenance of a program PMPSL. The PMPCB Chairman shall coordinate the identification and applicable data for candidate PMP proposed for the PMPSL. The PMPCB shall review and approve Part Approval Requests (PAR) and Material Approval Requests (MAR) and the supporting data, including qualification and evaluation plans.

3. The PMPCB Chairman shall ensure the selection and use of PMP meeting the ELV Quality PMP Baseline to the maximum extent practicable. The PMPCB chairman shall ensure that the responsible PMP engineering functions are involved up-front in the design process to both maximize the use of Space Quality parts and to standardize PMP usage wherever possible.

4. The PMPCB Chairman shall ensure the procurement of PMP to the orders of precedence specified in Appendix L.

5. The PMPCB shall ensure compliance with the PMP requirements of this document. This shall include the review of custom specifications for compliance to the requirements specified herein.

6. The PMPCB shall ensure that the derating for electronic parts used in new or modified design hardware meets the requirements of this document and the system requirements. The PMPCB shall evaluate and approve any exceptions to this derating policy.

7. The PMPCB shall ensure that the derating policies used for heritage design hardware meet system requirements.

8. The PMPCB shall ensure the establishment of destructive physical analysis (DPA) policies, procedures, and reporting formats. The PMPCB shall review and approve all DPA policies and procedures for compliance with Program requirements. A standard DPA policy, procedure, and reporting format for use by all contractors and subcontractors, using MIL-STD-1580 as a guideline, is highly encouraged. Problem DPA findings and summary reports shall be reviewed by the PMPCB on a regular basis.

9. The PMPCB shall ensure the review of the results of receiving inspection, destructive physical analysis, Material Review Board actions, failure analyses, and problems pertaining to PMP, including those identified in the field. PMP problem areas shall be presented at all PMPCB meetings for the PMPCB’s review and approval.
10. The PMPCB shall ensure the timely identification of long lead procurement items.

11. The PMPCB shall ensure the identification and configuration control of those changes required in PMP specifications necessary to meet the equipment, system, or subsystem requirements.

12. The PMPCB shall ensure the review and approval of all substitute part lists.
 a. For **PRODUCTION ASSEMBLIES**, the PMPCB shall ensure that substitute parts meet the technical requirements of this document as a minimum. Exceptions shall require Government acquisition activity approval.
 b. For **QUALIFICATION ASSEMBLIES**, the PMPCB shall ensure that the substitute part is the same device type in form, fit and function as the part to be used in the production assemblies, with only the quality level being lower. Approval of the use of these substitute parts by the Government acquisition activity does not imply acceptance of risk by the Government acquisition activity. The contractor shall assume all risks inherent in the use of these substitute parts.

13. The PMPCB shall ensure the review and approval of all contracted screening and DPA facilities. All screening and DPA facilities shall be reviewed prior to first contract award from the contractor acquisition activity and subsequently, as a minimum, on a yearly basis, if further usage of the approved facility is requested.

14. The PMPCB shall annually issue an official list of approved screening and DPA facilities to all contractors.

15. The PMPCB shall ensure the timely review of all Action Forms, assigning numbers and maintaining a status summary which shall be distributed at all regular PMPCB meetings. The PMPCB shall send a copy of the closed PMPCB Action Form to all contractors affected by the decision. When requested in writing, the PMPCB shall also supply copies of any other PMPCB Action Forms.

4.2.5 PMPCB Authority

The PMPCB shall have the authority to make both technical and programmatic decisions that fall within the scope of this document. Where specified herein, PMPCB decisions shall be documented on a PMPCB Action Form and submitted to the Government acquisition activity designated members of the PMPCB, in a timely manner, for review and disposition. Government disposition shall be completed in a mutually agreed upon time-frame. For records clarity, each PMPCB Action Form shall be numbered and request the approval of one issue, PAR, or MAR only.
4.2.6 Responsibilities of the Program PMP Contractor

The contractor designated by the Government acquisition activity as responsible for the PMP Control Program shall:

1. Provide the PMPCB chairman, conduct the PMPCB meetings, prepare and distribute the PMPCB meeting notices, meeting minutes, and manage the PMPCB.

4.3 MANAGEMENT OF PMP SELECTION

The contractor shall manage the selection of PMP in accordance with the criteria specified in this document. After contract award, the contractor shall develop a Parts, Materials, and Processes Selection List (PMPSL) to be used on the program in their design and manufacturing. The approved PMPSL shall be provided to each subcontractor no later than the first preliminary design review.

4.3.1 PMP Selection for Systems Designs

PMP shall be selected to meet the requirements of the system application; however, design preference shall be given to Space Quality parts and materials and processes that are described by the ELV Quality PMP Baseline.

4.3.1.1 Electronic Part Selection

Electronic parts used in new, heritage, or modified hardware shall meet the requirements of the ELV Quality PMP Baseline. Parts selected that do not meet the requirements of the ELV Quality Baseline shall be submitted to the PMPCB on a PAR. A PMPCB action form shall be generated for every PAR approved by the PMPCB and forwarded to the Government PMPCB representatives for disposition. For Category II systems/circuits, JANTXV and Class B parts up-screened to the requirements of Appendix B with the exception that LAT is not performed do not require a PAR. All open PARs, and PARs over which there are concerns shall be clearly identified at all design reviews with justification for their selection and use. The Design Review package, in accordance with the requirements of MIL-STD-1521, shall include a list of all approved PARs included in the parts list. This list need not be presented in the formal review.

For Category I systems/circuits, the responsible engineering function or subcontractor shall be required to brief the PMPCB, throughout the design process, on the technical rationale for the selection of non-Space Quality active electronic parts. The PMPCB shall ensure through these briefings that Space Quality parts are used to the maximum extent possible.
4.3.1.2 Material and Processes Selection

The contractor shall limit the number of different materials and processes by selecting, wherever possible, materials and processes for new design from the existing PMPSL approved by the Government acquisition activity. The selection of materials and processes for new or modified designs shall be the result of design studies which address:

1. Operational requirements
2. Material or process performance
3. Manufacturing capabilities
4. Safety margins
5. Inspection criteria

Metallic Materials

1. Acceptable initial flaw sizes, defects, and tolerances associated with the materials and manufacturing processes during fabrication and assembly
2. Relevant mechanical properties as identified in MIL-HDBK-5 or other acceptable source as approved by the PMPCB
3. Stability under environmental conditions, aging characteristics, fracture toughness, and crack growth (da/dn) under the service stresses

Non-Metallic Materials

1. Compatibility with environmental conditions.
2. Specification controls over composition and processing.
3. Material’s shelf-life and aging characteristics.

Materials and processes already approved for unlimited program use through the PMPSL shall be acceptable for use in new components or modified design hardware if available data (flight history, production history, etc) provides clear evidence that the material is suitable for the proposed application. All materials and processes which meet the requirements or guidelines specified in Appendix A shall also be considered as approved for use in new components and modified design hardware. Materials and processes not meeting either criteria shall require the submission of a MAR, with supporting data, to the PMPCB. A PMPCB action form shall be generated for every MAR approved by the PMPCB and forwarded to the Government PMPCB representatives for disposition. All open MUAs and MUAs over which there are concerns shall be clearly identified at all design reviews with justification for their selection and use. The Design Review package, in accordance with the requirements of MIL-STD-1521, shall include a list of all approved MUAs included in the parts list, but this list need not be presented in the formal review.
4.3.1.3 Prohibited/Restricted Usage Parts, Materials, and Processes

The part types and materials listed in Appendix F shall not be used in new components or modified design hardware except as noted. These items are listed because data has shown them to be reliability suspect.

In addition, the PMPCB shall ensure the implementation of procedures and processes to publish, maintain, and conduct full configuration control of a prohibited PMP items list, and a restricted usage PMP list. The prohibited/restricted usage PMP lists shall include, but are not limited to parts and materials meeting any of the following:

1. Restricted in temperature range capability
2. Exceed outgassing requirements
3. Are COTS products
4. Present potential risk of contamination
5. Have limits and/or application restrictions
6. GIDEP alert, GIDEP advisory with reliability/latent failure concerns, or other alert issues

4.3.2 PMP Selection Approval

The contractor shall use the following PMP review and approval procedures for PMP to be selected and listed on the PMPSL:

1. PMP included in the ELV Quality PMP Baseline shall be considered approved for use. For inspection lots of parts used in only Category II boxes, lot acceptance testing during the up-screen of Class B, Class K, and JANTXV parts in accordance with Appendix B need not be performed.

2. Parts not defined by paragraph a. and proposed for inclusion in the PMPSL shall require the submission of a Part Approval Request (PAR) with supporting data to the PMPCB for approval.

3. Materials and processes not defined by paragraph a. and proposed for inclusion in the PMPSL shall require the submission of a Material Approval Request (MAR) with supporting data to the PMPCB for approval.
4.3.3 Parts, Materials, and Processes Selection List (PMPSL)

The PMPSL shall be organized to delineate and distinguish between approved parts, approved materials, and approved processes. The PMPSL shall be approved by the PMPCB and submitted through the Contract Data Requirements List (CDRL). Each PMP listing shall contain, as a minimum, the following information:

1. Generic part number (manufacturer’s designation) or military specification number, slash sheet number and/or dash number, whichever is applicable

2. Contractor PMP specification number

3. Noun description

4. Approved, proposed, and selected sources. In the case of QPL/QML parts, list a preferred source, if applicable

5. Applicable usage restrictions

4.3.4 Changes to the PMPSL

Subsequent changes to the PMPSL, as required to support the contractor’s design efforts, shall be approved by the PMPCB and submitted through the Contract Data Requirements List (CDRL).

4.3.5 PMPSL Records

Records of the program PMPSL shall be maintained and kept for the life of the program. The records shall include as a minimum the following:

1. The latest edition of the PMPSL

2. Proposed PMP. This is the PMP for which approval action is pending.

3. Addition or deletion actions.

4. Disapproved PMP, including information on applicable reasons for disapproval and the date of disapproval. This is the PMP that has been disapproved for program use.
4.3.6 Part Approval Request (PAR)

A PAR shall be submitted to the PMPCB when required as described by paragraph 4.3.2b. A PAR shall consist of the PMPCB Action Form as the cover sheet with all necessary supplemental data attached. Supplemental data required with this request includes as a minimum the following:

1. Justification for the proposed applications
2. Identification of relevant GIDEP Alerts, and other relevant Alerts
3. Availability, including approved, proposed, and selected sources
4. Description of how the technical requirements are met, including qualification (Include any appropriate test data)
5. Process methods, data, and required quality control provisions, if applicable.

4.3.7 Material Approval Request (MAR)

A MAR shall be submitted to the PMPCB when required as described by paragraph 4.3.2c. A MAR shall consist of the PMPCB Action Form as the cover sheet with all necessary supplemental data attached. Supplemental data required with this request includes as a minimum the following:

1. Justification for the proposed applications
2. Identification of relevant GIDEP Alerts, and other relevant Alerts
3. Availability, including approved, proposed, and selected sources
4. Description of how the technical requirements are met; including qualification (Include any appropriate test data)
5. Process methods, data, and required quality control provisions, if applicable.

4.3.8 As-designed Parts and Materials List

As the program progresses, the PMPCB may convert the PMPSL to an as-designed parts and materials list which shall indicate the final parts and materials selected. Parts and materials approved for program use, but not actually used in the equipment, system, or subsystem, shall not be included on this as-designed list.

4.4 MANAGEMENT OF PART AND MATERIAL PROCUREMENT

All parts and materials shall be procured directly from the manufacturer, whenever possible, or procured from an authorized distributor. The selection of suppliers shall be based on criteria that includes factors to ensure that the required quality and reliability requirements
can be met. Parts and materials procured from an authorized distributor shall be traceable
to the manufacturer and shall be accompanied by a written certification by lot date code of
specification compliance furnished by the manufacturer, with each procurement. The
PMPCB shall ensure the review of the contractor's source surveillance planning to verify
that it meets the requirements of this document.

4.4.1 New Design Components

PMP used in new design components shall be compliant to the requirements specified
herein.

4.4.2 Heritage Design Components

Electronic parts used in heritage design components shall be compliant to the requirements
specified herein. Non-electronic parts and materials and processes used in heritage design
components shall be compliant with the component's heritage requirements as a minimum.
Non-electronic parts and materials and processes used in any of the component's
hardware classified as modified design hardware shall be compliant to the requirements
specified herein. Management of PMP Quality Assurance for heritage design hardware
shall be in accordance with the requirements of paragraph 4.5 and subsequent
subparagraphs.

4.4.3 Off-The-Shelf Equipment

When off-the-shelf equipment is proposed for use, it shall be reviewed and approved by the
PMPCB. A PMPCB action form shall be generated for each piece of equipment defined as
off-the-shelf by the PMPCB and forwarded to the Government PMPCB representatives for
disposition. Tracking systems shall not be procured as off-the-shelf. Instrumentation
components whose failure would result in loss of all flight instrumentation data shall
not be procured as off-the-shelf.

4.4.4 Electronic Parts Procurement Order of Precedence

The procurement order of precedence for electronic parts shall be in accordance with
Appendix L.

4.4.5 Electronic Part Manufacturer/Screening Surveillance (Monitoring)

4.4.5.1 Custom Parts

The contractor shall arrange for the surveillance of:

1. Integrated Circuits
2. Semiconductor Devices
3. Hybrid Devices
4. Relays
procured to Source Control Drawings (SCDs) at the manufacturer. The contractor shall participate in pre-encapsulation visual inspections and monitor board loading and checkout, final electricals, and either burn-in on or burn-in off as a minimum. The contractor is encouraged to monitor all remaining electrical testing wherever possible. The contractor shall be responsible for authorizing shipment of the electronic parts from the manufacturer.

4.4.5.2 Up-screened Parts

The contractor shall arrange for the surveillance of:

1. Integrated Circuits
2. Semiconductor Devices
3. Hybrid Devices

up-screened to meet the requirements of this document at the screening facility. The contractor shall monitor board loading and checkout, final electricals, and either burn-in on or burn-in off as a minimum. The contractor is encouraged to monitor all remaining electrical testing wherever possible. The contractor shall be responsible for authorizing shipment from the screening facility.

4.4.6 Manufacturing Baseline

All custom electronic parts shall be procured to a manufacturing baseline. For custom active electronic parts, the manufacturing baseline shall be in accordance with the applicable tables of Appendix B.

4.4.7 DCSS Space Quality Operating Stock

An Operating Stock has been initiated by the Defense Logistics Agency to facilitate the procurement of Space Quality electronic parts. For parts in stock and on order, this reduces procurement lead times and allows small quantity ordering by the contractor while retaining the cost benefits of large quantity procurements. In support of this program, the contractor shall:

1. Forecast and supply the Government acquisition activity with projected electronic part requirements for Space Quality device types on a yearly basis.

2. Supply the Government acquisition activity with the following information necessary to obtain authorization to use the JAN Class S Operating Stock:
 a. Company address
 b. Freight/Receiving address
 c. Billing address
 d. Department of Defense Activity Address Code (DODAAC), if known.
4.5 MANAGEMENT OF PMP QUALITY ASSURANCE

The contractor shall implement PMP quality assurance procedures which meet the requirements of this document to ensure parts and materials procured and processes used meet system requirements, both at the time of receipt, during production, and over the lifetime of the hardware.

4.5.1 General Workmanship

General workmanship shall be in accordance with the requirements of MIL-HDBK-454, Requirement 9 and/or other workmanship requirements as specified in the applicable specifications and standards.

4.5.2 Rework/Repair of Electronic Parts

Rework of Electronic parts shall be in accordance with each general or detailed requirement of the applicable military specification with the exception that delidding custom electronic parts for the purpose of repair/rework is not allowed without the specific approval of the PMPCB. Delidding approved by the PMPCB shall be documented on a PMPCB action form and forwarded to the Government PMPCB representatives for disposition.

4.5.3 Reuse of Parts and Materials

Parts and materials which have been permanently installed in an assembly using soldering, alloying, or other fuzing techniques, and are then removed from the assembly for any reason, shall not be used again in any item of flight hardware, without specific approval of the PMPCB. Part reuse approved by the PMPCB shall be documented on a PMPCB action form and forwarded to the Government PMPCB representatives for disposition.

4.5.4 PMP Qualification

4.5.4.1 General

All PMP, including any processes developed to accomplish rework or retrofit, shall require qualification for program use. Only qualified PMP shall be used on flight hardware.

4.5.4.2 Electronic Part Qualification

Electronic parts not included in the ELV quality baseline shall be qualified to the requirements specified in the applicable specifications and standards for the device type. The contractor, through the PMPCB, shall prepare and submit for PMPCB approval a qualification plan and procedure for those electronic parts for which deviations from the qualification requirements specified in Appendix B for custom active devices or the applicable device specification for non-QPL electronic devices are requested. Following PMPCB approval, these qualification plans shall be documented on a PMPCB action form and forwarded to the Government PMPCB representatives for disposition. The qualification plan shall identify all conditions and testing necessary to meet the program and mission reliability requirements and show adequate margin over expected operating conditions.
This item may be satisfied by submission of the SCD. Manufacturers generic data may be used, if approved by the PMPCB.

4.5.4.3 Materials and Processes Qualification

Materials and Process qualification shall be the result of design studies performed during the selection process as required by paragraph 4.3.1.2 and system testing.

4.5.5 Incoming Inspection Requirements

Each contractor shall perform, or be responsible for performing, applicable incoming testing and inspections of parts and materials to ensure that they meet the requirements of the procurement specifications. Unless previously accomplished or witnessed and accepted by contractor field personnel, incoming testing and inspections shall be accomplished upon receipt of the parts or materials.

4.5.5.1 Incoming Inspection of Electronic Parts

As a minimum, incoming inspection of all electronic parts shall consist of the following:

1. Sample external inspection, with an Acceptable Quality Level (AQL) of 1% in accordance with MIL-STD-105, at 3X magnification (minimum), for such things as permanent and legible marking, body finish, lead finish, insulation, lead straightness, excessive material, misalignment, dimensions, and any visual or mechanical defect. **NOTE: Sampling plans per ANSI/ASQ Z1.4 or MIL-STD-1916 can be used with the approval of the PMPCB.**

2. A destructive physical analysis (DPA), independent of the manufacturer, on each inspection lot in accordance with MIL-STD-1580 or an equivalent PMPCB approved procedure. The minimum DPA sample size shall be five (5) devices, except as explicitly noted herein. The DPA sample size may be reduced based upon device cost and lot size considerations with PMPCB approval. DPA sample reductions approved by the PMPCB shall be documented on a PMPCB action form and forwarded to the Government PMPCB representatives for disposition. With PMPCB approval, the contractor may use an independent destructive physical analysis previously performed on the same production lot date code as evidence for the quality of the lot, in lieu of performing another destructive physical analysis. The PMPCB shall evaluate the independent destructive physical analysis procedures for their applicability in proving the quality of this lot for space applications. A DPA performed by the manufacturer of the part does not constitute an independent DPA and therefore does not satisfy this requirement.

The following device types shall require a DPA:

a. Integrated circuits - Appendix L, Para 2.1a, third order of precedence parts, and Para 2.1b, second order of precedence parts shall require a double sample size DPA.
b. Semiconductor devices - Appendix L, Para 2.1a, third order of precedence parts, and Para 2.1b, second order of precedence parts shall require a double sample size DPA.

c. Filters

d. Magnetic components - 2 samples minimum

e. Capacitors - Perform a DPA on one capacitance value from each production lot.

f. Resistors - Perform a DPA on one resistance value from each production lot.

g. Inductors

h. Hybrid devices - 3 samples minimum

i. Passive networks

j. Relays - 2 samples minimum

k. Bimetallic thermal switches

l. Connectors/Pins - 2 samples per family type, minimum

m. Crystals/Oscillators - 2 samples minimum

3. For relays other than those meeting the requirements of Appendix D:

 a. Perform a residual gas analysis on two samples in accordance with MIL-STD-883, Method 1018. Water content shall be 1,000 parts per million (ppm) maximum at 100°C.

 b. For relays with a high noise signature, perform an asynchronous miss test per notes 2/ and 5/ of Appendix D, Table D-2, on the entire lot.

4. For Space Quality active electronic parts:

 a. Electrical testing at -55°C, 25°C, and 125°C, to an LTPD of 2 (116 devices with 0 failures), is encouraged.

5. Data accompanying all parts shall be reviewed to determine the acceptability of received parts.
4.5.5.2 Incoming Inspection of Materials and Non-electronic Parts

As a minimum, incoming inspection of materials shall consist of at least one of the following:

1. Sample analysis or testing of significant physical and mechanical properties of received material

2. Review of the data accompanying the lot, specifically the Certificate of Compliance and/or the Certificate of Analyses, to insure that the material meets all specified requirements.

4.5.6 Up-screening and DPA Facilities

The contractor, identified and tasked by the acquisition activity to plan, manage, and coordinate the selection, procurement, and application of all PMP at the program level, shall maintain a listing of acceptable up-screening and DPA facilities. Only facilities or laboratories listed shall be used. This listing and any subsequent changes to this listing shall be submitted to the PMPCB for approval.

4.5.7 Electronic Part Configuration Control

The contractor shall plan for and assess the physical characteristics of all electronic parts requiring destructive physical analysis for the purpose of identifying any changes in the materials used, construction, or configuration of the parts. As a minimum, the contractor shall use manufacturer data and initial destructive physical analysis findings to baseline the physical characteristics of the parts, and then compare subsequent destructive physical analysis findings to that initial baseline.

4.5.8 Failure Analysis

4.5.8.1 Failures During Electronic Part Screening (Lots Presented for Flight Usage)

Failure analysis shall be performed as a minimum on electronic part catastrophic failures experienced during and after the first device burn-in, whether Power or High Temperature Reverse Bias, in up-screening or custom screening and during receiving inspection. Failures shall be analyzed to the extent necessary to understand the failure mode, cause, and relationship of the failure to the generic lot the failed part came from. In the case of lot-related type failures, failures shall be analyzed to the extent necessary to develop screens to detect the failure mechanism and/or corrective actions to eliminate/reduce its occurrence. Corrective action shall be determined and implemented, as applicable. The results of failure analysis, shall be submitted to the PMPCB for review. Catastrophically failed parts and failure analysis reports shall be retrievable for the duration of the contract. Contractors shall report catastrophic failures of electronic parts procured from the DESC JAN Class S Operating Stock Program to DESC, the PMPCB, and the Government acquisition activity. Contractors are strongly encouraged to report catastrophic failures of Space Quality electronic parts procured from other sources to DESC, the PMPCB, and the Government acquisition activity.
4.5.8.2 Failures During Assembly and Test

Failure analysis shall be performed as a minimum on part and material failures experienced during assembly level acceptance testing. Failures shall be analyzed to the extent necessary to understand the failure mode and cause and the relation of the failure to the generic lot the failed part or material came from. In the case of lot-related type failures, failures shall be analyzed to the extent necessary to develop screens to detect the failure mechanism and/or corrective actions to eliminate/reduce its occurrence. Corrective action shall be determined and implemented, as applicable. The results of failure analysis, shall be submitted to the PMPCB for review. This requirement may be satisfied by submission of Failure Review Board, or similar board, meeting minutes. The contractor is encouraged to conduct a failure analysis on all PMP related failures. Failures attributed to processes shall be recorded and analyzed to identify the cause of the failure and the need for corrective action. All such data and the corrective actions taken shall be submitted to the PMPCB for review. This requirement may be satisfied by submission of Failure Review Board, or similar board, meeting minutes.

4.5.9 Data Requirements

The following subparagraphs specify the data packages the contractor acquisition activity shall procure, as a minimum. In cases where the device type requires two or more different data packages, the data packages shall be combined by lot date code to facilitate data retrieval. All data packages shall be retained for the life of the contract or until the entire inspection lot is flown, whichever is sooner.

4.5.9.1 Custom Active Electronic Parts

The contractor shall procure a data package for all active electronic devices manufactured to Source Control Drawings. The data package shall include, as a minimum, the following data items from the manufacturer:

1. Certificate of Compliance with the applicable standards and specifications
2. Process flow diagram
3. Product baseline record (Note: This item may be satisfied by a detailed process flow diagram that includes references to the applicable process/manufacturing documents and revision levels.)
4. Engineering drawings of the part
5. Acceptance/Qualification test reports
6. Attribute summary
7. Actual completed lot traveler
8. Read and record data for each serial number device submitted to electrical testing

9. Failure analysis report(s), if applicable.

The contractor shall require the manufacturer to retain all screening failures until final lot data acceptance.

4.5.9.2 Up-screening

The contractor shall procure a data package for all electronic devices up-screened to meet the requirements of this document. The data package shall include, as a minimum, the following data from the screening facility:

1. Actual completed lot traveler
2. Attribute summary
3. Read and record data for each serial number device submitted to electrical testing
4. Failure summary
5. Failure analysis report(s), if applicable

All failures during up-screening shall be segregated and clearly marked as failures and shipped to the contractor. Failed devices shall be retained by the contractor for the life of the contract or until the entire inspection lot is flown, whichever is sooner. Failed devices from lots dispositioned as scrap need not be retained.

4.5.9.3 Military Specification Parts

The contractor shall procure a data package for all parts manufactured to military standards and specifications as follows:

- For electronic parts:
 - Non-Space Quality – The data package shall include the following data from the part supplier:
 - A Certificate of Compliance with the applicable standards and specifications, traceable to the part manufacturer.
 - Space Quality – The data package shall include the following data from the part supplier:
 - A Certificate of Compliance with the applicable standards and specifications, traceable to the part manufacturer.
 - Attribute summary
• For non-electronic parts:

The data package shall consist of a Certificate of Compliance with the applicable standards and specifications, traceable to the part manufacturer.

4.5.9.4 Destructive Physical Analysis (DPA)

The contractor shall generate a data package for all part types requiring a DPA. The data package shall include the following data items from the DPA facility:

1. DPA report

All DPA samples shall be returned to the contractor and retained for the life of the contract or until the entire inspection lot is flown, whichever is sooner.

4.5.10 Traceability and Lot Control

The contractor shall be capable of tracing electronic parts and critical non-electronic parts and materials to their manufacturer and lot identifications (lot date code or batch designation). Similarly, given a lot date code or batch number, the contractor shall be capable of determining the unique component by serial number (and dash number) at the lowest assembly level in which the part or material is installed.

4.5.11 Inventory Control

The contractor is highly encouraged to implement a first-in, first-out (FIFO) inventory control system. Inventory control policies and procedures shall be addressed in the PMP Control Program Plan.

4.5.12 Preservation and Packaging

Preservation, packaging, and packing of parts and materials shall be in accordance with both the item and the system requirements. MIL-STD-2073 should be used as a guide in the development of part and material packaging.

4.5.13 Electrostatic Discharge Sensitive (ESD) Parts

All parts which are subject to degradation by electrostatic discharge shall be marked, packaged, and handled in accordance with the approved ESD procedure referenced in paragraph 4.1.1m.
4.5.14 Handling and Storage

Handling and storage procedures shall be instituted to prevent part and material degradation. The following criteria shall be used as a minimum for establishing handling and storage procedures for parts and materials:

1. Environmental controls, such as temperature, humidity, contamination, and pressure.

2. Measures (Procedures) and facilities to segregate and protect parts and materials routed to different locations in-house and to outside sources (for processing) such as, to the materials review crib, or to a laboratory for inspection, or returned to the manufacturer for replacement.

3. Control measures to limit personnel access to parts and materials during receiving inspection, screening, and storage.

4. Provisions for protective cushioning, where required, on transportation containers to protect against accidental dropping or dislodging during transit, on storage area shelves, and in storage containers.

5. Non-degrading bench surfaces on which parts and materials are handled. Typical handling operations include kit organization, assembly, inspection, and test.

6. Provisions for protection of parts susceptible to damage by electrostatic discharge.

The contractor is encouraged to institute similar procedures for the handling and storage of higher order assemblies into which parts and materials are installed.

4.5.15 Suspect Parts and Materials Control Program

The PMPCB shall ensure the review and evaluation of Government Industry Data Exchange Program Alerts (GIDEP ALERTS) and industry problem alert bulletins in a timely manner. The PMPCB shall ensure that suspect parts and materials are not selected for designs or procured for use. The PMPCB chairman shall ensure that GIDEP ALERTS are generated where applicable on rejected parts and materials. The PMPCB shall ensure the evaluation of the impact of suspect parts or materials already in-stock and/or in system equipment on system performance and reliability and the notification of the Government acquisition activity of:

1. The use of the defective part or material
2. The evaluation of the impact.

The above may be accomplished through the monthly submittal of Response to Alert/Safe Alert.
Parts and materials indicated as suspect in any GIDEP ALERT shall not be approved for use or listed on the PMPSL unless the indicated defects or failures have been corrected or identified and controlled.

4.6 MANAGEMENT OF PART AND MATERIAL APPLICATION

4.6.1 Electronic Part Derating

The PMPCB shall ensure the establishment of derating policies that meet system requirements. Derating policies shall address degradation sensitive parameters and maximum rated variations expected over the program mission life. Policies shall also include derating due to radiation effects, where applicable. The PMPCB shall also ensure that electronic parts used in new and modified design hardware meet the derating criteria specified in Appendix G. Exceptions to the derating requirements may be approved by the PMPCB if the worst case operating value exceeds the derated value specified in Appendix G by 20% or less. Derating exceptions approved by the PMPCB shall be documented on a PMPCB action form and forwarded to the Government PMPCB representatives for disposition. Use of electronic parts whose worst case operating values are greater than 20% above the applicable derated value shall require Government acquisition activity approval. The derating for items not explicitly covered in Appendix G shall be submitted to the PMPCB for review and approval. Following PMPCB approval, derating for these items shall be documented on a PMPCB action form and forwarded to the Government PMPCB representatives for disposition.

4.6.2 Radiation Hardness

The contractor, when explicitly required by contract, shall develop and conduct a radiation hardness assurance program in accordance with Appendix J for all radiation hardness critical parts and materials to meet the radiation hardness assurance requirements of the system. The hardness assurance program shall ensure:

1. Radiation environments for parts are specified.

2. Radiation hardness assurance requirements and appropriate test methods are identified and included in the appropriate procurement specifications.

3. Radiation hardness assurance representatives support the PMPCB, when necessary.

The radiation hardness assurance program plan shall be documented and referenced in the Parts, Materials, and Processes Control Program Plan. All radiation hardness assurance design documentation shall be provided to the PMPCB for review and approval prior to the Preliminary Design Review.
APPENDIX A.

MATERIAL AND PROCESS GUIDELINES AND REQUIREMENTS
3.3.4 Elastomeric Materials ... A-10
 3.3.4.1 Cured Elastomers ... A-10
 3.3.4.2 Uncured Elastomers .. A-10
 3.3.4.3 Silicone Elastomers .. A-11
3.3.5 Foamed Plastics .. A-11
3.3.6 Glass Fiber Reinforced Plastics .. A-11
3.3.7 Lubricant .. A-11
3.3.8 Adhesives, Sealants, and Coatings ... A-11
1. APPLICATION

The technical requirements of this appendix are divided into two sections; Section 2, compliance items, and Section 3, guidelines. The contractor shall comply with the requirements of Section 2. The contractor is encouraged to use the requirements specified in Section 3 as a guide in the selection of materials and processes used in new design components and modified design hardware.

2. REQUIREMENTS

2.1. PROCESS REQUIREMENTS

2.1.1 Product Fabrication Specification

The contractor shall establish manufacturing documentation which clearly designates each step of the manufacturing process which his production staff will be required to use in preparation of shop direction sheets. This documentation will also provide for and specify control of all incoming material, control of all in-shop handling, use in manufacturing of parts, shop environmental controls, quality control inspection procedures, identification of what to inspect and establishment of acceptable defect limits in each case. This practice will continue through the entire manufacturing process, including curing of the part, removal from tool, trimming, drilling for installation and final acceptance inspection.

2.1.2 Soldering

Soldering of piece parts to printed wiring boards shall be performed in accordance with the requirements of NASA-STD-8939.3, or J-STD-001, Class 3. MIL-S-46844 should be used as a guide for wave soldering applications.

2.1.3 Solderability

All electronic piece parts that require soldering shall be tinned prior to use. All piece parts with gold-plated leads that require soldering shall be double-dip tinned prior to use. A single 5 second dip in solder when using a flow solder source shall be acceptable in lieu of double-dip tinning. All terminals, solder cups, and other hardware that is gold-plated in the area to be soldered shall have the gold removed prior to use.

2.1.4 Component Mounting

Piece parts shall be mounted on printed wiring boards in accordance with the requirements of J-STD-001, Class 3. Stacking of components and placement of multiple leads in the same plated thru-hole are prohibited.
2.2. NON-METALLIC MATERIAL REQUIREMENTS

2.2.1 Outgassing

Organic/polymeric materials used in upper stage compartments which are not hermetically sealed with a maximum leakage of 5×10^{-4} cc/sec of helium, when tested in accordance with MIL-STD-1540, Method II, at a pressure of 1×10^{-5} Torr, shall have a maximum total mass loss (TML) of 1.0% of the original specimen mass and a maximum collected volatile condensable material (CVCM) content of 0.1% of the original specimen mass when tested in accordance with ASTM-E-595. Exceptions to these requirements shall be approved by the PMPCB.

2.2.2 Electrical Insulation

Vinyl and polyvinylchloride shall not be used as insulation on wiring or as sleeving because of their fungus nutrient characteristics and the dangers of outgassing during storage. These organics give off corrosive vapors which actively attack metals, plastics, elastomers, and insulation. Outgassing proceeds under normal room temperature conditions but is accelerated by high temperature or low pressure, and is most serious in closed containers. Satisfactory insulation includes Polytetrafluoroethane, FEP Teflon, Kel-F, Polyimide, Polyamide (nylon), Polyurethane, Polycarbonate, Polyethylene, Polyalkene, Polyethyleneterephthalate, Polyolefin, Polysulfone, and Silicone sleeving in all grades. Where materials other than these are required, fungus resistant classes shall be specified and their performance established by testing per MIL-STD-810. Caution must be exercised in the use of Teflon covered, silver plated copper wire because of possible corrosion at pin holes. Obtaining adhesion when potting or encapsulating teflon insulated wire is difficult. Teflon coated wire, both PTFE and FEP, may "cold flow" when installed under stress, against sharp edges, and in sharp bend configurations resulting in shorting failures. Use of unsupported Teflon insulated wire shall require PMPCB approval.

2.2.3 Tape

Tapes shall be selected which are both non-corrosive and within the outgassing requirements of paragraph 2.2.1.

2.2.4 Printed Wiring Boards

Printed Wiring Boards shall be designed, fabricated, and tested in accordance with the requirements of Appendix C of this document.

2.2.5 Conformal Coatings

Materials used to conformal coat PWBs shall be in accordance with requirements of MIL-I-46058.
3. **GUIDELINES**

3.1. **PROCESS GUIDELINES**

3.1.1 Fastener Installation

The installation of mechanical fasteners and associated parts should meet the requirements of MSFC-SPEC-250. Rivets should be installed in accordance with the requirements of MIL-STD-403.

3.1.2 Fracture Control

Program required fracture control plans and/or requirements shall be reviewed by the PMPCB for applicability to PMP specifications and inspections. MIL-STD-1522 should be used as a guide in the design and test of pressure vessels.

3.1.3 Adhesive Bonding

Structural bonding should meet the requirements of MIL-A-83377. Structural component bonds, except for high temperature nozzle bonds, shall be tested under simulated service conditions, using tag-end test specimens and/or co-processed samples when possible to demonstrate that the materials and processes selected will provide the desired properties for the entire life of the component. When thermal cycling testing is required, the rate of temperature change of the first three test cycles shall be equal to the expected rate of temperature change in service. Structural bonding procedures shall be available for PMPCB review upon request.

3.1.4 Welding

Resistance welding of electronic circuit modules should meet the requirements of AWS D17.2/D172M. Training and certification of personnel and machine qualification are required every six months, or as approved by the PMPCB. The design selection of parent materials and weld methods shall be based upon consideration of the weldments, including adjacent heat affected zones, as they affect the operational capability of the parts concerned. Welding procedures and supplies shall be selected to provide the required weld quality, to utilize the minimum weld energy input possible, and to protect the heated material from contaminants. The suitability of the equipment, processes, welding supplies and supplementary treatments selected shall be demonstrated through qualification testing of welded specimens which represent the materials and joint configuration of production parts. Welding operators should be qualified in accordance with AMS-STD-1595. The contractor shall provide the necessary training and qualification requirements to certify each operator and the applicable welding equipment for specific tasks required on critical space flight hardware such as pressure vessels, tubing, and other primary structural components. All welding processes in primary structural and pressure applications shall be available for PMPCB review upon request. The contractor training and certification requirements, including appropriate weld schedules and procedures, are subject to review and approval of the PMPCB.
3.1.4.1 **Weld Repair**

Weld repairs shall be minimized by discriminatory selection of acceptable methods, procedures, and specifications. Weld repair is limited to the repair of welding defects in a production weld as revealed by inspection. Weld repair does not include the correction of dimensional deficiencies by weld buildup or “buttering” of parts in areas where the design did not provide a welded joint. All weld repairs shall be fully documented to facilitate review. Documentation shall include, as a minimum, weld procedures and schedules, location of the repair, nature of the problem, and appropriate inspection requirements for acceptance. The quality of repair welds shall be confirmed by 100% inspection of both surface and subsurface, using visual, dimensional, and nondestructive radiography techniques, as applicable. The repair of welds in high performance or critical parts using nonstandard repair procedures is unacceptable unless reviewed and approved by the PMPCB.

3.1.4.2 **Weld Filler Metal**

Weld rod or wire used as filler metal on structural parts shall be fully certified and documented for composition, type, heat number, manufacturer/supplier, etc., as required to provide positive traceability to the end use item. In addition, qualitative analysis and nondestructive testing shall be conducted on segments of each filler or wire as necessary to assure that the correct filler metal is used on each specific critical welding task. Quantitative analyses of weld filler metal on a lot basis will be considered acceptable provided that each structural weldment is subjected to simulated service testing or proof loading prior to acceptance.

3.1.4.3 **Aluminum Welding**

The welding of aluminum alloys for high strength applications should meet the requirements of MSFC-SPEC-504. Alternate welding specifications are allowed only if sufficient data is available to substantiate that the specification is satisfactory for the intended application. Supporting data for the use of alternate welding specifications shall be available for review by the PMPCB upon request.

3.1.4.4 **Brazing**

Brazing should meet the requirements of AWS-C3.4, AWS-C3.5, AWS-C3.6 and AWS-C.7. Resistance and dip brazing shall meet the requirements of MIL-B-7883. Fusion welding operations in the vicinity of brazed joints or other operations involving high temperatures, which might affect the brazed joint, are prohibited. Brazed joints shall be designed for shear loading and shall not be relied upon for strength in tension for structural parts. Allowable shear strength and design limitations shall conform to those recommended in MIL-HDBK-5.
3.1.5 Forming and straightening

Forming and straightening operations performed on sheet metal, plate extrusions and forgings shall be limited to processes which:

1. Do not result in detrimental residual stresses or losses in mechanical properties on structurally critical parts.
2. Do not lead to stress corrosion sensitivity of the part.
3. Shot peen forming is permissible.

The contractor shall maintain adequate controls and supportive data which substantiate that the employed forming and straightening processes meet the foregoing requirements.

3.1.6 Forgings

Because mechanical properties are maximum in the direction of material flow during forging, forging techniques shall be used that produce an internal grain flow pattern such that the direction of flow in all stressed areas is essentially parallel to the principle tensile stresses. The grain flow pattern shall be essentially free from reentrant and sharply folded flow lines. After the forging technique, including degree of working, is established, the first production forging shall be sectioned to show the grain flow patterns and to determine mechanical properties at control areas. The procedure shall be repeated after any change in the forging technique. The information gained from this effort shall be utilized to redesign the forging as necessary. These data and results of tests on redesign shall be retained by the contractor and be available for PMPCB review.

3.1.7 Castings

Aluminum alloy castings for electronic boxes and other structural applications should meet the requirements of MIL-A-21180.

3.1.8 Sandwich Assemblies

Aluminum honeycomb core sandwich assemblies should use MIL-C-7438 perforated core. All sandwich assemblies shall be designed to prevent entrance and entrapment of water or other contaminants in the core structure. External venting or perforation which could allow moisture to enter shall not be used without the approval of the PMPCB. Sandwich assemblies should satisfy the requirements of MIL-HDBK-23. Test methods for sandwich constructions should be in accordance with MIL-STD-401. A non-metallic core may be used in structural applications where technically advantageous. Non-metallic structural sandwich assemblies shall be subjected to a special test program which will demonstrate the assemblies capability to withstand qualification environments.
3.2. **METALLIC MATERIAL GUIDELINES**

MMPDS, Government material specifications, or other widely accepted industry specifications shall be used as the basic document for defining strength allowables and other mechanical and physical properties for metallic materials. When data is not contained in any of the above referenced documents, contractor allowables developed in accordance with MIL-HDBK-5 may be used with approval of the PMPCB. The contractor shall meet the metallic materials requirements specified herein as a minimum.

3.2.1 Corrosion

3.2.1.1 Corrosion Prevention and Control

All parts, assemblies, and equipment, including spares, shall be finished to provide protection from corrosion. The contractor is encouraged to use MSFC-SPEC-250 as a guide. The contractor shall apply acceptable corrosion prevention and control measures and ensure that they are properly integrated during system definition, engineering development, design, production and operational phases.

3.2.1.2 Stress Corrosion

Some high strength 2000 and 7000 series aluminum alloys and high strength alloy steels are subject to stress corrosion cracking. As a general criteria, MSFC-SPEC-522 should be used as a guide for controlling stress corrosion cracking in design and material selection. Alloys and heat treatments which result in a high resistance to stress corrosion cracking shall be utilized in all structural load carrying applications. Particular emphasis shall be focused in the area of design, fabrication, and installation of parts to prevent the sustained surface tensile stresses from exceeding the stress corrosion threshold limitations for the particular material and grain-flow orientation. Stress corrosion threshold values are determined by actual testing as described in paragraph 3.2.1.2.3. Test results have indicated that stress corrosion can be avoided by following the guidelines specified in paragraphs 3.2.1.2.1 and 3.2.1.2.2.

3.2.1.2.1 Steel Alloys

The assembly stresses of low alloy steels, heat treated above 200 ksi UTS should not exceed the stress corrosion threshold limitation for the particular material and grain-flow orientation.

3.2.1.2.2 Aluminum Alloys

Aluminum alloys or tempers should not be used where the assembly stresses are greater than the stress corrosion threshold for that alloy, temper and grain-flow orientation. Alloys with a stress corrosion threshold, in any grain direction, less than 25 ksi are prohibited, except as specified for sheet material in paragraph 3.2.2.
3.2.1.2.3. Other Metals

For those materials which have no stress corrosion data or use history, the contractor shall develop and utilize threshold values similar to those listed above for other metals, based on the material’s ability to withstand exposure to alternate immersion tests in 3.5% sodium chloride solution (10 minute immersion and 50 minute drying time) for 180 days without cracking as detectable by Class AA ultrasonic inspection in conformance with SAE-AMS-STD-2154 or for 30 days without cracking as detectable by sectioning and metallographic examination or salt spray when tested un accordance with ASTM B 117 (168 hours for aluminum alloys and 336 hours for steel alloys) without cracking. This data shall be retained by the contractor and be available for PMPCB review.

3.2.2 Aluminum

In structural applications requiring the selection of aluminum alloys, maximum use shall be made of those alloys, heat treatments, and coatings which minimize susceptibility to pitting and general, intergranular and stress corrosion. Aluminum alloys 2020-T6, 7079-T6, and 7178-T6 shall not be used for structural applications unless specifically approved by the PMPCB. The use of 7075-T6, 2024-T3, 2024-T4, and 2014-T6 sheet (less than 0.25 inches thick) material is allowed only in the case where the short transverse loads (design, fitup, thermal, and residual) are below acceptable stress corrosion limits and that proven corrosion protection systems are provided. Other forms of 7075 shall be heat-treated to the -T73 temper. The following alloys and heat treatments shall not be used in applications where the temperature exceeds 150°F; 5083-H32, -H38; 5086-H34, -H38; and 5456-H32, -H38. Heat treatment of aluminum alloy piece parts should meet the requirements of AMS-2770. Use of heat treatments not included in AMS-2770 should require sufficient test data to conclusively prove that the specific heat treatment improves the mechanical and/or physical properties of specific aluminum alloys without altering susceptibility to degradation.

3.2.3 Steel

Special consideration shall be given when using high strength steels heat-treated at or above 180 ksi ultimate tensile strength (UTS). These steels are subject to delayed failure mechanisms, such as those caused by contaminating elements introduced during processing. Also, the effect of low temperature on reducing high strength steel toughness and ductility should be considered. Steels heat-treated to strength levels at or above 200 ksi UTS shall require specific approval of the PMPCB for the particular application.

Steel parts should be heat-treated to meet the requirements of SAE AMS-H-6875. All high strength steel parts heat-treated at or above 180 ksi UTS shall include appropriate test coupons or specimens from the same material as used in production parts, which will accompany the parts through the entire fabrication cycle to assure that desired properties are obtained. When acid cleaning baths or plating processes are used, parts shall be baked afterwards at 375°F for not less than 23 hours following such processes to alleviate potential hydrogen embrittlement problems. Heat treatments not included in
SAE AMS-H-6875 may be used if sufficient test data is available to conclusively prove that the heat treatment improves the mechanical and/or physical properties of the specific steel without altering susceptibility to degradation. This data shall be retained by the contractor and be available for review by the PMPCB upon request. Materials tempered at temperatures below 375°F shall require specific PMPCB approval.

The drilling of holes, including beveling and spot facing, in martensitic steel hardened to 180 ksi UTS or above shall be avoided. When such drilling, machining, reaming, or grinding is unavoidable, carbide tipped tooling and other techniques necessary to provide smooth surface finishes and avoid formation of untempered martensite shall be used. Microhardness and metallurgical examination of test specimens typical of the part shall be used to determine if martensite areas are formed as a result of drilling or grinding operations. The ends of the holes shall be deburred by a method which has been demonstrated to not cause untempered martensite. Either metallurgical testing or an etching procedure shall be used to determine the presence of untempered martensite.

3.2.4 Corrosion-Resistant Steel

Unstabilized austenitic steels may be used in assemblies where temperatures during processing do not exceed 700°F. Welded assemblies, except for the stabilized or low carbon grades 321, 347, 316L, and 304L, shall be solution heat treated after welding.

3.2.5 Precipitation Hardened Stainless Steel

All precipitation hardened steel parts shall be aged at temperatures of 1000°F and above. Exceptions may be made for particular applications for those steels, such as 17-7PH, which develop maximum resistance to stress corrosion with certain aging treatments below 1000°F. Precipitation hardened steels should also conform to the requirements specified in paragraph 3.2.1.2, Stress Corrosion.

3.2.6 Titanium

Most titanium alloys have limited hardenability with section size and should not be used in sections which exceed their specified hardenability limits. The variation of mechanical properties with section size as heat treated is shown in Table II of SAE AMS-T-9047. For candidate titanium alloys other than those listed in SAE AMS-T-9047, similar information shall be obtained by the contractor prior to final selection. This data shall be retained by the contractor and be available for PMPCB review upon request. The surfaces of titanium parts shall be machined or chemically milled to eliminate all contaminated zones formed during processing. Silver plated self-locking nuts may be used with titanium and titanium alloy bolts and screws in structural applications where operating temperatures will not exceed 600°F. Heat treatment of titanium and titanium alloy parts should meet the requirements of SAE AMS-H-81200.

Care shall be exercised to ensure that cleaning fluids and other chemicals used on titanium are not detrimental to performance. Surface contaminants which can induce stress corrosion, hydrogen embrittlement, or reduce fracture toughness include,
hydrochloric acid, cadmium, silver, chlorinated cutting oils and solvents, methyl alcohol, mercury, and components containing mercury. With the exception of silver plated nuts, the use of these substances on titanium is prohibited.

Since titanium alloys are susceptible to the reduction of fatigue life by fretting at interfaces between titanium alloys or titanium and other metal parts, structural applications of titanium shall be designed to avoid fretting.

3.2.7 Magnesium

Magnesium alloys shall not be used except in areas where minimal exposure to corrosive environments can be expected and high reliability protection systems can be maintained. Magnesium alloys shall not be used for primary structures, or in other areas subject to wear, abuse, foreign object damage, abrasion, erosion, or possible fluid or moisture entrapment.

3.2.8 Beryllium

Beryllium and beryllium alloys shall be restricted to applications in which their properties offer definite performance advantages. Additionally, the capability of beryllium parts to provide reliable service and predictable life must be demonstrated by preproduction tests under simulated service conditions, including any expected corrosive environments. Design of beryllium parts shall include consideration of its low impact resistance, the notch sensitivity, particularly at low temperatures, directional material properties (anisotropy), and sensitivity to surface finish requirements. Items containing beryllium and beryllium alloys shall be clearly marked as containing these materials, with a warning calling attention to the hazards of machining and handling beryllium.

3.2.9 Mercury

Mercury and many compounds containing mercury can cause accelerated stress cracking of aluminum and titanium alloys. The use of temperature sensing devices, electrical devices, and any other devices containing mercury shall be prohibited on installed equipment and in items used during fabrication of space flight structures and subsystems. Protected mercury vapor lamps used in the fluorescent penetrant inspection of flight parts are exempt from this requirement.

3.2.10 Other Metals

The contractor shall meet the requirements specified in his own internal Material Management Plan for metallic materials not specifically covered in this appendix.

3.3. NON-METALLIC MATERIAL GUIDELINES

3.3.1 Organic Resins

The organic matrix (binder, resin, plastic and matrix are interchangeable terms) of conventional or advanced composites can be thermoset or thermoplastic. A thermoset composite is processed to a product form by a chemical reaction known as cure.
curing reaction can be facilitated by heat and/or pressure, as in an autoclave cure, or by other means such as radio frequency or radiation exposure. A thermoplastic composite is physically processed to a product form by a softening transition at the melting temperature, with subsequent processing such as deformation forming or injection molding.

3.3.2 Conventional Composites

Glass fiber reinforced plastic materials usually find aerospace applications in radomes and primary and secondary structures. Glass fiber, either continuous or chopped, can be used to reinforce any number of various organic resins. The many aspects of materials and processes for conventional composites are discussed in MIL-HDBK-17, which should be used as a guide for the selection of conventional composites.

3.3.3 Advanced Composites

Advanced composites consist of an organic matrix reinforced by high modulus and/or high strength, relative to fiberglass, fibers. The fiber reinforcement takes the form of continuous unidirectional filaments, woven fabric, chopped fibers, etc. Fiber materials include boron, carbon, aromatic polyimide, etc. DOD/NASA Structural Composites Fabrication Guide should be used in the processing and production of advanced composite materials and structures. Guidance in the effective utilization of advanced composite materials and design concepts in aerospace structures can be found in the DOD/NASA Advanced Composites Design Guide, Vol I – Vol IV.

3.3.4 Elastomeric Materials

Elastomeric materials in contact with Hydrazine shall be restricted to AF-E-332 and AF-E-411 as defined by Air Force Materials Lab report TR71-59, Part II. Use of other elastomeric materials including insulation, liner, bladder and seal materials shall require the approval of the PMPCB. Elastomeric compounds shall have adequate resistance to aging, low temperature, ozone, heat aging, polymer reversion, working fluids, lubricants, and propellants to meet system requirements.

3.3.4.1 Cured Elastomers

Cured elastomers which are age sensitive should be controlled according to MIL-STD-1523. All cured elastomeric materials shall be cure dated either on the item itself or on the packaging. Cured elastomeric materials should be protected from sunlight, fuel, oil, water, dust, and ozone. The storage temperature should not exceed 100°F (38°C) and shall not exceed 125°F (55°C).

3.3.4.2 Uncured Elastomers

Materials which are procured in an uncured state, such as sealants and potting compounds, shall be held in controlled temperature storage with a temperature not to exceed 80°F (26°C) and appropriate humidity controls. Materials requiring reduced temperature storage should be avoided if possible because of the added burden of
reduced temperature storage and the likelihood that this storage temperature will not be maintained at all times. When chosen, materials requiring storage at reduced temperatures should be stored according to manufacturer recommendations. Maximum storage times shall be determined and controlled. Most polysulfide sealants can be stored for at least 9 months at less than 80°F (26°C) without suffering degradation which would make them unsuitable for use. If materials exceed their storage life, suitable tests shall be conducted to ensure the material is adequate for use.

3.3.4.3 Silicone Elastomers

Some one-part silicone products liberate acetic acid during cure. This includes commercial adhesives and sealants as well as those meeting MIL-A-46106. Since these materials can cause corrosion of electronic materials, these materials shall not be used to pot, seal, embed, or encapsulate and shall not be used on or near avionics, electronics, or electrical equipment. These materials have, however, performed well in many applications and may be used in applications other than electronic providing proper precautions are taken. When these products are used, processing should be in accordance with the requirements of MIL-A-46106.

There are one-part silicone sealants available which are non-corrosive. These materials liberate alcohol during cure and are covered by MIL-A-46146. These materials do not cure as quickly nor always adhere as well as the acetic acid liberating materials. It is suggested, however, that the alcohol liberating sealants be used in preference to the acetic acid liberating sealants. Appropriate laboratory testing should be performed in order to verify the adequacy of the material used.

3.3.5 Foamed Plastics

Foamed plastics shall not be used for metal skin reinforcement in structural components nor as a core material in sandwich structural components other than all plastic sandwich parts, low density filler putties, or syntactic foams.

3.3.6 Glass Fiber Reinforced Plastics

Glass fiber reinforced plastic parts should be designed using the guidelines of MIL-HDBK-17.

3.3.7 Lubricant

NASA SP-8063 should be used as a guide in the design and application of lubricants for space flight systems and components.

3.3.8 Adhesives, Sealants, and Coatings

Silicone adhesives and sealants subjected to cryogenic temperatures shall display secondary transition (glass transition) below -100°F. Silicon grease shall not be used as a thermal couplant except in sealed assemblies. The application of other adhesives, including high temperature bonding types, shall require PMPCB approval.
APPENDIX B.

MICROCIRCUIT, HYBRID, AND SEMICONDUCTOR UPSCREENING AND CUSTOM PROCESS REQUIREMENTS
SECTION I

MIL-PRF-38535 CLASS B MICROCIRCUIT UPSCREENING

TABLE B-1a

UPSCREENING (TEST 100%), TEST METHODS OF MIL-STD-883

<table>
<thead>
<tr>
<th>SCREEN</th>
<th>METHOD</th>
<th>REQUIREMENTS 1/</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Prescreen Electricals 3/ & 8/</td>
<td>5005</td>
<td>YLN of 2% 10/</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Optional but encouraged</td>
</tr>
<tr>
<td>2. Particle Impact Noise Detection (PIND)</td>
<td>2020</td>
<td>2/</td>
</tr>
<tr>
<td>3. Serialization</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>4. Radiography</td>
<td>2012</td>
<td>Optional</td>
</tr>
<tr>
<td>5. Pre-HTRB Electrical parameters 3/ & 8/</td>
<td></td>
<td>Read and record at +25°C</td>
</tr>
<tr>
<td>6. High Temperature Reverse Bias (HTRB) Burn-In 7/ & 9/</td>
<td>1015</td>
<td>Test condition A or C, 48 hours minimum at +150°C or the device maximum operating limit, whichever is lower</td>
</tr>
<tr>
<td>7. Post HTRB Electricals and deltas 3/ & 8/</td>
<td></td>
<td>Read and record at +25°C within 16 hours of removal from bias. Percent Defective Allowable: First Pass: 5% or 1, whichever is greater 5/ Second Pass: 3% or 1, whichever is greater 6/</td>
</tr>
<tr>
<td>8. Power Burn-In 9/</td>
<td>1015 4/</td>
<td>160 hours minimum at +125°C</td>
</tr>
<tr>
<td>9. Post Burn-In Electrical parameters and deltas 3/ & 8/</td>
<td></td>
<td>Read and record at +25°C within 96 hours of removal from bias. Percent Defective Allowable: First Pass: 5% or 1, whichever is greater 5/ Second Pass: 3% or 1, whichever is greater 6/</td>
</tr>
</tbody>
</table>
TABLE B-1a UPSCREENING (100%), TEST METHODS OF MIL-STD-883 (Continued)

<table>
<thead>
<tr>
<th>SCREEN</th>
<th>METHOD</th>
<th>REQUIREMENTS 1/</th>
</tr>
</thead>
</table>
| 10. Final Electricals 3/ & 8/
 a. Static Tests
 Subgroups 1, 2, and 3 of Table I, Method 5005
 b. Dynamic Tests
 Subgroups 4, 5, and 6
 - or -
 Subgroups 7 and 8 of Table I, Method 5005
 c. Switching Tests
 Subgroup 9 of Table I, Method 5005 | 5005 5005 5005 | All failures must be data logged
Electrical testing performed at step 9 does not need to be repeated |
| 11. Hermetic Seal
 a. Fine Leak
 b. Gross Leak | 1014 | Reject criteria per test method |
| 12. External Visual | 2009 | 100% |

NOTES:

1/ Except as stated below, the requirements shall be per Class S of the applicable MIL-M-38510 detail specifications.

2/ Test condition A, multiple pass criteria of MIL-STD-883, Method 2020

3/ Parameters as called out in MIL-STD-883, Method 5004 for Class S and:
 a. The Class S Slash sheet if released
 b. The Class B slash sheet if released
 c. The most similar Class S family device slash sheet if there is no detail Class S slash sheet
 d. The most similar Class B family device slash sheet if there is no detail Class B slash sheet

5/ The lot may be automatically resubmitted to a second Power Burn-in or HTRB one-time only without MRB approval if the PDA does not exceed 20%. A PDA of greater than 20% shall require lot rejection.

6/ A PDA of greater than 3% on the Power Burn-in or HTRB re-submittal shall require lot rejection.

7/ HTRB shall be performed when specified in the applicable MIL-M-38510 detail slash sheet, as determined in 3/ above, and for certain MOS, linear, and other microcircuits where surface sensitivity is of concern.

8/ Two correlation samples shall be used to verify functionality of all Automatic Test Equipment (ATE) and bench testing equipment. Correlation units shall be tested prior to any electrical testing. All parameters specified in the applicable detail slash sheet, as determined in note 3/ above, shall be read and recorded. If correlation units are not available, they may be removed from the lot being processed. Correlation units shall be controlled by the contractor for future upgrade screening.

9/ The order in which Power Burn-In and HTRB are performed may be switched at the contractor’s option.

10/ Perform Group A, Subgroups 1 and 7. This test is designed to evaluate lots for continued upscreening or return to the vendor. A yield loss notification (YLN) of 2% should be imposed as a flag for PMPCB review and disposition.
TABLE B-1b

LOT ACCEPTANCE TESTING, (SAMPLE AS SPECIFIED) TEST METHODS OF MIL-STD-883

<table>
<thead>
<tr>
<th>SUBGROUP</th>
<th>METHOD</th>
<th>REQUIREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subgroup 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b) Internal Gas Analysis</td>
<td>5/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1018</td>
<td>Device samples as called out below:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Three (3) devices sampled with zero (0) failures or five (5) devices sampled with one (1) failure 5,000 ppm maximum water content at +100°C</td>
</tr>
<tr>
<td>Subgroup 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a) Electrical measurements</td>
<td>1/ & 2/</td>
<td></td>
</tr>
<tr>
<td>a. Subgroups 1, 2, and 3 of</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Table I, Method 5005</td>
<td>5005</td>
<td>LTPD = 10 (ten) over subgroup 5 9/</td>
</tr>
<tr>
<td>(b) Steady State Life</td>
<td>4/ & 10/</td>
<td></td>
</tr>
<tr>
<td>(c) Electrical measurements and deltas</td>
<td>1/ & 2/</td>
<td></td>
</tr>
<tr>
<td>a. Subgroups 1, 2, and 3 of</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Table I, Method 5005</td>
<td>1005</td>
<td>Read and record 8/</td>
</tr>
<tr>
<td></td>
<td>5005</td>
<td></td>
</tr>
<tr>
<td>Subgroup 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b) Temperature Cycling</td>
<td>3/</td>
<td>LTPD = 15 (fifteen) over subgroup 6 9/</td>
</tr>
<tr>
<td>(c) Constant Acceleration</td>
<td>6/</td>
<td>Condition C, 100 cycles minimum</td>
</tr>
<tr>
<td>(d) Hermetic Seal - Fine and Gross Leak</td>
<td>7/</td>
<td>Test condition E, Y1 orientation only</td>
</tr>
<tr>
<td>(e) Electrical measurements</td>
<td>1/ & 2/ & 7/</td>
<td>Reject criteria per test method</td>
</tr>
<tr>
<td>a. Subgroup 1 of</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Table I, Method 5005</td>
<td>1010</td>
<td>Read and record 9/</td>
</tr>
<tr>
<td></td>
<td>2001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1014</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5005</td>
<td></td>
</tr>
</tbody>
</table>

NOTES:

1/ Parameters as called out in MIL-STD-883, Method 5005 and:
- a. The Class S slash sheet if released
- b. The Class B slash sheet if released
- c. The most similar Class S family device slash sheet if there is no detail Class S slash sheet
- d. The most similar Class B family device slash sheet if there is no detail Class B slash sheet.
NOTES: (Continued)

2/ Two correlation samples shall be used to verify functionality of all Automatic Test Equipment (ATE) and bench testing equipment. Correlation units shall be tested prior to any electrical testing. All parameters specified in the applicable detail slash sheet, as determined in note 1/ above, shall be read and recorded. If correlation units are not available, they may be removed from the lot being processed. Correlation units shall be controlled by the contractor for future upgrade screening.

3/ Temperature cycling may be performed as part of 100% testing with ten (10) thermal cycles performed to Test Condition C of MIL-STD-883, Method 1010.

4/ A 340 hour intermittent operating life test per MIL-STD-883, Method 1006, and the applicable slash sheet may be performed in lieu of steady state life.

5/ Internal gas analysis may be performed as part of the DPA.

6/ Constant acceleration may be performed as part of 100% testing. If performed as part of 100% testing, constant acceleration shall be performed prior to seal leak testing.

7/ Seal leak and electrical testing need not be performed if thermal cycling and constant acceleration are performed as part of 100% screening.

8/ Life test samples tested at temperatures below the maximum specified junction temperature, meeting all specified acceptance criteria, and not subjected to the destructive testing of Subgroup 1, test (b), Internal gas analysis and/or Subgroup 6, test (a), Temperature cycling may be used in flight hardware with PMPCB approval.

9/ Reference Appendix H for the number of samples required for each specified LTPD. Resubmission of a failed lot shall be permitted one time only. The resubmission sample size shall be the sample size called out in the next lower LTPD for the number of failures experienced during the first submission with zero additional failures or larger sample sizes at the same lower LTPD with total failures between the first and second submission as specified. Parts passing the first test shall not be included in the resubmission sample without PMPCB approval.

10/ Test condition as specified in the applicable detailed slash sheet as determined in note 1/ above. Test Conditions A, B, C, and F of Method 1005 shall not apply.

11/ Post burn-In electrical rejects from the same inspection lot may be used for all subgroups when end-point measurements are not required.
TABLE B-1c
DESTRUCTIVE PHYSICAL ANALYSIS (DPA)

<table>
<thead>
<tr>
<th>DPA per MIL-STD-1580 1/ or approved procedure</th>
<th>Sample size per paragraph 4.5.5.1b. All anomalies shall be dispositioned as acceptable or rejectable.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal Gas Analysis 2/</td>
<td>Per MIL-STD-883, Method 1018 Three (3) devices sampled with zero (0) failures or five (5) devices sampled with one (1) failure 5,000 ppm maximum water content at +100°C</td>
</tr>
</tbody>
</table>

NOTES:
1/ DPA may be performed anytime after part receipt.
2/ Internal gas analysis may be performed as part of Lot Acceptance Testing.
TABLE B-2a

UPSCREENING (TEST 100%), TEST METHODS OF MIL-STD-883

<table>
<thead>
<tr>
<th>SCREEN</th>
<th>METHOD</th>
<th>REQUIREMENTS 1/</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Prescreen Electricals 3/ & 7/</td>
<td>5005</td>
<td>YLN of 2% 8/ Optional but encouraged</td>
</tr>
<tr>
<td>2. Particle Impact Noise Detection (PIND)</td>
<td>2020</td>
<td>2/</td>
</tr>
<tr>
<td>3. Serialization</td>
<td></td>
<td>100%</td>
</tr>
<tr>
<td>4. Radiography</td>
<td>2012</td>
<td>Two (2) views</td>
</tr>
<tr>
<td>5. Pre Burn-In Electrical parameters 3/ & 7/</td>
<td></td>
<td>Read and record at +25°C</td>
</tr>
<tr>
<td>6. Power Burn-In 4/</td>
<td>1015</td>
<td>160 hours at +125°C</td>
</tr>
<tr>
<td>7. Post Burn-In Electricals and deltas 3/ & 7/</td>
<td></td>
<td>Read and record at +25°C within 96 hours of removal from bias. Percent Defective Allowable: First Pass: 2% or 1, whichever is greater 5/ Second Pass: 1.5% or 1, whichever is greater 6/</td>
</tr>
</tbody>
</table>
TABLE B-2a UPSCREENING (TEST 100%), TEST METHODS OF MIL-STD-883 (Continued)

<table>
<thead>
<tr>
<th>SCREEN</th>
<th>METHOD</th>
<th>REQUIREMENTS 1/</th>
</tr>
</thead>
</table>
| 8. Final Electricals 3/ & 7/ | MIL-PRF-38534 | All failures must be data logged
Electrical testing performed at step 7 does not need to be repeated |
| a. Static Tests | MIL-PRF-38534 |
Subgroups 1, 2, and 3 of
Table C-Xa, MIL-PRF-38534 |
| b. Dynamic Tests | MIL-PRF-38534 |
Subgroups 4, 5, and 6 of
Table C-Xa, MIL-PRF-38534
- or -
Functional Tests
Subgroups 7 and 8 of
Table C-Xa, MIL-PRF-38534 |
| c. Switching Tests | MIL-PRF-38534 |
Subgroups 9, 10, and 11 of
Table C-Xa, MIL-PRF-38534 |
| 9. Hermetic Seal | 1014 | Reject criteria per test method |
| a. Fine Leak | | |
| b. Gross Leak | | |
| 10. External Visual | 2009 | 100% |

NOTES:

1/ Except as stated below, the requirements shall be per Class K of applicable MIL-PRF-38534 detail specifications.

2/ Test condition A, multiple pass criteria of MIL-STD-883, Method 2020

3/ Parameters as called out in MIL-PRF-38534 for Class K and:

a. The Class K slash sheet if released
b. The Class H slash sheet if released
c. The most similar Class K family device slash sheet if there is no detail Class K slash sheet.
d. The most similar Class H family device slash sheet if there is no detail Class H slash sheet.

4/ Test condition as specified in the applicable detailed slash sheet as determined in note 3/ above.
Test conditions A, B, C, and F of Method 1015 shall not apply.

5/ The lot may be automatically resubmitted to a second power burn-in one-time only without the necessity for MRB approval if the PDA does not exceed 10%. A PDA of greater than 10% shall require lot rejection.
NOTES: (Continued)

6/ A PDA of greater than 1.5% on the Power Burn-in resubmittal shall require lot rejection.

7/ Two correlation samples shall be used to verify functionality of all Automatic Test Equipment (ATE) and bench testing equipment. Correlation units shall be tested prior to any electrical testing. All parameters specified in the applicable detail slash sheet, as determined in note 3/ above, shall be read and recorded. If correlation units are not available, they may be removed from the lot being processed. Correlation units shall be controlled by the contractor for future upgrade screening.

8/ Perform Group A, Subgroups 1 and 4. This test is designed to evaluate lots for continued upscreening or return to the vendor. A yield loss notification (YLN) of 2% should be imposed as a flag for PMPCB review and disposition.
TABLE B-2b
LOT ACCEPTANCE TESTING, (SAMPLE AS SPECIFIED) TEST METHODS OF MIL-STD-883

<table>
<thead>
<tr>
<th>SUBGROUP</th>
<th>METHOD</th>
<th>REQUIREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subgroup 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b) Internal Gas Analysis 5/</td>
<td>1018</td>
<td>Device samples as called out below:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Three (3) devices sampled with zero (0) failures or five (5) devices sampled with one (1) failure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5,000 ppm maximum water content at +100°C</td>
</tr>
<tr>
<td>Subgroup 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a) Electrical measurements 1/ & 2/</td>
<td>MIL-PRF-38534</td>
<td>Fifteen (15) devices sampled with zero (0) failures 5/ & 6/</td>
</tr>
<tr>
<td></td>
<td>a. Subgroups 1, 2, and 3 of Table C-Xa, MIL-PRF-38534</td>
<td>Read and record</td>
</tr>
<tr>
<td></td>
<td>(b) Steady State Life 3/ & 10/</td>
<td>1000 hours minimum at +125°C</td>
</tr>
<tr>
<td></td>
<td>(c) Electrical measurements and deltas 1/ & 2/</td>
<td>Read and record 5/</td>
</tr>
<tr>
<td></td>
<td>a. Subgroups 1, 2, and 3 of Table C-Xa, MIL-PRF-38534</td>
<td></td>
</tr>
<tr>
<td>Subgroup 6</td>
<td></td>
<td>Fifteen (15) devices sampled with zero (0) failures 6/</td>
</tr>
<tr>
<td>(b) Temperature Cycling 7/</td>
<td>1010 2001 1014</td>
<td>Condition C, twenty (20) cycles minimum</td>
</tr>
<tr>
<td>(c) Constant Acceleration 8/</td>
<td>MIL-PRF-38534</td>
<td>Y1 orientation only</td>
</tr>
<tr>
<td>(d) Hermetic Seal - Fine and Gross Leak 9/</td>
<td></td>
<td>Reject criteria per test method</td>
</tr>
<tr>
<td>(e) Electrical measurements 1/ and 2/</td>
<td>MIL-PRF-38534</td>
<td>Read and record</td>
</tr>
<tr>
<td>a. Subgroups 1, 2, and 3 of Table C-Xa, MIL-PRF-38534</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES:

1/ Parameters as called out in MIL-STD-883, Method 5008 for Class K and:
 a. The Class K slash sheet if released
 b. The Class H slash sheet if released
 c. The most similar Class K family device slash sheet if there is no detail Class K slash sheet
 d. The most similar Class H family device slash sheet if there is no detail Class H slash sheet.
NOTES: (Continued)

2/ Two correlation samples shall be used to verify functionality of all Automatic Test Equipment (ATE) and bench testing equipment. Correlation units shall be tested prior to any electrical testing. All parameters specified in the applicable detail slash sheet, as determined in note 1/ above, shall be read and recorded. If correlation units are not available, they may be removed from the lot being processed. Correlation units shall be controlled by the contractor for future upgrade screening.

3/ A 340 hour intermittent operating life test per MIL-STD-883, Method 1006 and the applicable slash sheet may be performed in lieu of steady state life.

4/ Internal gas analysis may be performed as part of the DPA.

5/ Life test samples tested at temperatures below the maximum specified junction temperature, meeting all acceptance criteria, and not subjected to the destructive testing of Subgroup 1, test (b), Internal gas analysis, and/or Subgroup 3, test (b), temperature cycling may be used in flight hardware with PMPCB approval.

6/ Resubmission of a failed lot shall be permitted one time only using double the sample size with zero failures allowed. Parts passing the first test shall not be included in the resubmission sample without PMPCB approval.

7/ Temperature cycling may be performed as part of 100% testing with ten (10) thermal cycles performed to Test Condition C of MIL-STD-883, Method 1010.

8/ Constant acceleration may be performed as part of 100% testing. If performed as part of 100% testing, constant acceleration shall be performed prior to seal leak testing.

9/ Seal leak and electrical testing need not be performed if thermal cycling and constant acceleration are performed as part of 100% screening.

10/ Test condition as specified in the applicable detailed slash sheet as determined in note 1/ above. Test Conditions A, B, C, and F of Method 1005 shall not apply.

11/ Post burn-in electrical rejects from the same inspection lot may be used for all subgroups when end-point measurements are not required.
TABLE B-2c
Destructive Physical Analysis (DPA)

| DPA per MIL-STD-1580 | Sample size per paragraph 4.5.5.1b.
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>or approved procedure</td>
<td>All anomalies shall be dispositioned as acceptable or rejectable.</td>
</tr>
</tbody>
</table>

Internal Gas Analysis	Per MIL-STD-883, Method 1018
	Three (3) devices sampled with zero (0) failures or five (5) devices sampled with one (1) failure
	5,000 ppm maximum water content at +100°C

NOTES:

1/ DPA may be performed anytime after part receipt.

2/ Internal gas analysis may be performed as part of Lot Acceptance Testing.
SECTION III

MIL-PRF-19500 JANTXV TRANSISTOR AND DIODE UPSCREENING

TABLE B-3a

UPSCREENING (TEST 100%), TEST METHODS OF MIL-STD-750

<table>
<thead>
<tr>
<th>SCREEN</th>
<th>METHOD</th>
<th>REQUIREMENTS 1/</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Prescreen Electricals 3/ & 9/</td>
<td></td>
<td>YLN of 2% 11/ Optional but encouraged</td>
</tr>
<tr>
<td>2. Particle Impact Noise Detection (PIND) 6/</td>
<td>2052</td>
<td>2/</td>
</tr>
<tr>
<td>3. Serialization</td>
<td></td>
<td>100%</td>
</tr>
<tr>
<td>4. Pre HTRB Electrical parameters 3/ & 9/</td>
<td></td>
<td>Read and record at +25°C</td>
</tr>
<tr>
<td>5. High Temperature Reverse Bias Burn-In 10/ & 12/</td>
<td>1039 1038</td>
<td>48 hours minimum at +150°C or the devices maximum operating limit, whichever is lower and at the minimum applied voltage as follows: Transistor - 80% of rated V_C (bipolar) or V_GS (FET and MFET) Diodes (except zeners of 10 volts or less) and rectifiers - rated < 10 amps at T_C > +100°C - 80% of rated V_B</td>
</tr>
<tr>
<td>Reverse Bias Burn-in (for bipolar Transistors)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse Bias Burn-in (for Diodes and Rectifiers)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Interim Electricals and deltas 3/ & 9/</td>
<td></td>
<td>Read and record at +25°C within 16 hours of removal of bias. Percent Defective Allowable: First Pass: 5% or 1, whichever is greater 4/ Second Pass: 3% or 1, whichever is greater 5/</td>
</tr>
<tr>
<td>7. Power Burn-In 13/</td>
<td>1039 1038</td>
<td>160 hours minimum per the applicable slash sheet</td>
</tr>
<tr>
<td>Burn-In (for Transistors)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burn-In (for Diodes and Rectifiers)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE B-3a UPSCREENING (TEST 100%), TEST METHODS OF MIL-STD-750 (Continued)

<table>
<thead>
<tr>
<th>SCREEN</th>
<th>METHOD</th>
<th>REQUIREMENTS 1/</th>
</tr>
</thead>
</table>
| 8. Post Burn-in Electrical parameters and deltas 3/ & 9/ | read and record at +25°C within 96 hours of removal of bias
Percent Defective Allowable:
First Pass: 5% or 1, whichever is greater 4/
Second Pass: 3% or 1, whichever is greater 5/ | |
MIL-PRF-19500 | All failures must be data logged
Electrical testing performed at step 8 does not need to be repeated.
MIL-PRF-19500
MIL-PRF-19500 |
| a. Static Tests
Subgroups 2 and 3 of Table E-V of MIL-PRF-19500
b. Dynamic Tests
Subgroups 4 and 7 of Table E-V of MIL-PRF-19500 |
MIL-PRF-19500
MIL-PRF-19500 |
MIL-PRF-19500
MIL-PRF-19500 |
| 10. Radiography | 2076 | Optional |
| 11. Hermetic Seal
a. Fine Leak
b. Gross Leak | 1071 | Reject criteria per test method |
| 12. External Visual | 2071 | 100% |

NOTES:

1/ Except as stated below, the requirements shall be per the JANS requirements of the applicable MIL-PRF-19500 detail specifications.

2/ Test condition A, multiple pass criteria of MIL-PRF-19500

3/ Parameters as called out in MIL-PRF-19500, Table II, JANS Requirements and:
 a. The JANS slash sheet if released
 b. The JANTXV slash sheet if released
 c. The most similar JANS family device slash sheet if there is no detail JANS slash sheet
 d. The most similar JANTXV family device slash sheet if there is no detail JANTXV slash sheet.
NOTES: (Continued)

4/ The lot may be automatically resubmitted to a second Power Burn-in or HTRB one-time only without the necessity for MRB approval if the PDA does not exceed 20%. A PDA of greater than 20% shall require lot rejection.

5/ A PDA of greater than 3% on the power burn-in or HTRB resubmittal shall require lot rejection.

6/ For all devices with an internal cavity

7/ Omit this test for painted glass diodes.

8/ Omit this test for metallurgically bonded, double plug diodes.

9/ Two correlation samples shall be used to verify functionality of all Automatic Test Equipment (ATE) and bench testing equipment. Correlation units shall be tested prior to any electrical testing. All parameters specified in the applicable detail slash sheet, as determined in note 1/ above, shall be read and recorded. If correlation units are not available, they may be removed from the lot being processed. Correlation units shall be controlled by the contractor for future upgrade screening.

10/ The order in which Power Burn-in and HTRB are performed may be switched at the contractor's option.

11/ Perform Group A, Subgroups 2 and 4. This test is designed to evaluate lots for continued upscreensing or return to the vendor. A yield loss notification (YLN) of 2% should be imposed as a flag for PMPCB review and disposition.

12/ Test Condition A of the appropriate test method shall apply.

13/ Test Condition B of the appropriate test method shall apply.
TABLE B-3b

LOT ACCEPTANCE TESTING, (SAMPLE AS SPECIFIED) TEST METHODS OF MIL-STD-750

<table>
<thead>
<tr>
<th>SUBGROUP</th>
<th>METHOD</th>
<th>REQUIREMENTS</th>
</tr>
</thead>
</table>
| Subgroup 1 | 1018 | Device samples as called out below:
Three (3) devices sampled with zero (0) failures
or five (5) devices sampled with one (1) failure
On cavity devices only
5000 ppm maximum water content at +100°C |
| | | (b) Internal Gas Analysis 4/ |
| Subgroup 3 | 1051 | LTPD = 15 (fifteen) over subgroup 3 8/ |
| | | (a) Temperature Cycling 3/ |
| | | (b) Constant Acceleration 5/ & 9/ |
| | | (c) Hermetic Seal - Fine and Gross Leak 6/ |
| | | (d) Electrical measurements 1/, 2/ & 6/
a. Subgroup 2 of
Table E-V of MIL-PRF-19500
Y₁ orientation only
Reject criteria per test method
Read and record |
| | 2006 | Condition C, 100 cycles minimum |
| | 1071 | |
| Subgroup 4 | MIL-PRF-19500 | LTPD = 10 (ten) over subgroup 4 8/ |
| | 1037 | Read and record |
| | MIL-PRF-19500 | 340 hours per the applicable slash sheet
Read and record |
| | | (a) Electrical measurements 1/ & 2/
a. Subgroups 2 and 3 of
Table E-V of MIL-PRF-19500
(b) Intermittent Operating Life
(c) Electrical measurements and deltas 1/ & 2/
a. Subgroups 2 and 3 of
Table E-V of MIL-PRF-19500 |

NOTES:
1/ Parameters as called out in MIL-PRF-19500, Table E-V and:
a. The JANS slash sheet if released
b. The JANTXV slash sheet if released
c. The most similar JANS family device slash sheet if there is no detail JANS slash sheet
d. The most similar JANTXV family device slash sheet if there is no detail JANTXV slash sheet.
NOTES: (Continued)

2/ Two correlation samples shall be used to verify functionality of all Automatic Test Equipment (ATE) and bench testing equipment. Correlation units shall be tested prior to any electrical testing. All parameters specified in the applicable detail slash sheet, as determined in note 1/ above, shall be read and recorded. If correlation units are not available, they may be removed from the lot being processed. Correlation units shall be controlled by the contractor for future upgrade screening.

3/ Temperature cycling may be performed as part of 100% testing with 20 thermal cycles performed to Test Condition C of MIL-STD-750, Method 1051.

4/ Internal gas analysis may be performed as part of the DPA.

5/ Constant acceleration may be performed as part of 100% screening. If constant acceleration is performed as part of 100% screening, it shall be performed prior to seal leak testing.

6/ Seal leak and electrical testing need not be performed if temperature cycling and constant acceleration are performed as part of 100% screening.

7/ Life test samples tested at temperatures below the maximum specified junction temperature, meeting all acceptance criteria, and not submitted to the destructive testing of Subgroup 1, test (a), Internal gas analysis, or Subgroup 3, test (a), temperature cycling may be used in flight hardware with PMPCB approval.

8/ Reference Appendix H for the number of samples required for each specified LTPD. Resubmission of a failed lot shall be permitted one time only. The resubmission sample size shall be the sample size called out in the next lower LTPD for the number of failures experienced during the first submission with zero additional failures or larger sample sizes at the same lower LTPD with total failures between the first and second submission as specified. Parts passing the first test shall not be included in the resubmission sample without PMPCB approval.

9/ Omit this test for non-cavity devices.
TABLE B-3c
Destructive Physical Analysis (DPA)

| DPA per MIL-STD-1580 1/ or approved procedure | Sample size per paragraph 4.5.5.1b.
All anomalies shall be dispositioned as acceptable or rejectable. |
|---|---|
| Internal Gas Analysis 2/ | Per MIL-STD-883, Method 1018
Three (3) devices sampled with zero (0) failures or five (5) devices sampled with one (1) failure
5,000 ppm maximum water content at +100°C |

NOTES:
1/ DPA may be performed anytime after part receipt.
2/ Internal gas analysis may be performed as part of Lot Acceptance Testing.
3/ Do not perform on glass body or double plug solid construction diodes.
SECTION IV

MICROCIRCUIT CUSTOM REQUIREMENTS

TABLE B-4a

PROCESSING PER MIL-M-38510, CLASS S REQUIREMENTS (EXCEPT AS NOTED)

<table>
<thead>
<tr>
<th>PROCESS</th>
<th>REQUIREMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Manufacturing Baseline</td>
<td></td>
</tr>
<tr>
<td>a. Process Specifications</td>
<td>As approved by the contractor acquisition activity. Process revision level shall be under the purchaser’s configuration control.</td>
</tr>
<tr>
<td>b. Lot Traveler</td>
<td>Per MIL-M-38510 for Class S devices. The lot traveler shall be approved by the contractor acquisition activity. Process revision level shall be under the purchaser’s configuration control.</td>
</tr>
<tr>
<td>c. As-built Construction Analysis</td>
<td>Decap internal visual. Visual criteria in accordance with qualified design. One (1) device for each lot.</td>
</tr>
<tr>
<td>d. 4 Wafer Lots per Date Code maximum</td>
<td>Per MIL-M-38510 for Class S devices.</td>
</tr>
<tr>
<td>e. Wafer Traceability</td>
<td></td>
</tr>
<tr>
<td>2. Rework</td>
<td>Per MIL-M-38510 for Class S devices Delidding is permitted only with the approval of the PMPCB</td>
</tr>
<tr>
<td>3. Design & Construction</td>
<td>Per MIL-M-38510 for Class S devices</td>
</tr>
<tr>
<td>4. Processing Surveillance</td>
<td>In-process testing monitored by the contractor acquisition activity.</td>
</tr>
<tr>
<td>a. Wafer Acceptance (SEM)</td>
<td>Per MIL-STD-883, Method 5007</td>
</tr>
<tr>
<td>b. Die Shear</td>
<td>Per MIL-STD-883, Method 2019 for the applicable die size</td>
</tr>
<tr>
<td>c. Bond Pull</td>
<td>Per MIL-STD-883, Method 2023 1/ Lot failure criteria of MIL-M-38510</td>
</tr>
<tr>
<td>d. Pre-cap Visual Inspection</td>
<td>Per MIL-STD-883, Method 2010, Condition A, 100%</td>
</tr>
</tbody>
</table>

NOTES:

1/ When an automatic bonder in used, sample destructive bond pull may be performed in lieu of 100% nondestructive bond pull. Sample destructive bond pull shall be per the following requirements:

 a. MIL-STD-883, Method 2011, failure criteria of Method 2011, Table I

 b. Perform 100% destructive bond pull on three devices at the beginning and end of each shift and after any interruptions greater than 15 minutes in the production flow.

 c. Perform 100% destructive bond pull on three devices every two hours. The three devices shall be randomly selected from the prior two hour production period. Acceptance of product bonded during the prior two hour period shall be contingent upon this three piece sample passing the criteria of Method 2011.
TABLE B-4b

SCREENING (TEST 100%), TEST METHODS OF MIL-STD-883

<table>
<thead>
<tr>
<th>SCREEN</th>
<th>METHOD</th>
<th>REQUIREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Temperature Cycling</td>
<td>1010</td>
<td>Ten (10) cycles to Condition C</td>
</tr>
<tr>
<td>2. Constant Acceleration</td>
<td>2001</td>
<td>Test Condition E, Y₁ orientation only</td>
</tr>
<tr>
<td>3. Particle Impact Noise Detection (PIND)</td>
<td>2020</td>
<td>2/</td>
</tr>
<tr>
<td>4. Serialization</td>
<td></td>
<td>100%</td>
</tr>
<tr>
<td>5. Radiography</td>
<td>2012</td>
<td>Optional</td>
</tr>
<tr>
<td>6. Pre Burn-In Electrical parameters</td>
<td>3/ & 8/</td>
<td>Read and record at +25°C</td>
</tr>
<tr>
<td>7. Power Burn-In</td>
<td>1015 4/</td>
<td>240 hours minimum at +125°C</td>
</tr>
<tr>
<td>8. Interim (post Burn-In) Electrical parameters and deltas</td>
<td>3/ & 8/</td>
<td>Read and record at +25°C within 96 hours of removal from bias.

 Percent Defective Allowable:
 First Pass: 5% or 1, whichever is greater 5/
 Second Pass: 3% or 1, whichever is greater 6/</td>
</tr>
<tr>
<td>9. High Temperature Reverse Bias (HTRB) Burn-In</td>
<td>1015</td>
<td>Test condition A or C, 72 hours minimum at +150°C or the device maximum operating limit, whichever is lower.</td>
</tr>
<tr>
<td>10. Post HTRB Electricals and deltas</td>
<td>3/ & 8/</td>
<td>Read and record at +25°C within 16 hours of removal from bias.

 Percent Defective Allowable:
 First Pass: 5% or 1, whichever is greater 5/
 Second Pass: 3% or 1, whichever is greater 6/</td>
</tr>
<tr>
<td>SCREEN</td>
<td>METHOD</td>
<td>REQUIREMENTS 1/</td>
</tr>
<tr>
<td>------------------------</td>
<td>--------</td>
<td>----------------</td>
</tr>
<tr>
<td>11. Final Electricals 3/ & 8/</td>
<td></td>
<td>Read and record Electrical testing performed in step 10 need not be repeated.</td>
</tr>
<tr>
<td>a. Static Tests</td>
<td>5005</td>
<td></td>
</tr>
<tr>
<td>Subgroups 1, 2, and 3 of Table I, Method 5005</td>
<td>5005</td>
<td></td>
</tr>
<tr>
<td>b. Dynamic/Functional Tests</td>
<td>5005</td>
<td></td>
</tr>
<tr>
<td>Subgroups 4, 5, and 6 - or - Subgroups 7 & 8 of Table I, Method 5005</td>
<td>5005</td>
<td></td>
</tr>
<tr>
<td>c. Switching Tests</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subgroup 9 of Table I, Method 5005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Hermetic Seal</td>
<td>1014</td>
<td>Reject criteria per test method</td>
</tr>
<tr>
<td>a. Fine Leak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Gross Leak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. External Visual</td>
<td>2009</td>
<td>100%</td>
</tr>
</tbody>
</table>

NOTES:

1/ Except as stated below, the requirements shall be per Class S of the applicable MIL-M-38510 detail specifications.
2/ Test Condition A, multiple pass criteria of MIL-STD-883, Method 2020
3/ Parameters as called out in MIL-STD-883, Method 5004 for Class S devices and the most similar Class S family device slash sheet if there is no detail Class S slash sheet or the most similar Class B family device slash sheet if there is no similar Class S family device slash sheet.
5/ The lot may be automatically resubmitted to a second Power Burn-in or HTRB one-time only without the necessity for MRB approval if the PDA does not exceed 20%. A PDA of greater than 20% shall require lot rejection.
6/ A PDA of greater than 3% on the Power Burn-in or HTRB resubmittal shall require lot rejection.
7/ HTRB shall be performed when specified in the applicable MIL-M-38510 detail slash sheet, as determined in note 3/ above, and for certain MOS, linear, and other microcircuits where surface sensitivity is of concern.
8/ Two correlation samples shall be used to verify functionality of all Automatic Test Equipment (ATE) and bench testing equipment. Correlation units shall be tested prior to any electrical testing. All parameters specified in the applicable detail slash sheet, as determined in note 3/ above, shall be read and recorded. If correlation units are not available, they may be removed from the lot being processed. Correlation units shall be controlled by the contractor for future screening.
TABLE B-4c
LOT ACCEPTANCE TESTING, (SAMPLE AS SPECIFIED) TEST METHODS OF MIL-STD-883

<table>
<thead>
<tr>
<th>SUBGROUP</th>
<th>METHOD</th>
<th>REQUIREMENTS 7/ & 9/</th>
</tr>
</thead>
</table>
| Subgroup 1 | 2016 1018 | Two (2) samples, zero (0) failures
Three (3) samples, zero (0) failures or five (5) samples with one (1) failure
5,000 ppm maximum water content at 100°C |
| Subgroup 1 (a) Physical dimensions
(b) Internal gas analysis 4/ | | |
| Subgroup 2 | 2015 | Four (4) devices sampled with zero (0) failures |
| Subgroup 2 (a) Resistance to solvents | | |
| Subgroup 3 | 2003 or 2022 | LTPD = 10 (ten) for subgroup 3 8/ |
| Subgroup 3 (a) Solderability | | |
| Subgroup 4 | 2004 1014 2024 | Two (2) devices sampled with zero (0) failures
Test Condition B2
Reject criteria per test method. |
| Subgroup 4 (a) Lead Integrity
(b) Hermetic Seal
 a. Fine Leak
 b. Gross Leak
(c) Lid Torque 5/ | | |
| Subgroup 5 | 5005 1005 5005 | LTPD = 5 (five) over subgroup 5 8/ |
| Subgroup 5 (a) Electrical measurements 1/ & 2/
 a. Subgroups 1, 2, &3 of Table I, Method 5005
(b) Steady state life 3/ & 6/
(c) Electrical measurements and deltas 1/ & 2/
 a. Subgroups 1, 2, and 3 of Table I, Method 5005 | | |
| | | Read and record
1000 hours minimum at +125°C
Read and record |
TABLE-4c SCREENING (Continued)

<table>
<thead>
<tr>
<th>SUBGROUP</th>
<th>METHOD</th>
<th>REQUIREMENTS 7/ & 9/</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subgroup 6</td>
<td></td>
<td>LTPD = 15 (fifteen) over subgroup 6 8/</td>
</tr>
<tr>
<td>(a) Thermal Shock</td>
<td>1011</td>
<td>Condition B, fifteen (15) cycles min</td>
</tr>
<tr>
<td>(b) Temperature Cycling</td>
<td>1010</td>
<td>Condition C, 100 cycles minimum</td>
</tr>
<tr>
<td>(c) Mechanical Shock</td>
<td>2002</td>
<td>Condition B min</td>
</tr>
<tr>
<td>(d) Vibration, Variable Frequency</td>
<td>2007</td>
<td>Condition A min</td>
</tr>
<tr>
<td>(e) Constant Acceleration</td>
<td>2001</td>
<td>Test condition E, Y₁ orientation only</td>
</tr>
<tr>
<td>(f) Hermetic Seal</td>
<td></td>
<td>Reject criteria per test method.</td>
</tr>
<tr>
<td>a. Fine Leak</td>
<td>1014</td>
<td>Read and record</td>
</tr>
<tr>
<td>b. Goss Leak</td>
<td>5005</td>
<td></td>
</tr>
<tr>
<td>(g) Electrical measurements 1/ & 2/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Subgroup 1 of Table I, Method 5005</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES:

1/ Parameters as called out in MIL-STD-883, Method 5004 for Class S devices and the most similar Class S family device slash sheet if there is no detail Class S slash sheet or the most similar Class B family device slash sheet if there is no similar Class S family device slash sheet.

2/ Two correlation samples shall be used to verify functionality of all Automatic Test Equipment (ATE) and bench testing equipment. Correlation units shall be tested prior to any electrical testing. All parameters specified in the applicable detail slash sheet, as determined in note 1/ above, shall be read and recorded. If correlation units are not available, they may be removed from the lot being processed. Correlation units shall be controlled by the contractor for future screening.

3/ A 340 hour intermittent operating life test per MIL-STD-883, Method 1006 and the applicable slash sheet may be performed in lieu of steady state life.

4/ Internal gas analysis may be performed as part of the DPA.

5/ Lid torque shall be performed on glass-frit sealed devices only.

6/ Test condition as specified in the applicable detailed slash sheet as determined in note 1/ above. Test Conditions A, B, C, and F of Method 1015 shall not apply.

7/ Life test samples tested at temperatures below the maximum specified junction temperature, physical dimension samples, and resistance to solvents samples meeting all acceptance criteria and not submitted to the destructive testing of Subgroups 1(b), 2(b), 3, 4(a), 4(c), or 6(b) may be used in flight hardware with the approval of the PMPCB.
NOTES (Continued)

8/ Reference Appendix I for the number of samples required for each specified LTPD. Resubmission of a failed lot shall be permitted one time only. The resubmission sample size shall be the sample size called out in the next lower LTPD for the number of failures experienced during the first submission with zero additional failures or larger sample sizes at the same lower LTPD with total failures between the first and second submission as specified. Parts passing the first test shall not be included in the resubmission sample without PMPCB approval.

9/ Post burn-in electrical rejects from the same inspection lot may be used for all subgroups when end-point measurements are not required.
TABLE B-4d

Destructive Physical Analysis (DPA)

| DPA per MIL-STD-1580 1/
| or approved procedure | Sample size per paragraph 4.5.5.1b.
| All anomalies shall be dispositioned as acceptable or rejectable. |

NOTES:
1/ DPA may be performed anytime after part encapsulation.
SECTION V

HYBRID CUSTOM REQUIREMENTS

TABLE B-5a

PROCESSING PER MIL-PRF-38534, CLASS K REQUIREMENTS (EXCEPT AS NOTED)

<table>
<thead>
<tr>
<th>PROCESS</th>
<th>REQUIREMENT</th>
</tr>
</thead>
</table>
| 1. Manufacturing Baseline | **a. Process Specifications**
As approved by the contractor acquisition activity. Process revision level shall be under the purchaser's configuration control.
Per MIL-PRF-38534 for Class K devices. The lot traveler shall be approved by the contractor acquisition activity. Process revision level shall be under the purchaser's configuration control.
Decap internal visual. Visual criteria in accordance with qualified design. One (1) device for each lot.
Per MIL-PRF-38534 for Class K devices. Traceability to the wafer lot which each semiconductor and microcircuit element originated. from |
| | **b. Lot Traveler**
Per MIL-PRF-38534 for Class K devices. Delidding for the purpose of rework/repair, compound bonding, and seal rework are permitted only with the approval of the PMPCB. |
| | **c. As-built Construction Analysis**
Per MIL-PRF-38534 for Class K devices. Traceability to the wafer lot which each semiconductor and microcircuit element originated. from |
| | **e. Traceability**
Per MIL-PRF-38534 for Class K devices. Traceability to the wafer lot which each semiconductor and microcircuit element originated. from |
| 2. Rework | Per MIL-PRF-38534 for Class K devices. Delidding for the purpose of rework/repair, compound bonding, and seal rework are permitted only with the approval of the PMPCB. |
| 3. Design & Construction | **a. Element evaluation**
Per MIL-PRF-38534 for Class K devices.
Per MIL-STD-883, Method 5008 for Class K devices |
| 4. Processing Surveillance | **a. Data Review**
In-process testing monitored by the contractor acquisition activity
Review of substrate lot acceptance and element evaluation results
Per MIL-STD-883, Method 2019 for the applicable die size
Twenty-two (22) die shears with zero (0) failures on each of two (2) devices
Per MIL-STD-883, Method 2023 1/
Lot failure criteria of MIL-M-38510
Per MIL-STD-883, Method 2014, 100% |
| | **b. Die Shear**
Per MIL-STD-883, Method 2019 for the applicable die size
Twenty-two (22) die shears with zero (0) failures on each of two (2) devices
Per MIL-STD-883, Method 2023 1/
Lot failure criteria of MIL-M-38510
Per MIL-STD-883, Method 2014, 100% |
| | **c. Bond Pull**
Per MIL-STD-883, Method 2019 for the applicable die size
Twenty-two (22) die shears with zero (0) failures on each of two (2) devices
Per MIL-STD-883, Method 2023 1/
Lot failure criteria of MIL-M-38510
Per MIL-STD-883, Method 2014, 100% |
| | **d. Pre-cap Visual Inspection**
Per MIL-STD-883, Method 2019 for the applicable die size
Twenty-two (22) die shears with zero (0) failures on each of two (2) devices
Per MIL-STD-883, Method 2023 1/
Lot failure criteria of MIL-M-38510
Per MIL-STD-883, Method 2014, 100% |
NOTES:

1/ When an automatic bonder in used, sample destructive bond pull may be performed in lieu of 100% nondestructive bond pull. Samples used for testing may be non-flight parts or a representative coupon. Sample destructive bond pull shall be per the following requirements:
 a. MIL-STD-883, Method 2011, failure criteria of Method 2011, Table I
 b. Destructive bond pull on one device to a LTPD of 5 at the beginning and end of each shift.
 c. Destructive bond pull on one device to a LTPD of 5 every two hours. The device shall be randomly selected from the prior two hour production period. Acceptance of product bonded during the prior two hour period shall be contingent upon this one piece sample passing the criteria of Method 2011.
TABLE B-5b
SCREENING (TEST 100%), TEST METHODS OF MIL-STD-883

<table>
<thead>
<tr>
<th>SCREEN</th>
<th>METHOD</th>
<th>REQUIREMENTS 1/</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Temperature Cycling</td>
<td>1010</td>
<td>Ten (10) cycles to Condition C</td>
</tr>
<tr>
<td>2. Constant Acceleration</td>
<td>2001</td>
<td>Y₁ orientation only</td>
</tr>
<tr>
<td>3. Particle Impact Noise Detection (PIND)</td>
<td>2020</td>
<td>2/</td>
</tr>
<tr>
<td>4. Serialization</td>
<td></td>
<td>100%</td>
</tr>
<tr>
<td>5. Radiography</td>
<td>2012</td>
<td>Optional</td>
</tr>
<tr>
<td>6. Pre Burn-In Electrical parameters 3/ & 7/</td>
<td></td>
<td>Read and record at +25°C</td>
</tr>
<tr>
<td>7. Power Burn-in</td>
<td>1015 4/</td>
<td>160 hours minimum at +125°C</td>
</tr>
<tr>
<td>8. Interim (post Burn-In) Electrical parameters and deltas 3/ & 7/</td>
<td></td>
<td>Read and record at +25°C within 96 hours of removal from bias. No Percent Defective Allowable is imposed. Remove all failed devices from the lot.</td>
</tr>
<tr>
<td>9. Power Burn-In</td>
<td>1015 4/</td>
<td>160 hours minimum at +125°C</td>
</tr>
<tr>
<td>10. Post Burn-In Electricals and deltas 3/ & 7/</td>
<td></td>
<td>Read and record at +25°C within 96 hours of removal from bias. Percent Defective Allowable: First Pass: 2% or 1, whichever is greater 5/ Second Pass: 1.5% or 1, whichever is greater 6/</td>
</tr>
</tbody>
</table>
TABLE B-5b SCREENING (Continued)

<table>
<thead>
<tr>
<th>SCREEN</th>
<th>METHOD</th>
<th>REQUIREMENTS 1/</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Static Tests</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subgroups 1, 2, and 3 of Table C-Xa, MIL-PRF-38534</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Dynamic/Functional Tests</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subgroups 4, 5, and 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- or -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subgroups 7 and 8 of Table C-Xa, MIL-PRF-38534</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Switching Tests</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subgroups 9, 10, and 11 of Table C-Xa, MIL-PRF-38534</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Hermetic Seal</td>
<td>1014</td>
<td>Reject criteria per test method</td>
</tr>
<tr>
<td>a. Fine Leak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Gross Leak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. External Visual</td>
<td>2009</td>
<td>100%</td>
</tr>
</tbody>
</table>

NOTES:
1/ Except as stated below, the requirements shall be per Class K of the applicable MIL-H-38534 detail specifications.
2/ Test condition A, multiple pass criteria of MIL-STD-883, Method 2020
3/ Parameters as called out in MIL-PRF-38534 for Class K devices and the most similar Class K family device slash sheet if there is no detail Class K slash sheet or the most similar Class H family device slash sheet if there is no similar Class K family device slash sheet.
5/ The lot may be automatically resubmitted to a second Power Burn-in one-time only without the necessity for MRB approval if the PDA does not exceed 10%. A PDA of greater than 10% shall require lot rejection.
6/ A PDA of greater than 1.5% on the Power Burn-in or HTRB resubmittal shall require lot rejection.
7/ Two correlation samples shall be used to verify functionality of all Automatic Test Equipment (ATE) and bench testing equipment. Correlation units shall be tested prior to any electrical testing. All parameters specified in the applicable detail slash sheet, as determined in note 3/ above, shall be read and recorded. If correlation units are not available, they may be removed from the lot being processed. Correlation units shall be controlled by the contractor for future screening.
<table>
<thead>
<tr>
<th>SUBGROUP</th>
<th>METHOD</th>
<th>REQUIREMENTS 6/ & 8/</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subgroup 1</td>
<td>2016 1018</td>
<td>Device samples as called out below:</td>
</tr>
<tr>
<td>(a) Physical Dimensions</td>
<td>2016</td>
<td>Two (2) devices sampled with zero (0) failures</td>
</tr>
<tr>
<td>(b) Internal Gas Analysis 4/</td>
<td>1018</td>
<td>Three (3) devices sampled with zero (0) failures or five (5) devices sampled with one (1) failure</td>
</tr>
<tr>
<td>(c) 5,000 ppm maximum water content at +100°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subgroup 2</td>
<td>2015</td>
<td>Device samples as called out below</td>
</tr>
<tr>
<td>(a) Resistance to Solvents</td>
<td>2015</td>
<td>Four (4) devices sampled with zero (0) failures</td>
</tr>
<tr>
<td>Subgroup 3</td>
<td>2003 or 2022</td>
<td>One (1) device sampled with zero (0) failures</td>
</tr>
<tr>
<td>Solderability</td>
<td>2003</td>
<td></td>
</tr>
<tr>
<td>Subgroup 4</td>
<td>2004 1014</td>
<td>One (1) device sampled with zero (0) failures</td>
</tr>
</tbody>
</table>
| (a) Lead Integrity | 2004 | Test Condition B
| (b) Hermetic Seal a. Fine Leak | 1014 | Reject criteria per test method |
| b. Gross Leak | 1014 | |
| Subgroup 5 | MIL-PRF-38534 1005 | Fifteen (15) devices sampled with zero (0) failures 7/ |
| (a) Electrical measurements 1/ & 2/ a. Subgroups 1, 2, and 3 of Table C-Xa, MIL-PRF-38534 | MIL-PRF-38534 1005 | Read and record |
| (b) Steady State Life 3/ & 5/ | 1005 | 1000 hours minimum at +125°C |
| (c) Electrical measurements and deltas 1/ & 2/ a. Subgroups 1, 2, and 3 of Table C-Xa, MIL-PRF-38534 | MIL-PRF-38534 | Read and record |
TABLE B-5c SCREENING (Continued)

<table>
<thead>
<tr>
<th>SUBGROUP</th>
<th>METHOD</th>
<th>REQUIREMENTS 6/ & 8/</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subgroup 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a) Thermal Shock</td>
<td>1011</td>
<td>Fifteen (15) devices sampled with zero (0) failures 7/</td>
</tr>
<tr>
<td>(b) Temperature Cycling</td>
<td>1010</td>
<td></td>
</tr>
<tr>
<td>(c) Constant Acceleration</td>
<td>2001</td>
<td>Condition B, fifteen (15) cycles min</td>
</tr>
<tr>
<td>(d) Hermetic Seal</td>
<td>1014</td>
<td>Condition C, twenty (20) cycles minimum</td>
</tr>
<tr>
<td>a. Fine Leak</td>
<td>MIL-PRF-38534</td>
<td>Y<sub>1</sub> orientation only</td>
</tr>
<tr>
<td>b. Gross Leak</td>
<td></td>
<td>Reject criteria per test method</td>
</tr>
<tr>
<td>(e) Electrical measurements 1/ & 2/</td>
<td></td>
<td>Read and record</td>
</tr>
<tr>
<td>a. Subgroups 1, 2, and 3 of Table C-Xa, MIL-PRF-38534</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES:

1/ Parameters as called out in MIL-PRF-38534 for Class K devices and the most similar Class K family device slash sheet if there is no detail Class K slash sheet or the most similar Class H family device slash sheet if there is no similar Class K family device slash sheet.

2/ Two correlation samples shall be used to verify functionality of all Automatic Test Equipment (ATE) and bench testing equipment. Correlation units shall be tested prior to any electrical testing. All parameters specified in the applicable detail slash sheet, as determined in note 1/ above, shall be read and recorded. If correlation units are not available, they may be removed from the lot being processed. Correlation units shall be controlled by the contractor for future screening.

3/ A 340 hour intermittent operating life test per MIL-STD-883, Method 1006, and the applicable slash sheet may be performed in lieu of steady state life.

4/ Internal gas analysis may be performed as part of the DPA.

5/ Test condition as specified in the applicable detailed slash sheet as determined in note 1/ above. Test Conditions A, B, and F of Method 1005 shall not apply.

6/ Life test samples tested at temperatures below the maximum specified junction temperature, physical dimension samples, and resistance to solvents samples meeting all acceptance criteria and not submitted to the destructive testing of Subgroups 1(b), 2(b), 3, 4(a), 4(c), or 6(b) may be used in flight hardware with the approval of the PMPCB.

7/ Resubmission of a failed lot shall be permitted one time only using double the sample size with 0 failures allowed. Parts passing the first test shall not be included in the resubmission sample without PMPCB approval.

8/ Post burn-in electrical rejects from the same inspection lot may be used for all subgroups when end-point measurements are not required.
TABLE B-5d
Destructive Physical Analysis (DPA)

<table>
<thead>
<tr>
<th>DPA per MIL-STD-1580 1/ or approved procedure</th>
<th>Sample size per paragraph 4.5.5.1b.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All anomalies shall be dispositioned as acceptable or rejectable.</td>
</tr>
</tbody>
</table>

NOTES:

1/ DPA may be performed anytime after part encapsulation.
SECTION VI

TRANSISTOR AND DIODE CUSTOM PROCESSING

TABLE B-6a

PROCESSING PER MIL-PRF-19500, JANS REQUIREMENTS (EXCEPT AS NOTED)

<table>
<thead>
<tr>
<th>PROCESS</th>
<th>REQUIREMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Manufacturing Baseline</td>
<td></td>
</tr>
<tr>
<td>a. Process Specifications</td>
<td>As approved by the contractor acquisition activity. Process revision level shall be under the purchaser’s configuration control.</td>
</tr>
<tr>
<td>b. Lot Traveler</td>
<td>Per MIL-PRF-19500 for JANS devices. The lot traveler shall be approved by the contractor acquisition activity. The revision level shall be under the purchaser’s configuration control.</td>
</tr>
<tr>
<td>c. As-built Construction Analysis</td>
<td>Decap internal visual. Visual criteria in accordance with qualified design. 1 device for each lot.</td>
</tr>
<tr>
<td>d. Single Wafer Lot Date Code</td>
<td>Per MIL-PRF-19500 for JANS devices</td>
</tr>
<tr>
<td>e. Wafer Traceability</td>
<td>Per MIL-PRF-19500 for JANS devices</td>
</tr>
<tr>
<td>2. Rework</td>
<td>Per MIL-PRF-19500 for JANS devices. Delidding is permitted only with the approval of the PMPCB.</td>
</tr>
<tr>
<td>4. Processing Surveillance</td>
<td>In-process testing monitored by the contractor acquisition activity.</td>
</tr>
<tr>
<td>a. Wafer Acceptance (SEM)</td>
<td>Per MIL-STD-750, Method 2077, 100% (For devices with expanded contact metallization only)</td>
</tr>
<tr>
<td>b. Die Shear</td>
<td>Per MIL-STD-750, Method 2017</td>
</tr>
<tr>
<td>c. Bond Pull</td>
<td>Per MIL-STD-883, Method 2023 1/</td>
</tr>
<tr>
<td>d. Pre-cap Visual Inspection</td>
<td>Per MIL-STD-750, Method 2075, 100%</td>
</tr>
</tbody>
</table>
NOTES:

1/ When an automatic bonder is used, sample destructive bond pull may be performed in lieu of 100% nondestructive bond pull. Sample destructive bond pull shall be per the following requirements:

a. MIL-STD-883, Method 2011, failure criteria of Method 2011, Table I
b. Perform 100% destructive bond pull on three devices at the beginning and end of each shift and after any interruptions greater than 15 minutes in the production flow.

c. Perform 100% destructive bond pull on three devices every two hours. The three devices shall be randomly selected from the prior two hour production period. Acceptance of product bonded during the prior two hour period shall be contingent upon this three piece sample passing the criteria of Method 2011.
TABLE B-6b
SCREENING (TEST 100%), TEST METHODS OF MIL-STD-750

<table>
<thead>
<tr>
<th>SCREEN</th>
<th>METHOD</th>
<th>REQUIREMENTS 1/</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. High Temperature Life (Stabilization Bake)</td>
<td>1032</td>
<td>24 hours minimum at maximum rated storage temperature</td>
</tr>
<tr>
<td>2. Temperature Cycling</td>
<td>1051</td>
<td>Condition C, ten (10) cycles</td>
</tr>
<tr>
<td>3. Constant Acceleration 14/</td>
<td>2006</td>
<td>Test condition E, Y1 orientation only</td>
</tr>
<tr>
<td>5. Instability Shock Test (axial leaded Diodes only) 10/</td>
<td>2081</td>
<td>Ten (10) Cycles</td>
</tr>
<tr>
<td>a. Forward Instability Shock Test (FIST)</td>
<td>2082</td>
<td></td>
</tr>
<tr>
<td>b. Backward Instability Shock Test (BIST)</td>
<td>1051</td>
<td></td>
</tr>
<tr>
<td>c. Thermal Response 11/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Serialization</td>
<td></td>
<td>100%</td>
</tr>
<tr>
<td>7. Pre Burn-In Electrical measurements 3/ & 9/</td>
<td></td>
<td>Read and record at +25°C</td>
</tr>
<tr>
<td>8. Power burn-in 13/</td>
<td>1039</td>
<td>240 hours minimum per the applicable slash sheet</td>
</tr>
<tr>
<td>Burn-In (for Transistors)</td>
<td>1038</td>
<td></td>
</tr>
<tr>
<td>Burn-In (for Diodes and Rectifiers)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Percent Defective Allowable:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>First Pass: 5% or 1, whichever is greater 4/</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Second Pass: 3% or 1, whichever is greater 5/</td>
</tr>
</tbody>
</table>
TABLE B-6b SCREENING PER TEST METHODS OF MIL-STD-750 (Continued)

<table>
<thead>
<tr>
<th>SCREEN</th>
<th>METHOD</th>
<th>REQUIREMENTS 1/</th>
</tr>
</thead>
<tbody>
<tr>
<td>10. High Temperature Reverse Bias Burn-In (HTRB) 12/</td>
<td>1039</td>
<td>48 hours minimum at +150°C or the devices' maximum operating limit, whichever is lower and at the minimum applied voltage as follows: Transistor - 80% of rated (V_{CB}) (bipolar) or (V_{GS}) (FET and MFET). Diodes (except zeners of 10 volts or less) and rectifiers - rated < 10 amps at (T_C > +100^\circ C) - 80% of rated (V_B)</td>
</tr>
<tr>
<td>Reverse Bias Burn-In (for Transistors)</td>
<td>1038</td>
<td></td>
</tr>
<tr>
<td>Reverse Bias Burn-In (for Diodes and Rectifiers)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Post HTRB Electricals and deltas 3/ & 9/</td>
<td></td>
<td>Read and record at 25°C within 12 hours of removal of bias. Percent Defective Allowable: First Pass: 5% or 1, whichever is greater 4/ Second Pass: 3% or 1, whichever is greater 5/</td>
</tr>
<tr>
<td>12. Final Electricals 3/ & 9/</td>
<td>MIL-PRF-19500</td>
<td>Read and record Electrical testing performed at step 11 need not be repeated.</td>
</tr>
<tr>
<td>a. Static Tests</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subgroups 2 and 3 of Table E-V of MIL-PRF-19500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Dynamic Tests</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subgroups 4 and 7 of Table E-V of MIL-PRF-19500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Radiography</td>
<td>2076</td>
<td>Optional</td>
</tr>
<tr>
<td>14. Hermetic Seal</td>
<td>1071</td>
<td>Reject criteria per test method</td>
</tr>
<tr>
<td>a. Fine Leak 7/ & 8/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Gross Leak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. External Visual</td>
<td>2071</td>
<td>100%</td>
</tr>
</tbody>
</table>

NOTES:

1/ Except as stated below, the requirements shall be per the JANS requirements of the applicable MIL-PRF-19500 detail specifications.

2/ Test condition A, multiple pass criteria of MIL-PRF-19500
NOTES (continued)

3/ Parameters as called out in MIL-PRF-19500, Table II and the most similar JANS family device slash sheet if there is no detail JANS slash sheet or the most similar JANTXV family device slash sheet if there is no similar JANS family device slash sheet.

4/ The lot may be automatically resubmitted to a second Power Burn-in or HTRB one-time only without the necessity for MRB approval if the PDA does not exceed 20%. A PDA of greater than 20% shall require lot rejection.

5/ A PDA of greater than 3% on the Power Burn-in or HTRB resubmittal shall require lot rejection.

6/ For all devices with an internal cavity

7/ Omit this test for painted glass diodes.

8/ Omit this test for metallurgically bonded, double plug diodes.

9/ Two correlation samples shall be used to verify functionality of all Automatic Test Equipment (ATE) and bench testing equipment. Correlation units shall be tested prior to any electrical testing. All parameters specified in the applicable detail slash sheet, as determined in note 3/ above, shall be read and recorded. If correlation units are not available, they may be removed from the lot being processed. Correlation units shall be controlled by the contractor for future screening.

10/ Omit both the BIST and the FIST tests for metallurgically bonded double plug or stud-mounted diodes. Omit the FIST test for temperature compensated reference diodes.

11/ A thermal response test shall be performed on metallurgically bonded devices only. Perform this test in accordance with MIL-STD-750, Method 1051, but with power applied to the devices. Monitor the devices for any intermittents during the temperature cycling.

12/ Test Condition A of the appropriate test method shall apply.

13/ Test Condition B of the appropriate test method shall apply.

14/ Omit this test for non-cavity devices.
TABLE B-6c
LOT ACCEPTANCE TESTING, (SAMPLE AS SPECIFIED) TEST METHODS OF MIL-STD-750

<table>
<thead>
<tr>
<th>SUBGROUP</th>
<th>METHOD</th>
<th>REQUIREMENTS 5/ & 6/</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subgroup 1</td>
<td></td>
<td>Device samples as called out below:</td>
</tr>
<tr>
<td>(a) Physical Dimensions</td>
<td>2066 1018</td>
<td>Two (2) devices sampled with zero (0) failures</td>
</tr>
<tr>
<td>(b) Internal Gas Analysis</td>
<td>3/ & 7/</td>
<td>Three (3) devices sampled with zero (0) failures or five (5) devices sampled with one (1) failure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cavity devices only</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5000 ppm maximum water content at +100°C</td>
</tr>
<tr>
<td>Subgroup 2</td>
<td></td>
<td>LTPD = 15 (fifteen) over subgroup 2 4/</td>
</tr>
<tr>
<td>(a) Solderability</td>
<td>2026 1022</td>
<td></td>
</tr>
<tr>
<td>(b) Resistance to Solvents</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subgroup 3</td>
<td></td>
<td>LTPD = 10 (ten) over subgroup 3 4/</td>
</tr>
<tr>
<td>(a) Temperature Cycling</td>
<td>1051</td>
<td>Condition C3, 100 cycles minimum</td>
</tr>
<tr>
<td>(b) Terminal Strength</td>
<td>2036</td>
<td>Test condition E, Y1 orientation only</td>
</tr>
<tr>
<td>(c) Mechanical Shock</td>
<td>2016</td>
<td>Method per MIL-STD-750.</td>
</tr>
<tr>
<td>(d) Vibration, variable frequency</td>
<td>2056</td>
<td>Reject criteria per test method.</td>
</tr>
<tr>
<td>(e) Constant Acceleration</td>
<td>2006</td>
<td>Read and record</td>
</tr>
<tr>
<td>(f) Hermetic Seal</td>
<td>1071</td>
<td></td>
</tr>
<tr>
<td>a. Fine Leal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Gross Leak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(g) Electrical measurements</td>
<td>1/ & 2/</td>
<td></td>
</tr>
<tr>
<td>a. Subgroups 2 and 3 of Table III of MIL-PRF-19500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subgroup 4</td>
<td></td>
<td>LTPD = 10 (ten) over subgroup 4 4/</td>
</tr>
<tr>
<td>(a) Intermittent Operating Life</td>
<td>1037</td>
<td>340 hours per the applicable slash sheet</td>
</tr>
<tr>
<td>(b) Electrical measurements and deltas</td>
<td>MIL-PRF-19500</td>
<td>Read and record</td>
</tr>
<tr>
<td>1/ & 2/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Subgroups 2 and 3 of Table E-V of MIL-PRF-19500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subgroup 6</td>
<td></td>
<td>LTPD = 10 (ten) over subgroup 6 4/</td>
</tr>
<tr>
<td>(a) Thermal Resistance</td>
<td>3131</td>
<td></td>
</tr>
</tbody>
</table>
NOTES:

1/ Parameters as called out in MIL-PRF-19500, Table IVa and the most similar JANS family device slash sheet if there is no detail JANS slash sheet or the most similar JANTXV family device slash sheet if there is no similar JANS family device slash sheet.

2/ Two correlation samples shall be used to verify functionality of all Automatic Test Equipment (ATE) and bench testing equipment. Correlation units shall be tested prior to any electrical testing. All parameters specified in the applicable detail slash sheet, as determined in note 1/ above, shall be read and recorded. If correlation units are not available, they may be removed from the lot being processed. Correlation units shall be controlled by the contractor for future screening.

3/ Internal gas analysis may be performed as part of the DPA.

4/ Reference Appendix I to determine the appropriate number of samples for the specified LTPD. Resubmission of a failed lot shall be permitted one time only. The resubmission sample size shall be the sample size called out in the next lower LTPD for the number of failures experienced during the first submission with zero additional failures or larger sample sizes at the same lower LTPD with total failures between the first and second submission as specified. Parts passing the first test shall not be included in the resubmission sample without PMPCB approval.

5/ Life test samples tested at temperatures below the maximum specified junction temperature, physical dimension samples, solderability samples, resistance to solvents samples, and thermal resistance samples meeting all acceptance criteria and not submitted to the destructive testing of Subgroups 1(b), 3(a), 3(b), 3(c), 3(d), or 4(c) may be used in flight hardware with PMPCB approval.

6/ Post burn-in electrical rejects from the same inspection lot may be used for all subgroups when end-point measurements are not required.

7/ Omit this test for glass body and double plug solid construction diodes.
TABLE B-6d

Destructive Physical Analysis (DPA)

| DPA per MIL-STD-1580 1/ or approved procedure | Sample size per paragraph 4.5.5.1b. All anomalies shall be dispositioned as acceptable or rejectable. |

NOTES:
1/ DPA may be performed anytime after part encapsulation.
APPENDIX C.

PRINTED WIRING BOARD
MANUFACTURING AND SCREENING
REQUIREMENTS
1 SCOPE

Where practical, standard rigid printed wiring boards with plated through holes shall be used to interconnect electronic parts, this is to include:

Type 1 – Single Sided
Type 2 – Double Sided
Type 3 – Multilayer Board without Blind or Buried Vias
Type 4 – Multilayer Board with Blind and or Buried Vias

2 APPLICATION

2.1 GENERAL REQUIREMENTS

Printed wiring boards shall be designed in accordance with IPC2221 Class 3 and IPC 2222 Class 3, and fabricated in accordance with IPC 6012 Class 3, or MIL-PRF-55110 and this document. The contractor shall demonstrate that all the processes used to design, qualify, manufacture and test products are documented and meet all program requirements. In case of conflict, the provisions of this document shall apply.

2.2 QUALIFICATIONS

The manufacturer shall be qualified to MIL-PRF-55110. If the supplier is only certified to IPC 6012 Class 3/A, the contractor shall verify by audit that the build documentation, in-process controls, qualification testing and construction review meet the program requirements.

3 DESIGN AND CONSTRUCTION

3.1 RIGID PRINTED WIRING BOARDS

Rigid printed circuit boards with plated through holes shall be in accordance with the requirements of IPC 2221 Class 3, IPC 2222 Class 3, and manufactured in accordance with MIL-PRF-55110 or IPC 6012 Class 3/A and the following:

1. Nonfunctional Lands (Internal Layers)
 Nonfunctional lands shall be included on internal layers of multilayer boards whenever clearance requirements permit.

2. Surface Mount Lands
 Once a month, using the N coupons per IPC 2221, a minimum of three surface mount lands of each size shall be tested in accordance with IPC-TM-650 Method 2.4.21 and Method C with the following exceptions: the diameter of the wire shall not exceed the width of the pad and the calculation step shall use the area of the rectangular. The land shall withstand a minimum of 500 psi of vertical pull 90 degrees to the board surface (tension) after completion of five cycles of soldering and four cycles of desoldering.
3. **Etch back**
 Etch back is required and shall be performed in accordance with the detailed requirements of MIL-PRF-55110.

4. **Drill Bit Limit**
 The board manufacturer shall have a process to define, verify, and maintain a matrix, which identifies the optimum number of drill hits allowed for specific types of materials, number of layers, and hole diameter.

5. **Drill Changes**
 All drill bit changes shall be documented and recorded. The record may be in the form of a drill tape or any digital storage medium. The use of resharpened drill bits is prohibited.

6. **Stacking for Drilling Plated Through Holes**
 Stacked drilling is not permitted for multilayered or double-sided boards.

7. **Tin-Lead Plating**
 Tin-Lead plating thickness shall be 0.0003 inches minimum before fusing. There shall be no solder plate on any surface which is to be laminated to an insulator, metal frame, heat sink or stiffener.

8. **Fusing**
 After solder plating and other processes, unless otherwise specified on the Source Control Drawing (SCD), the printed wiring board shall be fused. The manufacturer shall be limited to one fusing operation, whether or not the fusing process heats one or both sides of the board. The fuse time and temperature shall be recorded. After fusing, the solder coating shall be homogeneous, shall completely cover the conductors without pitting or pinholing, and shall show no non-wet areas. Side walls of the conductors do not have to be solder coated. Touch-up is permitted, but must be documented.

9. **Ductility and Tensile Strength**
 A method for monitoring copper plating baths shall be used to insure that measured elongation of as-plated copper from the bath meets or exceeds 18% with a minimum tensile strength of 40 kpsi.

10. **Process Control Coupons**
 The use of process control coupons to provide immediate feedback to the printed wiring board manufacturer on the stability of his processes is encouraged.

11. **Deliverable Coupons**
 The number and locations of deliverable coupons shall be in accordance with the detail specification of MIL-P-55110.

12. **Coupon Marking**
 Each coupon or test strip shall be suitably marked to retain traceability.
13. **Storage and Retrievability**
 All deliverable coupons shall be stored for the life of the contract or until the entire inspection lot is flown, whichever is sooner.

3.2 **MULTILAYER PRINTED CIRCUIT BOARDS**
 When multilayer printed circuit boards are used, the copper surfaces on all inner layers to be laminated shall be treated or primed prior to lamination to increase the laminate bonding. A copper oxidation technique is an acceptable treatment prior to lamination. Multilayer printed circuit boards shall be configured to equalize, to the greatest extent possible, the distribution of conductive areas in a layer and the distribution of conductive areas among layers. Large conductive areas such as ground planes should be positioned close to the board midpoint thickness. When more than one ground plane is required, they should be in layers that are equidistant from the midpoint thickness.

3.3 **FLEXIBLE AND RIGID-FLEX WIRING**
 Flexible and rigid-flex printed wiring shall be in accordance with the requirements of MIL-P-50884.

3.4 **DISCRETE WIRING BOARDS**
 Discrete wiring boards with plated through holes shall be in accordance with the requirements of ANSI/IPC-DW-425. Discrete wiring boards shall not be used in flight hardware without PMPCB approval.

3.5 **PRINTED WIRING BOARD SIZE**
 Whenever cost and technical requirements permit, standard rigid PWB sizes should be used. These standard sizes will facilitate the development and use of standardized insertion and extraction tools. Standard board sizes and thicknesses are shown in figure 17-1 of MIL-HDBK-454 with their corresponding extractor hole sizes and locations.

3.6 **PRINTED WIRING BOARD MODIFICATIONS**
 The number of allowable cuts and jumpers for a single PWB through production and test shall be in accordance with the requirements of MIL-C-28809 with the exception that drill outs shall be performed per a PMPCB approved procedure and limited to a total of 10 drillouts per printed wiring assembly.

4 **QUALITY ASSURANCE**

4.1 **SCREENING (100%)**
 Manufacturer screening and in-process inspection shall be in accordance with the requirements of MIL-PRF-55110. The contractor acquisition activity shall conduct a data review at the time of board receipt to ensure that these requirements have been met. 100% electrical continuity testing at receiving inspection or verified by qualified contractor field
personnel at the manufacturer is required at the bare board level on multilayer PWBs. Deliverable coupons shall be tested in accordance with the applicable design standard.

4.2 LOT CONFORMANCE TESTING

Manufacturer lot conformance tests shall be in accordance with the requirements of MIL-PRF-55110 or IPC 6012 Class 3. All deliverable coupons shall be inspected to verify that all applicable requirements have been met.
APPENDIX D.

CUSTOM RELAY REQUIREMENTS
TABLE D-1

PROCESSING

<table>
<thead>
<tr>
<th>PROCESS</th>
<th>REQUIREMENT</th>
</tr>
</thead>
</table>
| 1. Manufacturing Baseline | **a. Process Specifications** As approved by the contractor acquisition activity. Process revision level shall be under the purchaser's configuration control.
 The lot traveler(s) shall be approved by the contractor acquisition activity. The revision level shall be under the purchaser's configuration control. The lot traveler(s) shall contain all data obtained during the screening, lot acceptance, and DPA testing. |
| **b. Lot Traveler** | |
| 2. Rework | None permitted after device seal. |
| 3. Design & Construction | Per MIL-PRF-39016 or MIL-PRF-6106, whichever is applicable, for hermetically sealed devices. Semiconductors and microcircuits used internally shall meet the requirements of the ELV Quality Baseline. |
| 4. Processing Surveillance | **a. Pre-cap Visual** Monitored by the contractor acquisition activity. 100% inspection. Inspection guidelines per paragraph 1.1 and inspection criteria per paragraph 1.2 of this Appendix.
 Per the contractor activity approved procedure
 b. Cleaning and small particle inspection |

TABLE D-2
SCREENING FOR RELAYS DESIGNED AND BUILT IN ACCORDANCE WITH MIL-PRF-39016, TEST METHOD AS CALLED OUT IN THE REFERENCED PARAGRAPH OF MIL-PRF-39016

<table>
<thead>
<tr>
<th>SCREEN</th>
<th>METHOD</th>
<th>REQUIREMENTS 4/</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Vibration (Sinusoidal)</td>
<td>4.8.10.1</td>
<td>Per para 3.15 of MIL-PRF-39016</td>
</tr>
<tr>
<td>2. Vibration (Random)</td>
<td>1/</td>
<td>Per para 3.15 of MIL-PRF-39016</td>
</tr>
<tr>
<td>3. Insulation resistance</td>
<td>4.8.5</td>
<td>Para 3.10 of MIL-PRF-39016</td>
</tr>
<tr>
<td>4. Dielectric withstanding voltage</td>
<td>4.8.6</td>
<td>Para 3.11 of MIL-PRF-39016</td>
</tr>
<tr>
<td>5. Electrical measurements 3/</td>
<td></td>
<td>Read and record. Parameter values as specified in para 3.11 of MIL-PRF-39016 and the applicable slash sheet or SCD</td>
</tr>
<tr>
<td>6. Asynchronous Miss Test</td>
<td>2/</td>
<td></td>
</tr>
<tr>
<td>7. Insulation resistance</td>
<td>4.8.5</td>
<td>Para 3.9 of MIL-PRF-39016</td>
</tr>
<tr>
<td>8. Dielectric withstanding voltage</td>
<td>4.8.6</td>
<td>Para 3.10 of MIL-PRF-39016</td>
</tr>
<tr>
<td>9. Electrical measurements 3/</td>
<td></td>
<td>Read and record. Parameter values as specified in para 3.11 of MIL-PRF-39016 and the applicable slash sheet or SCD</td>
</tr>
<tr>
<td>10. Seal</td>
<td>4.8.4</td>
<td>No leakage in excess of 1×10^{-8} atm cm3/s</td>
</tr>
<tr>
<td>11. Visual and Mechanical</td>
<td>4.8.1</td>
<td>100% for materials and workmanship</td>
</tr>
</tbody>
</table>

NOTES:
1/ Perform per the general requirements of MIL-PRF-39016, para 4.8.10.2, using MIL-STD-202, Method 214, Test Condition II with the following exceptions:
 a. Determine the PSD level according to each individual relay application.
 b. Mounting fixtures shall not affect the PSD by more than ± 3dB.
 c. Vibrate in 3 orthogonal planes (determined by normal mounting means).
 d. Vibrate for 3 minutes in each plane for each armature position (energized and deenergized) or for each position (set and reset) for latching relays.
2/ Vibrate the relay with a 10g peak sine wave at a fixed frequency of 10Hz for 3 minutes. The axis of vibration shall be perpendicular to the motion of the contacts. Operate the relay at 9.9Hz while the relay is being vibrated, monitoring the relay for any misses. Relays with misses shall be rejected and removed from the production lot.

3/ The following parameters, as applicable, shall be read and recorded:
 a. Operate, release, and hold voltages
 b. Operate and release times
 c. Contact bounce
 d. Contact voltage drop (resistance)
 e. Coil resistance
 f. Coil transient voltage
 g. Reverse polarity protection
 h. Neutral screen (differential voltage) - test per MIL-PRF-39016 and with each coil at rated voltage with a plus 5 and a minus 5 volt differential from rated voltage on the opposing coil.

 Basic test methods as called out in para 4.8.7 of MIL-PRF-39016.

4/ A Percent Defective Allowable (PDA) in excess of 10% across any one test and/or in excess of 20% across all screening shall require lot rejection.
TABLE D-3
SCREENING FOR RELAYS DESIGNED AND BUILT IN ACCORDANCE WITH MIL-PRF-6106, TEST METHOD AS CALLED OUT IN THE REFERENCED PARAGRAPH OF MIL-PRF-6106

<table>
<thead>
<tr>
<th>SCREEN</th>
<th>METHOD</th>
<th>REQUIREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Vibration (Sinusoidal)</td>
<td>4.7.11</td>
<td>Para 3.16 of MIL-PRF-6106</td>
</tr>
<tr>
<td>2. Vibration (Random)</td>
<td>1/</td>
<td>Per para 3.16 of MIL-PRF-6106</td>
</tr>
<tr>
<td>3. Insulation resistance</td>
<td>4.7.6</td>
<td>Per para 3.11 of MIL-PRF-6106</td>
</tr>
<tr>
<td>4. Dielectric withstanding voltage</td>
<td>4.7.7</td>
<td>Per para 3.12 of MIL-PRF-6106</td>
</tr>
<tr>
<td>5. Electrical measurements 3/</td>
<td></td>
<td>Read and record. Parameter values as specified in section 3, Requirements, of MIL-PRF-6016 and the applicable slash sheet or SCD</td>
</tr>
<tr>
<td>6. Asynchronous Miss</td>
<td>2/</td>
<td></td>
</tr>
<tr>
<td>7. Insulation resistance</td>
<td>4.7.6</td>
<td>Per para 3.11 of MIL-PRF-6106</td>
</tr>
<tr>
<td>8. Dielectric withstanding voltage</td>
<td>4.7.7</td>
<td>Per para 3.12 of MIL-PRF-6106</td>
</tr>
<tr>
<td>9. Electrical measurements 3/</td>
<td></td>
<td>Read and record. Parameter values as specified in section 3, Requirements, of MIL-PRF-6016 and the applicable slash sheet or SCD</td>
</tr>
<tr>
<td>10. Seal</td>
<td>4.7.5</td>
<td>Relays larger than 2 in³ - no leakage in excess of 1×10^{-6} atm cm³/s All others - no leakage in excess of 1×10^{-8} atm cm³/s</td>
</tr>
<tr>
<td>11. Visual and Mechanical</td>
<td>4.7.1</td>
<td>100% for materials and workmanship</td>
</tr>
</tbody>
</table>

NOTES:
1/ Perform per the general requirements of MIL-PRF-39016, para 4.7.11.2, using MIL-STD 202, Method 214, Test Condition II with the following exceptions:
 a. Determine the PSD level according to each individual relay application.
 b. Mounting fixtures shall not affect the PSD by more than ± 3dB.
 c. Vibrate in 3 orthogonal planes (determined by normal mounting means).
 d. Vibrate for 3 minutes in each plane for each armature position (energized and de-energized) or for each position (set and reset) for latching relays.
NOTES (Continued)

2/ Vibrate the relay with a 10g peak sine wave at a fixed frequency of 10Hz for 3 minutes. The axis of vibration shall be perpendicular to the motion of the contacts. Operate the relay at 9.9Hz while the relay is being vibrated, monitoring the relay for any misses. Relays with misses shall be rejected and removed from the production lot.

3/ The following parameters, as applicable, shall be read and recorded:
 a. Operate, release, and hold voltages
 b. Operate and release times
 c. Contact bounce
 d. Contact voltage drop (resistance)
 e. Coil resistance
 f. Coil transient voltage
 g. Reverse polarity protection
 h. Neutral screen (differential voltage) - test per MIL-PRF-39016 and with each coil at rated voltage with a plus 5 and a minus 5 volt differential from rated voltage on the opposing coil.

 Basic test methods as called out in para 4.7 of MIL-R-6106.

4/ Perform test method per established reliability (ER) requirements.

5/ A Percent Defective Allowable (PDA) in excess of 10% across any one test and/or in excess of 20% across all screening shall require lot rejection.
TABLE D-4
LOT ACCEPTANCE FOR RELAYS DESIGNED AND BUILT IN ACCORDANCE WITH MIL-PRF-39016, TEST METHOD AS CALLED OUT IN THE REFERENCED PARAGRAPH OF MIL-PRF-39016

<table>
<thead>
<tr>
<th>SCREEN</th>
<th>METHOD</th>
<th>REQUIREMENTS 5/</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a) Physical dimensions</td>
<td>1018 of MIL-STD-883</td>
<td>2 devices sampled with 0 failures 4/</td>
</tr>
<tr>
<td>(b) Internal Gas Analysis 1/</td>
<td>4.8.3</td>
<td>5,000 ppm max water content at 100°C</td>
</tr>
<tr>
<td>(c) Solderability</td>
<td>4.8.21</td>
<td>3 devices with 0 failures or 5 devices sampled with 1 failure</td>
</tr>
<tr>
<td>(d) Resistance to solvents</td>
<td>4.8.12</td>
<td>2 devices sampled with 0 failures</td>
</tr>
<tr>
<td>(e) Terminal strength 4/</td>
<td>4.8.18</td>
<td>Para 3.17 of MIL-PRF-39016</td>
</tr>
<tr>
<td>(f) Life</td>
<td>4.8.5</td>
<td>LTPD = 10 3/</td>
</tr>
<tr>
<td>(g) Insulation resistance</td>
<td>4.8.6</td>
<td>Para 3.10 of MIL-PRF-39016</td>
</tr>
<tr>
<td>(h) Dielectric withstanding voltage</td>
<td>4.8.4</td>
<td>Para 3.11 of MIL-PRF-39016</td>
</tr>
<tr>
<td>(i) Electrical measurements 2/</td>
<td>4.8.1</td>
<td>Para 3.10 of MIL-PRF-39016</td>
</tr>
<tr>
<td>(j) Seal</td>
<td></td>
<td>Read and record. Parameter values as specified in para 3.12 of MIL-PRF-39016 and the applicable slash sheet or SCD</td>
</tr>
<tr>
<td>(k) Visual and Mechanical</td>
<td></td>
<td>No leakage in excess of 1 x 10^-8 atm cm^3/s</td>
</tr>
</tbody>
</table>

5/
NOTES:
1/ Internal gas analysis and terminal strength may be performed as part of the DPA.
2/ The following parameters, as applicable, shall be read and recorded:
 a. Operate, release, and hold voltages
 b. Operate and release times
 c. Contact bounce
 d. Contact voltage drop (resistance)
 e. Coil resistance
 f. Coil transient voltage
 g. Reverse polarity protection
 h. Neutral screen (differential voltage) - test per MIL-PRF-39016 and with each coil at rated voltage with a plus 5 and a minus 5 volt differential from rated voltage on the opposing coil.
 Basic test methods as called out in para 4.8.7 of MIL-PRF-39016.
3/ Reference Appendix I to determine the appropriate number of samples for the specified LTPD. Resubmission of a failed lot shall be permitted one time only. The resubmission sample size shall be the sample size called out in the next lower LTPD. Parts passing the first test shall not be included in the resubmittal samples without PMPCB approval.
4/ Inspect per the applicable slash sheet or source control drawing as applicable.
5/ Test samples meeting all acceptance criteria and not subjected to the destructive testing of test 1(b) and 1(e) may be used in flight hardware with PMPCB approval.
TABLE D-5
LOT ACCEPTANCE FOR RELAYS DESIGNED AND BUILT IN ACCORDANCE WITH MIL-PRF-6106, TEST METHOD AS CALLED OUT IN THE REFERENCED PARAGRAPH OF MIL-PRF-6106

<table>
<thead>
<tr>
<th>SCREEN</th>
<th>METHOD</th>
<th>REQUIREMENTS 6/</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a) Physical dimensions</td>
<td>1018</td>
<td>2 devices sampled with 0 failures 5/</td>
</tr>
<tr>
<td></td>
<td>of MIL-STD -883</td>
<td>5,000 ppm max water content at 100°C</td>
</tr>
<tr>
<td>(b) Internal Gas Analysis</td>
<td>4.7.3</td>
<td>3 devices with 0 failures or 5 devices sampled with 1 failure</td>
</tr>
<tr>
<td></td>
<td>4.7.23</td>
<td>2 devices sampled with 0 failures</td>
</tr>
<tr>
<td></td>
<td>4.7.13</td>
<td>2 devices sampled with 0 failures per para 3.25 of MIL-PRF-39016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Para 3.17 of MIL-PRF-6106</td>
</tr>
<tr>
<td>(c) Solderability</td>
<td>4.7.22</td>
<td>LTPD = 10 4/</td>
</tr>
<tr>
<td></td>
<td>4.7.6</td>
<td>Para 3.28 of MIL-PRF-6016</td>
</tr>
<tr>
<td></td>
<td>4.7.7</td>
<td>Per para 3.11 of MIL-PRF-6106</td>
</tr>
<tr>
<td>(d) Resistance to solvents</td>
<td></td>
<td>Per para 3.12 of MIL-PRF-6106</td>
</tr>
<tr>
<td></td>
<td>4.7.5</td>
<td>Read and record. Parameter values as specified in section 3, Requirements, of MIL-PRF-6106 and the applicable slash sheet or SCD</td>
</tr>
<tr>
<td>(e) Terminal strength 1/</td>
<td>4.7.1</td>
<td>Relays larger than 2 in³ - no leakage in excess of 1 x 10⁻⁶ atm cm³/s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>All others - no leakage in excess of 1 x 10⁻⁸ atm cm³/s</td>
</tr>
<tr>
<td>(F) Life</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(g) Insulation resistance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(h) Dielectric withstanding voltage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(i) Electrical measurements 2/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(j) Seal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(k) External visual 5/</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
NOTES:

1/ Internal gas analysis and terminal strength may be performed as part of the DPA.

2/ The following parameters, as applicable, shall be read and recorded:
 a. Operate, release, and hold voltages
 b. Operate and release times
 c. Contact bounce
 d. Contact voltage drop (resistance)
 e. Coil resistance
 f. Coil transient voltage
 g. Reverse polarity protection
 h. Neutral screen (differential voltage) - test per MIL-PRF-39016 and with each coil at rated voltage with a plus 5 and a minus 5 volt differential from rated voltage on the opposing coil.

 Basic test methods as called out in para 4.7.8 of MIL-PRF-6106.

3/ Test method and requirements per the applicable paragraphs of MIL-PRF-39016.

4/ Reference Appendix I to determine the appropriate number of samples for the specified LTPD. Resubmission of a failed lot shall be permitted one time only. The resubmission sample size shall be the sample size called out in the next lower LTPD. Parts passing the first test shall not be included in the resubmittal samples without PMPCB approval.

5/ Inspect per the applicable slash sheet or source control drawing as applicable.

6/ Test samples meeting all acceptance criteria and not subjected to the destructive testing of test 1(b) and 1(e) may be used in flight hardware with PMPCB approval.
TABLE D-6
Destructive Physical Analysis (DPA)

| DPA per MIL-STD-1580 or approved procedure | Sample size per paragraph 4.5.5.1b.
All anomalies shall be dispositioned as acceptable or rejectable. |

D-10
1 PRE-CAP VISUAL INSPECTION

A visual examination shall be performed on 100% of the relays prior to final cleaning and assembly in the can. The examination shall be performed at the specified magnification in paragraph 1.1 or at a greater magnification when necessary to verify product integrity.

1.1 REQUIRED INSPECTIONS

The following visual inspections, as a minimum, shall be performed to verify product integrity. Failure criteria shall be as specified in paragraph 1.2 or, if not specified, shall be consistent with good engineering practices.

1. Inspect the moving contact assembly at 20x magnification for proper installation and position. The springs shall clear all adjacent parts for both positions of the armature. Inspect support brackets for the moving contact assembly for cracks and loose fractures.

2. Inspect the contact surfaces at 10x magnification for:
 a. Scratches, burrs and cracked or peeling plating in contact mating areas.
 b. Proper alignment for both armature positions.

 Inspect the contact surfaces at 20x magnification for:
 a. Fibrous and other contaminants.
 b. Tool marks on the underside of contact supports
 c. Weld splatter on the contact terminals.

3. Inspect the coil for the following at 10x magnification for the following:
 a. Poor coil lead welds. Inspect for evidence or weld on each coil lead wire. Follow by probing the weld area to verify that each coil lead wire is attached to the terminal.
 b. Inspect at 10x for proper lead coil dress. Ensure clearance to all moving and conductive surfaces. Coil leads shall not be kinked and shall not be stretched tight from coil to coil lead post.
 c. Loose or frayed teflon insulation.

 Inspect the coil at 20x magnification for the following:
 a. Weld splatter at the coil terminals.
 b. Nicks in the coil wire due to the stripping of the insulation.

4. Inspect the armature and pole piece gap at 20x magnification for weld splatter and contamination.

5. Inspect the header at 10x magnification for unacceptable tool marks and weld splatter, acceptable glass seals, cracked or peeling plating, and proper alignment of the header and the frame.
1.2 VISUAL INSPECTION FAILURE CRITERIA

1.2.1 Weld splatter

Weld splatter or weld expulsion balls observed under 20x magnification shall be acceptable if the balls are capable of withstanding a probing force of 150 grams applied using an approved force gauge calibrated for a range of 125 to 150 grams pressure force. The manufacturer, under the supervision of the contractor acquisition activity’s source surveillance personnel, shall perform this testing if acceptance of the relay is desired. Each suspect weld may be probed one time only during pre-cap.

1.2.2 Scratches

Scratches or tool marks which are wholly below the surface of the metal are acceptable. Burrs protruding above the surface are not acceptable.

1.2.3 Cracks

Cracks in the header pin glass seals that extend from the pin or outer edge for more than one-third the radius of the seal are not acceptable. This criterion is not applicable to glass seals less than 0.1 inch in diameter.

1.2.4 Teflon

Teflon strands that are not physically attached or affixed to the teflon coil wrap or coil lead insulation are unacceptable. Teflon strands that are physically attached or affixed, but are of sufficient length or location that they can interfere with the normal operation of the relay are also unacceptable.
APPENDIX E.

ELV QUALITY BASELINE
WIRE CONSTRUCTIONS
UNLIMITED USE CONSTRUCTIONS

The following wire constructions are included in the ELV quality PMP baseline for unlimited use:

<table>
<thead>
<tr>
<th>Specification</th>
<th>Title/Construction</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAE-AS22759/16</td>
<td>Wire, Electric, Fluoropolymer-Insulated, Extruded ETFE, Medium Weight, Tin-Coated Copper Conductor, 600 Volt, 150°C</td>
</tr>
<tr>
<td>SAE-AS22759/17</td>
<td>Wire, Electric, Fluoropolymer-Insulated, Extruded ETFE, Medium Weight, Silver-Coated High-Strength Copper Alloy Conductor, 600 Volt, 150°C</td>
</tr>
<tr>
<td>SAE-AS22759/18</td>
<td>Wire, Electric, Fluoropolymer-Insulated, Extruded ETFE, Light Weight, Tin-coated Copper Conductor, 600 Volt, 150°C</td>
</tr>
<tr>
<td>SAE-AS22759/19</td>
<td>Wire, Electric, Fluoropolymer-Insulated, Extruded ETFE, Light Weight, Silver Coated High-Strength Copper Alloy Conductor, 600 Volt, 150°C</td>
</tr>
<tr>
<td>SAE-AS22759/32</td>
<td>Wire, Electric, Fluoropolymer-Insulated, Crosslinked Modified ETFE, Light Weight, Tin-Coated Copper, 600 Volt, 150°C</td>
</tr>
<tr>
<td>SAE-AS22759/33</td>
<td>Wire, Electric, Fluoropolymer-Insulated, Crosslinked Modified ETFE, Light Weight, Silver-Coated High-Strength Copper Alloy, 600 Volt, 200°C</td>
</tr>
<tr>
<td>SAE-AS22759/34</td>
<td>Wire, Electric, Fluoropolymer-Insulated, Crosslinked Modified ETFE, Normal Weight, Tin-Coated Copper, 600 Volt, 150°C</td>
</tr>
<tr>
<td>SAE-AS22759/35</td>
<td>Wire, Electric, Fluoropolymer-Insulated, Crosslinked Modified ETFE, Normal Weight, Silver-Coated High-Strength Copper Alloy, 600 Volt, 200°C</td>
</tr>
<tr>
<td>SAE-AS22759/41</td>
<td>Wire, Electric, Fluoropolymer-Insulated, Crosslinked Modified ETFE, Normal Weight, Nickel-Coated Copper, 600 Volt, 200°C</td>
</tr>
<tr>
<td>SAE-AS22759/42</td>
<td>Wire, Electric, Fluoropolymer-Insulated, Crosslinked Modified ETFE, Normal Weight, Nickel-Coated High-Strength Copper Alloy, 600 Volt, 200°C</td>
</tr>
<tr>
<td>SAE-AS22759/43</td>
<td>Wire, Electric, Fluoropolymer-Insulated, Crosslinked Modified ETFE, Normal Weight, Silver-Coated Copper, 600 Volt, 200°C</td>
</tr>
<tr>
<td>Specification</td>
<td>Title/Construction</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
</tr>
<tr>
<td>SAE-AS22759/44</td>
<td>Wire, Electric, Fluoropolymer-Insulated, Crosslinked Modified ETFE, Light Weight, Nickel-Coated Copper, 600 Volt, 200°C</td>
</tr>
<tr>
<td>SAE-AS22759/45</td>
<td>Wire, Electric, Fluoropolymer-Insulated, Crosslinked Modified ETFE, Light Weight, Nickel-Coated Copper, 600 Volt, 200°C</td>
</tr>
<tr>
<td>SAE-AS22759/46</td>
<td>Wire, Electric, Fluoropolymer-Insulated, Crosslinked Modified ETFE, Light Weight, Nickel-Coated High Strength Copper Alloy, 600 Volt, 200°C</td>
</tr>
<tr>
<td>MIL-DTL-81381/7</td>
<td>Wire, Electric, Fluorocarbon/Polyimide-Insulated, Light Weight, Nickel-Coated Copper Conductor, 600 Volts, 200°C, Nominal 5.8 MIL Wall</td>
</tr>
<tr>
<td>MIL-DTL-81381/8</td>
<td>Wire, Electric, Fluorocarbon/Polyimide-Insulated, Light Weight, Nickel-Coated Copper Conductor, 600 Volts, 200°C, Nominal 5.8 MIL Wall</td>
</tr>
<tr>
<td>MIL-DTL-81381/9</td>
<td>Wire, Electric, Fluorocarbon/Polyimide-Insulated, Light Weight, Silver-Coated High Strength Copper Alloy Conductor, 600 Volts, 200°C, Nominal 5.8 MIL Wall</td>
</tr>
<tr>
<td>MIL-DTL-81381/10</td>
<td>Wire, Electric, Fluorocarbon/Polyimide-Insulated, Light Weight, Nickel-Coated High-Strength Copper Alloy Conductor, 600 Volts, 200°C, Nominal 5.8 MIL Wall</td>
</tr>
<tr>
<td>MIL-DTL-81381/11</td>
<td>Wire, Electric, Fluorocarbon/Polyimide-Insulated, Medium Weight, Silver-Coated Copper Conductor, 600 Volts, 200°C, Nominal 8.4 or 15.4 MIL Wall</td>
</tr>
<tr>
<td>MIL-DTL-81381/12</td>
<td>Wire, Electric, Fluorocarbon/Polyimide-Insulated, Medium Weight, Nickel-Coated Copper Conductor, 600 Volts, 200°C, Nominal 8.4 or 15.4 MIL Wall</td>
</tr>
<tr>
<td>MIL-DTL-81381/13</td>
<td>Wire, Electric, Fluorocarbon/Polyimide-Insulated, Medium Weight, Silver-Coated High-Strength Copper Alloy Conductor, 600 Volts, 200°C, Nominal 8.2 or 8.4 MIL Wall</td>
</tr>
<tr>
<td>MIL-DTL-81381/14</td>
<td>Wire, Electric, Fluorocarbon/Polyimide-Insulated, Medium Weight, Nickel-Coated High-Strength Copper Alloy Conductor, 600 Volts, 200°C, Nominal 8.2 or 8.4 MIL Wall</td>
</tr>
<tr>
<td>MIL-DTL-81381/17</td>
<td>Wire, Electric, Fluorocarbon/Polyimide-Insulated, Light Weight, Silver-Coated Copper, 600 Volts, 200°C, Nominal 4.6 MIL Wall</td>
</tr>
</tbody>
</table>
MIL-DTL-81381/19 Wire, Electric, Fluorocarbon/Polyimide-Insulated, Light Weight, Silver-Coated High-Strength Copper Alloy Conductor, 600 Volts, 200°C, Nominal 4.6 MIL Wall

2 LIMITED USE CONSTRUCTIONS

The following wire constructions are included in the ELV quality PMP baseline for wiring internal to electrical boxes only:

<table>
<thead>
<tr>
<th>Specification</th>
<th>Title/Construction</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAE-AS22759/28</td>
<td>Wire, Electric, Fluoropolymer-Insulated, Extruded TFE, Polyimide-Coated, Silver-Coated Copper Conductor, 600 Volt</td>
</tr>
<tr>
<td>SAE-AS2759/29</td>
<td>Wire, Electric, Fluoropolymer-Insulated, Extruded TFE, Polyimide-Coated, Nickel-Coated Copper Conductor, 600 Volt</td>
</tr>
<tr>
<td>SAE-AS22759/30</td>
<td>Wire, Electric, Fluoropolymer-Insulated, Extruded TFE, Polyimide-Coated, Silver-Coated High-Strength Copper Alloy Conductor, 600 Volt</td>
</tr>
<tr>
<td>SAE-AS22759/31</td>
<td>Wire, Electric, Fluoropolymer-Insulated, Extruded TFE, Polyimide-Coated, Nickel-Coated High-Strength Copper Alloy Conductor, 600 Volt</td>
</tr>
</tbody>
</table>

The following wire constructions are included in the ELV quality PMP baseline for wiring internal to magnetic and inductive parts.

<table>
<thead>
<tr>
<th>Specification</th>
<th>Title/Construction</th>
</tr>
</thead>
<tbody>
<tr>
<td>J-W-1177</td>
<td>Wire, Magnet, Electrical, General Specification</td>
</tr>
</tbody>
</table>
1 PROHIBITED MATERIALS

1. Conformal coatings that do not meet MIL-STD-275 for printed circuit assemblies

2. Corrosive (acetic acid evolving) silicone sealants, adhesives, and coatings are prohibited from use on electronic or electrical equipment

3. Items with exposed surfaces of cadmium or zinc shall not be used in upper stages without PMPCB approval. Exceptions approved by the PMPCB shall be documented on a PMPCB action form and forwarded to the Government PMPCB representatives for disposition.

4. Polyvinyl chloride

5. Mechanical parts, mounting hardware, optical components, electronic parts, their packages and leads shall have neither internal nor external surfaces coated with zinc (Zn), cadmium (Cd), or pure tin (Sn) or tin alloy containing less than three percent lead (Pb). This prohibition also applies to shielding mesh tapes, terminal lugs, brackets, and housings for flight hardware, and/or critical ground equipment designed for launch support. The only exceptions are completely insulated wire products where tin (Sn) is only used during the drawing process.

2 PROHIBITED PARTS

2.1 Prohibited Electronic Parts

2.1.1 Prohibited Capacitors

1. CLR 65 (MIL-C-39006/9) silver-cased wet tantalum slug capacitors

2. Mica capacitors per specifications other than MIL-C-87164

3. Glass capacitor styles CYR41, 42, 43, 51, 52, and 53

4. Aluminum electrolytic capacitors

5. Variable capacitors without PMPCB approval. Exceptions approved by the PMPCB shall be documented on a PMPCB action form and forwarded to the Government PMPCB representatives for disposition.

2.1.2 Prohibited Diodes

1. Diodes in hot-welded cans

2. All plastic encapsulated types
3. Non-glassivated or non-passivated semiconductor devices without PMPCB approval. Exceptions approved by the PMPCB shall be documented on a PMPCB action form and forwarded to the Government PMPCB representatives for disposition.

4. Devices with gold/aluminum bonds at the die

5. Point contact (whisker) diodes without PMPCB approval. Exceptions approved by the PMPCB shall be documented on a PMPCB action form and forwarded to the Government PMPCB representatives for disposition.

2.1.3 Prohibited Filters

1. EMI/RF filters with tubular ceramic elements

2.1.4 Prohibited Fuses

1. All fuses requiring fuse holders
2. Non-hermetic fuses

2.1.5 Prohibited Relays

1. Plug-in types
2. Solder-sealed relays

2.1.6 Prohibited Resistors

1. All hollow glass or hollow ceramic core devices
2. Carbon composition resistors without PMPCB approval. Exceptions approved by the PMPCB shall be documented on a PMPCB action form and forwarded to the Government PMPCB representatives for disposition.

3. Variable resistors without PMPCB approval. Exceptions approved by the PMPCB shall be documented on a PMPCB action form and forwarded to the Government PMPCB representatives for disposition.

2.1.7 Prohibited Thyristors

1. All plastic encapsulated types

2.1.8 Prohibited Transistors

1. All plastic encapsulated types
2. Non-glassivated or non-passivated semiconductor types without PMPCB approval. Exceptions approved by the PMPCB shall be documented on a
PMPCB action form and forwarded to the Government PMPCB representatives for disposition.

3. Devices with gold/aluminum bonds at the die

2.1.9 Prohibited Microcircuits/Hybrids

1. All plastic encapsulated devices
2. Devices with gold/aluminum bonds at the die, excluding hybrids

2.1.10 Prohibited Wire Construction

1. Unsupported, Teflon insulated wire without PMPCB approval. Exceptions approved by the PMPCB shall be documented on a PMPCB action form and forwarded to the Government PMPCB representatives for disposition.

2.1.11 Prohibited Crystals

1. Plug-in types

2.2 Prohibited Non-Electronic Parts

2.2.1 Prohibited Attach Hardware

1. B-Nuts used with flared tubing
APPENDIX G.

ELECTRONIC PIECE
PART
DERATING CRITERIA
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CAPACITORS</td>
<td>G-1</td>
</tr>
<tr>
<td>1.1</td>
<td>Military Specification Capacitor Types</td>
<td>G-1</td>
</tr>
<tr>
<td>1.2</td>
<td>Requirements</td>
<td>G-2</td>
</tr>
<tr>
<td>1.3</td>
<td>Capacitor Reliability application Derating Guidelines</td>
<td>G-2</td>
</tr>
<tr>
<td>1.4</td>
<td>Use of Derating Curves (Figs 1-1 through 1-5)</td>
<td>G-4</td>
</tr>
<tr>
<td>2.</td>
<td>CONNECTORS</td>
<td>G-7</td>
</tr>
<tr>
<td>2.1</td>
<td>Connectors Reliability Application Derating Guidelines</td>
<td>G-7</td>
</tr>
<tr>
<td>3.</td>
<td>CRYSTALS</td>
<td>G-8</td>
</tr>
<tr>
<td>3.1</td>
<td>Crystal Reliability Application Derating Guidelines</td>
<td>G-8</td>
</tr>
<tr>
<td>4.</td>
<td>DIODES</td>
<td>G-8</td>
</tr>
<tr>
<td>4.1</td>
<td>Diode Reliability Application Derating Guidelines</td>
<td>G-8</td>
</tr>
<tr>
<td>5.</td>
<td>EMI FILTERS</td>
<td>G-11</td>
</tr>
<tr>
<td>5.1</td>
<td>EMI Filter Reliability Application Derating Guidelines</td>
<td>G-11</td>
</tr>
<tr>
<td>6.</td>
<td>FUSES</td>
<td>G-12</td>
</tr>
<tr>
<td>6.1</td>
<td>Fuse Reliability Application Derating Guidelines</td>
<td>G-12</td>
</tr>
<tr>
<td>7.</td>
<td>INDUCTORS and TRANSFORMERS</td>
<td>G-13</td>
</tr>
<tr>
<td>7.1</td>
<td>Inductor and Transformer Reliability Application Derating Guidelines</td>
<td>G-13</td>
</tr>
<tr>
<td>8.</td>
<td>INTEGRATED CIRCUITS</td>
<td>G-15</td>
</tr>
<tr>
<td>8.1</td>
<td>Derating Criteria for Digital Integrated Circuits</td>
<td>G-15</td>
</tr>
<tr>
<td>8.2</td>
<td>Derating Criteria for Linear, Op Amp, Comparator Devices</td>
<td>G-16</td>
</tr>
<tr>
<td>8.3</td>
<td>Derating Criteria for Linear Voltage Regulator ICs</td>
<td>G-17</td>
</tr>
<tr>
<td>8.4</td>
<td>Hybrids Chip and Wire</td>
<td>G-18</td>
</tr>
<tr>
<td>8.4.1</td>
<td>Derating Criteria for Hybrids Chip and Wire Devices</td>
<td>G-18</td>
</tr>
<tr>
<td>8.4.2</td>
<td>Internal Wire</td>
<td>G-18</td>
</tr>
<tr>
<td>8.5</td>
<td>Derating Criteria (Integrated Circuits, Other)</td>
<td>G-18</td>
</tr>
<tr>
<td>9.</td>
<td>MOTORS</td>
<td>G-19</td>
</tr>
<tr>
<td>9.1</td>
<td>Derating Criteria</td>
<td>G-19</td>
</tr>
<tr>
<td>10.</td>
<td>PRINTED WIRING BOARDS</td>
<td>G-20</td>
</tr>
<tr>
<td>10.1</td>
<td>Derating Criteria</td>
<td>G-20</td>
</tr>
<tr>
<td>10.2</td>
<td>Use of Derating Curves</td>
<td>G-20</td>
</tr>
<tr>
<td>10.3</td>
<td>Additional Factors</td>
<td>G-20</td>
</tr>
<tr>
<td>11.</td>
<td>RELAYS</td>
<td>G-24</td>
</tr>
<tr>
<td>11.1</td>
<td>Derating Criteria</td>
<td>G-24</td>
</tr>
<tr>
<td>12.</td>
<td>RESISTORS</td>
<td>G-26</td>
</tr>
<tr>
<td>12.1</td>
<td>Derating Criteria</td>
<td>G-27</td>
</tr>
<tr>
<td>12.2</td>
<td>Use of Derating Curves (Figs. 12-1 through 12-5)</td>
<td>G-29</td>
</tr>
<tr>
<td>13.</td>
<td>SLIP RINGS</td>
<td>G-35</td>
</tr>
<tr>
<td>13.1</td>
<td>Derating Criteria</td>
<td>G-35</td>
</tr>
</tbody>
</table>
14. SUBSTRATES .. G-35
 14.1 Derating Criteria .. G-35
15. SWITCHES .. G-35
 15.1 Switch Derating Criteria ... G-35
16. TRANSISTORS ... G-36
 16.1 Derating Criteria ... G-36
17. WIRE AND CABLE .. G-38
 17.1 Derating criteria .. G-38
1. CAPACITORS

1.1 MILITARY SPECIFICATION CAPACITOR TYPES

TABLE 1-1 CAPACITORS, MIL-SPEC LISTING (FOR REFERENCE)

<table>
<thead>
<tr>
<th>DIELECTRIC MATERIAL</th>
<th>MIL-SPEC</th>
<th>STYLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceramic</td>
<td>MIL-PRF-39014</td>
<td>CKR</td>
</tr>
<tr>
<td>Ceramic</td>
<td>MIL-PRF-20</td>
<td>CCR</td>
</tr>
<tr>
<td>Ceramic</td>
<td>MIL-PRF-123</td>
<td>CKS</td>
</tr>
<tr>
<td>Ceramic, High Voltage</td>
<td>MIL-PRF-20</td>
<td>---</td>
</tr>
<tr>
<td>Ceramic Chip</td>
<td>MIL-PRF-55681</td>
<td>CDR</td>
</tr>
<tr>
<td>Mica</td>
<td>MIL-PRF-87164</td>
<td>CMS</td>
</tr>
<tr>
<td>Glass, Porcelain</td>
<td>MIL-PRF-23269</td>
<td>CYR</td>
</tr>
<tr>
<td>Supermetallized Film</td>
<td>MIL-PRF-83421</td>
<td>CRH</td>
</tr>
<tr>
<td>Supermetallized Film (Low Energy Application)</td>
<td>MIL-PRF 87217</td>
<td>CHS</td>
</tr>
<tr>
<td>Plastic Film; Metallized & Nonmetallized</td>
<td>MIL-PRF-19978</td>
<td>CQR</td>
</tr>
<tr>
<td>Tantalum Foil</td>
<td>MIL-PRF-39006</td>
<td>CLR</td>
</tr>
<tr>
<td>Solid Tantalum</td>
<td>MIL-PRF-39003</td>
<td>CSR</td>
</tr>
<tr>
<td>Solid Tantalum, Low Impedance Applications</td>
<td>MIL-PRF-39003/10</td>
<td>CSS</td>
</tr>
<tr>
<td>Solid Tantalum Chip</td>
<td>MIL-PRF-55365</td>
<td>CWR</td>
</tr>
<tr>
<td>Variable, Glass or Ceramic</td>
<td>MIL-PRF-14409 1/</td>
<td>---</td>
</tr>
<tr>
<td>Tantalum-Tantalum</td>
<td>MIL-PRF-39006/22 2/</td>
<td>CLR 79</td>
</tr>
</tbody>
</table>

NOTES:

1/ Variable capacitors prohibited without PMPCB review and approval. Their design is such that they are non-hermetic, easily damaged by excessive installation soldering and has a limited adjustment life.

2/ Only tantalum-tantalum construction (style CLR79) manufactured by a QPL/QML source with a double seal is approved for wet tantalum construction in expendable launch vehicle applications.
1.2 REQUIREMENTS

The normal maximum operating temperature for all capacitors shall not be greater than shown in the derating curves for the applied stress or 10°C less than maximum rated temperature, whichever is less. The longevity and reliability of capacitors are increased by operation below their rated temperature limits and below their rated voltage, both AC and DC.

1.3 CAPACITOR RELIABILITY APPLICATION DERATING GUIDELINES

TABLE 1-2 CAPACITOR DERATING AND MAXIMUM STRESS RATIOS

<table>
<thead>
<tr>
<th>TYPE</th>
<th>PARAMETER</th>
<th>MAXIMUM STRESS RATIO</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceramic</td>
<td>Voltage</td>
<td>0.50 4/</td>
<td>0.65 WC 5/ (WC: Worst Case)</td>
</tr>
<tr>
<td>Ceramic Chip</td>
<td>Voltage</td>
<td>0.50 4/</td>
<td>0.65 WC 5/</td>
</tr>
<tr>
<td>Feed Through Capacitor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glass</td>
<td>Voltage</td>
<td>Figure 1-1</td>
<td></td>
</tr>
<tr>
<td>Supermetallized Film CRH</td>
<td>Voltage</td>
<td>0.50 to 85°C max.</td>
<td>0.65 WC to 85°C max.</td>
</tr>
<tr>
<td>Supermetallized Film, & Nonmetallized Film, CHS, CQR</td>
<td>Voltage</td>
<td>0.50 to 85°C max.</td>
<td>0.65 WC to 85°C max. 6/</td>
</tr>
<tr>
<td>Mica</td>
<td>Voltage</td>
<td>Figure 1-1</td>
<td></td>
</tr>
<tr>
<td>Porcelain</td>
<td>Voltage</td>
<td>Figure 1-1</td>
<td></td>
</tr>
<tr>
<td>Tantalum Foil</td>
<td>Voltage</td>
<td>Figure 1-2</td>
<td>2/</td>
</tr>
<tr>
<td>Tantalum Solid</td>
<td>Voltage</td>
<td>Figure 1-3</td>
<td>1/ & 7/</td>
</tr>
<tr>
<td>Solid Tantalum Chip</td>
<td>Voltage</td>
<td>Figure 1-3 8/</td>
<td>1/</td>
</tr>
<tr>
<td>Wet Tantalum-Tantalum</td>
<td>Voltage</td>
<td>Figure 1-4</td>
<td>2/</td>
</tr>
<tr>
<td>Variable</td>
<td>Voltage</td>
<td>0.5</td>
<td>0.70 3/</td>
</tr>
</tbody>
</table>

NOTES:

1/ At least 0.1 ohms/volt series resistance or equivalent current limit of 10 amps shall be provided for solid tantalum and tantalum chip capacitors. Parallel tantalum capacitors do not require separate series resistors for each capacitor.

2/ Temperature rise due to ripple current shall not result in an operating temperature exceeding 85°C.

3/ Use only after PMPCB review and approval

4/ 0.5 to 85°C, decreasing to 0.30 at +125°C
5/ 0.65 to 85°C, decreasing to 0.50 at +125°C
6/ Linearly decrease voltage to zero at 100°C
7/ Special assembly and test procedures are required to ensure that tantalum capacitors are installed in accordance with the correct polarity.
8/ The maximum surge voltage shall not exceed the steady state rated voltage.
9/ Derating not addressed in Table 1-2; use manufacturers recommended values. PMPCB review and approval required
1.4 USE OF DERATING CURVES (FIGS 1-1 THROUGH 1-5)

To determine the maximum permitted operating voltage from the following figures:

1. Determine the maximum part temperature at the location where the capacitor will be mounted. The maximum temperature is the sum of the part ambient temperature, which is the acceptance test temperature plus the temperature rise from the component baseplate to the part location, and the part operational temperature, which is a function of the applied voltage.

2. Find the maximum temperature on the X-axis, and read the Voltage Stress Ratio upper limit from the Region I curve. The voltage stress ratio is determined by dividing the maximum voltage across the capacitor in its intended circuit application by the manufacturer’s maximum voltage rating.

3. Any combination of part temperature and voltage stress ratio that lies in Region I shall be considered approved for that application. Any combination that lies in Region III shall be considered disapproved for the intended application. Combinations falling in Region II shall be identified, analyzed to assure that the part application meets mission requirements, and presented to the PMPCB for approval. Combinations falling 20% or less above the Region I curve shall be documented on a PMPCB Action Form and forwarded to the Government PMPCB representatives for approval. Combinations greater than 20% above the Region I curve shall require acquisition activity approval.
Figure 1-1 Glass, Porcelain (CYR), Mica (CMS)

Figure 1-2 Tantalum Foil (CLR 25, 27, 35, 37)
Figure 1-3 Solid Tantalum (CSR, CSS, CWR)

Figure 1-4 Wet Tantalum (CLR 79)
2. CONNECTORS

2.1 CONNECTORS RELIABILITY APPLICATION DERATING GUIDELINES

TABLE 2-1 CONNECTORS

<table>
<thead>
<tr>
<th>TYPE</th>
<th>PARAMETER</th>
<th>MAXIMUM STRESS RATIO</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL</td>
<td>Current</td>
<td>0.50 of rating</td>
<td>When pins are connected in parallel to increase current capacity, each pin shall have the capability of conducting (within the derating criteria) 25% more current than the calculated equally divided current to compensate for “current hogging”.</td>
</tr>
<tr>
<td></td>
<td>Voltage</td>
<td>0.50 of rating</td>
<td>The maximum voltage stress ratio derating should be multiplied by the sea level rated working voltage to obtain the maximum voltage to be applied between the pin and the case. This provides a safe working voltage for high altitude or space applications.</td>
</tr>
<tr>
<td></td>
<td>Temperature</td>
<td>Not to exceed: T(max-dielectric) - 50°C</td>
<td>The maximum hot spot temperature shall be at least 50°C below the maximum rated temperature of the connector dielectric material.</td>
</tr>
</tbody>
</table>

NOTES:
1/ Within the constraints of this table, use TABLE 2-2 as a guide for contact and wire sizes.
2/ For block connectors and crimp connections, the current derating is the same as TABLE 17-1 for the single wire.
3/ Power connector failure risks should be minimized by requiring that power and return lines be separated by at least one unassigned connector pin to reduce short circuit risk.

TABLE 2-2 CONNECTOR MAXIMUM DERATED CURRENT FOR CONTACT (AMPS)

<table>
<thead>
<tr>
<th>Number of Contacts used in the Connector</th>
<th>Contact Size</th>
<th>Maximum Derated Current (AMPS) for Contact Wire Size (AWG) 1/</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>1 to 4</td>
<td>16</td>
<td>13.0</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>5 to 14</td>
<td>16</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>15 or more</td>
<td>16</td>
<td>6.5</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22</td>
<td></td>
</tr>
</tbody>
</table>

NOTES:
1/ Connector derating must also comply with the “per pin” derating of Table 2-1.
2/ Maximum Voltage = 50% of the rated sea level Dielectric Withstanding Voltage (DWV) between the pin and the case for all contact sizes.
3. **CRYSTALS**

3.1 **CRYSTAL RELIABILITY APPLICATION DERATING GUIDELINES**

TABLE 3-1 CRYSTALS, CRYSTAL OSCILLATORS

<table>
<thead>
<tr>
<th>TYPE</th>
<th>PARAMETER</th>
<th>MAXIMUM STRESS RATIO</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crystals</td>
<td>Current (Drive Level)</td>
<td>0.50</td>
<td>50% drive current equals 25% drive power.</td>
</tr>
<tr>
<td>Crystal Oscillator</td>
<td></td>
<td></td>
<td>1/ Derating may be accomplished by applying derating as specified herein to similar discrete parts contained in the oscillator.</td>
</tr>
</tbody>
</table>

4. **DIODES**

4.1 **DIODE RELIABILITY APPLICATION DERATING GUIDELINES**

TABLE 4-1 DIODE (SWITCHING, SMALL SIGNAL, RECTIFIER, AND TRANSIENT SUPPRESSORS)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>MAXIMUM STRESS RATIO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SWITCHING, SMALL SIGNAL</td>
</tr>
<tr>
<td>Power</td>
<td>0.50 (0.70 WC) 2/</td>
</tr>
<tr>
<td>Voltage, DC or repetitive pulse</td>
<td>0.75 2/</td>
</tr>
<tr>
<td>Voltage Transients 1/</td>
<td>0.80 2/</td>
</tr>
<tr>
<td>Forward Current</td>
<td>0.50 2/</td>
</tr>
<tr>
<td>Surge Current</td>
<td>0.50 2/</td>
</tr>
<tr>
<td>Junction temperature</td>
<td>125°C, or 20°C less than the manufacturer’s rating 4/</td>
</tr>
</tbody>
</table>

NOTES FOR TABLE 4-1:
1/ Worst case turn-on or repetitive transient
2/ Of maximum rating
3/ Of surge rating
4/ Whichever is lower
TABLE 4-2 DIODE
(STEP RECOVERY, VARACTOR, and VARICAP)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>MAXIMUM STRESS RATIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>0.50 (0.70 WC)</td>
</tr>
<tr>
<td>Voltage, DC or Repetitive pulse</td>
<td>0.75 2/</td>
</tr>
<tr>
<td>Voltage Transients 1/</td>
<td>0.80 2/</td>
</tr>
<tr>
<td>Forward Current</td>
<td>0.75 2/</td>
</tr>
<tr>
<td>Junction temperature</td>
<td>125°C, or 20°C less than the manufacturer’s rating 4/</td>
</tr>
</tbody>
</table>

TABLE 4-3 ZENER DIODE
(REFERENCE AND REGULATOR)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>MAXIMUM STRESS RATIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference Zener</td>
<td></td>
</tr>
<tr>
<td>Power</td>
<td>0.50 (0.85 WC) 2/</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>125°C, or 20°C less than the manufacturer’s rating 4/, 5/, & 6/</td>
</tr>
<tr>
<td>Regulator Zener</td>
<td></td>
</tr>
<tr>
<td>Power</td>
<td>0.50 (0.75 WC) 2/, 6/</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>125°C, or 20°C less than the manufacturer’s rating 4/, 6/</td>
</tr>
</tbody>
</table>

NOTES FOR TABLES 4-2 AND 4-3:

1/ Worst case turn-on or repetitive transient
2/ Of maximum rating
4/ Whichever is lower
5/ Note that temperature compensated reference diodes must be operated at the manufacturer’s specified current to optimize temperature compensation.
6/ The zener current shall be limited to no more than \(I_z = I_{z,nominal} + 0.05 \) \((I_{z,maximum} - I_{z,nominal})\) but do not derate to the point where the device is operating at the knee.
TABLE 4-4 DIODE, SHOTTKY BARRIER

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>MAXIMUM STRESS RATIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>0.75 (0.85 WC)</td>
</tr>
<tr>
<td>Voltage, DC or repetitive pulse</td>
<td>0.75 2/</td>
</tr>
<tr>
<td>Voltage transients 1/</td>
<td>0.80 2/</td>
</tr>
<tr>
<td>Surge Current</td>
<td>0.50</td>
</tr>
<tr>
<td>Junction temperature</td>
<td>125°C, or 20°C less than the manufacturer’s rating 3/</td>
</tr>
</tbody>
</table>

TABLE 4-5 DIODE (TUNNEL, GERMANIUM) 4/

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>MAXIMUM STRESS RATIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>0.50 (0.70 WC)</td>
</tr>
<tr>
<td>Voltage, DC or repetitive pulse</td>
<td>0.70 2/</td>
</tr>
<tr>
<td>Voltage transients</td>
<td>0.80 2/</td>
</tr>
<tr>
<td>Junction temperature</td>
<td>125°C, or 20°C less than the manufacturer’s rating 4/</td>
</tr>
</tbody>
</table>

NOTES FOR TABLES 4-4 AND 4-5:

1/ Worst case turn-on or repetitive transient
2/ Of maximum rating
4/ Whichever is lower
5/ Germanium diodes are not recommended for new or modified designs.
TABLE 4-6 DIODE (PHOTO, LED, Optocouplers 1/)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>MAXIMUM STRESS RATIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>0.50</td>
</tr>
<tr>
<td>Current</td>
<td>0.50 (0.70 WC)</td>
</tr>
<tr>
<td>Voltage</td>
<td>0.75</td>
</tr>
<tr>
<td>Junction temperature</td>
<td>125°C, or 20°C less than the manufacturer’s rating 4/</td>
</tr>
</tbody>
</table>

NOTES FOR TABLE 4-6:
1/ For optimum coupling efficiency, use manufactures recommended operating conditions
4/ Whichever is lower

TABLE 4-7 DIODE (FET Regulator)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>MAXIMUM STRESS RATIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current</td>
<td>0.80</td>
</tr>
<tr>
<td>Junction temperature</td>
<td>125°C, or 20°C less than the manufacturer’s rating 4/</td>
</tr>
</tbody>
</table>

NOTES FOR TABLE 4-7:
4/ Whichever is lower

5. EMI FILTERS

5.1 EMI FILTER RELIABILITY APPLICATION DERATING GUIDELINES

TABLE 5-1 EMI FILTERS

<table>
<thead>
<tr>
<th>TYPE</th>
<th>PARAMETER</th>
<th>MAXIMUM STRESS RATIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL</td>
<td>Voltage</td>
<td>0.50 of rating</td>
</tr>
<tr>
<td></td>
<td>Current</td>
<td>0.75 of rating</td>
</tr>
<tr>
<td></td>
<td>Temperature</td>
<td>Case 85°C maximum</td>
</tr>
</tbody>
</table>
6. FUSES

6.1 FUSE RELIABILITY APPLICATION DERATING GUIDELINES

TABLE 6-1 FUSE DERATING

<table>
<thead>
<tr>
<th>TYPE</th>
<th>PARAMETER</th>
<th>MAXIMUM STRESS RATIO</th>
<th>COMMENTS 1/, 2/, 3/</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid Body</td>
<td>Current</td>
<td>0.75 of rating</td>
<td>Multiply 0.75 by the additional derating of Figure 6-1 to compensate for temperature.</td>
</tr>
<tr>
<td>Glass Fuses 1/</td>
<td>Current</td>
<td>0.25 of rating</td>
<td>Manufacturer’s current ratings are temperature dependent. Derating factors are based on data from fuses mounted on printed circuit boards and conformal coated. The derating criteria allows for possible loss of pressure which lowers the blow current rating and allows for a decrease of current capability with time.</td>
</tr>
<tr>
<td></td>
<td>Current</td>
<td>0.30 of rating</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Current</td>
<td>0.35 or rating</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Current</td>
<td>0.40 of rating</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Current</td>
<td>0.45 of rating</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Current</td>
<td>0.50 of rating</td>
<td></td>
</tr>
<tr>
<td>Fusible resistors</td>
<td>Current</td>
<td>Consult Reliability Engineering</td>
<td>Above 25°C, the derating factor decreases an additional 0.5% for each degree C above 25°C. In the event a non-standard fuse size is required, use the next highest rated fuse size.</td>
</tr>
</tbody>
</table>

NOTES:
1/ Glass fuses are derated for reliability and to allow for air loss in vacuum.
2/ Shall not be used on new or modified designs without PMPCB approval.
7. INDUCTORS AND TRANSFORMERS

7.1 INDUCTOR AND TRANSFORMER RELIABILITY APPLICATION DERATING GUIDELINES

TABLE 7-1 INDUCTORS AND TRANSFORMERS

<table>
<thead>
<tr>
<th>TYPE</th>
<th>PARAMETER</th>
<th>MAXIMUM STRESS RATIO</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>Current</td>
<td>0.50 of rating</td>
<td>2/</td>
</tr>
<tr>
<td>Voltage</td>
<td></td>
<td>0.50 of rating</td>
<td></td>
</tr>
<tr>
<td>Temperature (Inductors)</td>
<td>1/ and 4/</td>
<td>Inductors: As established, per MIL-C-39010, MIL-T-27, or MIL-T-21038 (as applicable) for Dielectric Withstanding Voltage (DWV), induced voltage and corona voltage. Transformers: As established per MIL-T-27 or MIL-T-21038 for DWV, induced voltage, and corona voltage.</td>
<td></td>
</tr>
<tr>
<td>Temperature (Transformers)</td>
<td>1/ and 5/</td>
<td>Classes per MIL-C-39010 or MIL-T-27 as appropriate.</td>
<td></td>
</tr>
</tbody>
</table>

Figure 6-1 Solid Body Fuse Additional Derating for Temperature
NOTES:

1/ Insulation rated at less than 150°C shall not be used. The maximum operating temperature of the device shall be at least 30°C lower than the maximum temperature of the item with the lowest maximum temperature. This may be the core material, the insulation of the magnet, etc.

2/ Current rating for each winding shall be less than or equal to the rating for a bundle of wires of the same AWG size as the wire used for the winding (see TABLE 17-1 WIRE DERATING).

3/ The permitted maximum temperature stress is defined as the worst case temperature resulting from the combined effects of hot spot temperature, the ambient and/or base plate temperature, and the temperature rise resulting from joule heating.

4/ Maximum operating temperature equals ambient temperature plus temperature rise +10°C (allowance for hot spot). Compute temperature rise as follows:

 Inductor temperature rise (°C) = ((R-r)/r)(T+234.5°C)

 Where:
 - R = winding resistance under load**
 - r = no-load winding resistance at ambient temperature T (°C)
 - T = maximum ambient temperature (°C) at time of power shutoff

5/ Maximum operating temperature equal ambient temperature plus temperature rise + 10°C (allowance for hot spot). Compute temperature rise as follows:

 Transformer temperature rise (°C) = ((R-r)/r)(t+234.5°C)-(T-t)

 Where:
 - R = winding resistance under load**
 - r = no-load winding resistance at ambient temperature T (°C)
 - t = specified initial ambient temperature (°C)
 - T = maximum ambient temperature (°C) at time of power shutoff. (T) shall not differ from (t) by more than +5°C.

* This factor is for copper wire, but varies for different wire materials
** For accurate results, this measurement must be made in a vacuum to simulate actual operating conditions.
8. INTEGRATED CIRCUITS

8.1 DERATING CRITERIA FOR DIGITAL INTEGRATED CIRCUITS

TABLE 8-1 INTEGRATED CIRCUIT, CMOS, TTL

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>MAXIMUM STRESS RATIO</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage, Input</td>
<td>0.70</td>
<td>1/ (May not exceed supply voltage applied to IC)</td>
</tr>
<tr>
<td>Voltage, Supply DIGITAL Turn on</td>
<td>Transient peaks shall not exceed the absolute maximum value. Per manufacturer’s recommended operational voltages</td>
<td></td>
</tr>
<tr>
<td>Operational</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fanout</td>
<td>Derate by one load or to 80% (90% WC) of maximum rating, whichever is greater.</td>
<td>Not applicable to single fanout devices.</td>
</tr>
<tr>
<td>Current, Load</td>
<td>0.80 (0.90 WC) 2/</td>
<td>Not applicable to single fanout devices.</td>
</tr>
<tr>
<td>Propagation delay</td>
<td>1.1</td>
<td>Worst case only</td>
</tr>
<tr>
<td>Power Dissipation (If Applicable)</td>
<td>0.80 (0.90 WC)</td>
<td></td>
</tr>
<tr>
<td>Open Collector/Drain Output Voltage</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>Junction or Hot Spot Temperature</td>
<td>125°C or 20°C less than the manufacturer’s rating</td>
<td>Whichever is lower</td>
</tr>
</tbody>
</table>

NOTES:

1/ For parts that are designed to accept an input voltage that is greater than the IC supply voltage, the maximum stress shall be 25% or more below the part manufacturer’s maximum specified rating.

2/ The derating for all outputs of digital devices must be calculated for both high and low output states.
8.2 DERATING CRITERIA FOR LINEAR, OP AMP, COMPARATOR DEVICES

TABLE 8-2 INTEGRATED CIRCUIT, LINEAR, OP AMP, COMPARATOR 1/

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>MAXIMUM STRESS RATIO</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>0.70 (0.85 WC)</td>
<td></td>
</tr>
<tr>
<td>Voltage, Input</td>
<td>0.70 (0.80 WC) of max. rating</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2/</td>
</tr>
<tr>
<td>Operating Frequency (Applications)</td>
<td>0.75 (0.85 WC) of max. rating</td>
<td></td>
</tr>
<tr>
<td>Transients</td>
<td>Transient peaks shall not exceed the absolute maximum value.</td>
<td></td>
</tr>
<tr>
<td>Gain (Applications)</td>
<td>0.75 (0.85 WC) of max. rating</td>
<td></td>
</tr>
<tr>
<td>Voltage, Supply</td>
<td>0.90 of maximum rating</td>
<td>Not to exceed the manufacturer’s recommended operating voltage in WC.</td>
</tr>
<tr>
<td>Current, Output</td>
<td>0.75 (0.85WC) of max. rating</td>
<td>Of rated value, or 0.75 of the current limited value.</td>
</tr>
<tr>
<td>Junction or Hot Spot Temperature</td>
<td>125°C or 20°C less than the manufacturer’s rating.</td>
<td>Whichever is lower</td>
</tr>
</tbody>
</table>

NOTES:

1/ In general, the 10% minimum/maximum margin applies to operational characteristics for the device, such as usable gain bandwidth, propagation delay, etc.

2/ Of the maximum rated supply voltage applied to the IC and/or of the rated differential input voltage. The input voltage shall not exceed the applied supply voltage.
8.3 DERATING CRITERIA FOR LINEAR VOLTAGE REGULATOR ICS

TABLE 8-4 INTEGRATED CIRCUIT, LINEAR VOLTAGE REGULATOR

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>MAXIMUM STRESS RATIO</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>0.80 (0.85 WC)</td>
<td>The controlling factor for voltage regulators is the input-output voltage differential which shall be limited to 80% of the max. rated (Vin-Vout).</td>
</tr>
<tr>
<td>Voltage, Input</td>
<td>0.80 (0.85 WC)</td>
<td></td>
</tr>
<tr>
<td>Current, Input</td>
<td>0.80 (0.90 WC)</td>
<td></td>
</tr>
<tr>
<td>Current, Output</td>
<td>0.75 (0.85 WC)</td>
<td></td>
</tr>
<tr>
<td>Transients</td>
<td>Transient peaks shall not exceed absolute maximum values</td>
<td></td>
</tr>
<tr>
<td>Junction or Hot Spot Temperature</td>
<td>125°C or 20°C less than manufacturer's rating</td>
<td>Whichever is lower</td>
</tr>
</tbody>
</table>
8.4 HYBRIDS CHIP AND WIRE

8.4.1 Derating Criteria for Hybrids Chip and Wire Devices.

Integrated circuit hybrids shall be designed so that discrete piece parts and deposited resistors meet the derating requirements of this document.

Junction Temperature, 125 °C or 20 °C less than manufacturers rating, whichever is lower.

8.4.2 Internal Wire

Maximum design current for any given internal wire or ribbon used in a Hybrid Microcircuit is dependent upon the conductor material and the wire diameter and is equal to 50% of the value determined by the equation I=Kd^{3/2}. The constant (K) is dependent upon the composition of the wire or ribbon as shown.

<table>
<thead>
<tr>
<th>CONDUCTOR MATERIAL</th>
<th>K VALUES FOR CONDUCTOR LENGTH, L</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L ≤ 0.040”</td>
</tr>
<tr>
<td>Aluminum</td>
<td>22,000</td>
</tr>
<tr>
<td>Gold</td>
<td>30,000</td>
</tr>
<tr>
<td>Copper</td>
<td>30,000</td>
</tr>
<tr>
<td>Silver</td>
<td>15,000</td>
</tr>
<tr>
<td>All others</td>
<td>9,000</td>
</tr>
</tbody>
</table>

8.5 DERATING CRITERIA (INTEGRATED CIRCUITS, OTHER)

For large scale integrated circuits, microcircuit chips for hybrids, and integrated circuit part types not specifically addressed in the preceding material, apply appropriate linear and/or digital criteria from the appropriate derating tables. For devices which are partially digital and partially linear, the linear device derating factors shall apply to the linear portion of the device and the digital device derating factors shall apply to the digital portion.
9. MOTORS

9.1 DERATING CRITERIA

TABLE 9-1 MOTOR DERATING

| TEMPERATURE |
| Motor parts and materials shall be subject to the same temperature restrictions as inductors. Specifically:
| 1. Maximum temperature (hot spot, ambient + temperature rise) Class A, 105°C, and Class B, 125°C; classes per MIL-C-15305.
| 2. Insulation rated at less than 105°C shall not be used. |
| In general, no part or material shall operate at a temperature greater than 30°C below the manufacturer’s rated temperature for the part or material. |

| BEARING LOAD: |
| 75% maximum of rated value. |
| Note that motor loading directly affects electrical stress and lifetime. Motor loading at operating speed shall be sufficiently derated from maximum rated torque so as to comply with the above temperature guidelines. |

| WIRE |
| Restrictions on wire size shall apply to motor windings and leads. (See Table 17-1) |

| LIFETIME DERATING |
| Motor lifetime in space applications will be determined by such factors as bearing lubrication, motor loading, and electrical stress. These factors shall be derated to 25% or less of their predicted capability under the application conditions. |
10. PRINTED WIRING BOARDS

10.1 DERATING CRITERIA

The minimum conductor width for both single and multilayer copper foil printed wiring boards (PWBs) is a function of required circuit current.

Two sets of plots are provided. The first set (Figures 10-1 and 10-2) plots the current carrying capability of the etched foil versus the cross sectional area required for a 10°C temperature rise in the trace. This rise ensures minimal component heating. The second set (Figures 10-3 and 10-4) plots the copper trace width versus the cross sectional area for four thicknesses of foil. The curves provided appear in FULL and EXPANDED scales to improve accuracy. The FULL scale covers the current range up to 7 amperes and a trace cross section up to 700 square mils. The EXPANDED scale covers the current range up to 1.8 amperes and a cross section up to 100 square mils.

10.2 USE OF DERATING CURVES

1. Enter the Current versus Area plot at the current required by the circuit and determine the cross sectional area.

2. Enter the Width versus Area plot of the same horizontal scale for the weight of copper foil used and determine the minimum trace width required.

10.3 ADDITIONAL FACTORS

1. Reliability review or approval is required for higher current densities than shown herein.

2. This information does not take into account the voltage drop between points on the PWB. The circuit designer must determine what is acceptable.

3. These curves are based upon MIL-STD-275E, Type 3, multilayer PWBs with inside traces, but apply to all PWBs in space as there is no air cooling.

4. The curves include an industry standard 10% margin on the allowed current per trace to allow for variations in etching copper thickness and conductor width.

5. Where under etching becomes significant, the trace cross sectional area will be reduced as will its current carrying capability. A wider trace should be used in this case.

6. The effect of components on the trace temperature rise has not been included.
7. These charts are for single conductors. For groups of similar, closely spaced, parallel conductors, the temperature rise may be found by summing the currents and summing the cross sectional areas as though the group were only one wire.

8. These curves apply to copper traces without overplating.
Figure 10-1 Conductor Current vs. Cross Sectional Area - Full
Figure 10-2 Conductor Width vs. Cross Sectional Area

Cross Sectional Area (Sq. Mils) vs. Conductor Width

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700

Conductor Width

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Conductor Width

1 OZ/SQ FT - 0.0014"
2 OZ/SQ FT - 0.0028"
3 OZ/SQ FT - 0.0042"
4 OZ/SQ FT - 0.0056"
11. RELAYS

11.1 DERATING CRITERIA

TABLE 11-1 RELAY DERATING (See Notes 1/ Through 8/)

<table>
<thead>
<tr>
<th>RELAY LOAD TYPE</th>
<th>CONTACT CURRENT MAXIMUM STRESS</th>
<th>COIL VOLTAGE</th>
<th>MAXIMUM ALLOWABLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistive</td>
<td>0.75 of resistive load rating</td>
<td>1.1 of must-operate voltage at +125° C rating</td>
<td>0.9 of maximum rated voltage</td>
</tr>
<tr>
<td>Inductive</td>
<td>0.50 of inductive load rating, or 0.40 of resistive load rating if inductive load rating is not specified</td>
<td>1.1 of must-operate voltage at +125° C rating</td>
<td>0.9 of maximum rated voltage</td>
</tr>
<tr>
<td>Motor</td>
<td>0.5 of motor load rating, or 0.20 of resistive load rating if motor load rating is not specified</td>
<td>1.1 of must-operate voltage at +125° C rating</td>
<td>0.9 of maximum rated voltage</td>
</tr>
<tr>
<td>Filament</td>
<td>0.10 of resistive load rating</td>
<td>1.1 of must-operate voltage at +125° C rating</td>
<td>0.9 of maximum rated voltage</td>
</tr>
<tr>
<td>Capacitive or in-rush type load</td>
<td>Series resistance shall be used with any capacitive load to insure that currents do not exceed derated levels for resistive loads.</td>
<td>1.1 of must-operate voltage at +125° C rating</td>
<td>0.9 of maximum rated voltage</td>
</tr>
</tbody>
</table>

NOTES:

1/ Maximum number of operations shall be 50% of rated life when relay is used with resistive loads, and 25% of rated life when used with inductive loads. Relay actuations performed during pre-flight testing shall be included as a portion of the permitted maximum number of relay operations.

2/ Suppression of induced transient voltage spikes is typically recommended to minimize effects on circuits/devices used to drive relay coils. Back-to-back zener diodes, or a zener diode with a blocking diode, across the coil are effective techniques. These techniques minimize degradation to contact life which can occur because of longer drop-out times for the suppressed coil. Bifilar wound coils are another option. If used, they should not require additional external suppression.

3/ For loads other than those specified in the above table, the stress on the relay contacts shall be no greater than 75% of the manufacturer’s rating for the type of load specified.

4/ Contacts can be paralleled for redundancy. However, paralleled contacts should not be used as a means to increase contact current rating over the value specified for a single current. This restriction is necessary because there is no guarantee that parallel contacts will open and close simultaneously. Therefore, a single contact must be capable of carrying the entire load. shall be derated using the inductive derating rather than the resistive derating.
NOTES (Continued)

5/ Relays used to switch resistive loads at an appreciable distance from the relay contacts (such as in a spacecraft harness) may, in fact, be switching a load with significant inductance (the harness) in series with the load resistance. Each case shall be examined separately to determine the amount of inductance. If the amount of inductance as defined by the equation \(L = 0.0001R_t \) in MIL-R-6106 is exceeded, the relay contact load shall be considered to be inductive. In these cases, the contacts

6/ Arc suppression techniques for the relay contacts are not recommended for use in spacecraft designs to provide higher than the derated current value in Table 11-1, since failure of the arc suppression circuit increases the risk of relay contact failure. Instead, relay contacts of a higher rating that can withstand the surge current during switching should be used.

7/ Relay contacts can safely carry more current than they can switch. For purposes of derating, the “carry-only” load shall not exceed 90% of the rated “carry-only” load.

8/ Relay coil voltages should not be derated. Relay coils should be operated at their specified nominal voltage level. Since operation exactly at the specified nominal voltage is not always possible. There are some upper and lower tolerance limits for coil voltage. Table 11-1 defines those limits which will ensure proper relay operation. The minimum actuation voltage supplied to the relay coil should never be less than 110% of the smallest voltage which will operate the relay at its maximum related temperature. The voltage supplied to the coil should never be greater than 90% of the specified maximum voltage rating for the coil over the specified temperature range.
12. RESISTORS

TABLE 12-1 MIL-SPEC LISTING (FOR REFERENCE)

<table>
<thead>
<tr>
<th>RESISTOR TYPE</th>
<th>MIL-SPEC</th>
<th>STYLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed, Carbon (Insulated) Composition</td>
<td>MIL-R-39008</td>
<td>RCR</td>
</tr>
<tr>
<td>Fixed Film (Insulated)</td>
<td>MIL-R-39017</td>
<td>RLR</td>
</tr>
<tr>
<td>Fixed Film Resistor Chips</td>
<td>MIL-R-55342</td>
<td>RM, RMO</td>
</tr>
<tr>
<td>Fixed Film</td>
<td>MIL-R-55182</td>
<td>RNC</td>
</tr>
<tr>
<td>Fixed Film, Precision</td>
<td>MIL-R-55182</td>
<td>RNR 1/</td>
</tr>
<tr>
<td>Fixed Film, High Voltage</td>
<td>MIL-R-55182</td>
<td></td>
</tr>
<tr>
<td>Fixed, Wire Wound (Accurate)</td>
<td>MIL-R-39005</td>
<td>RBR</td>
</tr>
<tr>
<td>Fixed, Wire Wound (Pwr Type)</td>
<td>MIL-R-39007</td>
<td>RWR</td>
</tr>
<tr>
<td>Fixed, Wire Wound Power Type Chassis Mounted</td>
<td>MIL-R-39009</td>
<td>RER</td>
</tr>
<tr>
<td>Pill Resistor (Stripline)</td>
<td>MIL-R-10509</td>
<td></td>
</tr>
<tr>
<td>Resistance Network</td>
<td>MIL-R-83401</td>
<td>RZ, RZO</td>
</tr>
<tr>
<td>Thermistor</td>
<td>MIL-T-23648</td>
<td>RTH</td>
</tr>
<tr>
<td>Variable, Nonwire Wound 2' (Adjustment Type)</td>
<td>MIL-R-39035</td>
<td>RJR</td>
</tr>
<tr>
<td>Variable, Nonwire Wound (2) (Lead Screw Actuated)</td>
<td>MIL-R-39015</td>
<td>RTR</td>
</tr>
</tbody>
</table>

NOTES:

1/ For solder only applications, not for welding.
2/ Not recommended for space usage.
12.1 DERATING CRITERIA

TABLE 12-2 RESISTOR DERATING

<table>
<thead>
<tr>
<th>TYPE</th>
<th>PARAMETER</th>
<th>MAXIMUM STRESS RATIO 1/</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon Composition</td>
<td>Power</td>
<td>Figure 12-1 1/</td>
</tr>
<tr>
<td>Metal Film</td>
<td>Power</td>
<td>Figure 12-2 1/</td>
</tr>
<tr>
<td>Film, Chip - RMO</td>
<td>Power</td>
<td>0.50 (0.75 WC) 2/ & 9/</td>
</tr>
<tr>
<td>Film Resistance Network</td>
<td>Power</td>
<td>0.50 (0.75 WC) 2/ & 9/</td>
</tr>
<tr>
<td>Wire Wound Accurate - RBR</td>
<td>Power</td>
<td>Figure 12-4 1/ & 8/ & 10/</td>
</tr>
<tr>
<td>Wire Wound Power - RWR</td>
<td>Power</td>
<td>Figure 12-5 1/ & 4/</td>
</tr>
<tr>
<td>Wire Wound Power - RER Chassis Mounted</td>
<td>Power</td>
<td>Figure 12-5 1/ & 4/</td>
</tr>
<tr>
<td>Deposited (Thick Film as Part of a Hybrid Substrate)</td>
<td>Power</td>
<td>0.50 3/</td>
</tr>
<tr>
<td>Inconel Foil Heaters or Deposited Heaters on Kapton</td>
<td>Power</td>
<td>0.50 6/</td>
</tr>
<tr>
<td>Thermistors Positive Temperature Compensating</td>
<td>Power</td>
<td>0.50</td>
</tr>
<tr>
<td>Thermistors Negative Temperature Compensating</td>
<td>Power</td>
<td>0.50 5/</td>
</tr>
<tr>
<td>Microwave Loads, Isolators, Circulators (Pill Resistors)</td>
<td>Power</td>
<td>0.50 7/</td>
</tr>
</tbody>
</table>

NOTES:

For discrete resistors, the voltage shall not exceed 50% of rated voltage. Where a specific voltage rating has not been stated, the nominal rated voltage shall be determined from \(E = \text{Square Root of (PR)} \). When the voltage is applied in short pulses so that the average power of the resistor is less than 50% of the manufacturer’s rating, this voltage derating may be the controlling derating factor.

Average pulse power is defined by:

\[P_{\text{average}} = P(t/T) \]

Where

- \(P \) = pulse power, calculated from \(E^2/R \)
- \(E \) = amplitude of the pulses
- \(R \) = impedance across which the pulses appear
- \(t \) = pulse width or duration in seconds
- \(T \) = cycle width or duration in seconds

For nonrepetitive pulses, the resistor’s thermal time constant in the particular application shall be determined and the pulse power limited to a value that does not result in a temperature rise at the resistor surface which is greater than the temperature rise that would result from the applied derated DC power level.
NOTES (Continued)

2/ Power rating shall be determined from the maximum hot spot temperature and a calculation of the thermal resistance from the element to the equipment mounting surface. Above 70°C, linearly reduce the power derating factor from 0.50 at +70°C to zero at +125°C.

3/ Deposited resistors: Dimensions are determined by required resistance value and the resistivity of the ink used. Power rating for DuPont Birox 1400 series inks is 100 watts per square inch. The total power dissipated on a substrate, however, shall not exceed 4 watts per square inch and the voltage shall not exceed 1500 volts per inch of length. Consult the appropriate specification for other inks.

4/ For chassis-mounted applications, resistor body temperature (hot spot) shall not exceed 140°C.

5/ Current limiting resistors or other methods shall be used to prevent thermal runaway. The 50% power stress ratio applies to +25°C. Derate linearly to zero milliwatts at +125°C (or the appropriate zero power temperature for the thermistor used.)

6/ 50% derating applies only if low thermal resistance exists between the heater and the heatsink. Higher derating (dissipating less power) is required if there is no heat sink, or if the thermal resistance to the heat sink is not low.

7/ This is 50% of the manufacturer’s maximum power rating for the component (such as an load that will still permit the circuit to function.

8/ These resistors are susceptible to absorption of water vapor and can exhibit a positive or negative (usually positive) shift of resistance of 30 to 70 parts per million.

9/ Under relatively low humidity conditions, film chip resistors (particularly those of smaller base size with high sheet resistance films) are subject to electrostatic discharge (ESD) and sudden shifts in resistance and in the temperature coefficient of resistance. Precautions against ESD are necessary in packaging and handling.

10/ The RBR resistors are designed as precision resistors. They are physically larger than RWR resistors for the same wattage rating which enables them to be used at higher power stress ratios than RWR resistors while maintaining their accuracy.

11/ The resistor derating guidelines account for the vacuum environment of space and are based on the maximum allowable resistor body hot spot temperature for lead mounted resistors in vacuum, except for RER and inconel foil heater resistors, which are based on chassis mounting.
12.2 USE OF DERATING CURVES (FIGS. 12-1 THROUGH 12-5).

To determine the maximum permitted operating power from the following figures:

1. Determine the maximum temperature at the location where the resistor will be mounted. The maximum temperature is the sum of the part ambient temperature, which is the acceptance test temperature plus the temperature rise from the component baseplate to the part location, and the part operational temperature, which is a function of the power applied.

2. Find that maximum temperature on the X axis, and read the Power Stress Ratio upper limit from the Region I curve. The power stress ratio is determined by dividing the maximum power across the resistor in its intended circuit application by the manufacturer’s maximum power rating.

3. Any combination of part temperature and power stress ratio that lies in Region I shall be considered approved for that application. Any combination that lies in Region III shall be considered disapproved for the intended application. Combinations falling in Region II shall be identified, analyzed to assure that the part application meets mission requirements, and presented to the PMPCB for approval. Combinations falling 20% or less above the Region I curve shall be documented on a PMPCB Action Form and forwarded to the Government PMPCB representatives for approval. Combinations greater than 20% above the Region I curve shall require acquisition activity approval.
Figure 12-1 Carbon Composition Resistor (RCR)
Figure 12-2 Metal Film Resistor (RLR)

Part Temperature (°C)

Power Ratio Stress

Region I
Region II
Region III
Figure 12-3 Metal Film Resistor (RNC, RNR)
Figure 12-4 Wire Wound Accurate Resistor (RBR)
Figure 12-5 Wire Wound Power Resistor (RWR, RER)
13. SLIP RINGS

13.1 DERATING CRITERIA

The maximum current in the slip ring shall not exceed 50% of the designed current carrying capability of the slip ring. In addition, slip rings shall be designed so that when 50% of the rated current is being carried, the temperature rise of the slip rings shall not exceed 50°C rise above ambient.

14. SUBSTRATES

14.1 DERATING CRITERIA

Alumina substrates shall be derated to 50% of the manufacturer’s dielectric withstanding voltage.

15. SWITCHES

15.1 SWITCH DERATING CRITERIA

The derating requirements for switches are essentially the same as for relay contacts. The notes below table 11-1 that refer to relay contacts also apply to switches.

Thermal switches per MIL-S-24236 are not recommended for space application. Where they must be used, the contacts shall be derated as stated above and proper configurations of series and parallel redundancy shall be employed. In addition, a +4°C minimum dead band shall be required and a temperature rate of change equal to or greater than 0.11°C/minute shall be used. If these conditions cannot be met, solid-state thermal controls shall be used.
16. TRANSISTORS

16.1 DERATING CRITERIA

TABLE 16-1 TRANSISTOR, BIPOLAR, JFET

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>MAXIMUM STRESS RATIO</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>0.50 (0.60 WC)</td>
<td>1/</td>
</tr>
<tr>
<td>Voltage</td>
<td>0.75 of maximum rating</td>
<td>2/</td>
</tr>
<tr>
<td>Voltage Transients</td>
<td>0.85 of maximum ratings</td>
<td>Worst case turn-on or repetitive transient</td>
</tr>
<tr>
<td>Current</td>
<td>0.75 (0.85 WC)</td>
<td></td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>125 C or 20 C less than the manufacturer’s rating</td>
<td>Whichever is lower.</td>
</tr>
</tbody>
</table>

TABLE 16-2 TRANSISTOR, GAAS FET

<table>
<thead>
<tr>
<th>TYPE</th>
<th>PARAMETER</th>
<th>MAXIMUM STRESS RATIO</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>GaAs FET Low Noise</td>
<td>Voltage Current Power, Channel Temperature, Channel</td>
<td>0.75 0.75 3/ & 4/ 0.50 125°C or 20°C less than the manufacturer’s rating.</td>
<td>Whichever is lower.</td>
</tr>
<tr>
<td>GaAs FET Power</td>
<td>Voltage Current Temperature, Channel</td>
<td>0.75 0.75 3/ & 4/ 125°C or 20°C less than the manufacturer’s rating.</td>
<td>Whichever is lower.</td>
</tr>
</tbody>
</table>
TABLE 16-3 MOSFET, SMALL SIGNAL AND POWER

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>MAXIMUM STRESS RATIO</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage, Gate to Source, V_{GS}</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>Channel Power</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>Channel Current</td>
<td>0.75 3/ & 4/</td>
<td></td>
</tr>
<tr>
<td>Breakdown Voltage, V_{BGSS}</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>Temperature, Channel</td>
<td>125°C or 20°C less than the manufacturer's rating.</td>
<td>Whichever is lower</td>
</tr>
</tbody>
</table>

NOTES for Tables 16-1, -2, and -3:

1/ Usable power at a given case temperature can be found from
 \[P = \frac{T_{J\text{max}} - T_C}{\phi_{JC}} \]
 Where:
 - $T_{J\text{max}}$ is the maximum allowed junction temperature
 - T_C is the device case temperature
 - ϕ_{JC} is the thermal resistance from junction to case

2/ Voltage derating applies to device voltages such as V_{CBO}, V_{EBO}, and V_{CEX}.

3/ Where maximum I_{DS} rating is not specified, the upper I_{DSS} rating will apply.

4/ Devices may be tested briefly with I_{DS} not to exceed the maximum rated value. Forward gate current shall be 0.90 or less of rating, or zero if not specified.
17. WIRE AND CABLE

17.1 DERATING CRITERIA

TABLE 17-1 WIRE DERATING $^{1/2}$

<table>
<thead>
<tr>
<th>WIRE SIZE AWG#</th>
<th>MAXIMUM APPLIED CURRENT (AMPS)</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BUNDLE/CABLE</td>
<td>SINGLE WIRE</td>
</tr>
<tr>
<td>30</td>
<td>0.7</td>
<td>1.3</td>
</tr>
<tr>
<td>28</td>
<td>1.0</td>
<td>1.8</td>
</tr>
<tr>
<td>26</td>
<td>1.4</td>
<td>2.5</td>
</tr>
<tr>
<td>24</td>
<td>2.0</td>
<td>3.3</td>
</tr>
<tr>
<td>22</td>
<td>2.5</td>
<td>4.5</td>
</tr>
<tr>
<td>20</td>
<td>3.7</td>
<td>6.5</td>
</tr>
<tr>
<td>18</td>
<td>5.0</td>
<td>9.2</td>
</tr>
<tr>
<td>16</td>
<td>6.5</td>
<td>13.0</td>
</tr>
<tr>
<td>14</td>
<td>8.5</td>
<td>19.0</td>
</tr>
<tr>
<td>12</td>
<td>11.5</td>
<td>25.0</td>
</tr>
<tr>
<td>10</td>
<td>16.5</td>
<td>33.0</td>
</tr>
<tr>
<td>8</td>
<td>23.0</td>
<td>44.0</td>
</tr>
</tbody>
</table>

NOTES:

$^1/$ Use of wire smaller than AWG # 30 is not recommended. However, if wire smaller than AWG # 30 must be used, the maximum current rating for a single wire is 2.63 milliamps per circular mil (3.348 mA/sq. mil) of cross-sectional area. Wire smaller than AWG # 36 shall require reliability review and PMPCB approval prior to use and shall not be used in critical applications.

$^2/$ The current in wires terminated in or run through connectors may be restricted further than indicated above by virtue of the connector contact size. See section 2.1 Connector Derating Criteria, Tables 2-1 and 2-2.
APPENDIX H.

GENERAL SAMPLING PLAN
<table>
<thead>
<tr>
<th>Max. Percent Defective (LTPD) or AQL</th>
<th>Acceptance Number (c)</th>
<th>Minimum Sample Sizes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(c = C + 1)</td>
<td>(For device-hours required for life test, multiply by 1000)</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>(1.03)</td>
</tr>
<tr>
<td>2</td>
<td>18</td>
<td>(2.74)</td>
</tr>
<tr>
<td>3</td>
<td>38</td>
<td>(4.45)</td>
</tr>
<tr>
<td>4</td>
<td>68</td>
<td>(6.16)</td>
</tr>
<tr>
<td>5</td>
<td>98</td>
<td>(7.87)</td>
</tr>
<tr>
<td>6</td>
<td>128</td>
<td>(9.58)</td>
</tr>
<tr>
<td>7</td>
<td>158</td>
<td>(11.28)</td>
</tr>
<tr>
<td>8</td>
<td>188</td>
<td>(12.99)</td>
</tr>
<tr>
<td>9</td>
<td>218</td>
<td>(14.69)</td>
</tr>
<tr>
<td>10</td>
<td>248</td>
<td>(16.39)</td>
</tr>
<tr>
<td>11</td>
<td>278</td>
<td>(18.10)</td>
</tr>
<tr>
<td>12</td>
<td>308</td>
<td>(19.80)</td>
</tr>
<tr>
<td>13</td>
<td>338</td>
<td>(21.50)</td>
</tr>
<tr>
<td>14</td>
<td>368</td>
<td>(23.20)</td>
</tr>
<tr>
<td>15</td>
<td>398</td>
<td>(24.90)</td>
</tr>
<tr>
<td>16</td>
<td>428</td>
<td>(26.60)</td>
</tr>
</tbody>
</table>

Minimum size of sample to be tested to assure, with a 90 percent confidence, that a lot having percent-defective equal to the specified LTPD will not be accepted (single sample).

1/ Sample sizes are based upon the Poisson exponential binomial limit.
2/ The minimum quality (approximate AQL) required to accept on the average 19 of 20 lots is shown in parenthesis for information only.
APPENDIX I.

SMALL LOT
SAMPLING PLAN
FOR CUSTOM DEVICES
Small Lot Sampling Plan
for Custom S Devices
Lot Size

<table>
<thead>
<tr>
<th>Specified LTPD 1/</th>
<th>Less than 25</th>
<th>25-60</th>
<th>61-120</th>
<th>121-240</th>
<th>241-500</th>
<th>Greater than 500</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>21(0)</td>
<td>29(0)</td>
<td>41(0)</td>
<td>58(0)</td>
<td>82(0)</td>
<td>116(0)</td>
</tr>
<tr>
<td></td>
<td>or</td>
<td>48(1)</td>
<td>or</td>
<td>68(1)</td>
<td>or</td>
<td>or</td>
</tr>
<tr>
<td></td>
<td>or</td>
<td></td>
<td></td>
<td>97(1)</td>
<td></td>
<td>137(1)</td>
</tr>
<tr>
<td></td>
<td>34(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>195(1)</td>
</tr>
<tr>
<td>3</td>
<td>14(0)</td>
<td>19(0)</td>
<td>27(0)</td>
<td>38(0)</td>
<td>54(0)</td>
<td>76(0)</td>
</tr>
<tr>
<td></td>
<td>or</td>
<td>32(1)</td>
<td>or</td>
<td>45(1)</td>
<td>or</td>
<td>or</td>
</tr>
<tr>
<td></td>
<td>22(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>129(1)</td>
</tr>
<tr>
<td>5</td>
<td>8(0)</td>
<td>12(0)</td>
<td>16(0)</td>
<td>23(0)</td>
<td>32(0)</td>
<td>45(0)</td>
</tr>
<tr>
<td></td>
<td>or</td>
<td>19(1)</td>
<td>or</td>
<td>27(1)</td>
<td>or</td>
<td>or</td>
</tr>
<tr>
<td></td>
<td>13(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>77(1)</td>
</tr>
<tr>
<td>7</td>
<td>6(0)</td>
<td>8(0)</td>
<td>12(0)</td>
<td>16(0)</td>
<td>23(0)</td>
<td>32(0)</td>
</tr>
<tr>
<td></td>
<td>or</td>
<td>13(1)</td>
<td>or</td>
<td>19(1)</td>
<td>or</td>
<td>or</td>
</tr>
<tr>
<td></td>
<td>10(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>55(1)</td>
</tr>
<tr>
<td>10</td>
<td>4(0)</td>
<td>6(0)</td>
<td>8(0)</td>
<td>11(0)</td>
<td>16(0)</td>
<td>22(0)</td>
</tr>
<tr>
<td></td>
<td>or</td>
<td>12(1)</td>
<td>or</td>
<td>13(1)</td>
<td>or</td>
<td>or</td>
</tr>
<tr>
<td></td>
<td>7(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>38(1)</td>
</tr>
<tr>
<td>15</td>
<td>3(0)</td>
<td>4(0)</td>
<td>6(0)</td>
<td>8(0)</td>
<td>11(0)</td>
<td>15(0)</td>
</tr>
<tr>
<td></td>
<td>or</td>
<td>7(1)</td>
<td>or</td>
<td>10(1)</td>
<td>or</td>
<td>or</td>
</tr>
<tr>
<td></td>
<td>5(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25(1)</td>
</tr>
<tr>
<td>20</td>
<td>3(0)</td>
<td>3(0)</td>
<td>4(0)</td>
<td>6(0)</td>
<td>8(0)</td>
<td>11(0)</td>
</tr>
<tr>
<td></td>
<td>or</td>
<td>5(1)</td>
<td>or</td>
<td>7(1)</td>
<td>or</td>
<td>or</td>
</tr>
<tr>
<td></td>
<td>5(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18(1)</td>
</tr>
</tbody>
</table>

NOTES:

1/ Select the appropriate reduced sample size based upon the specified LTPD and lot size.
APPENDIX J.

RADIATION HARDNESS ASSURANCE
1 SCOPE

This appendix provides the detailed requirements for managing the radiation hardness assurance of piece parts.

2 HARDNESS ASSURANCE PROGRAM

The contractor shall develop and implement a radiation hardness assurance program for all piece parts requiring some level of radiation hardening, during the design and production of the launch vehicle. The hardness assurance tasks shall include:

1. Development of radiation hardness assurance requirements where applicable.
2. Presentation of radiation hardness assurance issues at the preliminary and critical design reviews for the applicable hardware.
3. Presentations at PMPCB meetings when applicable.
4. Development of radiation hardness assurance design documentation.

2.1 HARDNESS ASSURANCE REQUIREMENTS

When radiation hardness assured parts, quality levels Class S or Class B for parts built to NEL-M-3 85 1 0 or JANS and JANTXV for parts built to MIL-PRF-19500 and -radiation levels M, D, R, or H, are unavailable to meet the specified radiation environments, the contractor shall develop detailed specifications or source control documents (SCDS) to procure the piece parts. All technical requirements for radiation hardness shall be included in the detailed specifications or SCD, either directly stated or by reference to other documents. These requirements shall include:

1. Radiation test methods and test circuits
2. Sample size and sampling method
3. Radiation types and specification level
4. Pre- and post-radiation response parameters and failure criteria
5. Required confidence level (C) and survival probability (P)
6. Dosimetry requirements, if applicable
7. Special radiation tests such as electrical or radiation screening tests

In addition, the procurement paper should also include a list of the approved radiation test facilities, the data reporting and analysis requirements, and the failure analysis requirements.
2.2 HARDNESS ASSURANCE DESIGN DOCUMENTATION

The contractor shall prepare hardness assurance design documentation for each applicable subsystem which details all radiation analyses and test data for all required radiation hard piece parts. This documentation shall include:

1. Identification of all circuits that require piece parts with some level of radiation hardness

2. Circuit schematic, functional description, pin-out, operating conditions, and application of each circuit identified above

3. Specification of the worst case radiation environment that the piece parts will see in this circuit

4. Design margin between the worst-case circuit requirements and the degradation, if applicable, of the piece parts due to radiation

5. Results of hardness verification analyses and tests

6. Testability requirements, including a description of any hardness assurance test chips

7. List of critical design and processing parameters necessary to meet radiation environments

8. Radiation hardness lot acceptability criteria and test results.

2.3 PRELIMINARY AND CRITICAL DESIGN REVIEWS

The contractor shall ensure that all system design decisions that affect radiation hardness assurance of piece parts are made with the concurrence of the PNTCB. In addition, the PUTCB shall ensure that the hardness assurance design documentation and the detailed piece part specifications are appropriately modified, if necessary, to incorporate any hardness assurance decisions made at the preliminary and critical design reviews.

2.4 HARDNESS ASSURANCE FOR CUSTOM LARGE SCALE INTEGRATED CIRCUITS (LSIC)

The PMPCB shall ensure that the following tasks are included during the design and construction of custom LSI devices:

1. Designer and manufacturer capability audits

2. Feasibility assessment performed by the contractor during the conceptual design phase

3. Design requirements for hardness assurance testability
4. Radiation critical layout rules and circuit design considerations

5. Critical procedure and process requirements during wafer fabrication and assembly.

Additional requirements for custom LSI devices are detailed in MIL-HDBK-339.

3 HARDNESS ASSURANCE VERIFICATION

3.1 HARDNESS VERIFICATION ANALYSES

The contractor shall perform and document radiation analyses of all circuits with some level of radiation hardness to ensure that the piece parts used in the circuit are capable of meeting the hardness assurance requirements.

3.2 RADIATION CHARACTERIZATION TESTS

The contractor shall conduct radiation characterization of all radiation hardened piece parts in the specified radiation environments. The radiation characterization tests may be waived if existing databases are approved by the PMPCB. The radiation characterization tests shall consist of exposing the test sample to increasing radiation levels until the parametric or the functional failure value for the device has been reached. All failure values shall be based on both a worst case circuit analysis and the applicable device specifications.
APPENDIX K.

DATA ITEM DESCRIPTIONS
PMPCB Action Form

1) Subject:

2) Description of Request:

3) Enclosures:

4) Justification:

5) Contractor:
6) Contract Number:
7) Reply Need Date:

8) Submitted by:
9) Phone:
10) Date:
11) Expedite Requested

Failure to provide disposition response within 2 weeks from due date shall be considered as concurrence and disposition shall be applied accordingly.

Dispositions:

<table>
<thead>
<tr>
<th>Affected</th>
<th>Date</th>
<th>Approved</th>
<th>Not Approved</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMPCB Chairman:</td>
<td>/__</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>AF/SMC Rep:</td>
<td>/__</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Aerospace Rep:</td>
<td>/__</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>NASA Rep:</td>
<td>/__</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Other</td>
<td>/__</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

Comments:

Copies To:
Chairman:
Date:
Material/Part Approval Request

<table>
<thead>
<tr>
<th>Contractor:</th>
<th>Program:</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>System used on:</td>
<td>QTY per system:</td>
<td>Vendor:</td>
</tr>
<tr>
<td>Material/Part Number</td>
<td>Procured Material/Part Number:</td>
<td></td>
</tr>
<tr>
<td>Generic Material/Part Number:</td>
<td>Nomenclature:</td>
<td>Package Type:</td>
</tr>
<tr>
<td>Material/Part Function:</td>
<td>Nearest Standard Material/Part:</td>
<td></td>
</tr>
</tbody>
</table>

Justification for Use of Nonstandard Material/Part:

Impact if Material/Part Request is Disapproved:

Previous Usage History:

How will Material/Part Qualification Be Established:

Detailed Procurement Plan:

Dispositions:

<table>
<thead>
<tr>
<th>Affected:</th>
<th>Date</th>
<th>Approved</th>
<th>Not Approved</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMPCB Chairman:</td>
<td>/</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>AF/SMC Rep:</td>
<td>/</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Aerospace Rep:</td>
<td>/</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>NASA Rep:</td>
<td>/</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Other</td>
<td>/</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

Comments:

Copies To:

<table>
<thead>
<tr>
<th>Chairman:</th>
<th>Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMPCB Chairman:</td>
<td>/</td>
</tr>
<tr>
<td>AF/SMC Rep:</td>
<td>/</td>
</tr>
<tr>
<td>Aerospace Rep:</td>
<td>/</td>
</tr>
<tr>
<td>NASA Rep:</td>
<td>/</td>
</tr>
<tr>
<td>Other</td>
<td>/</td>
</tr>
</tbody>
</table>
APPENDIX L.

ELECTRONIC PART PROCUREMENT
ORDER OF PRECEDENCE
SECTION 1

SCOPE

1. PURPOSE AND APPLICATION

This appendix defines the procurement order of precedence to be utilized for the purchase of electronic parts. These requirements are to be applied to purchases only and not to parts in stock. Parts in stock may be used to depletion.
SECTION 2
REQUIREMENTS

2. PROCUREMENT ORDER OF PRECEDENCE

2.1 SEMICONDUCTORS AND MICROCIRCUITS

The part selection orders of precedence for single string and redundant circuitry are shown below:

1. Category I Electronic Systems/Circuits. The procurement order of precedence for category I systems/circuits shall be as follows in the order shown:

 FIRST: Space Quality parts listed on the applicable QPL/QML shall be procured. If procured Space Quality parts will not be delivered in time to meet the production schedule, the contractor may go to the second order of precedence for a number of substitute devices limited by the PMPCB to those necessary to avoid schedule impact or assembly interruptions.

 SECOND: If parts described by the first order of precedence are physically unobtainable, parts described by this second order of precedence shall be procured. The second order of precedence shall include:

 Custom parts built to the minimum processing requirements and screened to the minimum screening requirements specified in Appendix B for the applicable device type,

 - or -

 JANTXV and Class B parts listed on the QPL and up-screened to the minimum up-screening requirements specified in Appendix B for the applicable device type. Although either selection is acceptable, the selections are listed in their preferred order.

 THIRD: If parts described by the first and second orders of precedence are physically unobtainable, a PAR may be submitted to the PMPCB to obtain approval for the use of third order of precedence parts. The order of precedence shall include:

 Parts procured that meet DSCC, MIL-STD-883 Para 1.2.1, or other requirements shall first be brought up to JANTXV or Class B requirements (with the exception of internal visual) before up-screening to the requirements specified in Appendix B for the applicable device type. A part procured to less than JANTX or Class B requirements shall be compared, in detail, to the nearest equivalent or most similar JANTXV or Class B specification. If differences are identified, only those tests and inspections, which have not already been performed on the lower level parts need to be performed in order to bring the parts up to the JANTXV or Class B level. The first inspection (up-screening) lot of each device type
shall be subjected to the general JANS/Class S part qualification requirements for the applicable device type.

2. Category II Electronic Systems/Circuits. The procurement order of precedence for category II systems/circuits shall be as described below:

FIRST: Parts described by the first order of precedence shall be procured. The first order of precedence shall include:

Space Quality parts listed on the applicable QPL/QML.

- or –

Custom parts built to the minimum processing requirements and screened to the minimum screening requirements specified in Appendix B for the applicable device type,

- or -

JANTXV and Class B parts listed on the QPL and up-screened to the minimum up-screening requirements specified in Appendix B for the applicable device type. Lot Acceptance Testing (LAT) per Appendix B is not required.

Although any of the above selections are acceptable, they are listed in their preferred order.

Note: Parts procured from the above categories do not require a PAR.

SECOND: If parts described by the first order of precedence are physically unobtainable, a PAR may be submitted to the PMPCB to obtain approval for the use of second order of precedence parts. The second order of precedence shall include:

Parts procured that meet DSCC, MIL-STD-883 Para 1.2.1, or other requirements. A part procured to less than JANTXV or Class B requirements shall be compared, in detail to the nearest equivalent or most similar JANTXV or Class B specification. If differences between the specifications are identified, only those tests and inspections which have not already been performed on the lower level parts need to be performed in order to bring the parts up to the JANTXV or Class B level. The first inspection (up-screening) lot of each device type shall be subjected to the general JANS/Class S part qualification requirements for the applicable device type. Lot Acceptance Testing (LAT) per Appendix B is not required.
2.2 RESISTORS/TERMISTORS

The procurement order of precedence shall be as described below:

FIRST: Parts described by the first order of precedence parts shall be procured. The first order of precedence shall include:

Space Quality parts listed on the applicable QPL.

- or -

Parts manufactured in accordance with MIL-PRF-39005, MIL-PRF-39007, MIL-PRF-39009, MIL-PRF-39017, MIL-PRF-55182, MIL-PRF-55342, and listed on the applicable QPL for Exponential failure rate “S”.

SECOND: If the parts described in the first order of precedence are not available to support schedule, second order of precedence parts shall be procured. The second order of precedence shall include:

Parts manufactured in accordance with MIL-PRF-39005, MIL-PRF-39007, MIL-PRF-39009, MIL-PRF-39017, MIL-PRF-55182, or MIL-PRF-55342 and listed on the applicable QPL for Exponential failure rate “R”,

- or -

Parts manufactured in accordance with MIL-PRF-23648, MIL_PRF-83401 and listed on the applicable QPL.

THIRD: If parts described by the two above orders of precedence are physically unobtainable, a PAR may be submitted to the PMPCB to obtain approval for the use of third order of precedence parts. Third order of precedence parts shall not be procured unless a PAR has been submitted to the PMPCB for review and approval. The third order of precedence shall include:

All resistors/thermistors not described by the two orders of precedence above.

2.3 CAPACITORS

The procurement order of precedence shall be as described below:

FIRST: Parts described by the first order of precedence parts shall be procured. The first order of precedence shall include:

Space Quality parts listed on the applicable QPL.

- or -

Parts manufactured in accordance with MIL-PRF-20, MIL-PRF-19978, MIL-PRF-23269, MIL-PRF-39001, MIL-PRF-39003, MIL-PRF-39006, MIL-PRF-
39014, MIL-PRF-55365, MIL-PRF-55681, or MIL-PRF-83421 and listed on the applicable QPL for Exponential failure rate “S” or Weibull failure rates “E”, “D”, “C”, or “B”.

SECOND: If the parts described in the first order of precedence are not available to support schedule, second order of precedence parts shall be procured. The second order of precedence shall include:

THIRD: If parts described by the two orders of precedence above are physically unobtainable, PARs may be submitted to the PMPCB to obtain approval for third order of precedence parts. Third order of precedence parts shall not be procured unless a PAR has been submitted to the PMPCB for review and approval. The third order of precedence shall include:

All capacitors not described by the two orders of precedence above.

2.4 PRINTED WIRING BOARDS (PWB)

The procurement order of precedence shall be as described below:

FIRST: PWBs described by the first order of precedence shall be procured. The first order of precedence shall include:

Printed Wiring Boards manufactured and screened in accordance with the requirements specified in Appendix C.

SECOND: If PWBs described by the first order of precedence are physically unobtainable, PARs may be submitted to the PMPCB to obtain use of second order of precedence PWBs. The second order of precedence shall include:

Printed Wiring Boards not described by the first order of precedence

2.5 RELAYS

The procurement order of precedence shall be as described below:

FIRST: First order of precedence relays shall be procured. The first order of precedence shall include:

Relays manufactured and screened in accordance with the requirements specified in Appendix D.
Relays manufactured in accordance with MIL-PRF-39016 and listed on the QPL for failure rate “P” or “R”. Use of failure rate “M” relays shall require PMPCB approval.

- or -

Type 1 (hermetic) relays manufactured to MIL-PRF-6106 and listed on the QPL for failure rate “P”. Use of failure rate “M”, “U”, or “X” relays shall require PMPCB approval.

SECOND: If relays described by the first order of precedence are physically unobtainable, PARs may be submitted to the PMPCB to obtain use of second order of precedence parts. The second order of precedence shall include:

Relays manufactured and screened to other requirements.

2.6 WIRE

The procurement order of precedence shall be as described below:

FIRST: Wire described by the first order of precedence shall be procured. The first order of precedence shall include:

Wire constructions listed in Appendix E.

SECOND: If wire described by the first order of precedence is physically unobtainable, PARs may be submitted to the PMPCB to obtain approval for the use of second order of precedence wire constructions. The second order of precedence shall include:

Wire constructions other than those listed in Appendix E.

2.7 TRANSFORMERS

The procurement order of precedence shall be as described below:

FIRST: Transformers described by the first order of precedence shall be procured. The first order of precedence shall include:

Transformers manufactured and screened to MIL-STD-981, Class S with the exceptions that magnet wire shall conform to NEMA-JW1000 and that the manufacturer’s quality system shall meet the requirements of SAE AS9100.

- or -
Transformers built and screened in accordance with MIL-PRF-27 or MIL-PRF-21038 and listed on the applicable QPL.

SECOND: If transformers described by the first order of precedence are physically unobtainable, PARs may be submitted to the PMPCB to obtain approval for the use of second order of precedence parts. The second order of precedence shall include:

Transformers not described by the first order of precedence.

2.8 INDUCTORS

The procurement order of precedence shall be as described below:

FIRST: Inductors described by the first order of precedence shall be procured. The first order of precedence shall include:

Inductors manufactured to MIL-STD-981, Class S, with the exceptions that magnet wire shall conform to NEMA-JW1000 and that the manufacturer’s quality system shall meet the requirements of SAE AS9100.

- or -

Inductors built and screened in accordance with MIL-PRF-27 or MIL-PRF-39010 and listed on the applicable QPL.

SECOND: If inductors described by the first order of precedence are physically unobtainable, PARs may be submitted to the PMPCB to obtain approval for the use of second order of precedence parts. The second order of precedence shall include:

Inductors not described by the first order of precedence.

2.9 CONNECTORS

The procurement order of precedence shall be as described below:

FIRST: Connectors described by the first order of precedence shall be procured. The first order of precedence shall include:

Connectors manufactured to MIL-C-3655, MIL-C-5015, MIL-DTL-24308, MIL-DTL-26482, MIL-DTL-38999, MIL-PRF-39012, MIL-DTL-55302, MIL-PRF-83723, or MIL-PRF-83733 and listed on the applicable QPL.
SECOND: If connectors described by the first order of precedence are physically unobtainable, connectors described by the second order of precedence shall be procured. The second order of precedence shall include:

Connectors manufactured and screened to MIL-C-3655, MIL-C-5015, MIL-C-24308, MIL-C-26482, MIL-C-38999, MIL-PRF-39012, MIL-DTL-55302, MIL-PRF-83723, or MIL-PRF-83733.

THIRD: If connectors described by the first and second orders of precedence are physically unobtainable, PARs may be submitted to the PMPCB to obtain approval for the use of these third order of precedence parts. The third order of precedence shall include:

Connectors not described by the first or second order of precedence

2.10 FUSES

The procurement order of precedence shall be as described below:

FIRST: Fuses described by the first order of precedence shall be procured. The First order of precedence shall include:

Fuses manufactured to MIL-PRF-23419 and listed on the QPL.

SECOND: If fuses described by the first order of precedence are physically unobtainable, PARs may be submitted to the PMPCB to obtain approval for the use of second order of precedence parts. The second order of precedence shall include:

Fuses not described by the first order of precedence.

2.11 CRYSTAL OSCILLATORS

The procurement order of precedence shall be as described below:

FIRST: Crystal oscillators described by the first order of precedence shall be procured. The first order of precedence shall include:

Crystal oscillators manufactured to MIL-PRF-55310 and listed on the QPL.

SECOND: If crystal oscillators described by the first order of precedence are physically unobtainable, PARs may be submitted to the PMPCB to obtain approval for the use of second order of precedence parts. The second order of precedence shall include:

Crystal oscillators not described by the first order of precedence.
2.12 FILTERS

The procurement order of precedence shall be as described below:

FIRST: Filters described by the first order of precedence shall be procured. The first order of precedence shall include:

Filters manufactured and screened in accordance with the Class B requirements of MIL-PRF-28861

SECOND: If filters described by the first order of precedence are physically unobtainable, a PAR may be submitted to the PMPCB to obtain approval for the use of second order of precedence parts. The second order of precedence shall include:

Filters not described by the first order of precedence.
SMC Standard Improvement Proposal

INSTRUCTIONS
1. Complete blocks 1 through 7. All blocks must be completed.
2. Send to the Preparing Activity specified in block 8.

NOTE: Do not use this form to request copies of documents, or to request waivers, or clarification of requirements on current contracts. Comments submitted on this form do not constitute or imply authorization to waive any portion of the referenced document(s) or to amend contractual requirements. Comments submitted on this form do not constitute a commitment by the Preparing Activity to implement the suggestion; the Preparing Authority will coordinate a review of the comment and provide disposition to the comment submitter specified in Block 6.

<table>
<thead>
<tr>
<th>SMC STANDARD CHANGE RECOMMENDATION:</th>
<th>1. Document Number</th>
<th>2. Document Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Document Title</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. Nature of Change
(Identify paragraph number; include proposed revision language and supporting data. Attach extra sheets as needed.)

5. Reason for Recommendation

6. Submitter Information
 a. Name
 b. Organization
 c. Address
 d. Telephone
 e. E-mail address

7. Date Submitted

8. Preparing Activity
 Space and Missile Systems Center
 AIR FORCE SPACE COMMAND
 483 N. Aviation Blvd.
 El Segundo, CA 91245
 Attention: SMC/EAE

March 2008