Near-Wall Velocity Field Measurements of a Very Low Momentum Flux Transverse Jet

Salazar, Forliti, Kuzmich, Coy

Air Force Research Laboratory (AFMC)
AFRL/RQRC
10 E. Saturn Blvd
Edwards AFB CA 93524-7680

Air Force Research Laboratory (AFMC)
AFRL/RQR
5 Pollux Drive.
Edwards AFB CA 93524-7048

Distribution A: Approved for Public Release; Distribution Unlimited

Briefing Charts presented at 50th AIAA/ASME/ASEE Joint Propulsion Conference, Cleveland, OH, 28-30 July 2014. PA#14371

N/A

Unclassified
Unclassified
Unclassified

SAR

661-275-5972
Near-Wall Velocity Field Measurements of a Very Low Momentum Flux Transverse Jet

50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference
Cleveland, OH

David Salazar, Sierra Lobo, Inc.
David Forliti, Sierra Lobo, Inc.
Kayla Kuzmich, AFRL/RQRC
Edward Coy, AFRL/RQRC

Public Affairs Clearance number xxxx

DISTRIBUTION STATEMENT A. Approved for public release; distribution unlimited.
Outline

• Research Motivation
• Experimental Setup
• Results
• Conclusion
Optical Diagnostics

Light Source

Combustion products

Cooling fluid

Detector

Window

Optical path length

Cooling fluid

Window
Jet and Crossflow Interaction

Light Source

Crossflow

D_j

y_p (jet penetration length)
Experimental Facility

Flow straightener

Perforated plate

Air conditioning plenum

Jet fluid

Light source

Sheet forming optics

Flow conditioning plenum
Important Parameters

- **Momentum flux ratio**
 \[J = \frac{\rho_j u_j^2}{\rho_o u_o^2} \]

- **Blowing ratio**
 \[M = J^{1/2} = \frac{\rho_j^{1/2} u_j}{\rho_o^{1/2} u_o} \]
Initial Conditions

Crossflow

Jet

\[
\frac{U_0}{U_{0,\text{mean}}} \quad \frac{U_j}{U_{j,\text{mean}}}
\]

\[(y - h)/h \quad x/D_j\]
Instantaneous Velocity Field

\[J = 0.075 \]
Mean Velocity Field – Streamlines

\[J = 0.014 \]
Mean Velocity Field – Streamlines

\[J = 0.0013 \]
Maximum Jet Penetration

\[x/D_j = 0.05 \]
\[x/D_j = 0.0 \]

1.8% difference
Jet Exit – Velocity Profile

\[\frac{U_j}{U_{j\text{mean}}} \]

- \(J = 0.075 \)
- \(J = 0.034 \)
- \(J = 0.014 \)
- \(J = 0.0050 \)
- \(J = 0.0013 \)

\[x/D_j \]
Jet Exit – RMS Profile

$U'_{\text{rms}}/U_{\text{mean}}$ vs x/D_j

- $J = 0.075$
- $J = 0.034$
- $J = 0.014$
- $J = 0.0050$
- $J = 0.0013$
Reynolds Shear Stress, $u'v'$
Reynolds Shear Stress, $u'v'$

![Graph of Reynolds Shear Stress with $J = 0.0013$.]
Reynolds Shear Stress, $u'v'$

$x/D_j = 1$

$x/D_j = 2$

$x/D_j = 3$
Reynolds Shear Stress, $u'v'$

$J = 0.075$

$J = 0.0013$

$J = 0.0013$

$J = 0.075$

$J = 0.0013$
Time Dependent Jet Behavior

Time domain

Frequency domain

DISTRIBUTION STATEMENT A. Approved for public release; distribution unlimited.
Time Dependent Jet Behavior

DISTRIBUTION STATEMENT A. Approved for public release; distribution unlimited.
Time Resolved Jet Behavior

\[J = 0.0050 \]

\[\frac{v}{u_j} \]

\[\frac{y}{D_j} \]

\[\frac{x}{D_j} \]
Time Resolved Jet Behavior

\[J = 0.075 \]
PIV Precision Uncertainty

Jet Crossflow
Precision Uncertainty – Jet

<table>
<thead>
<tr>
<th>J</th>
<th>u'^2</th>
<th>v'^2</th>
<th>$u'v'$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.075</td>
<td>0.0591</td>
<td>0.0045</td>
<td>0.0111</td>
</tr>
<tr>
<td>0.014</td>
<td>0.0655</td>
<td>0.0008</td>
<td>0.0068</td>
</tr>
<tr>
<td>0.0013</td>
<td>0.0844</td>
<td>0.0009</td>
<td>0.0064</td>
</tr>
</tbody>
</table>

\[u_{\text{prec}} = 2S_i / N^{1/2} \]

S_i = standard deviation of i^{th} parameter

N = number of samples (3,000)
Conclusion

• Confirmed jet and crossflow interaction for $M = 0.275$ ($J = 0.075$)
• $J = 0.0013$ minimizes crossflow penetration
• $J = 0.0013$ is most unstable value of those studied
• PIV data provides evidence for highly 3-dimensional jet and crossflow interaction
• Reduced Reynolds shear stress values indicate potential improved performance of low momentum jets for use in film cooling applications
• Ingestion of crossflow fluid creates pulse-like jet behavior
Questions?
Backup
Precision Uncertainty – Jet

<table>
<thead>
<tr>
<th>J</th>
<th>u'</th>
<th>u'^2</th>
<th>$\sqrt{u'^2}$</th>
<th>v'</th>
<th>v'^2</th>
<th>$\sqrt{v'^2}$</th>
<th>$u'v'$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.075</td>
<td>0.0440</td>
<td>0.0591</td>
<td>0.0222</td>
<td>0.0084</td>
<td>0.0045</td>
<td>0.0057</td>
<td>0.0111</td>
</tr>
<tr>
<td>0.034</td>
<td>0.0532</td>
<td>0.0677</td>
<td>0.0235</td>
<td>0.0069</td>
<td>0.0019</td>
<td>0.0041</td>
<td>0.0095</td>
</tr>
<tr>
<td>0.014</td>
<td>0.0520</td>
<td>0.0655</td>
<td>0.0238</td>
<td>0.0048</td>
<td>0.0008</td>
<td>0.0028</td>
<td>0.0068</td>
</tr>
<tr>
<td>0.0050</td>
<td>0.0490</td>
<td>0.0714</td>
<td>0.0255</td>
<td>0.0033</td>
<td>0.0005</td>
<td>0.0021</td>
<td>0.0045</td>
</tr>
<tr>
<td>0.0013</td>
<td>0.0488</td>
<td>0.0844</td>
<td>0.0279</td>
<td>0.0042</td>
<td>0.0009</td>
<td>0.0027</td>
<td>0.0064</td>
</tr>
</tbody>
</table>
Precision Uncertainty - Crossflow

<table>
<thead>
<tr>
<th>J</th>
<th>u'</th>
<th>u'^2</th>
<th>$\sqrt{u'^2}$</th>
<th>v'</th>
<th>v'^2</th>
<th>$\sqrt{v'^2}$</th>
<th>$u'v'$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.075</td>
<td>0.0186</td>
<td>0.0577</td>
<td>0.0123</td>
<td>0.0103</td>
<td>0.0051</td>
<td>0.0067</td>
<td>0.0053</td>
</tr>
<tr>
<td>0.034</td>
<td>0.0224</td>
<td>0.0961</td>
<td>0.0170</td>
<td>0.0098</td>
<td>0.0045</td>
<td>0.0063</td>
<td>0.0043</td>
</tr>
<tr>
<td>0.014</td>
<td>0.0195</td>
<td>0.0542</td>
<td>0.0127</td>
<td>0.0090</td>
<td>0.0036</td>
<td>0.0057</td>
<td>0.0044</td>
</tr>
<tr>
<td>0.0050</td>
<td>0.0218</td>
<td>0.0975</td>
<td>0.0167</td>
<td>0.0093</td>
<td>0.0042</td>
<td>0.0060</td>
<td>0.0043</td>
</tr>
<tr>
<td>0.0013</td>
<td>0.0170</td>
<td>0.0415</td>
<td>0.0109</td>
<td>0.0090</td>
<td>0.0038</td>
<td>0.0057</td>
<td>0.0051</td>
</tr>
</tbody>
</table>
Experimental Conditions

• Particle Image Velocimetry (PIV) Parameters
 – 527 nm light source
 – 100 ns pulses
 – 0.5 mJ/pulse
 – Image-pair time separation = 120 μs
 – Image-pair capture rate = 3348 Hz
 – Particle diameter = 1 μm
 – 20 particle per 32 x 32 pixel interrogation region

• Crossflow
 – Re_o = 14,000
 – u_o = 2.71 m/s

• Jet
 – 62 < Re_j < 472
 – u_j = 0.731 m/s