

Software Engineering Institute
Carnegie Mellon University
4500 Fifth Avenue
Pittsburgh, PA 15213-2612

Phone: 412-268-5800
Toll-free: 1-888-201-4479

www.sei.cmu.edu

Software Security Engineering: A
Guide for Project Managers

ABSTRACT: Software is ubiquitous. Many of the products, services, and pro-
cesses organizations use and offer are highly dependent on software to handle
the sensitive and high-value data on which people’s privacy, livelihoods, and
very lives depend. National security—and by extension citizens’ personal safe-
ty—relies on increasingly complex, interconnected, software-intensive infor-
mation systems—systems that in many cases use the Internet or Internet-exposed
private networks as their means for communication and transporting data.

INTRODUCTION
Dependence on information technology makes software security a key element
of business continuity, disaster recovery, incident response, and national securi-
ty. Software vulnerabilities can jeopardize intellectual property, consumer trust,
business operations and services, and a broad spectrum of critical applications
and infrastructures, including everything from process control systems to com-
mercial application products.

The integrity of critical digital assets (systems, networks, applications, and in-
formation) depends on the reliability and security of the software that enables
and controls those assets. However, business leaders and informed consumers
have growing concerns about the scarcity of practitioners with requisite compe-
tencies to address software security [Carey 2006]. They have concerns about
suppliers’ capabilities to build and deliver secure software that they can use with
confidence and without fear of compromise. Application software is the primary
gateway to sensitive information. According to the Deloittesurvey of 169 major
global financial institutions, 2007 Global Security Survey: The Shifting Security
Paradigm [Deloitte 2007], current application software countermeasures are no
longer adequate. In the survey, Gartner identifies application security as the
number one issue for chief information officers (CIOs).

The absence of security discipline in today’s software development practices
often produces software with exploitable weaknesses. Security-enhanced pro-
cesses and practices—and the skilled people to manage them and perform

Gary McGraw

Julia H. Allen

Nancy Mead

Robert J. Ellison

Sean Barnum

May 2013

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302 Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number

1. REPORT DATE
MAY 2013 2. REPORT TYPE

3. DATES COVERED
 00-00-2013 to 00-00-2013

4. TITLE AND SUBTITLE
Software Security Engineering: A Guide for Project Managers

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Carnegie Mellon University,Software Engineering
Institute,Pittsburgh,PA,15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Software is ubiquitous. Many of the products, services, and processes organizations use and offer are
highly dependent on software to handle the sensitive and high-value data on which people???s privacy,
livelihoods, and very lives depend. National security???and by extension citizens??? personal safety???
relies on increasingly complex, interconnected, software-intensive information systems???systems that in
many cases use the Internet or Internet-exposed private networks as their means for communication and
transporting data.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

11

19a. NAME OF
RESPONSIBLE PERSON

a REPORT
unclassified

b ABSTRACT
unclassified

c THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

them—are required to build software that can be trusted to operate more securely
than software being used today.

That said, there is an economic counter-argument, or at least the perception of
one. Some business leaders and project managers believe that developing secure
software slows the process and adds to the cost while not offering any apparent
advantage. In many cases, when the decision reduces to “ship now” or “be secure
and ship later,” “ship now” is almost always the choice made by those who con-
trol the money but have no idea of the risks. Information to combat this argu-
ment, including how software security can potentially reduce cost and schedule,
is becoming available based on earlier work in software quality and the benefits
of detecting software defects early in the life cycle along with documented expe-
riences such as Microsoft’s Security Development Lifecycle.

THE GOAL OF SOFTWARE SECURITY ENGINEERING
Software security engineering is using practices, processes, tools, and techniques
that enable you to address security issues in every phase of the software devel-
opment life cycle (SDLC). Software that is developed with security in mind is
typically more resistant to both intentional attack and unintentional failures. One
view of secure software is software that is engineered “so that it continues to
function correctly under malicious attack” [McGraw 2006] and is able to recog-
nize, resist, tolerate, and recover from events that intentionally threaten its de-
pendability. Broader views that can overlap with software security (for example,
software safety, reliability, and fault tolerance) include proper functioning in the
face of unintentional failures or accidents and inadvertent misuse and abuse, as
well as reducing software defects and weaknesses to the greatest extent possible
regardless of their cause.

The goal of software security engineering is to build better, defect-free software.
Software-intensive systems that are constructed using more securely developed
software are better able to

• continue operating correctly in the presence of most attacks by either resist-
ing the exploitation of weaknesses in the software by attackers or tolerating
the failures that result from such exploits

• limit the damage resulting from any failures caused by attack-triggered
faults that the software was unable to resist or tolerate and recover as quickly
as possible from those failures

1 | SOFTWARE SECURITY ENGINEERING: A GUIDE FOR PROJECT MANAGERS

SOFTWARE SECURITY PRACTICES
No single practice offers a universal silver bullet for software security. With this
in mind, Software Security Engineering: A Guide for Project Managers provides
software project managers with sound practices that they can evaluate and selec-
tively adopt to help reshape their own development practices. The objective is to
increase the security and dependability of the software produced by these prac-
tices, both during its development and its operation.

The book (and material referenced on the Build Security In Web site described
below) identifies and compares potential new practices that can be adapted to
augment a project’s current software development practices, greatly increasing
the likelihood of producing more secure software and meeting specified security
requirements. As one example, assurance cases can be used to assert and specify
desired security properties, including the extent to which security practices have
been successful in satisfying security requirements.

Software developed and assembled using software security practices should con-
tain significantly fewer exploitable weaknesses. Such software can then be relied
on to more capably recognize, resist or tolerate, and recover from attacks and
thus function more securely in an operational environment. Project managers
responsible for ensuring that software and systems adequately address their secu-
rity requirements throughout the SDLC can review, select, and tailor guidance
from the book, the Build Security In Web site, and the sources cited throughout
the book as part of normal project management activities.

The five key take-aways of Software Security Engineering are as follows:

1. Software security is about more than eliminating vulnerabilities and con-
ducting penetration tests. Project managers need to take a systematic ap-
proach to incorporate the sound software security practices into their devel-
opment processes. Examples include security requirements elicitation,
attack pattern and misuse/abuse case definition, architectural risk analysis,
secure coding and code analysis, and risk-based security testing.

2. Network security mechanisms and IT infrastructure security services do not
sufficiently protect application software from security risks.

3. Software security initiatives should follow a risk management approach to
identify priorities and what is good enough, understanding that software se-
curity risks will change throughout the development lifecycle. Risk man-
agement reviews and actions are conducted during each phase of the SDLC.

4. Developing secure software depends on understanding the operational con-
text in which it will be used. This context includes conducting end-to-end
analysis of cross-system work processes, working to contain and recover
from failures using lessons learned from business continuity, and exploring

2 | SOFTWARE SECURITY ENGINEERING: A GUIDE FOR PROJECT MANAGERS

failure analysis and mitigation to deal with system and system of system
complexity.

5. Project managers and software engineers need to learn to think like an at-
tacker in order to address the range of things that software should not do
and how software can better resist, tolerate, and recover when under attack.
The use of attack patterns and misuse/abuse cases throughout the SDLC en-
courages this perspective.

Practice Maturity and Relevance
As a community, we recognize that some software security practices are in
broader use, and thus more tested and mature, than others, such as security cod-
ing practices and testing for vulnerabilities. As a practice description and selec-
tion aid, descriptive tags mark the book’s sections and key practices in two prac-
tical ways:

• Identifying the content’s relative “maturity of practice” as follows:
− L1: The content provides guidance for how to think about a topic

for which there is no proven or widely accepted approach. The in-
tent of the description is to raise awareness and aid in thinking
about the problem and candidate solutions. The content may also
describe promising research results that may have been demon-
strated in a constrained setting.

− L2: The content describes practices that are in early pilot use and
are demonstrating some successful results.

− L3: The content describes practices that are in limited use in in-
dustry or government organizations, perhaps for a particular mar-
ket sector.

− L4: The content describes practices that have been successfully
deployed and are in widespread use. These practices can be used
with confidence. Experience reports and case studies are typically
available.

• Identifying the designated audiences for which each chapter section or prac-
tice is most relevant:

− E: executive and senior managers
− M: project and mid-level managers
− L: technical leaders, engineering managers, first line managers,

and supervisors

3 | SOFTWARE SECURITY ENGINEERING: A GUIDE FOR PROJECT MANAGERS

BUILD SECURITY IN: A KEY RESOURCE
Since 2004, the U.S. Department of Homeland Security Software Assurance
Program has sponsored development for the Build Security In (BSI) Web site,
which is one of the significant resources used in developing Software Security
Engineering. BSI content is based on the principle that software security is fun-
damentally a software engineering problem and must be managed in a systematic
way throughout the SDLC.

BSI contains and links to a broad range of information about sound practices,
tools, guidelines, rules, principles, and other knowledge to help project managers
deploy software security practices and build secure and reliable software. Con-
tributing authors to this book and the articles appearing on the BSI site include
senior staff from the Carnegie Mellon Software Engineering Institute (SEI) and
Cigital, Inc., as well as other experienced software and security professionals.

BSI content is referenced throughout the book. Readers can consult BSI for addi-
tional details, ongoing research results, and information about related Web sites,
books, and articles.

Start the Journey
As software and security professionals, we will never be able to get ahead of the
game by addressing security solely as an operational issue. Attackers are crea-
tive, ingenious, and increasingly motivated by financial gain. They have been
learning how to exploit software for several decades; the same is not true for
software engineers, and we need to change this. Given the extent to which our
nations, our economies, our businesses, and our families rely on software to sus-
tain and improve our quality of life, we must make significant progress in putting
higher quality and more secure software into production. The practices described
in Software Security Engineering serve as a useful starting point.

Each project manager needs to carefully consider the knowledge, skills, and
competencies of their development team, their organizational culture’s tolerance
(and attention span) for change, and the degree to which sponsoring executives
have bought in (a prerequisite for sustaining any improvement initiative). In
some cases, it may be best to start with secure software coding and testing prac-
tices given that these are the most mature, have a fair level of automated support,
and can demonstrate some early successes, providing visible benefit to help
software security efforts gain support and build momentum. On the other hand,
secure software requirements engineering and architecture and design practices
offer opportunities to address more substantive root cause issues early in the life
cycle that if left unaddressed will show up in code and test. Practice selection
and tailoring are specific to each organization and project based on objectives,
constraints, and the criticality of the software under development.

4 | SOFTWARE SECURITY ENGINEERING: A GUIDE FOR PROJECT MANAGERS

Project managers and software engineers need to better understand what consti-
tutes secure software and develop their skills to think like an attacker so this
mindset can be applied throughout the SDLC. The book describes practices to
get this ball rolling, such as attack patterns and assurance cases. Alternatively, if
you have access to experienced security analysts, adding a few of them to your
development team can get this jump started.

Two of the key project management practices are (1) defining and deploying a
risk management framework to help inform practice selection and determine
where best to devote scarce resources and (2) identifying how best to integrate
software security practices into the organization’s current software development
life cycle.

John Steven states [Steven 2006]

“Don’t demand teams to begin conducting every activity on day one.
Slowly introduce the simplest activities first, then iterate.
“[Have] patience. It will take at least three to five years to create a
working, evolving software security machine. Initial organization-wide
successes can be shown within a year. Use that time to obtain more
buy-in and a bigger budget.”

Clearly there is no one-size-fits-all approach. Project managers and their teams
need to think through the choices, define their tradeoff and decision criteria,
learn as they go, and understand that this effort requires continuous refinement
and improvement.

IN CLOSING
Sound software security engineering practices should be incorporated throughout
the entire software development life cycle. Software Security Engineering is one
resource that captures both standard and emerging software security practices
and explains why they are needed to develop more security-responsive and ro-
bust systems.

REFERENCES

[Allen 2008a] Allen, Julia; Barnum, Sean; Ellison, Robert; McGraw, Gary; Mead, Nancy. Software
Security Engineering: A Guide for Project Managers, Addison-Wesley, 2008.

5 | SOFTWARE SECURITY ENGINEERING: A GUIDE FOR PROJECT MANAGERS

[Allen 2008b] Allen, Julia & Pollak, William. “Building More Secure Software.” CERT Podcast Se-
ries: Security for Business Leaders,” May 2008.
http://www.cert.org/podcast/show/20080527allen.html

[Carey 2006] Carey, Allan. “2006 Global Information Security Workforce Study.” Framingham, MA:
IDC, 2006.

[Deloitte
2007]

Deloitte Touche Tohmatsu. 2007 Global Security Survey: The Shifting Security Para-
digm. September 2007.

[McGraw
2006]

McGraw, Gary. Software Security: Building Security In. Boston, MA: Addison-Wesley
Professional, 2006 (ISBN 0-321-35670-5).

[Steven 2006] Steven, John. “Adopting an Enterprise Software Security Framework.” IEEE Security
& Privacy 4, 2 (March/April 2006): 84–87. https://buildsecurityin.us-
cert.gov/resources/building-security-in/adopting-an-enterprise-software-security-
framework

For additional information about the book, including a full table of contents,
please refer to:

http://www.sei.cmu.edu/publications/books/cert/software-security-
engineering.html

http://www.informit.com/store/product.aspx?isbn=032150917X

AUTHORS

Julia H. Allen
Julia H. Allen is a senior member of the technical staff within the CERT Pro-
gram at the Software Engineering Institute (SEI). In addition to her work in
software security and assurance, Ms. Allen is engaged in developing and transi-
tioning executive outreach programs in enterprise security and governance. She
is the author of The CERT Guide to System and Network Security Practices
(Addison-Wesley, June 2001), Governing for Enterprise Security (CMU/SEI-
2005-TN-023, 2005), and the CERT Podcast Series: Security for Business Lead-
ers (2006/2008).

Sean Barnum
Sean Barnum is a Principal Consultant at Cigital and is technical lead for their
federal services practice. He has over 20 years of experience in the software in-
dustry in the areas of development, software quality assurance, quality manage-

6 | SOFTWARE SECURITY ENGINEERING: A GUIDE FOR PROJECT MANAGERS

ment, process architecture and improvement, knowledge management, and secu-
rity. He is very active in the software assurance community and is involved in
numerous knowledge standards-defining efforts, including the Common Weak-
ness Enumeration (CWE), the Common Attack Pattern Enumeration and Classi-
fication (CAPEC), and other elements of the Software Assurance Programs of
the Department of Homeland Security and the Department of Defense. He is also
the lead technical subject matter expert for the Air Force Application Software
Assurance Center of Excellence.

Robert J. Ellison
As a member of the Survivable Systems Engineering Team within the CERT
Program at the SEI, Robert Ellison has served in a number of technical and man-
agement roles. Mr. Ellison regularly participates in the evaluation of software
architectures and contributes from the perspective of security and reliability
measures. His research draws on that experience to integrate security issues into
the overall architecture design process. His current work explores developing
reasoning frameworks to help architects select and refine design tactics to miti-
gate the impact of a class of cyber attacks. He was a member of the Carnegie
Mellon University team that wrote the proposal for the SEI; he joined the new
FFRDC in 1985 as a founding member.

Gary McGraw
Gary McGraw is the CTO of Cigital, Inc., a software security and quality con-
sulting firm with headquarters in the Washington, D.C. area. He is a globally
recognized authority on software security and the author of six best selling books
on this topic. The latest, Exploiting Online Games, was released in 2007. His
other titles include Java Security, Building Secure Software, Exploiting Soft-
ware, and Software Security; and he is editor of the Addison-Wesley Software
Security series. Dr. McGraw has also written over 90 peer-reviewed scientific
publications, authors a monthly security column for darkreading.com, and is fre-
quently quoted in the press.

Nancy R. Mead
Nancy R. Meadis a senior member of the technical staff in the Survivable Sys-
tems Engineering Group within the CERT Program at the SEI. She is a faculty
member in the Master of Software Engineering and Master of Information Sys-
tems Management programs at Carnegie Mellon University. Her research inter-
ests are in the areas of information security, software requirements engineering,
and software architectures.Dr. Mead has more than 100 publications and invited
presentations.

7 | SOFTWARE SECURITY ENGINEERING: A GUIDE FOR PROJECT MANAGERS

Material from this article has been taken from the preface and Chapter 8 from the
book, Software Security Engineering [978-0-321-50917-8]. © 2008 Pearson
Education. Reproduced by permission of Pearson Education, Inc.

LINKS
Book page on Software Engineering Institute site
https://buildsecurityin.us-
cert.gov/redirect?url=http%3A%2F%2Fwww.sei.cmu.edu%2Fpublications%2Fb
ooks%2Fcert%2Fsoftware-security-engineering.html

Book site
https://buildsecurityin.us-
cert.gov/redirect?url=http%3A%2F%2Fwww.softwaresecurityengineering.com
%2F

8 | SOFTWARE SECURITY ENGINEERING: A GUIDE FOR PROJECT MANAGERS

Copyright 2005-2012 Carnegie Mellon University

This material is based upon work funded and supported by Department of Homeland
Security under Contract No. FA8721-05-C-0003 with Carnegie Mellon University
for the operation of the Software Engineering Institute, a federally funded research
and development center sponsored by the United States Department of Defense.

Any opinions, findings and conclusions or recommendations expressed in this mate-
rial are those of the author(s) and do not necessarily reflect the views of Department
of Homeland Security or the United States Department of Defense.

References herein to any specific commercial product, process, or service by trade
name, trade mark, manufacturer, or otherwise, does not necessarily constitute or im-
ply its endorsement, recommendation, or favoring by Carnegie Mellon University or
its Software Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND
SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN
“AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO
ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON
UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT
INFRINGEMENT.

This material has been approved for public release and unlimited distribution except
as restricted below.

Internal use:* Permission to reproduce this material and to prepare derivative works
from this material for internal use is granted, provided the copyright and “No War-
ranty” statements are included with all reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification,
and freely distributed in written or electronic form without requesting formal permis-
sion. Permission is required for any other external and/or commercial use. Requests
for permission should be directed to the Software Engineering Institute at permis-
sion@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

9 | SOFTWARE SECURITY ENGINEERING: A GUIDE FOR PROJECT MANAGERS

Carnegie Mellon®, CERT®, SEI® and Software Engineering Institute® are registered
marks of Carnegie Mellon University.

DM-0001120

10 | SOFTWARE SECURITY ENGINEERING: A GUIDE FOR PROJECT MANAGERS

