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Software Security Engineering: A 
Guide for Project Managers 

ABSTRACT: Software is ubiquitous. Many of the products, services, and pro-
cesses organizations use and offer are highly dependent on software to handle 
the sensitive and high-value data on which people’s privacy, livelihoods, and 
very lives depend. National security—and by extension citizens’ personal safe-
ty—relies on increasingly complex, interconnected, software-intensive infor-
mation systems—systems that in many cases use the Internet or Internet-exposed 
private networks as their means for communication and transporting data. 

INTRODUCTION 
Dependence on information technology makes software security a key element 
of business continuity, disaster recovery, incident response, and national securi-
ty. Software vulnerabilities can jeopardize intellectual property, consumer trust, 
business operations and services, and a broad spectrum of critical applications 
and infrastructures, including everything from process control systems to com-
mercial application products. 

The integrity of critical digital assets (systems, networks, applications, and in-
formation) depends on the reliability and security of the software that enables 
and controls those assets. However, business leaders and informed consumers 
have growing concerns about the scarcity of practitioners with requisite compe-
tencies to address software security [Carey 2006]. They have concerns about 
suppliers’ capabilities to build and deliver secure software that they can use with 
confidence and without fear of compromise. Application software is the primary 
gateway to sensitive information. According to the Deloittesurvey of 169 major 
global financial institutions, 2007 Global Security Survey: The Shifting Security 
Paradigm [Deloitte 2007], current application software countermeasures are no 
longer adequate. In the survey, Gartner identifies application security as the 
number one issue for chief information officers (CIOs). 

The absence of security discipline in today’s software development practices 
often produces software with exploitable weaknesses. Security-enhanced pro-
cesses and practices—and the skilled people to manage them and perform 
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them—are required to build software that can be trusted to operate more securely 
than software being used today. 

That said, there is an economic counter-argument, or at least the perception of 
one. Some business leaders and project managers believe that developing secure 
software slows the process and adds to the cost while not offering any apparent 
advantage. In many cases, when the decision reduces to “ship now” or “be secure 
and ship later,” “ship now” is almost always the choice made by those who con-
trol the money but have no idea of the risks. Information to combat this argu-
ment, including how software security can potentially reduce cost and schedule, 
is becoming available based on earlier work in software quality and the benefits 
of detecting software defects early in the life cycle along with documented expe-
riences such as Microsoft’s Security Development Lifecycle. 

THE GOAL OF SOFTWARE SECURITY ENGINEERING 
Software security engineering is using practices, processes, tools, and techniques 
that enable you to address security issues in every phase of the software devel-
opment life cycle (SDLC). Software that is developed with security in mind is 
typically more resistant to both intentional attack and unintentional failures. One 
view of secure software is software that is engineered “so that it continues to 
function correctly under malicious attack” [McGraw 2006] and is able to recog-
nize, resist, tolerate, and recover from events that intentionally threaten its de-
pendability. Broader views that can overlap with software security (for example, 
software safety, reliability, and fault tolerance) include proper functioning in the 
face of unintentional failures or accidents and inadvertent misuse and abuse, as 
well as reducing software defects and weaknesses to the greatest extent possible 
regardless of their cause. 

The goal of software security engineering is to build better, defect-free software. 
Software-intensive systems that are constructed using more securely developed 
software are better able to 

• continue operating correctly in the presence of most attacks by either resist-
ing the exploitation of weaknesses in the software by attackers or tolerating 
the failures that result from such exploits 

• limit the damage resulting from any failures caused by attack-triggered 
faults that the software was unable to resist or tolerate and recover as quickly 
as possible from those failures 
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SOFTWARE SECURITY PRACTICES 
No single practice offers a universal silver bullet for software security. With this 
in mind, Software Security Engineering: A Guide for Project Managers provides 
software project managers with sound practices that they can evaluate and selec-
tively adopt to help reshape their own development practices. The objective is to 
increase the security and dependability of the software produced by these prac-
tices, both during its development and its operation. 

The book (and material referenced on the Build Security In Web site described 
below) identifies and compares potential new practices that can be adapted to 
augment a project’s current software development practices, greatly increasing 
the likelihood of producing more secure software and meeting specified security 
requirements. As one example, assurance cases can be used to assert and specify 
desired security properties, including the extent to which security practices have 
been successful in satisfying security requirements. 

Software developed and assembled using software security practices should con-
tain significantly fewer exploitable weaknesses. Such software can then be relied 
on to more capably recognize, resist or tolerate, and recover from attacks and 
thus function more securely in an operational environment. Project managers 
responsible for ensuring that software and systems adequately address their secu-
rity requirements throughout the SDLC can review, select, and tailor guidance 
from the book, the Build Security In Web site, and the sources cited throughout 
the book as part of normal project management activities. 

The five key take-aways of Software Security Engineering are as follows: 

1. Software security is about more than eliminating vulnerabilities and con-
ducting penetration tests. Project managers need to take a systematic ap-
proach to incorporate the sound software security practices into their devel-
opment processes. Examples include security requirements elicitation, 
attack pattern and misuse/abuse case definition, architectural risk analysis, 
secure coding and code analysis, and risk-based security testing. 

2. Network security mechanisms and IT infrastructure security services do not 
sufficiently protect application software from security risks. 

3. Software security initiatives should follow a risk management approach to 
identify priorities and what is good enough, understanding that software se-
curity risks will change throughout the development lifecycle. Risk man-
agement reviews and actions are conducted during each phase of the SDLC. 

4. Developing secure software depends on understanding the operational con-
text in which it will be used. This context includes conducting end-to-end 
analysis of cross-system work processes, working to contain and recover 
from failures using lessons learned from business continuity, and exploring 
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failure analysis and mitigation to deal with system and system of system 
complexity. 

5. Project managers and software engineers need to learn to think like an at-
tacker in order to address the range of things that software should not do 
and how software can better resist, tolerate, and recover when under attack. 
The use of attack patterns and misuse/abuse cases throughout the SDLC en-
courages this perspective. 
 

Practice Maturity and Relevance 
As a community, we recognize that some software security practices are in 
broader use, and thus more tested and mature, than others, such as security cod-
ing practices and testing for vulnerabilities. As a practice description and selec-
tion aid, descriptive tags mark the book’s sections and key practices in two prac-
tical ways: 

• Identifying the content’s relative “maturity of practice” as follows: 
− L1: The content provides guidance for how to think about a topic 

for which there is no proven or widely accepted approach. The in-
tent of the description is to raise awareness and aid in thinking 
about the problem and candidate solutions. The content may also 
describe promising research results that may have been demon-
strated in a constrained setting. 

− L2: The content describes practices that are in early pilot use and 
are demonstrating some successful results. 

− L3: The content describes practices that are in limited use in in-
dustry or government organizations, perhaps for a particular mar-
ket sector. 

− L4: The content describes practices that have been successfully 
deployed and are in widespread use. These practices can be used 
with confidence. Experience reports and case studies are typically 
available. 

• Identifying the designated audiences for which each chapter section or prac-
tice is most relevant: 

− E: executive and senior managers 
− M: project and mid-level managers 
− L: technical leaders, engineering managers, first line managers, 

and supervisors 
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BUILD SECURITY IN: A KEY RESOURCE 
Since 2004, the U.S. Department of Homeland Security Software Assurance 
Program has sponsored development for the Build Security In (BSI) Web site, 
which is one of the significant resources used in developing Software Security 
Engineering. BSI content is based on the principle that software security is fun-
damentally a software engineering problem and must be managed in a systematic 
way throughout the SDLC. 

BSI contains and links to a broad range of information about sound practices, 
tools, guidelines, rules, principles, and other knowledge to help project managers 
deploy software security practices and build secure and reliable software. Con-
tributing authors to this book and the articles appearing on the BSI site include 
senior staff from the Carnegie Mellon Software Engineering Institute (SEI) and 
Cigital, Inc., as well as other experienced software and security professionals. 

BSI content is referenced throughout the book. Readers can consult BSI for addi-
tional details, ongoing research results, and information about related Web sites, 
books, and articles. 

Start the Journey 
As software and security professionals, we will never be able to get ahead of the 
game by addressing security solely as an operational issue. Attackers are crea-
tive, ingenious, and increasingly motivated by financial gain. They have been 
learning how to exploit software for several decades; the same is not true for 
software engineers, and we need to change this. Given the extent to which our 
nations, our economies, our businesses, and our families rely on software to sus-
tain and improve our quality of life, we must make significant progress in putting 
higher quality and more secure software into production. The practices described 
in Software Security Engineering serve as a useful starting point. 

Each project manager needs to carefully consider the knowledge, skills, and 
competencies of their development team, their organizational culture’s tolerance 
(and attention span) for change, and the degree to which sponsoring executives 
have bought in (a prerequisite for sustaining any improvement initiative). In 
some cases, it may be best to start with secure software coding and testing prac-
tices given that these are the most mature, have a fair level of automated support, 
and can demonstrate some early successes, providing visible benefit to help 
software security efforts gain support and build momentum. On the other hand, 
secure software requirements engineering and architecture and design practices 
offer opportunities to address more substantive root cause issues early in the life 
cycle that if left unaddressed will show up in code and test. Practice selection 
and tailoring are specific to each organization and project based on objectives, 
constraints, and the criticality of the software under development. 
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Project managers and software engineers need to better understand what consti-
tutes secure software and develop their skills to think like an attacker so this 
mindset can be applied throughout the SDLC. The book describes practices to 
get this ball rolling, such as attack patterns and assurance cases. Alternatively, if 
you have access to experienced security analysts, adding a few of them to your 
development team can get this jump started. 

Two of the key project management practices are (1) defining and deploying a 
risk management framework to help inform practice selection and determine 
where best to devote scarce resources and (2) identifying how best to integrate 
software security practices into the organization’s current software development 
life cycle. 

John Steven states [Steven 2006] 

“Don’t demand teams to begin conducting every activity on day one. 
Slowly introduce the simplest activities first, then iterate. 
“[Have] patience. It will take at least three to five years to create a 
working, evolving software security machine. Initial organization-wide 
successes can be shown within a year. Use that time to obtain more 
buy-in and a bigger budget.” 

Clearly there is no one-size-fits-all approach. Project managers and their teams 
need to think through the choices, define their tradeoff and decision criteria, 
learn as they go, and understand that this effort requires continuous refinement 
and improvement. 

IN CLOSING 
Sound software security engineering practices should be incorporated throughout 
the entire software development life cycle. Software Security Engineering is one 
resource that captures both standard and emerging software security practices 
and explains why they are needed to develop more security-responsive and ro-
bust systems. 
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Material from this article has been taken from the preface and Chapter 8 from the 
book, Software Security Engineering [978-0-321-50917-8].   © 2008 Pearson 
Education.  Reproduced by permission of Pearson Education, Inc. 

LINKS 
Book page on Software Engineering Institute site 
https://buildsecurityin.us-
cert.gov/redirect?url=http%3A%2F%2Fwww.sei.cmu.edu%2Fpublications%2Fb
ooks%2Fcert%2Fsoftware-security-engineering.html 

Book site 
https://buildsecurityin.us-
cert.gov/redirect?url=http%3A%2F%2Fwww.softwaresecurityengineering.com
%2F 
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