The Population Consequences of Disturbance Model Application to North Atlantic Right Whales (Eubalaena glacialis)

Scott D. Kraus (PhD), Rosalind M. Rolland (DVM), & Amy R. Knowlton (MS)
Vice President of Research
New England Aquarium, Central Wharf
Boston, MA 02110
phone: (617) 973-5457 fax: (617) 973-0242 email: skraus@neaq.org

Rob Schick, PhD
Centre for Research into Ecological and Environmental Modeling (CREEM)
University of St. Andrews
St Andrews KY16 9LZ, UK
Award Number: N000141210389
http://tinyurl.com/RightWhaleResearch
http://tinyurl.com/RightWhaleConservationMedicine

LONG-TERM GOALS

The Population Consequences of Acoustic Disurbance (PCAD) model (NRC 2005) provided a framework to trace the effects of acoustic disturbance through the life history of a marine mammal to its population status. Developments in the model have been designed to determine if the effects of any disturbance can be traced from individuals to the population by way of changes in either behavior or physiology, and the revised approach is called PCOD (Population Consequences Of Disturbance). In North Atlantic right whales (Eubalaena glacialis), extensive data on health and body condition, anthropogenic impacts, and individual life history exists. The primary goal of this study is to model visual observations of health, human impacts (including entanglements and ship strikes), and whale locations to provide estimates of true underlying condition and individual level survival for right whales. Secondary goals include modeling fecundity, and exploring the feasibility of incorporating acoustic disturbance and prey variability into the PCOD model.

OBJECTIVES

The objectives for this study are to: 1) develop a Hierarchical Bayesian Model to assess right whale biology, 2) assess the relationship between health indicators and reproduction and mortality in right whales, and 3) assess the effects of fishing gear entanglements and sub-lethal vessel strikes on reproduction and mortality in right whales. The objective for FY 2014 was to refine the model, compare model output with known right whale biology, and incorporate the model output on health and entanglements into publications for submission in the fall.

APPROACH

The modeling approach is to link visual observations of health, human impacts, and whale locations to estimates of true underlying health and individual level survival (see Thomas et al. abstract). Visual
1. REPORT DATE
30 SEP 2014

2. REPORT TYPE

3. DATES COVERED
00-00-2014 to 00-00-2014

4. TITLE AND SUBTITLE
The Population Consequences of Disturbance Model Application to North Atlantic Right Whales (Eubalaena glacialis)

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
New England Aquarium, Central Wharf, Boston, MA, 02110

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
 a. REPORT
 unclassified

 b. ABSTRACT
 unclassified

 c. THIS PAGE
 unclassified

17. LIMITATION OF ABSTRACT
Same as Report (SAR)

18. NUMBER OF PAGES
8

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)
Prepared by ANSI Std Z99-18
observations of health include: body condition, skin condition, presence of cyamids on the blowholes, and the presence of rake marks (Pettis et al. 2004). The true health status integrates many of the natural and anthropogenic disturbances that alter the observable health of a whale. The natural disturbances or stressors include the calving cycle of mature females, and the age-related health of the whale. From these estimates we can then assess how anthropogenic disturbances like entanglement with fishing gear affect the underlying health of individuals. We fit the model to data to infer the parameters governing the biological processes of health, reproduction, movement, and survival, and to provide estimates of the links between observation and process for both health and human impacts. In order to ensure the results reflected biological reality, we modified several components of the model by testing its output against animals with detailed known histories, and by convening monthly meetings between the modelers and the biologists most familiar with the species. Finally we participated in an ONR workshop to determine the applicability of the model to assessing the effects of acoustics on the population.

We have refined and applied the PCOD model developed for right whales (Schick et al. 2013). The model links photographic evidence of health from every photographed sighting to the first process model, which provides inference on how health changes over time. Every photographed sighting of a right whale also contains location information, which has been used in the second process model to estimate location and transition probabilities between locations. Finally, estimates of the current states (health and location) inform individual survival. We have met regularly to review statistical output from multiple runs of the model, either in Boston or by internet (Skype, Teamviewer) These discussions have led to model changes, which have been implemented to produce the final datasets and model outputs. We have started writing the next two manuscripts (one on health and reproduction, and one on the effects of entanglement), which will include modeled health trajectories over time in different population sub-categories.

WORK COMPLETED

Manuscripts – We have published the following manuscripts pertaining to the PCOD Modeling:

2. Travel –

a. Kraus presented at the Annual ONR Program Review May in 2014

b. Schick travelled to Boston meetings with the New England Aquarium researchers
c. Kraus and Rolland - June 2014 Workshop on the feasibility of incorporating acoustic and hormone data into model (organized by E. Fleishman)

3. Presentations
 a. Kraus et al December 2013 Biennial Marine Mammals Conference, Dunedin, NZ (Talk)
 b. Kraus et al May 2014 Office of Naval Research Program Review, Arlington, VA (talk)

RESULTS

Every right whale has a modeled health timeline graph that incorporates the photographic data stream on the four health parameters, and depicts all entanglement events, and calving events (Figure 1).

![Graph of modeled health estimates](image)

Figure 1. Modeled health estimates (middle panel labeled “Health”) for right whale #1014, with 95% CI (gray area). Dashed line represents population health. “Anomaly” panel depicts negative deviations of individual health from population health. Data observations are shown (top panels) for body fat, skin condition, presence of cyamids, and the presence of rake marks (green = good; orange = medium; purple = poor). Gestational status (grey = pregnancy year; black = calving year), and entanglement (green = minor, orange = moderate, purple = severe injuries; grey line: before symbol = timeframe within which entanglement event occurred, after symbol = duration of time carrying gear for those cases where gear was attached) are not included in the model, but are shown in bottom panels. This animal died in 1999 following a ship strike.
Individual health profile data for adult males and older juveniles (3-8 yrs) were compiled to create estimates of health for the entire population (Figure 2). Because there are periods of naturally poorer body condition for certain sub-categories, e.g. lactating females and recently weaned juveniles, we examined health estimates for different sub-population categories separately (data not shown), and did not include these groups in the overall population health estimates.

![Number of Calves & Population Health](image)

Figure 2. Number of calves born into the population each year (top panel) with estimates of population level health over 25 years (bottom panel). Shaded rectangles indicate periods of reduced calving rates. Note the y-axis scale is truncated to highlight the pattern. Known periods of low vital rates in the late 1990’s are reflected in the low mean health, with the larger decrease in fecundity corresponding to the lower average population health.

A major goal of this effort has been to look at the relationship between animal health and population effects. The first work on this was to assess the health of adult females which were available to become pregnant in a given year. Right whales generally have 3 year calving intervals; year one is lactation, year 2 is a resting year, and year three is a pregnancy year. Females are considered “available” to be pregnant in all years following the resting year until the next gestational year. We used the model output to test whether there was a difference in health between those available females who transitioned to pregnant in a given year vs. those that did not become pregnant. The results showed that females that got pregnant had a mean health score of 74.55 and those that did not produce a calf had a mean score of 72.96, and this difference was significant \(t = 4.787, p = 1.751\text{e}{-06} \) (Figure 3),
suggesting that relatively small changes in female right whale health may influence reproductive success.

![Yearly Mean Health of Successful and Unsuccessful Available Females](image)

Figure 3. Summarized health scores by year of available females which became pregnant (dark line) and available females which did not become pregnant (grey line).

The next steps have been to look at entanglements of right whales as a proxy for a disturbance. Over 82% of North Atlantic right whales have been entangled in fishing gear at some time, and such entanglements occur between 30 and 60 times per year in the extant population (Knowlton et al. 2012). Entanglement injuries have been coded as severe, moderate or minor depending on the depth and extent of the scars. And for whales that still have rope attached after an interaction, the observed duration of the animal carrying gear has ranged from less than a day to many years. Here we examined the consequences of various entanglement injury severity and duration levels on right whale health both before and after the period within which the entanglement occurred, and 12 months after an entanglement was known to have ended. For all whales, the results show that most whales decline in health as a result of entanglement, but that severe entanglements lead to significant declines in mean health scores (Figure 4). In addition, whale health recovery after entanglement events is not certain. Severely entangled whales, whether they had originally been observed carrying gear or not, continue to experience large declines in health for 12 months after their first “gear free” sighting (Figure 5).
Figure 4. Mean health scores for whales before (left side) and after (right side) an entanglement event. All categories of entanglement (minor, moderate, and severe) are also classified by whether they were carrying gear.

Figure 5. Mean health scores for whales at the first sighting after an entanglement (left side), and at 12 months later (right side). All categories of entanglement (minor, moderate, and severe) are classified by whether they were carrying gear.

Additional analyses are underway to use the model and health data to assess the health impacts of non-lethal vessel strikes on right whales, and to refine estimates of mortality based on a combination of
health and location data. Discussions are also underway about modeling approaches that might incorporate other types of disturbance events, particularly acoustic disturbance.

The magnitude of the health declines shown in the entanglement analyses for whales carrying gear and with severe entanglements (Figures 4 and 5) exceeds the magnitude of differences shown between available females which got pregnant and those that did not (Figure 3). In the case of entanglements, which are widespread through the North Atlantic right whales population, the integration of these model results will allow estimates of population level effects from this type of disturbance.

IMPACT/APPLICATIONS

Despite continuous protection, studies, and monitoring, North Atlantic right whales have been critically endangered for decades (Kraus et al. 2005). Previous population forecasts have been ominous (Caswell et al. 1999, Fujiwara & Caswell, 2001), and several dips in vital rates of the population have been documented in the past 20 years (Kraus & Rolland, 2007). This modeling approach may help identify those anthropogenic or natural stressors which most affect mortality and/or reproduction, and can fill a critical need as different management scenarios and/or interventions are considered.

Two manuscripts are underway. For the first manuscript, aggregated individual health estimates will be used together with the sub-population health summaries to more completely understand past population trajectories, the relationship between adult female health and reproductive success, and to estimate how future changes in health may reflect particular disturbances. The second manuscript will use the individual health estimates together with information on entanglement and vessel strike events and their severity, to examine of the population consequences of these types of disturbance.

While these model analyses are focussed on right whales, photographic observations of condition have been used to evaluate health in other cetaceans (see, for example, Bradford et al. 2012). It is feasible to extend this model to other well studied species, where photographic data may provide indicators of underlying health. By using photographic observations with this modeling approach, we can evaluate how the condition of whales varies over time and space, and in response to specific extrinsic factors. This will provide critical insights into risk factors for both individual whales and their populations.

RELATED PROJECTS

The New England Aquarium’s Ocean Health and Marine Stress Program includes studies of stress in beaked and sperm whales (R. Rolland, PI; ONR # N000141110540), and a study on the detection and use of hormones from right whale respiratory exudate (K. Hunt, PI; ONR # N000141310639). As part of the New England Aquarium’s Marine Health Program, we are involved in the broader PCOD modeling studies (Len Thomas, PI, ONR Contract # N000141210286, and Erica Fleishman, PI, ONR contract # N000141210274).

PUBLICATIONS

REFERENCES

