Benefit Cost Analysis
for Surface Engineering Solutions Funded by SERDP/ESTCP
Weapons, Systems & Platforms Program Area

ASETSDefense2014 Workshop
Sustainable Surface Engineering for Aerospace and Defense
Fort Myer, VA 22211
November 18 -20, 2014

Thomas Pelsoci
Delta Research Co.
tpelsoci@deltaresearchco.com
Benefit Cost Analysis for Surface Engineering Solutions Funded by SERDP/ESTCP Weapons, Systems & Platforms Program Area

Delta Research Co, 707 Forest Ave, Evanston, IL, 60202-2503

Approved for public release; distribution unlimited

ASETSDefense 2014: Sustainable Surface Engineering for Aerospace and Defense, 18-20 Nov 2014, Fort Myer, VA.
Objectives of Benefit Cost Analysis

- Select for analysis a subset of WP sponsored technologies (A, B, & C) which have transitioned from R&D and DEMVAL to certification and implementation.

- Identify DOD benefits from selected technologies and the associated investments by SERDP / ESTCP and other funding sources. Document & quantify DOD benefits and compare to investments.

- Derive lessons learned for future technology transition efforts.
DOD Benefits of Interest

- **COST**: Reduced system lifecycle costs from manufacturing to ultimate disposal
- **ENVIRONMENTAL RISK**: Reduced environmental risks in manufacturing and maintenance depot operations
- **TIME TO RESOLUTION**: Reduced time to resolve environmental problems
- **READINESS**: Protect platforms and weapon systems from environmental degradation. Enhance / sustain military readiness
Identify realized benefits. Estimate future and potential benefits

- Document Current Benefits
- Estimate Expected Benefits Over Remaining Useful Life of Platforms & Weapon Systems
- Identify Potential Benefit Scenarios from Expanded Certification and Utilization

Data Points Conservative Estimates Scenario Models
Analytical Approach

- Identify and recommend promising WP research areas for benefit cost analysis.

- For selected WP research areas
 - What is state of science and technology with and without WP investment?
 - What pathways were used for technology maturation and adoption?
 - Are there additional pathways that could lead to further DOD deployments and benefits?
 - Identify DOD benefits in cost savings, environmental risk reduction, and readiness. Quantify these benefits when meaningful. Analyze alternative scenarios for expected future benefits.
 - If there were multiple funding sources, develop fair attribution scheme.
Selection Criteria for WP Investments to be Analyzed

- R&D and DEMVAL completed
- Certification achieved
- Implementation achieved or high likelihood

- Significant DOD impact
 - Large magnitude of realized and expected benefits
 - Large scale utilization: Touching extensive platforms and weapon systems
 - Touching mission critical platforms and weapon systems, etc.

- Other significant impact, including
 - Dual-use commercial impact
 - Impact on collaborative manufacturing operations with NATO allies, etc.
Current Analytical Approach Was Successfully Used as Tasked by DOD, DON, DOE & NIST
Some Examples: Utilizing Current Analytical Approach

- For ONR & NSWCCD: Benefit cost study of research investments in advanced computational fluid dynamic (CFD) techniques - in support of hydrodynamic model testing. Benefits included reduced drag, reduced fuel consumption and smaller environmental footprint for CG, DDG, LHD, and LSD class surface ships.

- For DOE / EERE: Benefit-cost evaluation of 30 years of R&D investments in the U.S. Wind Energy Program. Increased efficiency levels, reduced energy costs and noise levels.

- For NIST: Benefit cost study of research investments in green manufacturing technologies with applications in non-ferrous metals recycling and plastics production from biomass.

- For ONR & NUWC: Benefit cost study of research investments in the development and fielding of Air Independent Solid Oxide Fuel Cells for UUVs. Performance gains, cost savings, and zero emissions.

- For ONR & NAWC-WD: Benefit cost study of research investments for the development and fielding of high performance optical components for missile domes in the AIM-9X Sidewinder, Standard Missile Block-2 IIB, Evolved Sea Sparrow Missile (ESSM), ATFLIR and Test Range Metrology.
If you have questions, comments or suggestions for WP Benefit Cost Analysis project, please contact

Thomas Pelsoci

Delta Research Co.

tpelsoci@deltaresearchco.com

847-328-4917 (o)
847-271-1740 (c)