REACH Compliant Hexavalent Chrome Replacement for Corrosion Protection (HITEA)

Brad Wiley
Rolls-Royce plc

Image courtesy of Manchester University
1. REPORT DATE
 NOV 2014

2. REPORT TYPE

3. DATES COVERED
 00-00-2014 to 00-00-2014

4. TITLE AND SUBTITLE
 REACH Compliant Hexavalent Chrome Replacement for Corrosion Protection (HITEA)

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
 Rolls-Royce plc, 62 Buckingham Gate, London, SW1E 6AT, England,

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
 Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
 ASETSDefense 2014: Sustainable Surface Engineering for Aerospace and Defense, 18-20 Nov 2014, Fort Myer, VA.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
 a. REPORT
 unclassified
 b. ABSTRACT
 unclassified
 c. THIS PAGE
 unclassified

17. LIMITATION OF ABSTRACT
 Same as Report (SAR)

18. NUMBER OF PAGES
 19

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
The Need

• On the 1st June 2007 the European Union enacted REACH – Registration, Evaluation, Authorisation and Restriction of Chemicals – legislation.

• Hexavalent chrome compounds are classified as substances of very high concern (SVHC) because they are Carcinogenic, Mutagenic or Toxic for Reproduction (CMR).

• The stringent regulation of these compounds means that suitable alternatives must be investigated and implemented to ensure that product performance and business continuity is maintained.

• The sunset date for hexavalent chrome compounds is September 2017.
Engine Guide Vane Actuator

Aluminium Housing
• Forged / Make from Solid
• Chromic acid anodised (CAA) externally.

Aluminium Piston
• Chromic Acid Anodised Head
• Hard Chrome Plated Stem
• Chromate Conversion Coating (CCC)

Images courtesy of Rolls-Royce Controls & Data Services Ltd.
The Role of the AAD and Materials KTNs

• A joint AAD and Materials KTN workshop in 2011 resulted in:
 - Definition of the hexavalent chromium replacement problem
 - Outline of a possible research strategy
 - Potential partnerships to address the problem

• The KTNs influenced the TSB collaborative R&D competitions to ensure REACH was a priority theme.

• Created the opportunity for the UK to position itself as the leading exponent of REACH-compliant materials science.

• The resulting programmes were seen to be essential to maintain the competitiveness of the UK aerospace industry.
The HITEA Programme

• Planned to identify and evaluate suitable alternative systems with progression through to TRL 4.

• Two main work packages are being pursued:
 - Chromic acid anodising (CAA), chromate conversion coatings (CCC) and chromate containing paints.
 - Electrolytic hard chrome replacement.

• The project is co-funded by Innovate UK (formerly known as Technology Strategy Board) and has a duration of 2.5 years.

• The 17 member consortium* is made up of industrial aerospace end-users, suppliers, paint applicator companies and UK universities.

• The project also included an effective material information management system based on the GRANTA MI™.

• The project benefits from an Advisory Board.

*Rolls-Royce (Lead Partner), AgustaWestland, Ashton & Moore, BAE Systems, Bombardier, GE Aviation Services, Granta Design, Indestructible Paint, Meggitt, Messier-Dowty, Monitor Coatings, Poeton, UTC Aerospace Systems, Rolls-Royce Controls & Data Services, Loughborough University, Manchester University, Southampton University
WP 1

Alloy

- Wash/Primer
- CAA
- CAA
- CCC
- CCC
- Grit-blast/Prime /Corrosion (10)

Paint (1)

- Seal
- Corrosion (2)
- Primer
- Bond (4)
- Bond (NC)
- Bond (8)

- Corrosion (3)
- Bond (4)
- Paint (5)
- Corrosion & Conductivity (6)
- Bond (NC)
- Corrosion (7)
- Paint (9)
WP 1 systems being tested

Al 2024 (T3) was chosen as the substrate for WP1

CAA Alternatives:
• SAA, TFSAA, PAA, BSAA, PSAA

A number of alternative commercially available Cr$^{6+}$ free primers, paints and conversion coatings being tested.

Tests include:
B117, G85
Dry and wet film adhesion
Fatigue testing
<table>
<thead>
<tr>
<th></th>
<th>Low alloy steel</th>
<th>15%Cr Stainless steel</th>
<th>19% Cr Stainless steel</th>
<th>Ti64</th>
<th>Al Alloy</th>
<th>Nimonic alloy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard chrome plating</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>TiN</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CrN</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLC</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WC/C</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>PEO</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Co-P</td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Trivalent Cr</td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Filled ENP</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>
WP2 testing

Testing includes:
Hardness
Increasing load scratch testing (to determine relative bond strength)
Wear testing
Salt Spray

Fatigue testing (on selected samples)
Technical Aims

• Provision of a performance database and standardised wear and corrosion methodologies to validate the reliability of new REACH-compliant coatings, whilst ensuring that the next generation material systems are sustainable in the long term.

• The consortium aims to establish a fast, inexpensive and robust testing methodology for selecting the most promising chromium-free alternatives.

• Creation of a centralised data management system which takes data from a number of sources from within the consortium to support decision making in the specification and use of alternative coating systems enabled by efficient consortium-wide access over the internet.
The Technical Approach

Benchmarking of Chromium-free alternatives

Consolidate existing data and initiate TRL4 test matrix

Identification and introduction of Chromium-free alternatives

Improvements to alternative processing technologies

Identify root cause of failure to match current chromium-based technology

Identify tests and TRL 4 criteria for each product type

Improved lifing/performance criteria for current and new material systems

Identification of systems for progression to TRL6

Industry TRL6 criteria, costs and timescales
Improved Corrosion Testing

• Within the scope of the HITEA project it was key to identify an advanced corrosion testing method which:
 - Improved the predictive capability of accelerated testing.
 - Retained the capability of obtaining fundamental information linked to the corrosion process.
• Electrochemical noise analysis (ENA), Linear polarisation (LPR) and electrochemical impedance testing (EIS) have been utilised to provide a practical tool for corrosion testing.
• These techniques allows the consortium to rapidly optimise and assess the performance of a new family of chromium-free, environmentally friendly treatments.
Corrosion Performance of Chromium-free anodising using an ENA technique.

Image courtesy of Manchester University
Centralised Data Management

- The data structure designed for the HITEA project defines and organises the relevant types of data, their attributes and dependencies.
- 500 records added to the knowledge repository for current CAA and CCC alone.
- The consortium is in the process of testing a range of REACH-compliant alternatives identified at a two-day workshop with a wide range of paint suppliers and coating companies.
- This TRL2 phase of testing will generate in excess of 1000 data sets for consortium members to access via a single, searchable database.
Database Schema for the HITEA Project

[Diagram showing the flow of data and information within the HITEA Project, including the GRANTA MI System, HITEA Project Database, Restricted Substances Database, and the involvement of various partners.]

Image courtesy of Granta Design
Replacement of Hard Chrome Plating

• The HITEA project has identified a number of alternative processes which are currently being assessed via a range of tribological tests which are designed to down select the most viable systems to TRL4.

• It was recognised that a “systems approach” would be required to achieve all of the customer requirements when identifying replacement technologies. For example, applying a hard face coating from a high velocity oxy-fuel (HVOF) applied tungsten carbide family of cermet coatings combined with a seal coat with an inorganic thermo-chemical material.

• Alternative processes capable of coating the inner bore of components are also under investigation.
Potential Replacement for Electrolytic Hard Chrome Plating

Mud motor rotor up to two orders of magnitude life improvement by using a systems-design approach

Images courtesy of Monitor Coatings
Continuing Need for Collaboration

• REACH is a phased approach to substance regulation and therefore there was a requirement within the HITEA project to ensure that the next generation material systems are sustainable in the long term.

• The REACH process is quite transparent and it is clear that a number of substances currently in use within the aerospace sector will require phase-out.

• The HITEA project is an example of excellent cooperation and demonstrates that by securing access to a broad range of complementary skills then it is possible for a successful outcome to these complex engineering change projects.
REACH implications on aerospace products

Image courtesy of Agusta Westland