U.S. Army Toxic Metal Reduction Program: Demonstrating Alternatives to Hexavalent Chromium and Cadmium in Surface Finishing

For ASETSSDefense
18 November 2014

Noah Lieb, PE, CSP
Hughes Associates, Inc.
Support to HQ, RDECOM EALSP
U.S. Army Toxic Metal Reduction Program: Demonstrating Alternatives to Hexavalent Chromium and Cadmium in Surface Finishing

Hughes Associates, Inc, HQ, Army Research, Development and Engineering Command (RDECOM EALSP), Aberdeen Proving Ground, MD, 21005

ASSETSDefense 2014: Sustainable Surface Engineering for Aerospace and Defense, 18-20 Nov 2014, Fort Myer, VA.
Environmental Acquisition & Logistics Sustainment Program Elements

- Sustain Mission Readiness
- Enhance Logistics Support
- Integrate Environmental Acquisition
- Improve Soldier Survivability

EALSP

- ORDNANCE ENVIRONMENTAL PROGRAM
- TOXIC METAL REDUCTION
- AIRBORNE LEAD REDUCTION
- ZERO FOOTPRINT CAMP

- STRATEGIC ENVIRONMENTAL RESEARCH AND DEVELOPMENT PROGRAM
- ENVIRONMENTAL SECURITY TECHNOLOGY CERTIFICATION PROGRAM
- JOINT INSENSITIVE MUNITIONS TECHNOLOGY PROGRAM
- JOINT SERVICE SOLVENT SUBSTITUTIONS

- PROTECTIVE COATING DEVELOPMENT
- MATERIAL DURABILITY TESTING
- NON-METALS RESEARCH

- RDT&E MATRIX SUPPORT
- ENVIRONMENTAL RISK MANAGEMENT
- SUPPORT TO PEOS/PMS
- OZONE DEPLETING CHEMICALS
- GREENHOUSE GASES

- DEFENSE SAFETY OVERSIGHT COUNCIL
- VOLUNTARY PROTECTION PROGRAMS
- NET ZERO INSTALLATIONS

Joint/Office of the Secretary of Defense

National Defense Center for Energy and Environment

Environmental Quality Technology

Corrosion Prevention and Control

ASA(ALT) Environmental Support Office
Purpose: Reduce/eliminate toxic, carcinogenic metals (e.g., hexavalent chromium (Cr(VI)), cadmium (Cd)) in Army metal plating, surface finishing

Addresses: High priority Army Environmental Requirements and Technology Assessment (AERTA) PP-2-02-04, OSD memo and DFARS clause

- 75% reduction in Cr(VI) used in electroplating
- 100% of Cr(VI) used in pretreatments
- 75% reduction in Cd associated with Cr(VI) finishes
- Reduction in toxic materials/waste (e.g., cyanide, phosphate sludge)

Return on investment: 7:1

Usage: 15K lbs/yr chromic acid (3 depots)
FY07: Identified as high priority Pollution Prevention (P2) requirement
FY08-14: Discretionary funding to initiate program
FY10: NDCEE Toxic Metal Impacts Survey
FY12: AMCOM G-4 detailed assessment of hazardous materials utilized in Army depot plating shops
 - Requirements
 - Alternative Technology Assessments
 - Technology Gaps
FY13: TMR approved as critical, valid funding requirement
FY14: Program Build
 - Projects must “buy-out” process completely
 - Technology Transition Agreements in coordination
FY15: Demonstration projects initiated
 - October: 1st TTA signed by PEO Aviation, CCAD

Hazardous Plating Shop Processes
- Chromic acid anodizing of aluminum*
- Aluminum conversion coatings*
- Hard chrome plating*
- Magnesium anodizing*
- Sealers and rinses*
- Stripping of anodizing and platings*
- Passivation of stainless steel*
- Cad Plating
- Nickel Plating
- Electroless Nickel
- Etching

*Contains Cr6+
<table>
<thead>
<tr>
<th>Process</th>
<th>Specification</th>
<th>Hazardous Chemicals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum Conversion Coating</td>
<td>MIL-C-5541-E, MIL-DTL-81706B</td>
<td>Sodium Dichromate</td>
</tr>
<tr>
<td>Aluminum Anodize</td>
<td>MIL-A-8625F Type I and IB</td>
<td>Chromic Acid, Sodium Dichromate, Chromium Trioxide</td>
</tr>
<tr>
<td>Cadmium Brush Plate</td>
<td>MIL-STD-865C</td>
<td>Cadmium Special, Cadmium Alkaline, Cadmium Acid</td>
</tr>
<tr>
<td>Cadmium Plating</td>
<td>SAE AMS-QQ-P-416B Type II</td>
<td>Cadmium Oxide, Sodium Cyanide, Cadmium, Nickel Chloride, Iridite</td>
</tr>
<tr>
<td>Hard Chrome Plate</td>
<td>SAE AMS-QQ-C-320</td>
<td>Chromic Acid</td>
</tr>
<tr>
<td>Copper Plating</td>
<td>ASTM 2418F</td>
<td>Copper Cyanide, Sodium Cyanide, Sodium Dichromate, Nickel Sulfate, Nickel Sulfamate</td>
</tr>
<tr>
<td>Electroless Nickel</td>
<td>AMS2404F</td>
<td>Nickel Chloride</td>
</tr>
<tr>
<td>Magnesium Anodize - Conversion Coating</td>
<td>AMS-M-3171 Type III, IV, VI</td>
<td>Chromic Acid, Sodium Dichromate</td>
</tr>
<tr>
<td>Nickel Plating</td>
<td>SAE AMS QQ-N-290</td>
<td>Nickel Chloride, Nickel Sulfate, Nickel Sulfamate</td>
</tr>
<tr>
<td>Passivate</td>
<td>SAE AMS 2700B</td>
<td>Sodium Dichromate</td>
</tr>
<tr>
<td>Phosphate</td>
<td>MIL-DTL-16232G, TT-C-490, Type I</td>
<td>Chromium Trioxide, Chromic Acid</td>
</tr>
<tr>
<td>Silver Plating</td>
<td>ASTM B700-97</td>
<td>Potassium Cyanide, Silver Cyanide</td>
</tr>
<tr>
<td>Wash Primer</td>
<td>DOD-P-15328, TT-C-490F</td>
<td>Zinc chromate</td>
</tr>
<tr>
<td>Start</td>
<td>Project Title</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>FY12/FY15</td>
<td>Cr(VI)-Free, Low VOC Alternatives for Spray-In-Place, Mixed Metal Pretreatment</td>
<td></td>
</tr>
<tr>
<td>FY13/FY15</td>
<td>Cr(VI)-Free Surface Activation and Preparation for Metal Plating</td>
<td></td>
</tr>
<tr>
<td>FY14</td>
<td>Cr(VI)-Free Hard Chrome Electroplating</td>
<td></td>
</tr>
<tr>
<td>FY14</td>
<td>Cr(VI)-Free Conversion Coatings</td>
<td></td>
</tr>
<tr>
<td>FY15</td>
<td>Cr(VI)-Free Aluminum Anodizing</td>
<td></td>
</tr>
<tr>
<td>FY15</td>
<td>Cyanide-Free Copper and Silver Electroplating</td>
<td></td>
</tr>
<tr>
<td>FY15</td>
<td>Toxicity Assessments and Testing of Alternative Materials and Processes</td>
<td></td>
</tr>
<tr>
<td>FY15</td>
<td>Cold Spray - Large Caliber Gun Barrel Coatings and Donor Tubes</td>
<td></td>
</tr>
<tr>
<td>FY15</td>
<td>Cold Spray - Portable System and Internal Diameter Applications</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Citric Acid Passivation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cadmium-Free Connectors and Fasteners</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cadmium-Free Plating for Components</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dichromate-Free Sealers / Primers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cr(VI)-Free Sealants and Adhesives</td>
<td></td>
</tr>
</tbody>
</table>
Objective: Eliminate Cr(VI) in multi-metal spray-on pretreatment applications (alternative to wash primer)

Magnitude of impact:
- Reduce Cr(VI) by 24K lbs/year, VOCs by 2.4M lbs/year
- Potential violation of volatile organic compounds (VOCs) emission limits could restrict maintenance activities
- Eventual cancellation of DOD-P-15328 technology gap

Intended end product: Validated Cr(VI) spray applied chemical pretreatments for multi-metal applications per TT-C-490F

Technology:
- Commercially available metal pretreatment technologies on multiple substrates and mixed metal assemblies
 1. Zircobond 4200 (zirconium immersion chemistry)
 2. Oxsilan 9810/2 (organo-silane polymers)
 3. Bonderite (phosphoric acid, hexafluorotitanic acid, Mn)

Weapon systems impacted: All systems currently using DOD-P-15328 chromated wash primer (including MRAP, Stryker, HMMWV, ground support equipment (GSE))

Transition Path: TT-C-490F Qualified Product Database

POC: Jack Kelley, ARL, john.v.kelley8.civ@mail.mil

IPT: ARL, Letterkenny Army Depot (LEAD), Red River Army Depot, (RRAD), Anniston Army Depot (ANAD), Henkel, PPG

Yearly Progress:
- FY12: Laboratory Testing
- FY13: Down-selection/Outdoor testing
- FY14: Demo at LEAD
- FY15: Demo at RRAD and ANAD
- FY16: QPD for TT-C-490
Objective: Eliminate chromic acid (Cr(VI)) used in stripping anodized coatings from aluminum

Magnitude of impact:
- Eliminate 1,400 lbs/year of chromic acid at Corpus Christi Army Depot (CCAD) in anodize stripping processes

Intended end product: Validated Cr(VI) free chemical stripper for anodized coating on aluminum (Type I, Type III and alternative processes)

Technology: Commercially available chemical strippers
- NaOH Stripper/Deoxider
- LNC Deoxidizer (ferric sulfate, nitric acid, HF)
- Sikorsky (proprietary)
- Stripol ANO
- Metalast ADS 1000 (sulfuric acid)

Weapon systems impacted: All systems that use anodized aluminum, including ground tactical and support equipment and aviation systems

Transition Path: Revision to MIL-A-8625

POC: Jack Kelley, ARL, john.v.kelley8.civ@mail.mil

IPT: ARL, AMCOM, AMRDEC, ANAD, PEO-Stryker Brigade Combat Team, Hubbard Hall, Henkel, Chemetall, AMZ Manufacturing, PPI Aerospace

FY14
- Develop testing protocol
- Laboratory testing

FY15
- Down-select

FY16
- Demonstration at ANAD/CCAD

FY17
- Specification revisions
• **Objective:** Eliminate Cr(VI) from electroplated hard chrome (EHC) processes

• **Magnitude of impact:**
 - Eliminate 5 tons of chromic acid used in EHC in Army depot operations (ANAD, CCAD, Rock Island Arsenal)

• **Intended end product:** Cr(VI)-free Non-Line of Sight (NLOS) plating process that results in a hard chrome plate that meets AMS 2460 performance requirements

• **Technology:** Faraday Technologies developed process
 - Trivalent chromium (Cr(III)) bath chemistry
 - Pulsed, reverse waveform rectifiers/power supply
 - Non-lead anodes
 - Leverage: SBIR for stripping chrome plating

• **Weapon systems impacted:** All aircraft maintained at CCAD (UH-60; AH-64; AH-1; CH-47); M1 tank, Stryker, Howitzer at ANAD; processes at RIA

• **Transition Path:** Individual MEOs, CCAD process standard

• **POC:** Michael Johnson, AMCOM, michael.l.johnson17.ctr@mail.mil

• **IPT:** AMCOM, AED, ARL, PEO Aviation, Utility Helicopter Project Office, CCAD, Faraday Technologies

Timeline:
- **FY14**
 - Laboratory testing (130 gallon)
- **FY15/16**
 - Process validation and characterization
- **FY17**
 - Establish Pilot Process (400 gallon)
 - Demonstration at CCAD
- **FY19**
 - Implementation
- **Objective:** Eliminate Cr(VI) in conversion coatings (CC)
- **Magnitude of impact:**
 - Eliminate 12K pounds of Cr(VI) in Al CC
 - LEAD: 20K lbs/year of Cr(VI) CC solution disposal
 - Savings of over $2.4M in chromate waste disposal
 - Consolidated ferrous and non-ferrous pretreatment line
- **Intended end product:** Multiple approved Cr(VI)-free CCs for aircraft and Ground Support Equipment (GSE) (multi-metal and composites), application by spray and immersion
- **Technology:** Assess commercially available Al pretreatments
 - Aviation: CCAD, TASM-G, Corrosion Repair Facility
 - Spray/immersion: Zirconium oxide, rare earth (Ce), silanes
 - GSE (immersion): ANAD, LEAD, Tobyhanna Army Depot
 - Zirconium oxide, rare earth (Cerium) and silanes
 - Leverage: ESTCP (LEAD) and USMC - Albany demos
- **Weapon systems impacted:** All tactical equipment that requires CARC
- **Transition Path:** TT-C-490, MIL-DTL-53072, MIL-DTL-5541, MIL-DTL-81706
- **POC:** Fred Lafferman, ARL, fred.lafferman.civ@mail.mil
- **IPT:** AMCOM, AMRDEC, AED, TACOM, LEAD, RRAD, CCAD, TASM-G, PPG Ind.
Objective: Eliminate Cr(VI) in aluminum anodizing, stripping and sealing

Magnitude of impact:
- CCAD anodize and anodize stripping baths use:
 - Anodize: 2300 gallon tank with 1500 lbs. chromic acid, added as needed (500 lbs. added in 2010-2011)
 - Stripping: 1 process line, 2050 lbs of dry chromic acid
- International regulation impact on supply chain (REACH)

Intended end product: 1) Validated Cr(VI)-free anodizing process in production environment, 2) validated Cr(VI) free chemical stripper for all forms of anodized aluminum

Technology: Two anodize technologies, Cr(VI)-free strippers
1. Sikorsky: Tartaric Sulfuric Acid Anodizing
2. NAVAIR: Thin Film Sulfuric Acid Anodizing process
3. Cr(VI)-free strippers for legacy, alternative anodize (ARL)

Weapon systems impacted: All aircraft maintained at CCAD (UH-60; AH-64; CH-47), including other Service aircraft

Transition Path: CCAD process standard, MIL-A-8625, MEO added to DMWRs

POC: Scott Howison, AMCOM, stephen.s.howison.civ@mail.mil

IPT: AMCOM, ARL, Sikorsky, AMRDEC-AED, CCAD, UH-60 Project Office (PO), AH-64E Apache PO, CH-47 PO

FY15
- Initiate laboratory testing with Sikorsky

FY16
- Laboratory evaluation of anodic coating stripper

FY17
- Implementation of stripping process

FY19
- Demonstration at CCAD
- Implementation through MEO
Objective: Eliminate cyanide from copper and silver electroplating at CCAD

Magnitude of impact:
- Cyanide alarm requirement: Up to 1 hr evacuation per alarm
- Cyanide solutions classified as a RCRA waste (F007, F008)

Intended end product:
- Non-cyanide products and processes for copper and silver plating/strike demonstrated at CCAD
- Non-chromic acid and non-cyanide stripping methods to remove copper and silver plating/strike demonstrated at CCAD

Technology:
- Leverage DoD, commercially available plating chemistry
 - E-Brite 30/30 and E-Brite Ultra Cu (Copper)
 - E-Brite 50/50 (Silver), Silver Cyless II
- Cold spray for LOS Cu or Ag deposition
- Cyanide, Cr(VI)-free stripping process for copper and silver

Transition: MEOs at CCAD

Weapon systems impacted: All aircraft maintained at CCAD (UH-60; AH-64; AH-1; CH-47)

POC: Sheree York, AMCOM, sheree.t.york.civ@mail.mil

IPT: AMCOM G-4, CCAD, EPI, AED, ARL, AH-64 PO, UH-60 PO, CH-47 PO
- **Objective:** Eliminate Cr(VI) used in plating large and medium caliber bore coatings
- **Magnitude of impact:**
 - Toxic material disposal ~$180k per year
 - Extended barrel life – 2-3x increase in life
- **Intended end product:** Cr(VI)-free, more erosion resistant bore coatings for large & medium caliber guns
- **Technology:**
 - Optimized cold spray (CS) process with tantalum (Ta), tungsten (W) and niobium (Nb) powders
 - Right-angle ID nozzle for direct CS application (large)
 - Additive manufacturing process to produce near-net formed donor tubes for explosive cladding (medium)
- **Weapon systems impacted:**
 - Large Cal: M256 120mm (chamber & bore), M284, M199, & M776 155mm (chambers only)
 - Medium Cal: M242 25mm Bushmaster, M230 30mm, GAU-12 25mm, 30mm Bushmaster II, EAPS 50mm
- **POC:** Vic Champagne, ARL, victor.k.champagne.civ@mail.mil
- **IPT:** ARL, Benet Laboratories

FY13
- Identify/Develop/Acquire materials
- Develop and design equipment

FY14
- Optimize ID nozzle
- Powder development

FY15
- Execute JTP at Benet for validation
- FY16 Demo Project Plan
Objective: Eliminate Cr(VI) in electroplated hard chrome

Magnitude of impact:
- Potential to eliminate Cr(VI) in all Line-of-Sight (LOS) hard chrome applications
- Increase throughput for dimensional restoration
- Mobile repair processes

Intended end product: Cr(VI)-free portable CS system for field repair, production process for inner diameter applications

Technology:
- Portable CS equipment with optimized ID nozzle with amorphous iron, Cr, Ni, and CrC-NiC powders
- Dimensional restoration of hard (HRC 45+) surface
- Coordinated path forward for LOS applications

Weapon systems impacted: all LOS hard chrome surfaces (e.g., U-joints for tracked vehicles, M1A1 Sun Gear, HMMWV Ring / Pinion Gears, EMI Shielding for Electronic Shelters)

POC: Vic Champagne, ARL, victor.k.champagne.civ@mail.mil

FY13
- Identify/acquire powders
- Develop Joint Test protocol

FY14
- Characterization
- Laboratory trials

FY15
- Validation on BER parts
- FY16 Demo project plan
Example: Potential Impact of Projects at CCAD Plating Shop (Building 340)

<table>
<thead>
<tr>
<th>Project</th>
<th>% Cr(VI) Reduction</th>
<th>Start Date (Overall/CCAD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr(VI)-Free Hard Chrome Electroplating</td>
<td>35</td>
<td>FY14/17</td>
</tr>
<tr>
<td>Cr (VI)-Free Aluminum Anodizing</td>
<td>13</td>
<td>FY15/17</td>
</tr>
<tr>
<td>Cr(VI)-Free Surface Activation and Preparation for Metal Plating</td>
<td>5</td>
<td>FY14/16</td>
</tr>
<tr>
<td>Cyanide-Free Copper and Silver Electroplating</td>
<td>2</td>
<td>FY15/15</td>
</tr>
<tr>
<td>Cr(VI)-Free Conversion Coatings</td>
<td>7</td>
<td>FY14/16</td>
</tr>
<tr>
<td>Tagnite Application for Legacy Components</td>
<td>15</td>
<td>FY14/15</td>
</tr>
<tr>
<td>Conversion coating for cadmium plating</td>
<td>7</td>
<td>FYTBD</td>
</tr>
<tr>
<td>Black Oxide Sealer (Cr(VI))</td>
<td>2</td>
<td>FYTBD</td>
</tr>
<tr>
<td>Passivation and Corrosion Treatment (Cr(VI))</td>
<td>12</td>
<td>FYTBD</td>
</tr>
<tr>
<td>Chromated sealant for Phosphate Acid Dip</td>
<td>2</td>
<td>FYTBD</td>
</tr>
<tr>
<td>TOTAL Plating Shop</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

AMCOM G-4 Estimates (2014)
U.S. Army Public Health Command will publish Toxicology Assessments for all proposed alternatives

- Literature review
- Computational modeling
- Data collection
- Toxicity Testing, if necessary

Data will inform acquisition documentation and occupational exposure requirements

- Toxicity Clearance, Health Hazard Assessment, PESHE, LCEA
- Occupational Exposure Limits
Army TMR Program will conduct demonstrations of more sustainable surface finishing processes at Army depots, installations from FY15-19.

P2 Technology Team will support transition through document changes, maintenance orders and updates to QPD.

Eliminate 100% of Cr(VI), Cd or toxic constituents in select processes Army-wide.

Seeking leveraging opportunities, data sharing, support for specification changes and promising technologies for future demonstrations.