Anion Transport in a Chemically Stable, Sterically Bulky \(\text{C} \) Modified Imidazolium Functionalized Anion Exchange Membrane

The morphology and anion transport of an \(\text{C} \) modified imidazolium functionalized anion exchange membrane, 1,4,5-trimethyl-2-(2,4,6-trimethoxyphenyl)imidazolium functionalized polyphenylene oxide (with ion exchange capacity \(\text{IEC} \) = 1.53 or 1.82 mequiv/g), were studied in detail. The novel cation is less susceptible to \(\text{OH}^- \) attack (0% degradation) compared to unsubstituted imidazolium functionalized polyphenylene oxide (25% degradation) after 24 h at 80 \(^\circ\)C in 1 M KOH. The two different IEC materials (with the same protected cation) show interesting differences in membrane performance. From AFM and SAXS under humid conditions, the domain sizes of the

14. ABSTRACT

The morphology and anion transport of an \(\text{C} \) modified imidazolium functionalized anion exchange membrane, 1,4,5-trimethyl-2-(2,4,6-trimethoxyphenyl)imidazolium functionalized polyphenylene oxide (with ion exchange capacity \(\text{IEC} \) = 1.53 or 1.82 mequiv/g), were studied in detail. The novel cation is less susceptible to OH\(^-\) attack (0% degradation) compared to unsubstituted imidazolium functionalized polyphenylene oxide (25% degradation) after 24 h at 80 \(^\circ\)C in 1 M KOH. The two different IEC materials (with the same protected cation) show interesting differences in membrane performance. From AFM and SAXS under humid conditions, the domain sizes of the

15. SUBJECT TERMS

Anion Exchange Membrane, stable cation, anion transport, morphology

16. SECURITY CLASSIFICATION OF:

a. REPORT

b. ABSTRACT
c. THIS PAGE

UU
UU
UU

17. LIMITATION OF ABSTRACT

UU

15. NUMBER OF PAGES

19a. NAME OF RESPONSIBLE PERSON

Andrew Herring

19b. TELEPHONE NUMBER

303-384-2082
ABSTRACT
The morphology and anion transport of an \(\alpha \)-C modified imidazolium functionalized anion exchange membrane, 1,4,5-trimethyl-2-(2,4,6-trimethoxyphenyl)imidazolium functionalized polyphenylene oxide (with ion exchange capacity \(\text{IEC} = 1.53 \) or \(1.82 \) mequiv/g), were studied in detail. The novel cation is less susceptible to \(\text{OH}^- \)– attack (0% degradation) compared to unsubstituted imidazolium functionalized polyphenylene oxide (25% degradation) after 24 h at 80 \(^\circ \text{C} \) in 1 M KOH. The two different IEC materials (with the same protected cation) show interesting differences in membrane performance. From AFM and SAXS under humid conditions, the domain sizes of the membrane change, which impact the transport properties. The lower IEC sample showed a smaller tortuosity and, thus, needs a longer diffusion time for the water molecules to be fully hindered inside the hydrophobic clusters, which is confirmed by water self-diffusion measurements from pulsed field gradient NMR. From conductivity and diffusion measurements, the higher IEC sample exhibited Vogel–Tammann–Fulcher behavior, thus indicating that the polymer chain’s movement dominates the transport. However, the lower IEC sample exhibited the linear Arrhenius behavior signifying water-mediated transport. The maximum \(\text{Cl}^- \) conductivity observed was 23 mS/cm at 95% RH and 90 \(^\circ \text{C} \).
Continuation for Block 13

ARO Report Number 58161.52-CH-MUR
Anion Transport in a Chemically Stable, Sterical...
Anion Transport in a Chemically Stable, Sterically Bulky α-C Modified Imidazolium Functionalized Anion Exchange Membrane

Ye Liu,† Junhua Wang,† Yuan Yang,§ Thomas M. Brenner,‖ Sörenke Seifert,† Yushan Yan,‡ Matthew W. Liberatore, † and Andrew M. Herring*,†

1Department of Chemical and Biological Engineering, 8Department of Chemistry and Geochemistry, and †Department of Physics, Colorado School of Mines, Golden, Colorado 80401, United States
2Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
3X-Ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States

ABSTRACT: The morphology and anion transport of an α-C modified imidazolium functionalized anion exchange membrane, 1,4,5-trimethyl-2-(2,4,6-trimethoxyphenyl)imidazolium functionalized polyphenylene oxide (with ion exchange capacity {IEC} = 1.53 or 1.92 mequiv/g), were studied in detail. The novel cation is less susceptible to OH⁻ attack (0% degradation) compared to unsubstituted imidazolium functionalized polyphenylene oxide (25% degradation) after 24 h at 80 °C in 1 M KOH. The two different IEC materials (with the same protected cation) show interesting differences in membrane performance. From AFM and SAXS under humid conditions, the domain sizes of the membrane change, which impact the transport properties. The lower IEC sample showed a smaller tortuosity and, thus, needs a longer diffusion time for the water molecules to be fully hindered inside the hydrophobic clusters, which is confirmed by water self-diffusion measurements from pulsed field gradient NMR. From conductivity and diffusion measurements, the higher IEC sample exhibited Vogel–Tammann–Fulcher behavior, thus indicating that the polymer chain’s movement dominates the transport. However, the lower IEC sample exhibited the linear Arrhenius behavior signifying water-mediated transport. The maximum Cl⁻ conductivity observed was 23 mS/cm at 95% RH and 90 °C.

1. INTRODUCTION

Advanced anion exchange membranes (AEMs) have the potential to enable new electrochemical devices based on catalysis in alkaline media such as fuel cells or electrolyzers. However, little is known about transport in these newer materials. Alkaline fuel cells (AFCs) have been widely investigated since the 1960s. The perceived advantages of alkaline electrolytes (e.g., KOH solution) used in AFCs include the applications of nonprecious metal catalysts and increased fuel flexibility. However, the use of liquid alkaline electrolytes has disadvantages such as maintaining containment of the electrolyte, component corrosion, and reaction with CO₂ to form insoluble carbonates that can block the electrodes, which must be scrubbed, necessitating the use of pumps and dramatically lowering system power density. There is currently great interest in using AEMs in electrochemical devices, as the carbonate anion is mobile in these materials, the elimination of the liquid electrolyte increases system simplicity, and dramatically higher power densities can be achieved.

Two limitations of AEMs must be overcome to enable practical applications: their inherently low conductivity (compared to proton exchange membranes) and the chemical stability of the organic cations that are susceptible to nucleophile attack by hydroxide in the operating device. A large number of new chemistries have been proposed to overcome the two issues of needing high ionic conductivity and chemical stability. However, in order to design next generation AEMs we must correlate the cation chemistry with other membrane properties, e.g., anion and water transport, morphology, and water absorption, in order to better understand the performance of the AEM. Simple quaternary ammonium cations have been studied extensively, as they provide good model systems and in certain membranes have been shown to have adequate stability, but they do not provide a route to the thousands of hours of transient operation required in many real devices. Various second generation cations have been proposed for enhanced chemical stability including phosphonium, pyridinium, sulfonium, imidazolium, guanidinium, and complex metal cations, e.g., (bis-terpyridine Ru). Of particular interest are the imidazolium functionalized AEMs, which provide the following potential benefits: 1. Conjugated structures generated from...
five heterocyclic rings help to delocalize positive charges, thus preventing nucleophilic attack by OH$^-$ through Hofmann or S$_3$2 elimination.25 2. Imidazolium functionalized membranes may more favorably generate phase-separated morphologies.23 3. Imidazolium chemistry avoids the negative environmental effects of using trimethylamine. 4. The imidazolium cation is thermally more stable than the ammonium cation.26

To date studies on imidazolium functionalized AEMs have largely focused on conductivities, lifetime under alkaline conditions and the degradation mechanisms.20,21,27–30 Zhang27 and Guo21 investigated AEMs with the same imidazolium cation but different polymer backbones (polysulfone, PSf-ImOH; poly(styrene-co-butyl methacrylate), PS-co-PBMA-Im). The chemical stabilities under alkaline conditions differ greatly. PSf-ImOH degrades in 3 M NaOH solution under 60 °C after 24 h, whereas PS-co-PBMA-Im is stable even after 120 h in 6 M NaOH under 80 °C. Thus, it has been proposed that imidazolium cation degradation is related to the membrane’s backbone structure. The conductivity of PSf-ImOH is 16.1 mS/cm in water at 20 °C when IEC = 1.39 mequiv/g, while the conductivity for PS-co-PBMA-ImOH is 33.3 mS/cm at 30 °C with an IEC = 0.217 mequiv/g. Also, Deavin26 made a comparison of benzytrimethylammonium and 1-benzyl-3-methylimidazolium cationic groups with the same poly(ethylene-co-tetrafluoroethylene) (ETFE) backbone. The imidazolium functionalized ETFE has similar conductivity (the HCO$^-$ conductivity increases from 16 mS/cm to 25 mS/cm from 30 to 60 °C, respectively, with an IEC = 1.8 mequiv/g) and lower chemical stability (1 M KOH solution under 60 °C) compared with the ammonium functionalized ETFE. More recently, Page29 modified the imidazolium cation by attaching a methyl group on the carbon in the middle of two nitrogen (α-C) with the same AEM membrane. The conductivity was similar to that of the unmodified material (the HCO$^-$ conductivity increases from 17.4 mS/cm to 27 mS/cm over the temperature range 30–60 °C), but the chemical stability did improve; however, it was still lower than that of the ammonium functionalized AEM. The degradation of the imidazolium cation under alkaline condition follows a ring-opening route by nucleophilic attack of OH$^-$ groups on the α-C.24,27 Therefore, the α-C position on the imidazolium cation is considered to be an effective location for modification. More research is still needed on α-C functional group replacement.27,31

To date, it is not known how a sterically bulky cation will affect the transport and morphological properties of an AEM. In this work we investigate a 1,4,5-trimethyl-2-(2,4,6-trimethoxyphenyl) imidazolium functionalized PPO (PPO-TMIM) (Figure 1). This sterically bulky cation was chosen because it was expected to have greater stability based on the contribution of the electron donating methyl groups as well as the α-C increased steric effect. OH$^-$ has the highest intrinsic diffusion coefficient of the common anions used in AEMs. However, investigating the OH$^-$ form of an AEM is often inconvenient, as ambient carbon dioxide (at publication time, 400 ppm) will react with the OH$^-$ to form a mixture of CO$_3^{2-}$ and HCO$_3^-$ in the film. In this study, we investigated the films with Cl$^-$ anions, as a surrogate for hydroxide as the films were supplied in the chloride form. We have recently shown that heavier halogen anions will enhance the transport of lighter halogen anions32 and so we chose not to attempt to exchange the film for fluoride, which is more similar in size to hydroxide, as we did not want to risk studying a poorly characterized mixture of anions. However, we anticipate that the water-mediated transport of Cl$^-$ in these films is still relevant to a general mechanism of anionic conductivity.

In this paper, the chemical stability of the substituted imidazolium cation functionalized polymer under alkaline conditions was compared to the unsubstituted imidazolium functionalized PPO (PPO-IM). We also studied the morphology of the materials under different humidity conditions and further correlated this with transport behavior. The water diffusion was rationalized in terms of the conductivity, and the potential of the material as an AEM was evaluated.

2. EXPERIMENTAL SECTION

2.1. 1,4,5-Trimethyl-2-(2,4,6-trimethoxyphenyl) Imidazolium Functionalized PPO

1,4,5-Trimethyl-2-(2,4,6-trimethoxyphenyl) imidazolium functionalized polyphenylene oxide (PPO-TMIM) was synthesized according to the literature.33 The materials were in two imidazolium cation functionalization degrees, 33% and 46%, PPO-TMIM-0.33 and PPO-TMIM-0.46, with calculated IECs of 1.53 and 1.82 mequiv/g, respectively. An equivalent polymer with an unsubstituted imidazolium cation, PPO-IM, had a calculated IEC = 2.20 mequiv/g.

2.2. Ion Exchange Capacity

The ion exchange capacity (IEC) was measured by titrating the Cl$^-$ form of the membrane using the Mohr method.34 First, the Cl$^-$ form membrane was soaked in 1 M aqueous sodium nitrate for 48 h under room temperature to release Cl$^-$ ions. The mixed solution was titrated by standard AgNO$_3$ using K$_2$Cr$_2$O$_7$ as a colorimetric indicator. The weight of the membrane was recorded after drying in a vacuum oven at 30 °C overnight. The IEC was calculated from eq 1. The quantity of AgNO$_3$ added is equal to the quantity of Cl$^-$ after being ion exchanged by NO$_3^-$.

\[
\text{IEC} = \frac{V_{\text{AgNO}_3} \times C_{\text{AgNO}_3}}{m_{\text{dry}}}
\]

\(V_{\text{AgNO}_3}\) = volume of standard AgNO$_3$ solution consumed; \(C_{\text{AgNO}_3}\) = concentration of standard AgNO$_3$ solution; \(m_{\text{dry}}\) = mass of the dry membrane.

The theoretical IEC was calculated by using the number of fixed ionic groups in a repeating unit divided by the molecular weight of a repeating unit.35

2.3. Infrared Spectroscopy

Fourier transform infrared spectroscopy (FTIR) was recorded on a Nicolet Nexus 470 spectrometer with an attenuated total reflectance (ATR) accessory containing a diamond crystal. Spectra were obtained in the range 500–4000 cm$^{-1}$, with 256 scans and a resolution of 8 cm$^{-1}$.

Figure 1. Structure of 1,4,5-trimethyl-2-(2,4,6-trimethoxyphenyl) imidazolium functionalized polyphenylene oxide.
2.4. Thermogravimetric Analysis. Thermogravimetric analysis (TGA) was carried out using a TGA5000 instrument controlled by a TGDTA Measure thermal analysis station. Typically 5-8 mg samples were loaded into a platinum pan. Measurements were performed at a heating rate of 10 °C/min from 25 to 800 °C under a nitrogen atmosphere.

2.5. Dynamic Vapor Sorption. Water uptake of the membrane was tested by use of a SMS dynamic vapor sorption (DVS) instrument. The samples, after drying in a vacuum oven overnight, were loaded into a glass sample pan hanging from an ultrasensitive microbalance. The relative humidity was achieved by proportionally mixing dry gas (nitrogen) and a second water vapor stream controlled by a mass flow controller. The temperature of the experiments was set to 60 °C for the different humidity cycles. Samples were first kept at 0% RH for 8 h; then the humidity was increased in the sequence: 20%, 40%, 60%, 80%, 95%, and then decreased to 0% with the same humidity steps. Each humidity condition was held for 2 h and the cycle was run twice. The equilibrium mass at the end of each step was used to calculate the water uptake from the isotherm of mass versus relative humidity. The water uptake was calculated according to eq 2.

\[WU(\%) = 100\% \times \frac{m_{RH} - m_{dry}}{m_{dry}} \]

(2)

where \(m_{RH} \) is the mass of the sample under different relative humidity; \(m_{dry} \) is the mass of the sample under 0% RH. The hydration number, \(\lambda \), representing the number of water molecules per cationic group was calculated from eq 3.

\[\lambda = \frac{WU}{M_{H_2O} \times IEC} \]

(3)

2.6. Small Angle X-ray Scattering. Small angle X-ray scattering (SAXS) was performed at the Advanced Photon Source (APS), Argonne National Laboratory, on beamline 12ID-B. The beam wavelength was \(\lambda = 0.886 \ \text{Å} \), with an exposure time of 1 s, and an energy of \(E = 14 \ \text{keV} \). Two-dimensional scattering patterns were collected simultaneously with a 29 × 29 cm² Pilatus 2 M detector. The one-dimensional intensity versus q plot was azimuth averaged from the 2D scattering pattern for the SAXS in the range of 0.003 Å⁻¹ < q < 0.5 Å⁻¹, where \(q = 4\pi n \sin(\theta) / \lambda \). The data were converted to a differential cross section. A custom-made four-sample oven was used to control both humidity and temperature. The oven had Kapton windows. One slot was left blank and used as the background, while the other three sample slots contained membrane samples. Experimental data was measured from 0% RH to 95% RH as well as for membranes that had been soaked in water. For each humidity step, 20–40 min were used to equilibrate after changing the humidity. The soaked sample was immersed in DI water for 24 h before measurements.

2.7. Microscopy. Atomic force microscopy (AFM) images were taken in tapping mode using a Bruker Nanoscope III instrument with high-aspect-ratio 225 µm cantilever tips (Nanosensors, NCLR). Analysis was performed using Nanoscope 5.30r1 software. The dry sample was evacuated in a vacuum oven overnight at room temperature. The wet sample was treated in DI water for 24 h, and then imaged immediately under ambient conditions. Micrometer-scale morphologies of the membranes were acquired using a Thermo Fisher Nicolet iN10 microscope. The image was collected in transmission mode on the membrane soaked in DI water for 24 h under room temperature.

2.8. Pulsed-Field Gradient Nuclear Magnetic Resonance. H self-diffusion coefficients were obtained by use of pulsed-field gradient nuclear magnetic resonance (PFG NMR) on an AVANCEIII NMR spectrometer with 5 mm Bruker single-axis DIFF60L Z-diffusion probe. The pulsed field gradient at 26 °C was varied from 0 to 128 G/cm over 16 randomized steps. The NMR frequency was 400 MHz and data was analyzed with Bruker TopSpin software. The decay of signal intensity could be expressed with the Stejskal-Tanner equation \[C \] given in eq 4 when the transport was only related within the z direction.

\[A(g) = A(0) \exp(-\gamma^2 g^2 \Delta D) \]

(4)

\(A(g) \) = echo amplitude; \(A(0) \) = amplitude of the spin–echo signal in the absence of pulsed field gradient; \(\gamma \) = gyromagnetic ratio; \(g \) = amplitude of field gradient pulse; \(\theta \) = duration of the field gradient pulse; \(t_d = \Delta - \delta / 3 \), where \(\Delta \) is the time interval between the gradient pulses; \(D \) = self-diffusion coefficient.

The membrane sample was wound into a completely sealed 5 mm tube above a salt solution at the bottom providing 80% RH. The experiment was performed at 80% RH from 26 to 45 °C.

2.9. Electrochemical Impedance Spectroscopy. In-plane anionic conductivity was calculated by use of electrochemical impedance spectroscopy (EIS) based on the measurement of the ionic resistance. The Randles’ equivalent electrical circuit was used to fit the measured Nyquist Plot. The intercept at the lower frequency was used to determine the total ionic resistance. The frequency range was from 0.4 to 10⁶ Hz with a fixed voltage magnitude of 10 mV. The membrane was mounted in a four-electrode cell connected to a BioLogic VMP3 multichannel potentiostat. The conductivity was calculated from the equation shown below.

\[\sigma = \frac{1}{RS} \]

(5)

\(\sigma \) = conductivity, (S/cm); \(R \) = resistance, (Ω); \(S \) = cross section area of the membrane, (cm²); \(l \) = length of the membrane tested between two electrodes, (cm).

An environmental chamber (Test Equity) was used to control both humidity and temperature during the experiment. The measurements were performed from 50 to 90 °C under 95% RH. Each testing condition ran for 16 loops with the first 8 loops for membrane equilibration under the conditions and the last 8 loops for data analysis.

2.10. Degradation Studies. Chemical stability measurements were performed by treating PPO-TMIM and PPO-IM in 1 M sodium hydroxide solution at 80 °C. The degradation of cationic groups were determined in terms of the IEC based on the titration of Cl⁻ form membranes as described above in section 2.2.

3. RESULTS AND DISCUSSION

3.1. Structure Verification. The polymer structure was first validated by NMR and was shown to match the literature spectra. The FTIR spectra (Figure 2) of polyphenylene oxide,
PPO-TMIM-0.33 and PPO-TMIM-0.46, are compared. Both PPO-TMIM-0.33 and PPO-TMIM-0.46 display additional peaks when compared to the base PPO material (Figure 2, top trace) at 1584, 1410, 1159, and 1126 cm\(^{-1}\). The 1584 and 1126 cm\(^{-1}\) peaks are ascribed to C\(\equiv\)N and C\(\equiv\)N stretching, respectively, while the peaks at 1410 and 1159 cm\(^{-1}\) are assigned to the imidazole ring asymmetric stretch and C\(\equiv\)H vibrations.\(^{20,40}\)

3.2. Chemical and Thermal Stability Studies. We compare the chemical stability of the modified and unsubstituted imidazolium functionalized PPO polymers in Figure 3. Initial measured IECs of PPO-TMIM-0.46 and PPO-IM were 2.0 and 1.9 mequiv/g. The IEC of substituted PPO-TMIM polymer decreases more slowly initially than that of PPO-IM as shown in Figure 3, and both showed a higher IEC at the end than the minimum values recorded. After 24 h of hydroxide treatment at 80 °C, the IEC of PPO-TMIM was unchanged from the initial value, whereas the IEC of PPO-IM had decreased by 25%. It is possible that the minimum value of the IEC is the true value for the degraded film and that the gradual recovery of the IEC is due to entrapped salt that cannot be easily washed from the film; nevertheless, the PPO-IM polymer is clearly quite unstable under the test conditions. Other AEMs recently reported also display this degradation phenomenon.\(^{41}\)

The enhanced basicity of the modified imidazolium due to the electron donating methyl and trimethoxyphenyl groups as well as the static effect from the large trimethoxyphenyl group efficiently prevent nucleophilic OH\(^{-}\) attack on the α-C position of the imidazole ring as compared to the unsubstituted imidazolium cation. This improved long-term stability of PPO-TMIM was also demonstrated by Wang\(^{33}\) under the same degradation conditions.

The thermal gravimetric analysis curves and the derivative of the thermal gravimetric curves for PPO-TMIM-0.46 and PPO-TMIM-0.33 are shown in Figure 4. The TGA measurements have three weight loss regions corresponding to the highest weight loss rates at ca. 50 °C, 240 °C for both polymers and 392 or 370 °C for PPO-TMIM-0.33 or PPO-TMIM-0.46, respectively. The first mass loss stage corresponds to water losses of 5% (PPO-TMIM-0.33) and 6% (PPO-TMIM-0.46). The second weight loss corresponds to the onset of decomposition temperature at 217 °C and is attributed to the nucleophilic attack of chloride anions through a S\(_2\)N\(_2\) reaction to the 1,4,5-trimethyl-2-(2,4,6-trimethoxyphenyl) imidazolium cation.\(^{26,42}\) This onset decomposition temperature is higher than for quaternary ammonium or the unmodified imidazolium cation.\(^{30}\) The third region of mass loss results from the decomposition of the PPO aromatic chains.\(^{25}\) Both the chemical and thermal stabilities of this AEM, PPO-TMIM, confirm a promising application in AFCs.
3.3. Morphological Studies. The DVS data, discussed below, reveals that water sorption of the PPO-TMIM-0.46 polymer is 5% higher in absolute value and 30% higher in relative value than the PPO-TMIM-0.33 polymer at 95% RH. This leads to observable differences in the membrane morphologies. The effects of water on the morphology are exhibited in the AFM phase-contrast images in Figure 5. Figure 5a shows that the dry membrane is homogeneous. After the absorption of water, the membrane clearly shows the formation of clusters, which are likely due to the aggregation of hydrophilic and hydrophobic groups as shown in Figure 5b,c. Care must be taken in the interpretation of the phase contrast in these images. Previous reports on related AEMs have suggested that regions of lower phase (dark regions) correspond to hydrophilic domains, while regions with higher phase (bright regions) correspond to hydrophobic domains. However, the slope of any morphological features contributes directly to the phase, due to the finite response time of the instrument feedback loop. Thus, the dark regions at the cluster boundaries have been significantly influenced by the abrupt changes in morphology observed in the height images (Supporting Information, Figure 1). The data is therefore used in conjunction with the SAXS data described below to confirm the cluster size.

The root mean square (RMS) roughness of wet PPO-TMIM-0.46 is 3.53 nm while that of wet PPO-TMIM-0.33 is 2.21 nm, indicating that the clusters are taller in PPO-TMIM-0.46. Both wet films are significantly rougher than the dry PPO-TMIM-0.46 film, which has an RMS roughness of 1.37 nm. By using ImageJ to analyze the bright domain sizes (Table 1), it was found that PPO-TMIM-0.46 embraces a more even distribution with 30 (SD, 10) nm average Feret diameter compared to a smaller 25 (SD, 13) nm average Feret diameter of PPO-TMIM-0.33. Thus, the wet PPO-TMIM-0.46 material forms larger volume clusters than the wet PPO-TMIM-0.33 material.

SAXS was used as a method for detecting the average phase morphology of the bulk materials. Based on monitoring bulk morphology variations along with humidity from SAXS, it is noticed that there is no long-range ordered configuration (e.g., lamellae) exhibited owing to the random copolymer structure, unlike a typical block copolymer which embraces long regular alternating junctions that probably enable a highly ordered configuration from the hydrophilic and hydrophobic domain arrangement. However, some ionomer patterns designated from the q range around 0.2 Å⁻¹ are exhibited. The large full width at half-maximum (fwhm) of the ionomer peaks again indicates a weak long-range order of the structure. This ionomer pattern becomes more irregular when the humidity increases from 0% RH to 95% RH but is rearranged into a more ordered configuration again by soaking the membrane in water. The new ionomer peak with an improved scattering intensity moves toward a smaller q range after soaking the membrane in water because of the expanded ionomer domain sizes. The differences between PPO-TMIM-0.33 and PPO-TMIM-0.46 are illustrated by the scattering slope variation at the q range of 0.003–0.02 Å⁻¹ from dry to wet condition (Figure 6). For the low IEC sample, the Porod slope increases from 3.1 to 3.6 when the humidity is increased from 0% to 5% RH, indicating an increase in symmetry; while the observation for the high IEC sample was contrary, with a scattering slope decrease from 3.6 to 3.0 as the particle configuration loses its symmetry. Moreover, comparing SAXS patterns between PPO-TMIM-0.46 and PPO-TMIM-0.33 under high humidity conditions, a
new shoulder can be seen with the \(d \) spacing in the range of 10–32 nm, which corresponds to the uniformly distributed clusters of PPO-TMIM-0.46 observed in the AFM (Figure Sb). Both the shoulder and ionomer domain length scales from the SAXS are consistent with the bright and dark dimensions shown in AFM as quantified by ImageJ.

3.4. Water Sorption. The water sorption values for PPO-TMIM-0.33 and PPO-TMIM-0.46 are 17% and 22% (Figure 7), respectively, corresponding to \(\lambda \) of 6 and 7 under 95% RH at 60 °C. \(\lambda \) values for PPO-TMIM-0.33 and PPO-TMIM-0.46 are almost the same at 40% RH and only 10% different at 95% RH. The water uptake of both PPO-TMIM-0.33 and PPO-TMIM-0.46 at ambient humidity (23% RH) are slightly lower than the TGA weight losses (PPO-TMIM-0.33 and PPO-TMIM-0.46 weight losses are 5% and 6%) from bound water. The reason is due to the small amount of bound water left when drying the sample in the DVS at low temperature for the purpose of preventing sample damage.

3.5. Water Self-Diffusion Inhibited in Polymer. The PFG NMR technique was used to add further insight into the overall transport properties and relate this to the membrane morphology. In restricted diffusion, the time-dependent region engages interactions of water molecules with membrane walls, while in the time-independent region all the diffusion is fully hindered inside the membrane walls and achieves \(D_\infty \). Therefore, diffusion at different time intervals between gradient pulses are determined by the complexity of the membrane and it in turn reflects the anisotropy of the membrane.

Figure 8 shows the diffusion coefficient as a function of the diffusion time in the PFG NMR experiment. Diffusion coefficients of both PPO-TMIM-0.33 and PPO-TMIM-0.46 decline along with the diffusion time indicating a restricted diffusion. The nanoscale morphology shown in AFM and SAXS gives rise to a weak diffusion dependence (slopes are \(-2 \times 10^{-6}\) for PPO-TMIM-0.33, \(-5 \times 10^{-5}\) cm²/s² for PPO-TMIM-0.46) as a result of the tortuosity of the membrane. \(D_\infty \) of PPO-TMIM-0.33 and PPO-TMIM-0.46 are 1.3 \times 10^{-6} \text{ cm}^2/\text{s} and 1.0 \times 10^{-6} \text{ cm}^2/\text{s}, respectively, when full geometrical restriction is achieved.

The Mitra equation \(^{18,49}\) shown in eq 6 is used to further analyze the influence of the membrane morphology on the diffusion properties. This provides insights into phase complex-
larger than that of PPO-TMIM-0.46. The tortuosity of the membrane is calculated from eq 7.53

\[D_{\infty} = D_{0} \alpha^{-1} \]

where \(\alpha \) is the tortuosity. From Table 2, the tortuosity of PPO-TMIM-0.33, calculated by eq 7, is smaller than that of PPO-TMIM-0.46. Smaller tortuosity designates a less morphological barrier for transport. The smaller cluster sizes of PPO-TMIM-0.33 observed in AFM give rise to more junctions of dark domains so that promote transport pathway connections. Hence, PPO-TMIM-0.33, which embraces a smaller tortuosity, makes itself into a larger critical length scale and possesses a weaker dependence on diffusion time, even though it has a lower water uptake.

The diffusion length, which relates the diffusion coefficient, \(D \), to the diffusion time, \(t_{d} \), is calculated according to eq 8 \(^{54} \)

\[\langle \alpha^{2} \rangle^{1/2} = \sqrt{2D_{d}t_{d}} \]

where \(\langle \alpha^{2} \rangle^{1/2} \) is the diffusion length. By plotting the diffusion coefficient versus diffusion length (Figure 10), the fully linear relationship with an \(E_{a} \) of 7 ± 0.3 kJ/mol, indicating a water mediated mechanism, and is slightly lower than other imidazolium AEMs.\(^{21,55} \)

3.6. Conductivity. The Cl\(^{-}\) form conductivities of PPO-TMIM-0.46 and PPO-TMIM-0.33 diffusion coefficients increase along with temperature. The low IEC sample shows a linear relationship with an \(E_{a} \) of 7 ± 0.3 kJ/mol, while the high IEC sample displays a nonlinear, convex, super-Arrhenius behavior. The membrane with higher water uptake, PPO-TMIM-0.46, shows a larger diffusion coefficient at a higher temperature (above 40 °C), which is in line with the conductivity result in Figure 13, even though the water diffusion does not necessarily exhibit a linear relation or proportionality to conductivity.\(^{11} \)

\[D = RT \frac{\kappa}{cz^{2}F^2} \]

where \(D \) is the diffusion coefficient, \(\kappa \) is the conductivity, \(c \) is the concentration of anionic groups in the membrane, \(z \) is the
ionic charge, \(F \) is the Faraday constant, \(R \) is the gas constant, and \(T \) is the temperature. The \(\text{Cl}^- \) diffusion coefficient of PPO-TMIM-0.33, calculated based on eq 9, is \(1.55 \times 10^{-6} \text{ cm}^2/\text{s} \), which is smaller than the water diffusion coefficient, \(1.77 \times 10^{-6} \text{ cm}^2/\text{s} \), under 45 \(^\circ \text{C} \) and 80% RH. Therefore, the \(\text{Cl}^- \) diffuses more slowly than water via the vehicle mechanism, because the solvated \(\text{Cl}^- \) is larger than the water molecules. Applying the same calculation on PPO-TMIM-0.46, the \(\text{Cl}^- \) diffusion coefficient is \(1.56 \times 10^{-6} \text{ cm}^2/\text{s} \), which is also smaller than the water diffusion coefficient, \(1.82 \times 10^{-6} \text{ cm}^2/\text{s} \). However, the conductivity data for the PPO-TMIM-0.46 membrane, exhibits a super Arrhenius behavior similar to that of the water diffusion. We can fit both the ionic conductivity and water diffusion data for the high IEC polymer to the Vogel–Tammann–Fulcher (VTF) equation shown below:\(^{57-60}\)

\[
\sigma(T) = \sigma_0 \exp \left(\frac{-b}{T - T_b} \right)
\]

\[
D(T) = D_0 \exp \left(\frac{-b}{T - T_b} \right)
\]

(10)

where \(\sigma_0 \) and \(D_0 \) are the conductivity and diffusion coefficients at infinite temperature, \(b \) is a constant related to the entropic barrier to free volume creation, \(T_b \) is the temperature at which the mobility of ions and the conductivity drop to zero. Based on the three-parameter fit by using of Mathematica (Table 3), \(T_b \) from the PFG NMR water diffusion coefficient and the EIS \(\text{Cl}^- \) conductivity data fits are similar, ca. 240 K, which is nominally considered 50 K lower than the \(T_b \) of the material.\(^ {61,62} \) We assign this to the \(T_b \) 290 K, of the hydrophilic phase. The \(b \) value obtained is higher, 132 K, for ionic conductivity of \(\text{Cl}^- \) than for water diffusion from PFG-NMR, 100 K, indicating that \(\text{Cl}^- \) is energetically less mobile than \(\text{H}_2\text{O} \) in the channel. The maximum conductivity of \(\text{Cl}^- \) is calculated to be 0.075 S/cm and of water diffusion \(7.1 \times 10^{-6} \text{ cm}^2/\text{s} \) which is an order of magnitude smaller than for free water at room temperature, \(2.3 \times 10^{-5} \text{ cm}^2/\text{s} \), again indicative of the highly hindered transport in these polymers.

4. CONCLUSION

In this study, a novel 1,4,5-trimethyl-2-(2,4,6-trimethoxyphenyl) imidazolium functionalized PPO polymer was studied. The increased electron donating and steric bulk of the cation enhanced the AEM durability compared to the unsubstituted imidazolium functionalized PPO, over 24 h without any degradation in 1 M KOH solution at 80 \(^\circ \text{C} \). In addition, the PPO-TMIM polymers have good thermal stabilities. From AFM, the membrane exhibited a homogeneous morphology under dry conditions, compared to clusters formation in the humidified films. The average Fer diameters of clusters of PPO-TMIM-0.33 and PPO-TMIM-0.46 were 25 and 30 nm, respectively, analyzed by ImageJ. The domain sizes in AFM corresponded to the \(d \) spacing (3 nm and 10–32 nm) displayed in the SAXS patterns. Transport studies showed a high dependency on the morphology of the membrane. Free water diffusion coefficients in the polymers were ca. \(1.5 \times 10^{-6} \text{ cm}^2/\text{s} \), that is, smaller than the diffusion in bulk water. Long-range diffusion coefficients \(D_\infty \) were ca. \(1.0 \times 10^{-6} \text{ cm}^2/\text{s} \) due to restrictions on the micrometer scale as seen in the visible micrographs.

The high IEC PPO-TMIM-0.46 displayed a high conductivity of 23 ms/cm in \(\text{Cl}^- \) form at 95% RH and 90 \(^\circ \text{C} \). Interestingly, the low IEC polymer exhibited Arrhenius behavior following a vehicle mechanism in its transport properties, whereas the high IEC polymer showed super Arrhenius behavior, which could be fit to a VTF model as the ion transport was facilitated by the movement of the cationic side chains in the hydrophilic phase. As the content of the large cation is increased in the hydrophilic channels, the ions clearly do not move in a fully dissociated manner uninfluenced by the cation chemistry.

ASSOCIATED CONTENT

Supporting Information
Further analysis of the relation between the AFM height and phase images. This material is available free of charge via the Internet at http://pubs.acs.org

AUTHOR INFORMATION

Corresponding Author
*Phone: (303) 384-2082. Fax: (303) 273-3730. E-mail: aherring@mines.edu.

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors thank the Army Research Office for support of this research under the MURI grant number #W911NF-10-1-0520. The Advanced Photon Source operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. We also thank James L. Horan and Tara P. Pandey for help with visible microscopy measurement.

REFERENCES

