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1.0  Background and Motivation 
The safe use of lithium-ion batteries requires an understanding of battery failure modes, how to 
avoid failure scenarios, how to prepare for possible failure scenarios, and how to mitigate failure 
consequences.  Battery failure begins at the cell level, and therefore it is crucial to increase our 
understanding of how individual cell components and properties influence these potentially 
catastrophic failure events.  However, the majority of effort until recently has been focused on 
cell and battery development, not safety.  Researchers and cell developers have previously, and 
are currently, measuring and modeling electrode characteristics and investigating optimum 
electrolyte properties and cell configurations.  The rapid implementation of lithium-ion battery 
power sources has resulted in an abrupt call to understand lithium-ion battery safety following 
several recent and high profile energetic failure events [1-4]. 

While lithium-ion battery failure begins at the cell level, it is also critical to investigate the 
dynamics of large format battery packs that are commonly used in Navy applications such as 
missiles, torpedoes, UUVs, mines, submarines, sonobuoys, field communications, and night 
vision [5-8].  Assuring safe use of lithium-ion batteries will require protecting against the full 
range of impacts and consequences on neighboring cells in a large format battery pack as one 
cell undergoes failure.  While models do exist for commercial and Department of Energy (DOE) 
applications, such as automotive batteries [9-12], their use of experimental data to capture the 
impact on nearby cells of high temperatures, gas venting, fire, and shrapnel due to cell failure as 
related to Navy and shipboard applications has been limited.  A predictive capability is needed to 
accurately determine a maximum credible event (MCE) for battery behavior and to extrapolate 
cell behavior to full scale battery systems used on Navy platforms, which will ultimately reduce 
cost in testing and certification. 

Higher-level models that predict different aspects of platform impact, e.g. fire spread [13,14] and 
structural damage [15], will need modifications (i.e. additional modules) to describe and predict 
the consequences of catastrophic battery failure effects.  These required modifications should be 
possible with upgrades that enable a more accurate description of battery casualty and can be 
directly fed into models.  Conversely, lower-level thermo-electrochemical models and studies 
exist for describing the internal condition inside a single cell [16-19].  These models describing 
the internal chemistry and micro-structure of individual cells have provided valuable insights 
into the sources of cell failure, but fail to extend to multiple cells.  Thus, there is a knowledge 
gap between single cell and large format lithium-ion battery failure. 

Detailed testing to measure the impact of a single cell failure on nearby cells has been limited 
[20-24].  Because there are several different ways in which the failure of a single cell may spread 
to neighboring cells, a number of parameters must be measured to adequately document what 
conditions cause failure to spread.  Thus, through this program we have been developing the 
necessary scientific and experimental infrastructure to investigate cell-to-cell failure propagation 
in lithium-ion batteries and provide robust experimental data for computational models. 
_________________
Manuscript approved November 21, 2014. 
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Figure 1. (A) Photograph of the 5-m3 (177 ft3) two-man decompression chamber that has been re-purposed into an 
environmental test chamber at NRL-CBD.  (B) Diagram showing the top view of the chamber with relative 
locations of external ports and selected equipment including the trigger box, pressure sensor, and device under test 
(DUT). 

Collection of these experimental data for the development and verification of new computational 
models needs to be carried out across multiple domain scales.  First, fundamental aspects of 
individual lithium-ion battery cell chemistry and safety mechanisms before, during, and after 
failure must be elucidated via electrochemical testing, measurements of energy and mass transfer 
from induced failure events, and determination of thermophysical properties.  Second, battery 
packs containing numerous 18650-type active and surrogate cells need to be constructed to 
investigate cell-to-cell propagation of failure events.  Surrogate cells must be designed and 
constructed to closely mimic the anisotropic thermal properties of real 18650 lithium-ion 
batteries without any active or flammable materials.  The use of surrogate cells is beneficial in 
that it eliminates the need to use large numbers of active cells in each test, thereby reducing cost 
and improving safety, and also allows real-time measurement of the internal temperature at 
multiple locations inside a cell during testing.  With these data, computational models can be 
developed and experimentally verified to enable prediction of the thermal and electrochemical 
behavior of lithium-ion batteries leading up to, during, and immediately after a failure event. 
 

2.0  Technical Capabilities/Improvements 
The NRL Chesapeake Bay Detachment (NRL-CBD) facility located in Chesapeake Beach, 
Maryland houses a 5-m3 (177 ft3) two-man decompression chamber that has been re-purposed as 
an environmental test chamber.  Figure 1 shows an image of the chamber and a diagram of the 
locations of various ports and instrumentation.  In the past four to five years, the 5-m3 chamber 
has been used by the Navy Technology Center for Safety and Survivability, Code 6180, 
primarily to investigate lithium-ion battery safety, specifically identifying the chemical species 
released during a single cell failure event [25].   

Numerous upgrades and improvements have been instituted over the past few years to conduct 
these experiments, including implementation of various equipment and instrumentation such as 
high speed visible and infrared (IR) cameras, compact reconfigurable input/output devices 
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Figure 2. Original design of 18650-type surrogate cell consisting of 
aluminum core used in results from our previously published work [26]. 

(cRIOs), real-time gas analyzers, a Fourier transform infrared spectrometer (FTIR), heat flux 
gauges, thermocouples, and surrogate cells.  We recently published a Memorandum Report that 
details the up-to-date modifications and capabilities of the test chamber, along with results and 
in-depth analysis of single and mutli-cell 18650 lithium-ion battery failure tests [26].  We will 
continue to build upon the progress discussed in this recent publication, making further 
modifications and upgrades to the environmental test chamber as needed.   

The Navy Technology Center for Safety and Survivability has a range of computational 
modeling tools to examine the thermal, chemical, and electrical behavior of a range of scientific 
and engineering systems.  Relevant to this program, internal software capability includes 
COMSOL, a finite element modeling tool, and ANSYS/FLUENT, a multi-physics finite volume 
modeling tool, both of which are widely used for coupled fluid flow, chemistry, electrical, 
thermal, and mechanical simulations.  In the last two years, we have used internal division 
funding to construct a high performance computational cluster for running ANSYS/FLUENT.  
The hardware, software, and network capability has matured to where it is accessible and 
operational for this and a range of large modeling problems. 

3.0  Progress 

3.1  Surrogate Cell Design 
The initial design for surrogate 
cells used in previous tests [26] 
consisted of an aluminum core 
with grooves for inserted 
thermocouples in three locations, 
and a diagram of this surrogate 
cell iteration is shown in Figure 
2.  Aluminum was originally 
selected as the surrogate cell core 
material due to its similar 
thermal properties to those of an 
active cell, and Table 1 lists 
reported values for the heat 
capacity (Cp), density (ρ), and 
thermal conductivity (k) of 
several materials, including 
aluminum and typical 
commercial 18650 lithium-ion 
batteries.  As can be seen in 
Table 1, aluminum was a good initial choice due to its analogous heat capacity and density values.  
However, it was clear from our data, and via comparison of values, that there was a severe 
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Table 1. Values for heat capacity (Cp), density (ρ), and thermal conductivity (k) of aluminum (type 6061) and 
typical 18650 commercial lithium-ion batteries.  Sources: a – [18]; b – [27]; c – [29]; d – [30]; e – [31]; f – [32]; 

g – [33]; h – [34]; i – [35]; k – [36]; m – [37]; n – [38]; p – manufacturer material specifications; r – in-house 
experimentally determined value. 

 

mismatch in thermal conductivities.  Analysis of different thermocouple positions within a single 
surrogate cell revealed no temperature variation due to the large thermal conductivity of the 
aluminum core.  This behavior is not representative of a real cell, where its low radial thermal 
conductivity produces a temperature gradient from the outside to the center of the rolled electrode 
components (termed the “jelly roll”) of around 5-15°C, with even higher values possible during 
either rapid charging/discharging or strong convective heating/cooling [27,28].  In addition, real 
18650 batteries exhibit a degree of anisotropy (as illustrated in Table 1 which lists values for radial 
vs. axial thermal conductivities, showing one to two orders of magnitude difference) as a result of 
the geometry of the jelly roll that cannot be adequately mimicked using a solid cylinder of 
aluminum.  Therefore, it became apparent that a new surrogate cell design was necessary to more 
accurately capture the real thermal properties and behavior of commercial cells. 

 
A jelly roll surrogate cell design was fabricated using alternating layers of non-conductive mica 
and stainless steel shim, mimicking the construction of a real cell which consists of layers of 
aluminum and copper foil current collectors separated by a non-conductive polymer separator 
(typically polypropylene and/or polyethylene).  Figure 3 shows a diagram of this new surrogate 
cell design, which also contained a center thermocouple that was affixed to the inside layer just 
prior to rolling, and two thermocouples on either side of the outside layer after rolling, but still 
contained inside the cell casing.  In this way, the new surrogate cells were similar to the old with 
respect to thermocouple placement so that consistency can be maintained with previous work 
during future analysis of heat propagation. 

Using a microclimate benchtop temperature test chamber (Cincinnati Sub-Zero) along with a 
cRIO (as described in detail in [26]) for temperature monitoring of both internal and externally-
attached thermocouples, new surrogate cells were tested to observe their thermal response to 
temperature change.  For comparison, the jelly roll from an active cell (Tenergy LiCoO2 18650, 

  
Aluminum Stainless 

Steel Mica Typical Commercial 
18650 Li-ion Cell 

Cp (J/kg-K) 860-890c,d,r 500p 800-820f,g 800-1700a,b,i,k,m,r 

ρ (kg/m3) 2700c 8030p 2900c,f 2300-3000b,k,r 

k (W/m-K) 154-205d,e 16.2p 0.45 (radial)c,h            
4 (axial)h 

0.2-0.6 (radial)a,b,i,k,n        
30 (axial)a,b,i,n 
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Figure 3. New surrogate cell design with jelly roll-style for 
internal components.  Three internal thermocouples affixed to 
obtain radial temperature distribution and to maintain 
consistency with previous aluminum-core design.  Jelly roll 
composed of alternating layers of mica and stainless steel 
sheets. 

2600 mAh battery) was cut out of its 
cell casing (in a fully discharged state 
for safety), trimmed, and instrumented 
with three thermocouples in similar 
fashion to the surrogate cell.  The 
components were then inserted into a 
new casing, crimped, and sealed.  This 
cell with real components was termed a 
“dead” cell for all experiments.  In 
addition, an unmodified active cell was 
instrumented with three external 
thermocouples and used for comparison 
as well.  The three 18650 cells 
(“surrogate”, “dead”, and “active”) were 
subjected to three step changes in 
temperature lasting two hours each (in 
order: 0°C, 50°C, then 20°C).  In 
particular, thermal behavior during heat 
up and cool down to each temperature 
set point was analyzed. 

Surface temperature measurements for 
all three cells during this step change 

experiment are shown in Figure 4.  All three cells showed similar responses, and the temperature 
set point was reached within 1-2°C after around 18-20 minutes for the smaller temperature 
changes (room temperature to 0°C, 50°C to 20°C).  For the larger change (0°C to 50°C), 
predictably, the response was slightly slower, taking around 29-30 minutes for all cells to reach 
the set point.  Some of this delay can be attributed to the test chamber itself which contained 
some inherent lag during the temperature change, introducing some uncertainty during the 
transient heating/cooling periods until the chamber was able to reach steady conditions.  
Interestingly, during these transient periods, the maximum instantaneous temperature difference 
at any time between the active cell and surrogate cell was lower (around 5-6°C) than that of the 
active and dead cells (around 6-9°C).  This was a curious result since it was expected that the 
dead cell’s thermal behavior would be most similar to that of the active cell.  However, during 
the preparation of the dead cell it is likely that the electrolyte dried out considerably as the 
components were exposed to ambient conditions for an extended period of time.  In addition, the 
jelly roll needed to be trimmed so that it would fit inside the new cell casing once thermocouples 
were attached to either side.  Due to these necessary modifications, the dead cell was 
compositionally different from the active cell despite having the same jelly roll materials, and 
these differences likely contributed to the contrast in thermal behavior.  On the other hand, the 
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Figure 4. Thermal response of active, dead, and surrogate cells inside a microclimate benchtop temperature test 
chamber.  The chamber was programmed to go to three consecutive set points (0°C, 50°C, 20°C) with a dwell at 
each temperature for two hours.  Temperatures measured via thermocouples attached to the surface of each cell. 

lower temperature difference between active and surrogate cells highlights the promising ability 
of this new surrogate cell to closely mimic the thermal response and properties of an active cell.  

Figure 5 shows the radial temperature distribution inside the surrogate cell during the 
temperature change between 0°C and 50°C.  The maximum difference in temperatures between 
the outside and center thermocouples at any time was around 6.5°C, which is consistent with 
values found in the literature for radial temperature differences in real batteries [27,28].  This 
result, along with the overall thermal response observed in Figure 4, illustrates how this new 
jelly roll surrogate cell design is effective in mimicking the properties and behavior of a real, 
active 18650 battery without the use of any flammable or hazardous materials.  Multiple 
surrogate cells with this design will be produced and used to observe temperature changes and 
heat propagation in large format battery packs during cell-to-cell failure events.  The unique jelly 
roll design will also enable varying package configurations, including horizontal and vertical 
stacking of cells, to observe both radial and axial heat flux while taking advantage of the 
anisotropic thermal properties consistent with real 18650 batteries.  Data from these multi-cell 
failure tests will be combined with the results shown in this report, and the final manuscript will 
be submitted for publication in a high impact scientific journal [39]. 
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3.2  Lithium-ion Battery Thermal Properties 
Determining thermophysical properties such as heat capacity, density, and thermal conductivity 
of lithium-ion batteries is of great importance for the development of predictive models.  These 
properties were elucidated for commercial 18650 lithium-ion batteries using various 
calorimetric, numerical, and analytical techniques.  Methods were also verified using materials 
of known thermophysical properties, and values were cross-checked with those found in 
literature to determine accuracy. 

There are two principle reasons thermal properties cannot be calculated from the properties and 
masses of the individual components.  First, manufacturers are unwilling to provide detailed 
component and material descriptions of the batteries they sell in order to protect their 
competitive market share and intellectual property.  More importantly, the thermal properties of 
the cell is dependent on the assembly process.  The layers of different materials not only have 
inherent thermal properties, but the nature of their contact, porosity, and geometry determine 
how heat is transferred within a cell.  Therefore, a mass-averaged calculation of the components 
would not provide accurate heat capacity or thermal conductivity. 

The first technique that was performed was convective heat transfer with an analytical analysis.  
Using previous temperature vs. time experiments for active batteries from the new surrogate cell 

Figure 5. Radial temperature distribution inside surrogate cell during step change from 0°C to 50°C.  
Temperatures monitored from three internal thermocouples (see Figure 3 for diagram) to observe difference 
between center and side positions during heating event. 
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design tests with the microclimate benchtop temperature test chamber, an analytical solution to 
the multi-dimensional radial heat equation, Equation 1, was determined and the data was fit to 
obtain approximations for k and Cp. 

                                                          
𝜌𝐶𝑝
𝑘

𝜕𝜕
𝜕𝜕

= 1
𝑟
𝜕
𝜕𝜕
�𝑟 𝜕𝜕

𝜕𝜕
� (1) 

In Equation 1, T is the temperature, t is the time, and r is the radial position.  The experimental 
setup consisted of the cylindrical battery (Tenergy LiCoO2) inside the chamber at an initial 
temperature, To, followed by a step change to the final chamber temperature, T∞.  Assuming that 
the air within the chamber reached T∞ quickly, the battery heated/cooled from To to T∞ via 
convective heat transfer at the surface (either to or from the battery from/to the chamber 
environment, depending on the direction of the step change) propagating radially via thermal 
conduction.  The boundary and initial conditions are therefore written as: 

                                                   𝜕𝜕
𝜕𝜕
�
𝑟=0

= 0 (2) 

                                             −𝑘 𝜕𝜕
𝜕𝜕
�
𝑟=𝑅

= ℎ(𝑇|𝑟=𝑅 − 𝑇∞) (3) 

                                                     𝑇|𝑡=0 = 𝑇𝑜 (for all r) (4) 

where h is the convective heat transfer coefficient and R is the radius of the battery (9 mm).  The 
analytical solution to Equation 1 with boundary and initial conditions shown in Equations 2-4 is 

                     𝑇(𝑟, 𝑡) = 𝑇∞ + 2(𝑇𝑜−𝑇∞)
𝑅

∑ 1
𝜆𝑛

𝐽1(𝜆𝑛𝑅)𝐽0(𝜆𝑛𝑟)
𝐽02(𝜆𝑛𝑅)+𝐽12(𝜆𝑛𝑅)

𝑒−𝛼𝛼𝑛2𝑡∞
𝑛=1  (5) 

where J0 and J1 are Bessel functions of the first kind of orders 0 and 1 respectively, α is the 
thermal diffusivity which is equivalent to k/ρCp, and λn are the eigenvalues of the transcendental 
equation 

                                           𝜆𝑛𝐽1(𝜆𝑛𝑅) − ℎ
𝑘
𝐽0(𝜆𝑛𝑅) = 0 (6) 

To compare with the active cell surface temperature data for the step change from 50°C to 20°C 
shown in Figure 4, Equation 5 was evaluated at the battery surface (r = R) at regular time 
intervals up to t = 2400 s (40 min) for To = 50°C and T∞ = 20°C.  The battery density was 
measured to be 2721 kg/m3, which is also consistent with volume and mass values listed in the 
manufacturer’s specifications.  For the convective heat transfer coefficient, the type of 
convection taking place inside the chamber first needed to be determined.  The chamber did not 
contain a fan or mixing device to produce entirely forced convection; however, the battery was 
situated horizontally underneath a vent that provided some air flow.  Therefore, it is reasonable 
to assume that the heat transfer did not merely occur via free convection either.  Since free 
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Figure 6. Experimental and analytical fit data for active 18650 battery inside microclimate benchtop 
temperature test chamber.  Data shown for step change from 50°C to 20°C.  Temperature of battery measured 
via thermocouple attached to the surface. 

convection values for h are around 5-15 W/m2-K and forced convection values are around 50-
100 W/m2-K [38,40], a median value of 35 W/m2-K was chosen for this analysis. 

Comparison between experimental data and the analytical solution was conducted by varying 
both k and Cp until the shape and magnitude of values matched as closely as possible.  The result 
of this data fitting is shown in Figure 6, and values found for k and Cp were 0.8 W/m-K and 925 
J/kg-K, respectively.  There was a clear discrepancy of about 2-3°C between the experimental 
and analytical data over the first 3 minutes that was likely the result of uneven heat flux while the 
chamber temperature dropped from 50°C to 20°C.  For simplification, it was assumed that at t = 
0 the chamber temperature was T∞ (20°C); however, in reality it likely took the chamber around 
30-60 seconds to reach T∞.  Since the boundary condition at r = R (Equation 3) assumed a 
convective driving force proportional to the temperature difference T – T∞, the analytical solution 
showed a steeper initial slope than the experimental data where the actual values for T – T∞ were 
smaller for a short time.  Additionally, another contributing source of error with this method was 
the assumed value for h which may have been influenced by the layers of insulating tape holding 
the thermocouple in place on the battery surface. 

The value obtained for k via the analytical data fitting (0.8 W/m-K) was higher than most reported 
values, and this is likely due to contributions from axial heat flow.  While the battery was situated 
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Figure 7. Experimentally measured heat flux into 18650 lithium-ion battery for external heating with numerical 
analysis test over first 12 minutes. 

inside the chamber to try and isolate heat flow in the radial direction, ambient air flow likely 
caused axial propagation as well.  Since the axial thermal conductivity is over an order of 
magnitude higher than the radial thermal conductivity, this axial contribution artificially inflated 
the value for k.  Therefore, to overcome some of these shortcomings associated with the convective 
analytical method, a second, and more robust, technique that was performed involving external 
heating combined with numerical analysis.  This method offered two distinct advantages compared 
to the analytical solution just described: (i) it can account for the true, time-dependent heat flux 
applied to the battery (especially during the initial few minutes); and (ii) heat is applied strictly in 
the radial direction, allowing a more pure value for radial thermal conductivity to be obtained.  In 
these experiments, an 18650 lithium-ion battery (Tenergy LiCoO2) was wrapped with insulating 
tape and affixed with a K-type thermocouple (Omega) and micro-foil heat flux sensor (RdF).  
Nickel-chromium wire (AWG 22) was connected to a power supply and spirally-wound over the 
length of the battery, and a layer of flexible copper foil was added to distribute the applied heat.  
After another layer of insulating tape, the whole assembly was loosely wrapped in fiberglass pipe 
insulation, placed inside a vacuum chamber with feedthroughs for all attached instrumentation, and 
pumped down to a pressure of 1 psi to minimize convective heat loss.  The power supply was 
turned on to initiate external heating, and the test was stopped once the battery surface temperature 
reached 50°C.  Figure 7 shows the experimentally-measured heat flux during a single trial and 
illustrates the time-dependent behavior, particularly during the first minute of heating. 
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Figure 8. Example of secant method performed for data from trial 1 to obtain thermal conductivity at a fixed 
heat capacity.  Value for thermal conductivity (indicated by green arrow) converged at the lowest error in 
temperatures between experimental and numerical data. 

Numerical analysis was performed by applying a backwards Euler finite difference method to 
solve the multi-dimensional radial heat equation (Equation 1) with boundary and initial 
conditions shown in Equations 7-9, 

                                                                   𝜕𝜕
𝜕𝜕
�
𝑟=0

= 0 (7)  

                                                                   
𝜕𝜕
𝜕𝜕
�
𝑟=𝑅

= 𝑄"
𝑘

 (8) 

                                                           𝜃(𝑟, 𝑡 = 0) = 0 (9) 

where in this case the temperature is replaced with θ, the temperature rise (T – To), and Q” is the 
applied heat flux.  The secant method was then applied to minimize error between experimental 
data and numerical solutions, thereby extracting accurate estimations of k and Cp.  In each trial, a 
value for Cp was fixed and the secant method was run for approximately 45 iterations until the 
error was minimized and a value for k converged.  A typical example of this procedure is shown 
graphically in Figure 8 with an arrow indicating the final value for thermal conductivity. 

A wide range of values for Cp was selected and this procedure was repeated to generate a plot of 
multiple solutions for k corresponding to each Cp.  This data is shown in Figure 9 for the first trial, 
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Figure 9. Thermal conductivities obtained via the secant method for a range of fixed heat capacity values from 
650 – 860 J/kg-K, along with percent errors between experimental and numerical data for each set of values.  
Data is from trial 1, and boxed in green is the point where the error was at a minimum, corresponding to the best 
approximation for thermal conductivity and heat capacity from this trial. 

along with the associated errors between experimental and numerical measurements.  The best 
approximations for k and Cp were taken where the error was smallest, and the values from this 
trial were 0.299 W/m-K and 805 J/kg-K, respectively.  Using these values along with the 
experimental heat flux shown in Figure 7, the temperature rise at r = R for the first 12 minutes 
was calculated numerically using the previously-mentioned backwards Euler method.  This 
numerical solution was compared with the experimental data, and plots of both are shown in 
Figure 10.  Excellent agreement was observed in Figure 10 between the experimental and 
numerical curves, particularly for the initial few minutes, highlighting the advantages of this 
technique and illustrating the capability to accurately capture thermal behavior during periods of 
transient heat flux. 

Nine total trials were conducted and analyzed in a similar manner, and the data is summarized in 
Table 2.  Though different magnitudes of heat flux were applied for each test, there was a high 
degree of consistency observed in values for k and Cp.  Averaging the values over all nine trials 
gave overall approximations of 0.299 ± 0.013 W/m-K for k and 949 ± 25 J/kg-K for Cp (errors 
based on standard deviation).  The value for Cp was within experimental error of the value obtained 
via the analytical method (925 J/kg-K), however the value for k obtained from the numerical 
analysis was much closer to the expected range than the value obtained from the analytical method.  
Due to the aforementioned advantages of direct radial heating and transient heat flux  
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Figure 10. Comparison of temperature rise at the battery surface (r = R) vs. time for experimental data and 
numerical solution using best fit values for thermal conductivity (0.299 W/m-K) and heat capacity (805 J/kg-K) 
from trial 1.  Thermal properties determined by minimizing error via the secant method, and numerical solution 
obtained through a backwards Euler technique applied to the multi-dimensional radial heat equation. 

Table 2. Summary of data from nine external heating and numerical analysis trials on an 18650 LiCoO2 
lithium-ion battery.  Steady state heat flux measured using a micro-foil heat flux sensor, and thermal 

conductivity (k) and heat capacity (Cp) values determined via backwards Euler and secant methods applied to 
the multi-dimensional radial heat equation. 

 

Trial Steady State Heat 
Flux (W/m2) k (W/m-K) Cp (J/kg-K) 

1 461 0.299 805 
2 482 0.301 830 
3 486 0.313 825 
4 633 0.316 845 
5 617 0.317 825 
6 593 0.275 795 
7 693 0.303 825 
8 649 0.274 780 
9 658 0.299 800 
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Table 3. Summary of data from three external heating and numerical analysis trials on a cylinder of 
polytetrafluoroethylene (PTFE).  Steady state heat flux measured using a micro-foil heat flux sensor, and 

thermal conductivity (k) and heat capacity (Cp) values determined via backwards Euler and secant methods 
applied to the multi-dimensional radial heat equation. 

accountability, the numerical method is preferred over the analytical method for thermal property 
determination 

To verify the accuracy of this external heating numerical analysis method, a material of known 
thermal properties, polytetrafluoroethylene (PTFE), was used.  Table 3 shows the data for steady 
state heat fluxes and results obtained for k and Cp from all three trials performed.  The average 
values for the thermal properties of PTFE were 0.232 ± 0.003 W/m-K for k and 1203 ± 8 J/kg-K 
for Cp.  Typical literature values for PTFE vary slightly depending on the manufacturer and 
various physical characteristics, however they are generally reported to be around 0.25-0.30 
W/m-K and 1000-1200 J/kg-K for k and Cp, respectively [41-43].  Values obtained for PTFE via 
this external heating numerical analysis method aligned very closely with reported values, 
demonstrating the accuracy of this technique. 

 
The third and final approach that was used to obtain thermal properties was calorimetry.  A 
thermally-insulated Dewar was filled with ~900g of deionized water, and ice was progressively 
stirred in until the water temperature was between 2-4°C without any residual floating ice.  The 
final mass of water was then recorded.  During testing, the Dewar was placed onto a hot plate 
and a stir bar was added to provide constant stirring and minimize temperature gradients.  A 
beaker with deionized water was also placed onto a separate hot plate and brought to around 
80°C under constant stirring.  The object under study was submerged in the hot water bath and 
allowed to equilibrate for at least 30 minutes, followed by rapid transfer into the cold water bath 
inside the Dewar.  Temperatures of the hot and cold water baths were monitored via 
thermocouples, and the experiment was completed once the temperature rise inside the Dewar 
resulting from the hot object addition was finished.  Values for heat capacity were calculated via 
a simple heat balance using the initial water and object temperatures, the final water temperature, 
and the water and object masses. 

Before conducting any tests, the cold water bath temperature rise inside the Dewar resulting from 
ambient heat transfer was measured.  The temperature rise over time in the range from 4-8°C was 
found to be linear, and the data is shown in Figure 11.  From the slope obtained via linear 

Trial Steady State Heat 
Flux (W/m2) k (W/m-K) Cp (J/kg-K) 

1 482 0.230 1195 
2 483 0.230 1200 
3 483 0.236 1215 
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Figure 11. Ambient water temperature rise inside thermally-insulated Dewar between 4-8°C along with linear 
regression. 

regression as shown in Figure 11 (5.13 x 10-4 °C/s), the intrinsic temperature rise of the 
calorimeter was thereby determined.  The final temperature for all calorimetry tests was within 
this 4-8°C range, and the water temperature was considered to be finally equilibrated once the 
time-averaged temperature rise dropped to this value.  An example of the water bath temperature 
and 30 second-averaged temperature vs. time slopes for a LiCoO2 trial is shown in Figure 12 
with a vertical green line indicating the point at which the slope dropped consistently to the 
experimentally-measured ambient temperature rise value and the final temperature was taken. 

Calorimetry tests were conducted using PTFE, aluminum type 6061, and commercial 18650 
LiCoO2 lithium-ion batteries.  It was not practical, however, to perform such tests with active 
18650 cells due to the risk of water infiltration and/or short circuiting while the batteries were 
submerged in water for extended periods of time.  Therefore, in order to render the batteries safe 
for these tests, they were initially placed inside the microclimate benchtop temperature test 
chamber, heated to ~100°C, and allowed to rest until there was a severe drop in the open circuit 
voltage triggered by activation of the shutdown separator safety device.  The shutdown separator 
is designed to melt and distribute throughout the separator in the jelly roll, clogging the pores 
that allow Li+ transport between anode and cathode and effectively causing permanent 
deactivation of the battery [44].  The benefit of this strategy is that no disassembly, overcharge, 
or severe overheating was necessary, and therefore it was assumed that the thermophysical 
properties of the battery remained largely unaffected. 



16 
 

Figure 12. Temperature vs. time (blue line, left axis) and running 30-second average temperature-time slope 
(red line, right axis) calorimetry data for single trial of LiCoO2.  Vertical green line denotes point at which 30-
second temperature rise dropped consistently to the ambient value (5.13 x 10-4 °C/s) of the calorimeter, and 
corresponding final temperature indicated. 

Table 4 shows the average values for Cp obtained from calorimetry experiments for all three 
materials, along with typical values for each reported in the literature.  All values of Cp fell 
within the expected range of reported values.  However, all three Cps obtained were in the lower 
range of values for each material, suggesting that this calorimetry method may have had a minor 
but consistent source of error that caused slight underestimation in the calculated values for Cp.  
This point was also evident when comparing calorimetry values with those obtained from the 
numerical and analytical methods.  For PTFE, the calorimetry value (1073 ± 17 J/kg-K) was 
about 11% lower than the numerical analysis value (1203 ± 8 J/kg-K), and for the 18650 lithium-
ion batteries the analytical value (925 J/kg-K) was only about 3% higher than the calorimetry 
value (896 ± 31 J/kg-K).  However, this trend was not observed with respect to the numerical 
technique value for the 18650 LiCoO2 battery (814 ± 19 J/kg-K), which was slightly lower than 
the calorimetry value.  Generally, despite minor differences, Cp values obtained across all 
methods were very similar, and correlated closely to reported literature values.  A summary of 
values is also shown in Table 5.  The work in this section is also being drafted into a manuscript 
for publication in a peer-reviewed scientific journal [45].  Determination of these properties will 
be crucial for the development of accurate thermal and electrochemical models aimed at 
predicting battery behavior leading up to thermal runaway and potential energetic failure events. 
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 Table 4. Values for heat capacity (Cp) obtained via calorimetry compared to reported values in the literature of 
aluminum (type 6061), PTFE, and typical 18650 commercial lithium-ion batteries.  Sources: a – [18]; b – [27];  

c – [29]; d – [30]; e – [35]; f – [36]; g – [37]; h – [41]; i – [42]. 

Table 5. Summary of values for heat capacity (Cp) and thermal conductivity (k) of commercial LiCoO2 18650 
lithium-ion batteries obtained via three methods (analytical analysis, numerical analysis, and calorimetry), in 

addition to typical values reported in the literature.  Sources: a – [18]; b – [27]; c – [35], d – [36]; e – [37]; f – [38]. 

 

3.3  EIS-based Non-Invasive Internal Temperature Determination 
Temperature monitoring of active lithium-ion batteries, particularly in a large format battery 
pack, is crucial.  Overheating to extremely high temperatures (130-200°C) can result in 
unwanted exothermic reactions, battery shutdown, and potentially catastrophic thermal runaway 
[18,46-48].  Extremely low temperatures (as low as 0°C to -40°C) can be equally problematic as 
well, especially during charging, with lithium metal plating and high interfacial resistances 
contributing to poor performance and possible failure [9,18,28,49-51].  Typical methods used for 
battery temperature monitoring involve thermocouples attached to the outside of the battery, 
which provides only surface temperature measurements.  This is a significant issue since the 
internal temperature of a battery is far more critical and relevant with respect to detecting the 
onset of a failure event than the surface temperature, particularly because as a battery 
experiences rapid overheating the surface temperature is often much lower than the internal 
temperature [27,28,52-54].  Therefore, merely surface temperature monitoring by itself is likely 
not effective enough to adequately probe the internal thermal conditions of a battery, nor 
accurately predict the onset of a failure event. 

Several recent works have investigated the use of Electrochemical Impedance Spectroscopy 
(EIS) for non-invasive determination of the state-of-health and/or internal temperature of 
lithium-ion batteries [16,48-50,53,55-57].  This technique is particularly attractive for several 

  Cp (J/kg-K) of Material 

  Aluminum PTFE 18650 Li-ion Battery 

Calorimetry 860 ± 8 1073 ± 17 896 ± 31 

Literature 860-890c,d 1000-1200h,i 800-1700a,b,e,f,g 

  
Analytical Numerical Calorimetry Literature     

Reported Values 
Cp (J/kg-K) 925 814 ± 19 896 ± 31 800-1700a,b,c,d,e 

k (W/m-K) 0.8 0.300 ± 0.015 (radial) -- 0.2-2.0 (radial)a,b,c,d,f        
30 (axial)a,b,c,f 
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reasons: (i) EIS measurements do not require battery disassembly or physical insertion of a 
thermocouple but rather can be performed on fully-intact cells; (ii) it is virtually instantaneous (<1 
second); and (iii) it can be applied to any lithium-ion battery chemistry or cell geometry.  Various 
correlations have been demonstrated that take advantage of different EIS-measured properties, 
including the phase angle (φ), imaginary impedance (-Zimag), and charge-transfer resistance (R), 
illustrating the dynamic potential for this technique to provide meaningful results in a number of 
ways.  Common to these reports is the critical observation that impedance is independent of the 
battery’s state of charge (SOC) and only a function of temperature for a certain frequency range 
[16,36,48-51,53].  In this frequency range (typically ~100-1000 Hz depending on the battery), the 
impedance corresponds primarily to the solid-electrolyte interphase (SEI) on the anode surface, 
which carries no charge and is therefore unaffected by the SOC [48,49,58].  Hence, in this study 
EIS was performed to obtain correlations with the internal temperature of an active lithium-ion 
battery, and this work will be used to enable real-time internal temperature monitoring in future 
battery failure tests. 

Commercial LiCoO2 18650 lithium-ion batteries (Tenergy) were used along with the microclimate 
benchtop temperature test chamber.  EIS spectra were collected in 5°C increments from -10°C to 
95°C for the entire range of SOCs, and multiple batteries were used to collect this data to ensure 
homogeneity and consistency among different cells.  The battery was first fully charged at C/13 
(100% SOC) at 20°C, followed by a 4 hour rest at open circuit while the chamber heated or cooled 
to the desired temperature.  After this time, it was safely assumed that the battery had equilibrated 
completely with the chamber, and the internal temperature could be assumed to be constant.  
Chamber and battery surface temperatures were also monitored via thermocouples since it was 
observed (in previous, separate tests) that slight disparities existed between the chamber set point 
and the actual chamber temperature.  EIS was then measured at the same temperature between 
30000 – 0.01 Hz with a 40 mV perturbation for every 10% SOC.  After each EIS test, the battery 
was discharged 10% (duration of 1.3 hours) at C/13 followed by a 30 minute rest period.  Once 0% 
SOC was reached and the final EIS spectrum was collected, the chamber was reset to 20°C and the 
battery was again charged to 100% SOC before tests at the next temperature were started.  
Charging was carried out at ambient conditions to ensure safety because extreme temperatures – 
both high and low – pose significantly greater challenges during charging than discharging. 

Nyquist plots were produced for each temperature by taking averages of the real and imaginary 
impedances (ZR and –Zimag) for all SOCs from 0-100%, and this data along with standard deviation 
error bars are shown in Figure 13.  Typical lithium-ion battery behavior was observed in Figure 13: 
inductance in the high frequency region up until the ZR axis intercept (leftmost side of the plots), a 
semicircle corresponding to the SEI and Li+ transport in the middle frequency region, and an 
inclined line resulting from the Warburg impedance and diffusional effects in the low frequency 
region [59,60].  A trend in error bar magnitudes was seen for all temperatures that was consistent 
with the expected behavior that impedance is unaffected by SOC.  Standard deviations for both ZR 
and –Zimag were largest at both ends of the frequency spectrum and reached minima in the 100- 
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Figure 13. EIS Nyquist plots for Tenergy 18650 LiCoO2 lithium-ion batteries averaged for every 10% state of 
charge from 0-100%.  Data obtained for temperatures between -10°C and 95°C at 5°C increments, and error 
bars represent standard deviations in –Zimag and ZR across all states of charge for each temperature.  (A) shows 
entire range, and (B) shows zoomed in section denoted with a red box in (A). 
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1000 Hz range, corresponding to the SEI charge-transfer resistance.  In particular, –Zimag 
displayed a strong temperature dependence, and Figure 14 shows the full and selected frequency 
ranges of  –Zimag values for each temperature vs. frequency.  The two frequencies that exhibited 
the smallest overall standard deviations across all SOCs, 300 Hz and 949 Hz, were identified, 
and Figure 15 shows the temperature-dependent plots along with the best fit correlations for 
each.  For temperatures between -10°C and 55°C, an Arrhenius-like dependence, Equation 10, 
was observed for the plot of –Zimag vs. internal temperature (Figure 15A), and the parameters A, 
B, and C were determined via least-squares analysis. 

                                                 −𝑍𝑖𝑖𝑖𝑖 = 𝐴𝐴
𝐵
𝑇 + 𝐶 (10) 

For the higher temperature correlation (60°C to 95°C), the overall impedance magnitude (Zmag) 
was used because it displayed a stronger temperature dependence than –Zimag in this temperature 
range, and this trend is seen clearly in Figure 15.  An empirical, simple exponential best fit curve 
was applied for this correlation, Equation 11,  

                                                −𝑍𝑖𝑖𝑖𝑖 = 𝐴𝐴𝐵𝐵 + 𝐶 (11) 

and the values for A, B, and C for both low and high temperature correlations, along with 
corresponding units, are listed in Table 6.  For the low temperature best fit curve, comparing the 
exponential term in Equation 10 with the parameters in an Arrhenius-type expression, Equation 
12, 

                                                     −𝑍𝑖𝑖𝑖𝑖 = 𝐴𝐴
𝐸𝑎
𝑅𝑅 (12) 

where Ea is the activation energy and R is the ideal gas constant, an estimate for Ea was found to 
be 0.13 eV.  This value was slightly lower than commonly reported values (typically ~0.2-0.4 
eV), and this activation energy has been attributed to the ionic conductivity of the SEI [48,49].  
Therefore, it is apparent that the Tenergy LiCoO2 18650 batteries used in this study exhibited 
above-average SEI characteristics compared to other commercial cells.  

To further illustrate the accuracy of the Arrhenius-type fit for the low temperature correlation, 
Equation 10 was rearranged into a linear form, Equation 13: 

                                             ln�−𝑍𝑖𝑖𝑖𝑖 − 𝐶� = ln𝐴 + 𝐵
𝑇

 (13) 

A plot was then made of ln(–Zimag – C) vs. 1/T, and the result is shown in Figure 16.  The linear 
regression shown in Figure 16 fit the data very closely, and the values obtained for A and B were 
almost identical to the values determined via least squares analysis for the Arrhenius expression 
shown in Table 6. 
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Figure 14. State of charge-averaged imaginary impedance (-Zimag) vs. frequency for Tenergy 18650 LiCoO2 
lithium-ion batteries for temperatures between -10°C and 95°C at 5°C increments, and error bars represent 
standard deviations across all states of charge for each temperature.  (A) shows entire range, and (B) shows 
zoomed in section denoted with a red box in (A) for specific range between 10-1000 Hz. 
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Figure 15. Internal temperature-dependent correlations for Tenergy 18650 LiCoO2 lithium-ion batteries.  (A) 
shows the imaginary impedance vs. temperature correlation for the range -10°C to 55°C, along with an 
Arrhenius-like dependence and best fit curve.  (B) shows the overall impedance magnitude vs. temperature 
correlation for the range 60°C to 95°C, along with an exponential dependence and best fit curve.  Best fits were 
determined using a least squares analysis. 
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Table 6. Best fit curve parameters determined via least squares analysis for low and high temperature impedance 
correlations for Tenergy 18650 LiCoO2 lithium-ion batteries. 

Figure 16. Linear rearrangement of Arrhenius-like equation (Equation 10) for low temperature impedance 
correlation of Tenergy 18650 LiCoO2 batteries, along with linear regression trendline. 

 
Validation of the impedance-temperature correlations was performed via single-frequency tests 
at various temperatures.  A fresh 18650 LiCoO2 battery was placed inside the microclimate 
benchtop temperature test chamber and a series of temperature set points were programmed in an 
arbitrary order with 2 hour rest periods to allow equilibration.  Surface-attached thermocouples 
were used to measure the actual battery temperature, and Figure 17 shows the temperatures 

                                               A B C 

Low Temperature 
Range (-10°C to 55°C) 

(Arrhenius) 
5.041 x 10-5 Ω 1540 K -0.006553 Ω 

High Temperature 
Range (60°C to 95°C) 

(Exponential) 
0.4822 Ω 0.0006180 K-1 -0.5383 Ω 
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Figure 17. Battery surface temperatures monitored for single-frequency EIS tests of Tenergy 18650 LiCoO2 
batteries.  Battery was allow 2 hours rest at each temperature to ensure equilibration of internal temperature with 
chamber temperature, and EIS experiments were conducted at the end of each 2 hour rest period. 

monitored over time for this test.  Single-frequency EIS data was collected at the end of the each 
2 hour rest period at either 300 Hz or 949 Hz, depending on the temperature range.  Two separate 
experiments were conducted with this temperature program: the first consisted of a single EIS 
test for each temperature, and the second consisted of five EIS tests for each temperature.  This 
allowed for comparison of a single value for impedance parameters with an average or 
minimum/maximum of the five values.  The benefit of this technique, as previously-mentioned, 
is that five EIS tests carried out at 300 Hz is still virtually instantaneous compared to one EIS 
test, therefore there is no detriment to taking more data points as needed. 

–Zimag and Zmag values from the low and high temperature ranges, respectively, were used with 
the parameters in Table 6 and Equations 10 and 11 to obtain experimental estimates of the 
battery internal temperature.  Estimates were obtained three ways: first, using the single EIS test 
impedance results; second, using an average of all impedance values from the five EIS tests; and 
third, using the minimum –Zimag and maximum Zmag values from the five EIS tests for the low 
and high temperature correlations, respectively.  The minimum/maximum strategy was used in 
an effort to improve accuracy based on an initial observation that fit temperatures were 
consistently falling below actual temperatures.  Table 7 lists the actual battery temperatures 
alongside the fit temperatures for all three methods, and Figure 18 shows plots of fit vs. actual 
temperatures for the low and high ranges, as well as charts displaying the temperature 
differences between actual and fit values. 
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Table 7. Actual and EIS fit temperatures obtained via three methods: one point impedance values, average of 
five impedance values, and minimum imaginary impedance (low temperature range)/maximum overall 

impedance magnitude (high temperature range) of five impedance values.  Bold demarcation in table indicates 
separation between low and high temperature ranges. 

 
As shown in Figure 18, great overall accuracy was observed for the low temperature range, 
especially for the minimum/maximum method which exhibited (with just one exception) the 
closest fits and consistently showed only ~2°C or lower difference between actual and fit 
temperatures.  The high temperature range, however, presented the biggest challenges to accurate 
impedance-based internal temperature monitoring.  The closest fit was still over 6°C below the 
actual battery temperature, and differences reached as large as 16°C for the highest temperature 
(92°C).  Even despite the large discrepancies, however, the minimum/maximum method was 
once again the most accurate amongst the three.  Additionally, one positive sign from the high 
temperature data was that the trend of increasing fit temperature as the actual temperature rose 
was maintained, suggesting that a secondary, or else entirely separate, correlation may be 
possible that enables more accurate data fitting.  This will be investigated more thoroughly in the 
future, and the current work is being drafted into a manuscript that will be submitted for 
publication in a high impact scientific journal [61]. 

 

One Point Five Points - Average Five Points - Min/Max 

Actual (°C) Fit (°C) Actual (°C) Fit (°C) Actual (°C) Fit (°C) 
-0.8 -2.7 -0.7 -1.7 -0.7 -1.1 
7.9 5.1 8.0 6.9 8.0 7.9 

16.7 15.0 16.9 14.6 16.9 15.5 
22.7 19.7 22.7 19.9 22.7 20.6 
36.3 32.4 36.4 32.9 36.4 33.8 
41.2 35.0 41.2 39.6 41.2 40.4 
53.6 50.0 53.6 48.9 53.6 49.8 

68.1 59.8 68.2 61.4 68.2 61.9 
78.8 63.5 78.7 66.2 78.7 67.0 
80.7 65.2 80.7 66.9 80.7 67.7 
91.5 74.9 91.3 75.9 91.3 77.0 
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Figure 18. (A) shows plot of fit temperature vs. actual temperature and (B) shows differences between fit and 
actual temperatures for the low temperature range.  (C) and (D) show similar data for the high temperature 
range.  Fit temperatures obtained via three methods: one point impedance values, average of five impedance 
values, and minimum imaginary impedance (low temperature range)/maximum overall impedance magnitude 
(high temperature range) of five impedance values. 

The data shown in this section opens new doors for real-time monitoring of active battery 
internal temperature leading up to a failure event.  Combining EIS-based temperature 
measurements with cell-to-cell failure tests will enable a greater level of understanding of battery 
behavior, and it will also aid in the collection of data to be fed into predictive models.  Further 
analysis of impedance spectra will be crucial as well to elucidate contributions from both 
overheated and overcharged cells, and the goal is implementation of a single-frequency, 
instantaneous EIS test to obtain all aspects of a battery’s state of health at any moment.  This 
kind of tool could prove to be critical for the safety of single and large format batteries, and 
future work will be aimed at accomplishing this goal. 

 

3.4  Multi-Cell Model Development and Analysis 
Most existing computational models of heat transfer consider Joule heating and electrochemistry 
that occurs during normal operation of a battery [62-64].  They consider the effects of 
overcharging on the heat release that results in an extremely slow (0.001°C/min) temperature 
rise, and a total temperature rise of less than 40°C.  Some of the models were compared with 
experimental measurements for different cell chemistries and materials.  Many of these models 
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considered internal details of a single cell rather than a cell pack, and are focused on the material 
design of cell contents for safe operation. 

Very few well-validated models are available in the literature that consider self-heating and 
thermal runaway at temperatures above 60°C, and are also focused on  mitigation, damage 
control, and fire safety.  The National Renewable Energy Laboratory (NREL) developed a 
network model that simulates anisotropic conductive heat transfer among cells and air gaps 
between the cells in a cell pack [65].  Heat loss from cell surfaces was modeled using heat 
transfer coefficients, which were based on classical, steady-state, empirical correlations for 
Nusselt numbers developed for general heat transfer in laminar or turbulent flows rather than for 
transient heating of battery cells.  

Specifically, there are a lack of models that consider the phenomena that were evident in 
experiments described in our previously-published work [26].  The existing models do not 
consider experimentally-measured decomposition and combustion kinetics that occur inside a 
cell at high temperatures.  Instead, they fit Arrhenius parameters for an assumed global reaction 
to the experimental measurements of temperature rise in an active cell [65].  There is also a lack 
of experimental data on the decomposition of electrolyte, electrodes, and the release of gases, 
particularly oxygen.  The oxygen released inside the cell can react with metal electrodes causing 
enormous heat release due to the internal combustion.  There is also a lack of understanding of 
the pressure rise leading to cell rupture.  NREL’s model also ignores the dynamics of buoyancy-
driven fluid flow in the surrounding air.  This is critical with respect to how heat spreads 
vertically from a battery pack.  Perhaps even more important, the models do not consider venting 
of liquid, gas, and other solid particles from a ruptured cell that affects heat spread, which was 
evident in our previous work.  This is crucial because the vented material can be flammable and 
hence ignited by the buoyancy flow of hot air, thereby causing fire spread.  Furthermore, neither 
experimental data nor models are available that describe the chemical and thermal properties of 
materials during the decomposition and combustion of cell contents.  Finally, there are a lack of 
models that are verified in detail against experimental measurements for self-heating and thermal 
runaway. 

This year, we have developed a computational model that considers: (i) experimentally-measured 
heat release rates from an active 18650 LiCoO2 lithium-ion battery at temperatures up to 300°C 
under adiabatic conditions; (ii) heat transfer to thermally well-characterized surrogate cells; (iii) 
heat transfer through buoyancy-driven flow in surrounding air; and (iv) comparison of model 
predictions for self-heating of the active cell up to the point of thermal runaway (around 250°C) 
with experimental data.  We have not yet modeled the pressure rise inside a cell and its rupture.  
We also have not, at this point, modeled venting of material from a ruptured cell, nor the ignition 
of the vented material and the ensuing fire. 

In our model development, we made the following assumptions: 
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(1) The calorimetric measurements of adiabatic self-heating rates for an uncharged, full 
cell describe the heat generation rate due to decomposition and internal combustion in 
a closed cell; the effects of SOC on the self-heating rate is negligible at elevated 
temperatures (>100°C).  

(2) The electrochemical (Joule and Faraday) heating are important at low temperatures 
but have negligible effects compared to that of thermal decomposition of active cell 
contents at temperature greater than 100°C; the measured rates of temperature rise 
increase by orders of magnitude at higher temperatures. 

(3) The cell remains a closed system until the point of rupture.  All cell contents are 
vented instantaneously from the cell at the peak temperature measured in the 
experiments.  When venting occurs, the heat release from the cell ceases without 
ignition or fire spread. 

With these assumptions, we developed a computational model for thermal runaway of an active 
cell placed at the center of a pack of eight inactive, surrogate cells.  In the numerical model, the 
cells overlapped by about 1 mm to achieve good contact.  In the experiments, cells were pressed 
together and held in place by glue to achieve the desired contact.  The surrogate cells were 
assumed to be made of aluminum, and minor contributions in thermal properties from the 
stainless steel casing and cap were therefore neglected.  As described in the experiments [26], we 
considered external heating of an active cell for a fixed time period (1320 s) to initiate the self-
heating in the computational model.  One of the surrogate cells contained the external heater 
similar to the experimental setup.  The model calculated the heat spread initially from the heater 
cell to the active cell until the initiation of thermal runaway.  This was followed by heat spread 
from the active cell to all adjacent cells including the heater cell during thermal runaway.  We 
compared the model predictions for temperature and heat flux with experimental data.  By 
verifying the model with our experimental data, it can be used to assess future fire threats posed 
by active cell packs. 

Previous experimental work showed the temperature and heat flux at the surface of the active 
cell during the initiation of self-heating by the heater cell and the thermal runaway that follows.  
Figure 19 shows that the temperature rose with time as the heater cell was turned on.  The rate of 
temperature rise was high initially and then decreased with time.  After some time, the rate of 
temperature rise increased dramatically for a short period of time before falling off to near zero.  
The complex behavior exhibited by the temperature rise was the result of three effects: (i) heat 
generated by the decomposition of all contents in the active cell (separator, electrodes, and 
electrolyte); (ii) heat input into the heater cell; and (iii) heat loss to the adjacent surrogate cells 
and to the air surrounding the cell pack.  We developed the computational model to explain and 
separate the effects of thermal decomposition, heater, and heat loss.  Thermal decomposition is 
intrinsic to the specific chemistry of the battery under study and also depends of the design of the 
materials used to build the cell.  The heater was supposed to simulate a failure mode, but its 
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Figure 19. Accelerating rate calorimetry measurements of self-heating rates for 18650 lithium-ion batteries.  
Figure and data taken from [67]. 

effect was expected to occur only during an initial period.  We found that after the initiation 
period, heat released by the decomposition reactions dominate the heat released during failure.  
In contrast, heat loss depended on the ambient conditions, packing geometry, fluid flow of air 
surrounding the cells, and depended on how cells were connected to one another. 

To form the model, we solved the Navier-Stokes and energy equations given as follows.  For the 
gas phase: 

                                                   𝜕𝜕
𝜕𝑡

+ ∇. 𝜌𝜌 = 0  (14) 

                                  ρ ∂u
∂t

+ ρ(𝑢. ∇)𝑢 = −∇𝑃 + ∇. 𝜇∇𝑢 + 𝜌𝜌  (15) 

                                          𝜌𝐶𝑝
𝜕𝜕
𝜕𝜕

+ 𝜌𝐶𝑝u. ∇𝑇 = ∇. 𝜆∇𝑇  (16) 

                                                      𝜌 = 𝑃𝑀𝑤/𝑅𝑇  (17) 

And for the solid phase: 

                         𝜌𝑠𝐶𝑝𝑝
𝜕𝑇𝑠
𝜕𝜕

= ∇. 𝜆𝑠∇𝑇𝑠 + 𝑄𝑒𝑒𝑒 + 𝑄𝑟1 + 𝑄𝑟2 + 𝑄𝑟3  (18) 

Here, u, T, ρ, Cp, λ, P, Mw, R, g, and t are the velocity, temperature, density, specific heat, 
thermal conductivity, pressure, molecular weight of air, universal gas constant, acceleration due 
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to gravity, and time, respectively.  The subscript s refers to solid phase properties.  Qext is the 
external heat input into the heater cell for a set time period (the time until the point of thermal 
runaway).  The heater is cylindrical, 5 mm in diameter and about 6.5 cm long.  The heat input 
was constant in our experiments.  Equations 14 to 18 were solved using COMSOL commercial 
software (COMSOL, Inc., Burlington, MA) on a personal computer. 

Determining heat generation rates, or source terms Qr1 through Qr3 in Equation 18, was a critical 
part of the model.  The source terms Qr1 through Qr3 were specific to the chemistry of the given 
active cell.  They represent heat generation rates due to thermal decomposition and internal 
combustion of all of the components contained in the active cell.  The chemical kinetics of some 
of the components in a cell, such as the separator and electrolyte, have been studied 
experimentally in isolation to determine the Arrhenius parameters.  The kinetics of the entire cell 
is generally unknown and is not well understood.  In this work, we obtained the source terms by 
fitting polynomial expressions to calorimetric experimental data of temperature rise rates (self-
heating rates) as a function of local temperature as described below. 

Sandia National Laboratory [66-68] conducted Accelerating Rate Calorimetry (ARC) 
measurements on the fundamental characteristics of the entire system of interest: a full, active 
lithium-ion battery.  Their measurements showed self-heating rates (temperature rise rate) due to 
decomposition/combustion of an 18650 LiCoO2 battery placed inside a bomb under adiabatic 
conditions.  The exact details of their experiments are not available; however, ARC 
measurements typically follow a standard procedure as described elsewhere.  The bomb was 
likely a metal vessel that was completely closed to the outside environment.  During the 
experiment, the bomb was heated very slowly at 0.02°C/min over the course of a few days.  The 
heating followed a typical pattern of rise and hold so that uniform temperature inside the bomb 
contents was achieved at all times during the holding period.  As the entire battery was slowly 
heated beyond 100°C, exothermic decomposition reactions began to accelerate.  They resulted in 
a significant increase in the rate of temperature rise with time as shown by the curves in Figure 
19.  When the temperature increased to 184°C, explosive decomposition and combustion inside 
the cell began causing rapid increase in the self-heating rates.  During this time, the cell ruptured 
venting gases and liquid into the bomb causing rapid pressure rise.  However, all the vented 
material was still contained inside the bomb vessel.  As the temperature increased further, the 
decomposition and combustion of the bomb contents continued, and self-heating rates also 
continued to increase.  The temperature then rose to 240°C.  As the reactions progressed, the 
reactants were completely consumed.  Despite the increasing temperature, reaction rates began to 
decrease due to decreasing concentrations of reactants and by dilution of the newly-formed 
products.  This resulted in a decrease in the self-heating rates as shown in Figure 19.  Finally, 
when all of the reactants were consumed, the temperature reached a maximum of 373°C and the 
self-heating rates fell to near zero. 

The adiabatic temperature profile shown in Figure 19 was unique to the 18650 LiCoO2 battery as 
long as the cell remained a closed system.  In an actual application, cells lose heat to the ambient 
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environment and to expelled materials during rupture and venting.  Therefore, Figure 19 can be 
used to calculate heat release rates Qr1 through Qr3 in an actual application as long as the cell 
remained a closed system; i.e., until the point of rupture.  The ARC data was for the entire cell 
where the initial mass of reactants was identical to that in real applications of a single cell.  
Therefore, the adiabatic data shown in Figure 19 could be applied in an empirical treatment of 
the active cell in our model.  We converted the self-heating rates shown in Figure 19 to heat 
generation rates by multiplying the ordinate with the density and specific heat of an active 18650 
LiCoO2 battery.  The density remained constant during the decomposition of cell contents 
because the measurements were made in a closed bomb.  However, the specific heat changed 
because of the decomposition and was therefore unknown.  In this work, we assumed that 
specific heat was unchanged from that of the virgin cell.  We fit three polynomial functions to 
the data shown in Figure 19, and these expressions are shown in Equations 19-21: 

𝑄_𝑟1 = 900 ∙ 2700 ∙ (360/60) ∙ (160.63 ∙ ((((𝑇[𝐾] − 373.15)) ⁄ 273)^6 ) − 74.252
∙ ((((𝑇[𝐾] − 373.15)) ⁄ 273)^5 ) + 10.134 ∙ ((((𝑇[𝐾] − 373.15)) ⁄ 273)^4 )
− 0.6812 ∙ ((((𝑇[𝐾] − 373.15)) ⁄ 273)^3 ) + 0.0974 ∙ ((((𝑇[𝐾] − 373.15))
⁄ 273)^2 ) − 0.0038 ∙ (((𝑇[𝐾] − 373.15)) ⁄ 273) + 6𝑥〖10〗^(−11) ) 

 for 373.15 < T[K] < 457.21 and t < 1280 (19) 

 

𝑄_𝑟2 = 900 ∙ 2700 ∙ (360/60) ∙ (−23.614 ∙ ((((𝑇[𝐾] − 373.15)) ⁄ 273)^2 ) + 24.379 ∙
(((𝑇[𝐾] − 373.15)) ⁄ 273) − 5.2676) for 457.21 < T[K] < 513.15 and t < 1280 (20) 

 

𝑄_𝑟3 = 900 ∙ 2700 ∙ (360/60) ∙ (1.4028 ∙ ((((𝑇[𝐾] − 373.15)) ⁄ 273)^3 ) − 5.8501 ∙
((((𝑇[𝐾] − 373.15)) ⁄ 273)^2 ) + 4.314 ∙ (((𝑇[𝐾] − 373.15)) ⁄ 273) + 0.1562)  
for 513.15 < T[K] < 646.15 and t < 1320 (21) 

Substituting Equations 19-21 into Equation 18 and solving enabled description of the effects of 
external heating, heat loss to the ambient environment, and thermal runaway for the conditions 
employed in our experiments.  This empirical approach gave heat release rates, but did not give 
reaction rates or the chemical kinetics.  It should be noted that there is a need for fundamental 
kinetic data both on individual components of a cell as well as the entire cell so that the empirical 
treatment based on ARC data can be replaced with a more general approach.  A more 
fundamental approach will account for an open and dynamic system like that of a cell during 
rupture and venting, and during subsequent chemical reactions in vented material outside of the 
cell. 

The ARC data in Figure 19 also showed LiCoO2 heat release rates compared to some other 
common lithium-ion battery chemistries.  The data showed that self-heating rates for a full cell 
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Figure 20. Graphical rendering of two dimensional model for failure tests of lithium-ion batteries. 

were significantly higher than the individual components (anode, cathode, and electrolyte).  
Additionally, ARC measurements of Sanyo cells showed that the self-heating rates were more 
severe for higher SOCs.  Increasing the battery voltage from 3.2 V to 4.3 V increased the self-
heating rate from 500 to 1000°C/min.  E. P. Roth et al. performed detailed ARC measurements 
and showed that anode reactions are the primary source of hydrogen generation, and the main 
products of decomposition are CO2, CO, C2H4, and H2 [69].  Separator decomposition began 
above 50°C, causing exothermic reduction of electrolyte at the electrodes.  Rates of gas 
generation increased above 125°C with the main contribution coming from the decomposition of 
electrolyte.  Explosive decomposition occurred between 200-250°C.  The expelled material was 
flammable and could be ignited by a spark. 

When the heater was turned on in our previous experiments, the temperature rose with time, 
followed by a slowing down of the temperature rise.  A small jump in temperature was then 
observed before the cell cooled off to ambient temperature as the heater was turned off.  The 
relative contributions to this temperature profile from the heater, the chemistry in the active cell, 
and venting of material from the active cell are unclear.  Therefore, we considered a simple case 
to develop qualitative understanding.  We recognized that the main role of surrogate cells was to 
enhance the heat loss from active and heater cells to the surrounding air.  As a result, the 
essential components in the setup were the heater cell, active cell, and the surrounding air.  
Therefore, we  first considered a two dimensional case where we neglected the surrogate cells 
and just considered two heater cells placed adjacent to an active cell as shown in Figure 20 (only 
half of the domain is shown due to symmetry).  The finite element grid is also shown.  This also 
allowed us to qualitatively understand the temperature rise profile seen in our experimental data 
and to validate the natural convective air flow.  To model the buoyancy flow in surrounding air, 
all of the cells were placed in a relatively large rectangular box.  It was known that the buoyancy 
flow extended to much larger distances than the cell geometry itself. 
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Figure 21. Velocity and temperature contours at 100s (left plot) and 1180s (right plot) obtained from the two 
dimensional model. 

The two dimensional model was used to establish our approach and methodology of using the 
ARC data.  It was also used to determine the computational grid and how large a box is needed 
for accurate prediction of the natural convection.  In the model, the heater cell was made of 
aluminum and the active cell had much lower thermal conductivity (0.3 W/m-K).  Equations 14-
18 were solved as a conjugate boundary value problem.  At the solid surface, no-slip and 
continuity of temperature and heat flux were used to predict the surface temperature.  The bottom 
and right of the domain were set as open boundaries and top was set as outflow.  The gas and 
solid phase equations were coupled with the boundary conditions at the solid surface. 

Figure 21 (left side) shows the velocity and temperature contours soon after the heater was 
turned on and heat was transferred from the heater cell to the active cell.  The right half of Figure 
21 shows the contours after the decomposition began but before the explosive decomposition 
occurred at temperatures > 463 K.  Figure 21 also shows that the hot air transported heat 
vertically very quickly.  The velocity and thermal profiles and the boundary layers developed 
fairly rapidly within seconds, but the magnitudes increased slowly with time.  The air velocity 
and temperatures (both inside and outside the solid geometry) changed with time.  This can be 
important in a large battery pack where the cells are typically packed both vertically and 
horizontally, and hot air can spread heat from the cell undergoing failure to the cells above.  
Additionally, Figure 21 shows that the air near the top of the cell was hot and could ignite 
flammable gases ejected due to rupture of the cell. 

Figure 22 shows how the temperature at the contact point between heater and active cells 
changed with time.  The heater was turned on at time zero and tuned off after 22 minutes.  The 
profiles were qualitatively very similar to those displayed in our previous experimental work 
[26].  The profiles in Figure 22 show that the external heater, rather than the chemical heat (Qr1) 
released from the cell internals, dominated the initial time period up until the temperature 
reached 184°C.  Once the temperature reached 184°C, Qr2 and Qr3, which represent the explosive 
and chemical heat release rates, dominated the temperature rise.  The model showed that the 
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Figure 22. Evolution of temperature at the heater-active cell junction for 
different external heating rates.  The heater was turned on for a duration of 
22 minutes in all cases. 

Figure 23. Heat flux at the junction between heater and 
active cells. 

temperature profile peak, 
which was also observed in 
the experimental data, was 
actually due to the 
exothermic decomposition/ 
combustion reactions.  The 
profile leading up to the 
temperature peak was 
influenced mainly by the 
external heating. 

Figure 23 shows the heat flux 
from the heater cell to the 
active cell.  Initially, it was 
positive when the heater was 

turned on and all the cells were at ambient conditions.  The heat flux then went to zero as the 
active cell temperature started to rise due to the decomposition reactions.  As the active cell 
temperature rose rapidly due to rapid chemical heat generation, the heat was transferred from the 
active cell to the heater cell as indicated by the negative flux.  When the chemical reactions were 
completed, the heat was dissipated, and the heat flux dropped back to near zero. 

To take our modeling efforts further, we developed a three dimensional version of the model 
described above using the COMSOL platform.  Figure 24 shows a nine-cell geometry (only half 
of the domain is again shown due to symmetry) along with air gaps between cells.  The 
experiments were conducted with both hexagonal and rectangular arrangements along with the 
finite element grid.  The model can be easily manipulated to incorporate either configuration. 

Figure 25 shows that the solid geometry 
was placed inside a large (20 cm radius and 
40 cm long) cylinder, as was done in the 
two dimensional version of the model that 
included a large box.  Thus, the actual three 
dimensional computational domain 
extended many times the volume of the 
solid structure to capture the three 
dimensional buoyancy flow. 

Figure 26 shows that the air above the solid 
geometry became significantly hot (> 500 
K), which was close to the ignition 
temperature of hydrocarbon gases.  The hot 
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Figure 24. Three dimensional model geometry (only half of the domain is shown due to symmetry) consisting 
of one active cell, one heater cell, and seven surrogate cells, along with the computational grid. 

Figure 25. Computational domain and surface grid for three dimensional model near the solid geometry. 

region extended to twice the height of the solid geometry.  The temperature of the active cell 
reached 627 K after 1225 seconds. 

Figure 27 shows the velocity and temperature contours for the three dimensional model at 1300 
seconds.  The velocity contours are shown on a plane cut across the middle of the cell structure.  
The active cell was relatively hotter than the rest of the cells, reaching a maximum temperature 
of 631 K.  The hot air flowed out from the top of the large enclosure which was about 30 cm 
away from the cells.  The velocity reached 0.83 m/s. 

Figure 28 compares the three dimensional and two dimensional model predictions with the 
experimental data for temperature rise at the junction between the active and heater cells as 
shown in Figure 24.  Given that we used an empirical technique to determine the heat generation 
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Figure 26. Three dimensional model predictions of thermal 
contours in solid and gas phases as t=1225s. 

Figure 27. Three dimensional model predictions for 
buoyancy-driven flow of air and temperature contours at 
t=1300s. 

rates because very little is understood 
about the chemistry of active cell 
contents, it is surprising that the 
model predictions were in reasonable 
agreement with the experimental data.  
However, there were a few significant 
differences between the three 
dimensional model results and the 
experimental data.  First, the 
temperature rise during the first three 
minutes (up to 150°C) was much 
faster in the experiments compared to 
the model prediction.  After the first 
four minutes, however, the 
temperature rise slopes were 
comparable between the model and 

experimental data.  Second, the onset temperature for the explosive decomposition (Qr2) was 
higher (238°C) compared to that for the model (184°C).  This is because the ARC data shown in 
Figure 19 exhibited a lower onset temperature than was observed in our experiments. 

A clear understanding of the differences between the experiments and models would require 
measurements of chemical kinetics and how they are affected by SOC.  For example, the active 
cell used in our experiments was 
overcharged, while the active cell used in 
ARC measurements was not overcharged.  In 
our models, we neglected the effect of SOC 
on heat generation rates.  This may suggest 
that SOC had a significant effect on 
temperature rise during the first three minutes 
when the temperature rose to 150°C.  
However, it is less clear how SOC could 
increase the onset temperature for explosive 
decomposition (Qr2) by 54°C.  Indeed, ARC 
experiments conducted by E. P Roth and D. 
H. Doughty showed SOC effects at 
temperatures below 150°C [69].  They also 
showed that increased SOC decreased the 

onset temperature.  To understand this, we 
intend to perform experiments and modeling 
for the case where the active cell is 
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Figure 28. Comparison of model predictions with experimental data for surface temperatures near the contact 
region between active and heater cells. 

uncharged and compare with data of the overcharged cell.  We have also begun to further 
characterize our external heater because it seemed to have a significant effect on the temperature 
rise during the first 18 minutes.  This was done by measuring surface temperature rise with time 
for the bare heater placed directly in ambient air, or by placing the heater cell in ambient air.  
These can be modeled as a special case of Equations 14-18 and compared with experimental 
data.  

  

4.0  Summary & Conclusions 
We have examined in greater detail the thermal and electrochemical behavior of lithium-ion 
batteries prior to and during failure and the associated thermal propagation.  This effort has 
included the development of thermally-similar surrogate cells to mimic the thermal diffusivity of 
active cells, the measurement of heat capacity and conductivity of active cells, the calculation of 
the heat release rate of active cells during thermal abuse, and the incorporation of these data into 
a computational model developed to simulate failure of individual and multi-cell packs.  We 
have also established an experimental, non-invasive method to measure the internal cell 
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temperature using EIS.  These methods allow the application of validated computational thermal 
models that temporally and spatially resolve heat transfer, prior to and during failure, and the 
associated measurement of the cell temperature. 

The surrogate cell design replicated the thermal diffusivity while capturing the anisotropic 
thermal conductivity of active cells.  Thin, coiled layers, or a “jelly roll”, of mica and stainless 
steel, placed inside an 18650 cell casing, most accurately mimicked the thermal properties of an 
active cell.  Thermocouples were placed inside the casing to measure internal temperatures at 
multiple radial locations.  This design provides a reusable, nonflammable surrogate cell package 
that will provide data during destructive tests that will indicate cell failure.  Because 
conventional materials were used and the thermal similarity was validated experimentally and 
non-destructively, the design can be altered and adapted for additional cell chemistries. 

We developed and compared a number of methods to extract the thermal properties of an active 
cell, with particular focus on the anisotropic thermal conductivity and the heat capacity.  We 
found that assuming a lumped mass with convective heat transfer and an analytical solution to 
the heat equation provided a radial conductivity value within an order of magnitude of those 
reported in literature and heat capacity within 15%.  A numerical method that fit temperature and 
heat flux measurements to a higher resolution than the analytical model provided values with 
greater confidence and more similitude to those found in literature.  These data provide input into 
computational thermal models for the cell and battery package.   

Simple Dewar calorimeter measurements provided rough heat capacity measurements at standard 
operating temperatures, but they were not able to provide the resolution nor the full calorimetric 
behavior of an active cell. In particular, these experiments did not account for the exothermicity 
of SEI decomposition that occurs when the metastable surface compounds decompose and 
expose the anode to the electrolyte that occurs during early failure at temperatures above ~80°C.  
Additionally, calorimetry is not applicable to active cells during the more exothermic processes 
of thermal runaway where rapid exothermic reactions cause internal or external combustion and 
cell destruction. 

We developed an EIS-based, non-invasive internal temperature measurement method that can be 
used to instantaneously monitor individual cell temperatures.  This method will extract internal 
cell temperatures from failure testing and provide validation data for individual cell and battery 
system modeling.  This instrumentation method will also provide cell temperature for battery 
control systems and allow system designers to detect, anticipate, and mitigate battery failure.   

Numerical modeling methods were developed using COMSOL software to simulate the thermal 
failure processes we have observed experimentally that are portable to larger battery systems.  In 
particular, we developed a method to capture thermal runaway and the associated heat release 
and transfer to adjacent cells.  We used ARC data and calculated heat release rate expressions 
that we integrated into two and three-dimensional thermal models of experiments until the point 
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of cell rupture.  The model predictions for self-heating rates are in good agreement with the 
experimental measurements except for the first few minutes in a 40 minute run, possibly due to 
the effects of overcharge. The results show that ARC can provide valuable information from 
which fundamental chemical kinetics models could be constructed to predict thermal runaway 
with venting of gases beyond the point of cell rupture.  Finally, future modeling work will be 
performed using the ANSYS/FLUENT software platform, and we will also collaborate closely 
with Dr. Robert Kee at the Colorado School of Mines, who has developed thermal and 
electrochemical packages using the ANSYS/FLUENT program.  Experimental data and 
modeling work will be exchanged with Dr. Kee to leverage the expertise of both parties and 
produce more accurate models of lithium-ion behavior before, during and after failure. 
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