Data for Model Building and Validation for Non-lethal Weapons and Crowd Management: Initial Efforts

Elizabeth Mezzacappa, Ph.D., Kevin Tevis, BSME, Gladstone Reid MSBME, Robert DeMarco, MSBME, Gordon Cooke, MEME, & John Riedener, MSSE
Target Behavioral Response Laboratory

Presented at the Modeling and Simulation (M&S) Summit I
Irregular Warfare (IW) in Complex Operational Environments

Suffolk, Va
May 4-6, 2010

APPROVED FOR PUBLIC RELEASE

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.
There have been many efforts to create a simulation of crowd behavior using existing platforms. However, all efforts to date have been fatally flawed by the lack of crowd data for building the model, and the lack of methods and means for verification and validation of the crowd simulation. In the past two years the Target Behavioral Response Laboratory has collected multilevel crowd data and information on 200 individuals’ behaviors in 15 crowd experimental runs. The basic paradigm is a rock throwing crowd facing a control force wielding a variety of simulated non-lethal weapons, including simulated hand-to-hand combat and stand-off weapons. This presentation demonstrates the theory of how to leverage this large archive of data, first to build the model, then to verify and validate crowd simulation.
Gather empirical data on real people and real groups in tactically relevant situations.
Method

- 12-19 individuals
- Manipulated type of weapon and the ROE
- “Deny access into/out of an area to individuals” JNLE/CBA)
- Recorded spatial data
Data Measurement

- Vicon V8i system
  - 24 cameras
  - 120 fps
  - Optical tracking of retro reflective markers (ø14mm)
  - Marker error <10mm
- Subjects
  - Unique Helmets
  - XYZ location + 3DOF orientation of head
- Control Force
  - Head & Torso
  - Capability for weapon

Courtesy Vicon
Metrics for Weapon Performance

UNCLASSIFIED

Average Leading Edge

- Baseline
- Standoff Weapon Threat
- Hand Weapon Threat
- Standoff Weapon No-Threat
- Hand Weapon No-Threat

Frame (30/s)

Location (meters)

UNCLASSIFIED

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.
Crowd Metrics for Effectiveness

UNCLASSIFIED

Standoff Weapon Threat: Streamlines

Hand Weapon Threat: Streamlines

UNCLASSIFIED
Modeling Building

• Quantitative Crowd Metrics allow algorithms to be made
• Algorithms can be used for to build models
• Output and Predictions of applications can be compared to data recorded in lab
• Visualization alone is helpful
• Comparison of VICON data with computer simulation with same parameters

• MAICE Station™

Crowd Modeling Application Version 1
Southwest Research Institute
www.tspi.swri.org
Critical Elements for Data Feed into Modeling Efforts

- Common Conceptualization of Crowd Behaviors
  Lewinian Field Theory
- Common Metrics
- Common Data Formats
- Common Inputs
- Common Outputs
- Common Statistical Analyses
• Build model around a scenario with one level of a parameter using real human data

• Run model with a different level of a parameter and record output metrics and predictions
  – Real human data must exist at this level of the parameter

• Compare output of model to analyses of laboratory data of real humans
Model Validation: Examples

Build Model On

- One Control Force
- Hand-to-hand Combat Weapon
- 10 in crowd

Validate Against

- Three Control Force
- Stand-off Weapon
- 20 in crowd
Comparison of Data and Output

UNCLASSIFIED

Average Leading Edge

- Baseline
- Standoff Weapon Threat
- Hand Weapon Threat
- Standoff Weapon No-Threat
- Hand Weapon No-Threat

UNCLASSIFIED

Notional Model Results
• Interoperability between model application and data

• Interoperability between physical laboratory and environmental simulations
  – Build scenario to match lab
  – Build lab to match scenario
• Provides a method for validation of models against real human behavior

• Sets the stage for development of standards for data incorporation

• Sets the stage for development of standards for validation of models by data
Questions?