
APPROXIMATE DYNAMIC
PROGRAMMING FOR MILITARY

RESOURCE ALLOCATION

DISSERTATION

Carl R. Parson,

AFIT-ENS-DS-14-D-16

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A. APPROVED FOR PUBLIC RELEASE;

DISTRIBUTION IS UNLIMITED

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, the United States Department of
Defense or the United States Government. This is an academic work and should not
be used to imply or infer actual mission capability or limitations.

AFIT-ENS-DS-14-D-16

APPROXIMATE DYNAMIC PROGRAMMING

FOR MILITARY RESOURCE ALLOCATION

DISSERTATION

Presented to the Faculty

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy (Operations Research)

Carl R. Parson, B.S., M.B.A., M.S.

December 2014

DISTRIBUTION STATEMENT A. APPROVED FOR PUBLIC RELEASE;

DISTRIBUTION IS UNLIMITED

AFIT-ENS-DS-14-D-16

APPROXIMATE DYNAMIC PROGRAMMING

FOR MILITARY RESOURCE ALLOCATION

Carl R. Parson, B.S., M.B.A., M.S.

Approved:

//signed// 18 November 2014

Darryl K. Ahner, PhD, PE (Chairman) Date

//signed// 18 November 2014

Richard F. Deckro, DBA (Member) Date

//signed// 18 November 2014

Meir Pachter, PhD (Member) Date

//signed// 18 November 2014

Lt Col Matthew J.D. Robbins, PhD
(Member)

Date

Accepted:

Adedeji B. Badiru, PhD, PE, PMP, FIIE Date
Dean, Graduate School of
Engineering and Management

AFIT-ENS-DS-14-D-16

Abstract

This research considers the optimal allocation of weapons to a collection of targets

with the objective of maximizing the value of destroyed targets. The weapon-target

assignment (WTA) problem is a classic non-linear combinatorial optimization prob-

lem with an extensive history in operations research literature. The dynamic weapon

target assignment (DWTA) problem aims to assign weapons optimally over time using

the information gained to improve the outcome of their engagements. This research

investigates various formulations of the DWTA problem and develops algorithms for

their solution. First, a two stage stochastic WTA problem is explored which assumes

independence of the two stages. Next a two stage shoot-look-shoot (SLS) formula-

tion is explored in which the second stage targets are dependent on the first stage

allocations. A novel multi-stage DWTA formulation is then presented in which kill

probabilities are dynamic and dependent on the current set of targets. Finally, an em-

bedded optimization problem is introduced in which optimization of the multi-stage

DWTA is used to determine optimal weaponeering of aircraft.

Because of its flexibility and applicability to sequential optimization problems, ap-

proximate dynamic programming is applied to the various formulations of the WTA

problem. Like many in the field of combinatorial optimization, the DWTA prob-

lem suffers from the curses of dimensionality and optimality is often computationally

intractability. As such, approximations are developed which exploit the special struc-

ture of the problem and allow for efficient convergence to high-quality local optima.

Finally, a genetic algorithm solution framework is developed to test the embedded

optimization problem for aircraft weaponeering.

iv

AFIT-ENS-DS-14-D-16

To my wife and children; Mom, Poppa, and Grammy.

v

Acknowledgements

I would like to express my sincere appreciation to my research advisor Dr. Darryl

Ahner for his extensive help in the development of this dissertation. I would also

like to thank my research committee, Dr. Richard Deckro, Dr. Meir Pachter, and

Lt Col J.D. Robbins, PhD, for their time and effort, which improved the quality of

this research. Further, I would like to thank the analysts from AFRL who helped

define this exciting problem, and specifically Ms. Teresa Dailey who provided our

initial sponsorship. Finally, I would like to thank the faculty, staff, and students of

AFIT who enhanced my professional, personal, and academic growth over the past

39 months.

Carl R. Parson

vi

Table of Contents

Page

Abstract . iv

Acknowledgements . vi

List of Figures . x

List of Tables . xii

I. Introduction . 1

1.1 Background . 1
1.2 Motivation . 2
1.3 Research Contributions . 4
1.4 Paper Structure . 5

II. Literature Review . 6

2.1 Weapon-Target Assignment Problem . 6
2.1.1 Static Weapon-Target Assignment Problem 7
2.1.2 Current Literature of the Static Weapon- Target

Assignment Problem . 8
2.1.3 Dynamic Weapon-Target Assignment Problem 10
2.1.4 Two-Stage DWTA . 13
2.1.5 Other Literature of the Dynamic Weapon-

Target Assignment Problem. 15
2.1.6 Other Target Assignment / Weapons Allocation

Literature . 17
2.2 Approximate Dynamic Programming . 20

2.2.1 Dynamic Programming . 20
2.2.2 Introduction . 22
2.2.3 Lookup Tables and Q-Learning . 25
2.2.4 Approximate Value Iteration . 26
2.2.5 Low-Dimensional Value Function Approximation 26
2.2.6 Adaptive Estimation . 28
2.2.7 Issues of Simulation-Based Cost Approximation 29
2.2.8 Approximate Dynamic Programming for

Resource Allocation . 30
2.3 Summary . 31

vii

Page

III. Optimal multi-stage allocation of weapons to targets using
adaptive dynamic programming . 32

3.1 Abstract . 32
3.2 Introduction . 32
3.3 Literature Review . 33

3.3.1 Static Weapon-Target Assignment . 33
3.3.2 Dynamic Weapon-Target Assignment . 34

3.4 Problem Formulation . 35
3.5 Theoretical Results . 37

3.5.1 Adaptive Dynamic Programming . 37
3.5.2 Two-Stage DWTA ADP Solution . 38
3.5.3 The Adaptive DWTA Algorithm . 43

3.6 Computational Results and Conclusions . 46

IV. Adaptive Dynamic Programming for a Two-Stage Dynamic
Weapon-Target Assignment Problem . 51

4.1 Abstract . 51
4.2 Introduction . 51
4.3 Literature Review . 53

4.3.1 Static Weapon-Target Assignment . 53
4.3.2 Dynamic Weapon-Target Assignment . 55
4.3.3 Shoot-Look-Shoot . 56

4.4 Problem Formulation . 57
4.4.1 Static Weapon-Target Assignment . 57
4.4.2 Two-Stage Dynamic Weapon-Target Assignment 58

4.5 Methodology. 59
4.5.1 Adaptive Dynamic Programming . 60
4.5.2 Approximation of the Second Stage Value

Function . 61
4.5.3 Adaptive Dynamic Programming for a

Two-Stage DWTA . 61
4.6 Numeric Results and Discussion . 65

4.6.1 Small scale experiments . 65
4.6.2 Large Scale Experiments . 72

4.7 Conclusions and Future Research . 76

V. Approximate Dynamic Programming Methods for a
Cooperative Dynamic Weapon-Target Assignment Problem 77

5.1 Abstract . 77
5.2 Introduction . 77

viii

Page

5.3 Problem Definition . 80
5.3.1 Problem Description . 80
5.3.2 Problem Formulation . 81

5.4 Solution Methodology . 85
5.4.1 Dynamic Programming . 86
5.4.2 Value Iteration Using a Reduced Decision Space 87

5.5 Numeric Results . 89
5.5.1 Simple Example Description . 90
5.5.2 Simple Example Solution . 91
5.5.3 Numeric results for the simple example . 93
5.5.4 Sensitivity Analysis . 97
5.5.5 Numeric results for larger problems . 103

5.6 Conclusions . 105

VI. An Integrated Simulation Framework for Optimal
Weapons-Mix Determination . 106

6.1 Abstract . 106
6.2 Introduction . 107
6.3 Problem Formulation . 108

6.3.1 Multi-dimensional Knapsack Problem . 109
6.3.2 Dynamic Weapon-Target Assignment Problem 110

6.4 Methodology. 116
6.4.1 Genetic Algorithms . 116
6.4.2 Solution of the DWTA . 122

6.5 Numerical Results and Discussion . 123
6.6 Conclusions . 125

VII. Conclusions and Recomendations . 127

7.1 Summary of Effort . 127
7.2 Conclusion . 128
7.3 Future work . 129

7.3.1 Shoot-look-shoot . 129
7.3.2 Cooperative DWTA Problem. 130
7.3.3 Embedded Optimization Framework . 130

A. Data Tables and additional figures . 132

Bibliography . 150

ix

List of Figures

Figure Page

1 Approximate Dynamic Programming Methodologies 23

2 Results for first 10 small sized experiments at varying
W & T . 68

3 Results for first 10 medium sized experiments at varying
W & T . 69

4 95% CI’s around difference in means (X̄ADP − X̄MMR) 71

5 95% CI’s around difference in means (X̄ADP − X̄MMR) 71

6 Results for first 10 large scale experiments at varying W
& T . 74

7 95% CI’s around difference in means (X̄ADP − X̄MMR) 75

8 Binomial Selection Distributions for
ϕ = ρ = 0.95⇒ K ≥ 59 . 95

9 J∗ − J̃∗ by computation time . 98

10 Gene structure for method one . 118

11 Simulation framework using ADP solution of DWTA 119

12 Crossover operator for method one . 121

13 Plot of small scale genetic algorithm results . 124

14 Plot of small scale genetic algorithm results . 125

15 Results for small sized experiments at varying W & T 133

16 Results for small sized experiments at varying W & T 134

17 Results for small sized experiments at varying W & T 135

18 Results for small sized experiments at varying W & T 136

19 Results for small sized experiments at varying W & T 137

20 Results for small sized experiments at varying W & T 138

x

Figure Page

21 Results for small sized experiments at varying W & T 139

22 Results for small sized experiments at varying W & T 140

23 Results for small sized experiments at varying W & T 141

24 Results for medium sized experiments at varying W & T 142

25 Results for medium sized experiments at varying W & T 143

26 Results for medium sized experiments at varying W & T 144

27 Results for medium sized experiments at varying W & T 145

28 Results for first 10 large scale experiments at varying W
& T . 146

29 Results for first 10 large scale experiments at varying W
& T . 147

30 Results for first 10 large scale experiments at varying W
& T . 148

31 Results for first 10 large scale experiments at varying W
& T . 149

xi

List of Tables

Table Page

1 Optimality gap (%) for 100 randomly generated
problem instances . 67

2 Computation time (seconds) for 100 randomly
generated problem instances . 67

3 Gap from CW Heur for 50 randomly generated medium
sized problems . 68

4 Percent difference of ADP over MMR for 50 randomly
generated medium sized problems . 70

5 Computational results for 100 randomly generated
medium sized problems . 70

6 Numerical results for 100 randomly generated large
sized problems . 73

7 Computation time (seconds) for 100 randomly
generated large sized problems . 73

8 Conditional probabilities of the state transitions . 90

9 Results for ϕ = ρ = 0.95⇒ K ≥ 59 . 95

10 Results for ϕ = .95ρ = 0.99⇒ K ≥ 90 . 96

11 Results for ϕ = 0.99ρ = 0.95⇒ K ≥ 299 . 96

12 Results for ϕ = ρ = 0.99⇒ K ≥ 459 . 97

13 List of events for defining probability constraints . 99

14 Updated conditional transition probabilities . 100

15 Results for ϕ = ρ = 0.95⇒ K ≥ 59 using updated kill
probabilities . 101

16 Results for ϕ = .95ρ = 0.99⇒ K ≥ 90 . 101

17 Results for ϕ = 0.99ρ = 0.95⇒ K ≥ 299 . 102

xii

Table Page

18 Results for ϕ = ρ = 0.99⇒ K ≥ 459 using updated kill
probabilities . 102

19 Results of large scale experiments . 104

20 Computation time (in seconds) of large scale experiments 104

21 Updated conditional transition probabilities . 123

xiii

APPROXIMATE DYNAMIC PROGRAMMING

FOR MILITARY RESOURCE ALLOCATION

I. Introduction

1.1 Background

The weapon-target assignment (WTA) problem is a classic resource allocation

problem in the field of military operations research where the objective is to optimally

assign M weapons to N targets such that the expected remaining target value is

minimized (or total expected destroyed target value is maximized). Because of its

applicability to numerous issues facing military analysts, such as ballistic missile

defense, air-to-ground operations, and integrated air defense systems (IADS), this

problem continues to be of significant operational importance. Additionally, because

of the variety of formulations and the extreme complexity of each, the WTA problem

is also significant in the theoretic realm.

The WTA problem was first formally posed in 1958 [63], and is known to be

NP-complete [60]. Since then, much research has been done which provides exact

(optimal) or heuristic (not provably optimal) solutions for a variety of instances of

the WTA problem.

Though it can be found under many names, two specific types of WTA problem

are found: static and dynamic. In the static WTA (SWTA) problem all information

is known a priori and all allocations are made at one time. The dynamic WTA

(DWTA) problem may take many forms, though the underlying structure of each of

1

these is a sequential decision process. In the DWTA, at stage t, weapons allocations

must be made, the outcome of which impacts the future state space.

In both cases (SWTA and DWTA), there is a single-shot probability of kill for a

given weapon-target assignment. For the SWTA, the stochastic nature of the problem

is handled using simple expectations of the outcomes. However, for many of the

DWTA formulations, future stages present an additional stochastic element where

the variance of each outcome significantly impacts future decisions. As such, the

DWTA maintains increased complexity for which few solution techniques exist.

For deterministic problems with static resources and requirements, numerous

methods exist for efficient search of the solution space. There are several cases where

optimality has been proven, each under simplifying assumptions. As many practical

problems are stochastic and dynamic in nature, most traditional methods fall short.

Additionally, as the number of weapons and targets increase, the state, decision, and

outcome spaces within a dynamic programming framework increase exponentially.

These are known as dynamic programming’s curses of dimensionality [82]. Much of

the existing research focuses on solution techniques for the static problem in lieu of

the more complex, and practical, dynamic formulation. Therefore, it is important to

develop methodologies which can handle this sequential decision process efficiently

while still providing high-quality solutions.

1.2 Motivation

Analysts at the Air Force Research Laboratory (AFRL) are developing a simula-

tion framework in which future weapons concepts may be tested prior to development.

As part of their framework they must analyze the effect a specific mix of weapons

may have against specific IADS scenarios. Their current methodology steps forward

in time, randomly selecting a weapons employment strategy until the aircraft is de-

2

stroyed. At this point, the simulation steps back to the last time the aircraft was

alive and tries a different tactic. This process is repeated until the aircraft makes it

through the whole simulation and the full policy is recorded as a possible solution. A

set of candidate solutions are then selected, simulated repeatedly, and statistics are

collected. This methodology is generally inefficient, especially given the sequential

nature and complexity of the embedded assignment problem.

The objective of the AFRL research effort is to optimize a mix of weapons to

inform acquisition of future systems while examining any synergistic effects kinetic

and directed energy weapons may have together. Because the target set is assumed

to be an IADS, weapons’ capabilities will likely change as targets are destroyed.

Currently, there is no formulation in the literature that considers probabilities of kill

which evolve as a function of the target set. Additionally, within the simulation,

weapon assignments should consider their impact on the evolution of the system,

instead of being myopically allocated. Because of this, a dynamic instance of the

weapon target assignment is appropriate.

To optimize the set of weapons used, a genetic algorithm (GA) has been devel-

oped for which an objective (or fitness) value must be computed for each design

point. For this problem, the fitness value depends on the allocation and capability

of each weapon being investigated. Few efficient allocation strategies are present in

the literature, and where they exist, they are for static assignment. Further, within

the GA, no methodology is in place to define when or how the weapons are to be

fired. The sequence of how the weapons are fired may be considered in the design

space, impacting the size of the space to be searched. As an alternative, using the

sequential solution nature of dynamic programming, we can more efficiently search

the design space, by providing the optimal allocations to the simulation. Dynamic

programming has the flexibility to be integrated directly within the simulation by

3

yielding an efficient policy through a functional approximation given the state of the

system.

Because of the many complexities of the motivating problem, both a theoretical

advancement of provable optimality and practical application are necessary. Further,

gaps in the current literature must be addressed which consider dynamic kill proba-

bilities, the large decision space of the DWTA problem, and the embedded nature of

the GA solution.

1.3 Research Contributions

Though it is a classic resource allocation problem, the weapon-target assignment

problem is still of interest to military practitioners and academics alike. This disser-

tation develops numerous solution techniques for various formulations of the DWTA

problem. Specifically, this research provides the following contributions:

• Develop an adaptive dynamic programming algorithm which optimally solves a

two-stage stochastic WTA problem with homogenous weapons

• Extend the adaptive dynamic programming method to a shoot-look-shoot (SLS)

DWTA problem to efficiently provide high-quality solutions

• Formally pose the cooperative, multi-stage, dynamic weapon-target assignment

problem

• Use of order statistics to reduce the size of the allowable decision space within

a dynamic programming solution methodology

• Formulate and solve an embedded optimization problem in which the sequen-

tial allocation of weapons to targets determines item utility within a knapsack

problem

4

• Develop a genetic algorithm solution framework which integrates the use of

ADP to determine optimal weapons allocations for testing within a simulation

1.4 Paper Structure

The remainder of this dissertation is organized into six chapters. Chapter II con-

tains a detailed literature review. This incorporates both a survey of the weapon

target assignment problem, followed by a discussion of approximate dynamic pro-

gramming as a solution methodology. Chapter III provides an optimal method for

a two-stage stochastic WTA problem. Chapter IV extends the research of Chapter

III and investigates a two stage shoot-look-shoot formulation of the WTA problem

where the second stage targets depend on the outcome of the first-stage assignments.

Chapter V develops an approximate value iteration methodology through the use

of order statistics, and Chapter VI describes the case study in which the solution

methodologies are integrated within a general simulation framework that solves a

complex embedded optimization problem. Finally, Chapter VII provides conclusions,

highlights the major contributions, and provides recommendations for future research.

5

II. Literature Review

2.1 Weapon-Target Assignment Problem

The weapon-target assignment (WTA) problem is a well known military oper-

ations research problem. Though the static WTA was initially posed formally by

Manne [63] as a special case of the transportation problem, it was first informally

posed by Merrill Flood at The Princeton University Conference on Linear Program-

ming in March of 1957 as similar to the personnel assignment problem [66]. Another

item of interest for the WTA problem as shown in [63], is that Dantzig is responsible

for the formulation that is widely used today. Since this time, substantial research

has been dedicated to determine the optimal allocation of weapons to targets. Two

general formulations are investigated in literature: static and dynamic. In the static

formulation, though the outcomes of the assignments are stochastic, all information

is assumed known prior to making the assignment, and all allocations are made at

one time. This is the problem posed by Manne [63]. First formulated by Hosein,

Walton and Athans [48], the dynamic problem has similar stochastic elements as the

static problem, but assignments are made in multiple stages. Likely due to the stan-

dardized formulation of the problem, the static WTA (SWTA) problem is the most

widely researched formulation in the literature. An early extension of the problem is

given by Day [28] who uses a three-stage decomposition technique to solve a weapons

allocation problem by relating the assignment problem to that of decentralized plan-

ning in large organizations. Matlin [66] provides the first survey of missile allocation

literature, which is later updated by Cai et al. [42]. Eckler and Burr [31] also provide

numerous examples and mathematical models of missile allocation and target cover-

age problems. The WTA problem is equivalently postured as both offensive, where

the objective is to maximize the damage to the targets, and defensive, where the

6

objective is to minimize the value of any remaining targets. Other formulations also

consider an asset-based defense, where the objective is to minimize damage done to a

set of assets by assigning interceptors to incoming adversarial missiles [16][102][101].

2.1.1 Static Weapon-Target Assignment Problem.

The SWTA is formulated as follows. Let Vj denote the value of the jth target, Wi

denote the number of available weapons of type i. It is assumed that there are m

weapon types and n targets. Let pij be the single shot probability of the ith weapon

killing the jth target, such that the single shot probability of survival is qij = 1− pij.

The decision variable xij is the number of weapons of type i assigned to target j. The

defensive SWTA problem is then formulated as a nonlinear integer program:

min
n∑
j=1

Vj(
m∏
i=1

q
xij
ij) (2.1)

subject to

n∑
j=1

xij ≤ Wi for all i = 1, 2, . . .m, (2.2)

xij ≥ 0 and integer, for all i = 1, 2, . . .m, j = 1, 2, . . . n. (2.3)

The SWTA was shown to be NP-complete in 1986 by Lloyd and Witsenhausen

[60]. As such, much research has been done in the past several decades to efficiently

determine optimal solution methods. Two optimal solutions exist for simplifying as-

sumptions of the SWTA. First, given a homogeneous weapon set, pij = pj for all

i, denBroeder [30] shows optimality is achieved by evenly distributing the weapons

across as many targets as possible using the maximum marginal return (MMR) algo-

rithm. This algorithm assigns weapons sequentially to the weapon with the highest

7

remaining expected damage value until all weapons have been allocated. The second

instance assumes that each target can have at most one weapon assigned to it [24][74].

2.1.2 Current Literature of the Static Weapon- Target Assignment

Problem.

Considering any one specific formulation, the majority of the literature has been

dedicated to efficiently solving the SWTA problem formulation; in addition, several

papers have been developed since the 2006 survey by Cai et al. [42]. As with many

NP-complete or other combinatorial optimization problems, the existing literature

applies a wide variety of methods to quickly generate high-quality, but generally

suboptimal, solutions. Ahuja et al. [5] present commonly cited results and give a

benchmark for solution quality through lower bounding (for the minimization prob-

lem) techniques. Their formulation uses integer linear programming and a general

integer network flow problem using a minimum cost flow to determine a new lower

bound (if minimizing). The authors also provide a very large-scale neighborhood im-

provement heuristic algorithm which quickly solves moderately sized instances (up to

80 weapons and targets) optimally while providing high-quality solutions for larger

problems (up to 200 weapons and targets). As previously discussed, the earliest op-

timal methods were presented by denBroeder [30] under a homogenous weapon set

assumption, known as the MMR algorithm. This greedy method is also a fast method

for bounding of the solution when the homogeneous weapons assumption has been

relaxed. Chang et al. [24], and Orlin [74] developed optimal methods under the as-

sumption that each target can have no more than one weapon assigned to it. These

methods exploit the underlying network flow structure of the SWTA problem.

Since the first approximation technique for the SWTA was done in 1966 [28], a

gamut of popular metaheuristics have been applied to the SWTA problem. This in-

8

cludes ant colony optimization (ACO) [57][88], particle swarm [34] [104] (of a slightly

more generalized resource allocation problem), and genetic algorithms (GAs) [19] [58]

[49] [61]. As stand-alone methods, simulated annealing (SA) and tabu search are two

popular heuristics for which literature gaps appear to exist. There are, however, hy-

brid methods used to provide solutions for the SWTA, to include ACO with SA [97],

GA with ACO [33], GA using greedy search procedures to improve the quality of the

offspring [59], and particle swarm with embedded greedy algorithms [50]. Turan [95]

provides a comparison of several heuristic algorithms for the WTA problem and poses

a new hybrid algorithm consisting of particle swarm and random search to produce

higher-quality solutions. In addition to these popular metaheuristic methods, several

other approximation methods have been used for the SWTA. Chen, Ren, and Deng

[26] use a modified MMR type algorithm after changing the network representation

from a one-to-many to a one-to-one mapping to efficiently approximate the optimal

value. Rosenberger et al. [85] compares the sequential application of the auction algo-

rithm in a greedy fashion to an exact (but computationally expensive) branching and

bounding technique. Sahin and Leblebicioglu [62] apply fuzzy reasoning to approx-

imate optimum allocations in real-time for use on a battlefield. Lastly, Lagrangian

relaxation [72] was used to decompose the problem into two tractable subproblems

while iteratively updating the Lagrange multipliers. Of the extensive amount of re-

search done for the SWTA, Ahuja et al. [5] appears to be the most widely accepted

solution which solves the general SWTA problem. Next, the more complex dynamic

weapon target assignment formulation is discussed, followed by a review of existing

literature.

9

2.1.3 Dynamic Weapon-Target Assignment Problem.

The DWTA divides the total duration of an offensive attack into several discrete

time steps in which information is obtained about the allocation outcomes of the

previous stages. Any targets destroyed during a stage are no longer targeted in

subsequent stages, allowing the operator to make better use of their weapons. The

basic assumptions of the DWTA, as outlined in [47], are as follows:

• In each stage, a subset of weapons is selected and committed simultaneously.

• The outcomes of each stage are observed prior to the following stage (this can

either be perfect knowledge or stochastic, though Hosein [47] assumes perfect

knowledge)

Furthermore, Hosein and Athans [47] methodology obtains solutions by

• Re-solving the problem at each stage using previous stage information

• Computing the optimal assignment for the current stage always assumes optimal

assignments will be made in subsequent stages

• Selecting weapons at each stage with the goal of optimizing the expected sum

of realized values over all stages

The multi-stage problem as formulated in [48] is as follows. Let T , the number

of time stages, M , the number of weapons, N , the number of targets, and Vi ,

the value of target i for i = 1, 2, . . . , N . Let pij(t) , the single-shot probability of

kill if weapon i is assigned to target j in stage t, i = 1, 2, . . .M , j = 1, 2, . . . N ,

t = 1, 2, . . . T , and qij(t) = 1 − pij(t) be the corresponding probability of survival.

Define the decision variables xij as

10

xij =

 1, if weapon i is assigned to target j in stage 1

0, otherwise

Next, define the N -dimensional binary vector target state u ∈ {0, 1}N and the

M -dimensional binary vector weapon state w ∈ {0, 1}N , where

uj =

 1, if target j survives stage 1

0, if target j is destroyed in stage 1

and

wi =

 1, if weapon i is not used in stage 1

0, if weapon i is used in stage 1

Then, for any initial weapon-target assignment, xij, u is an N -dimensional random

vector at the start of the second stage which captures the outcomes of the assignments.

As shown in [47], the distribution of the uj’s is

P [uj = k] = k
M∏
i=1

(1− pij(1))xij + (1− k)

{
1−

M∏
i=1

(1− pij(1))xij

}
(2.4)

for k = 0, 1 and j = 1, 2, . . . , N . Equation 2.4 determines the probability with which

states transition over time. The weapon states then transition over time using

wi = 1−
N∑
j=1

xij, i = 1, 2, . . .M. (2.5)

Define F ∗2 (u,w) as the optimal cost of a T − 1 stage problem given an initial

state (u,w), then, because this is defined in terms of T two-stage subproblems, by

recursively using

F ∗T+1(u,w) =
N∑
j=1

Vjuj, (2.6)

11

the DWTA formulation is:

min
xij

F1 =
∑

ω∈{0,1}N
P [u = w]F ∗2 (ω,w) (2.7)

subject to

xij ∈ {0, 1}, i = 1, 2, . . .M, j = 1, 2, . . . N, (2.8)

with wi = 1−
N∑
j=1

xij (2.9)

Here, ω is the random outcome based on the current stage assignment. In words,

the objective is to minimize over all possible second stage target states to determine

our optimal expected second stage return. Recursion is used T −1 times to determine

the optimal T -stage weapon-target allocation.

Hosein [47] also provides a list of important properties of the DWTA and that,

given these properties, obtaining algorithms which efficiently solve this problem op-

timally is unlikely. These characteristics are:

(a) Dynamic WTA problem is NP-Complete

(b) DWTA is discrete (and integer) - fractional weapon assignments are not allowed

(c) Dynamic (and sequential) - the current stage outcomes inform future decisions

(d) Nonlinear - with a convex objective function

(e) Stochastic - the outcomes of the assignments are probabilistic in nature

(f) Large-Scale - as problem size increases, enumeration techniques become imprac-

tical or computationally intractable

If the state is defined such that it consists of the number of stages remaining, and

the current weapon and target states (based on the transitions already defined), then,

12

structurally, all the elements necessary to classify it as a sequential decision process

are present. Additionally, since the current decision only depends on the current

state (which captures the necessary previous information to make our decision), the

Markovian property is satisfied as well. As such, this problem is ideally suited for

solution using dynamic programming. However, as is often the case for dynamic

programming problems, as the state space increases, so does the decision space, as

well as the possible outcomes at each stage. Therefore, this problem suffers from the

three curses of dimensionality, and as the number of states increase (i.e. the number

of weapons and targets increase), traditional solution methods become intractable.

These three curses of dimensionality arise from exponential growth of either the state

space, decision space, or outcome space, or their combined increase. Before moving on

to a discussion of mitigation strategies for these curses, a simplified DWTA problem

consisting of only two stages is presented.

2.1.4 Two-Stage DWTA.

As a simplification to the multi-stage problem posed by Hosein [48], Murphey [70]

defined a two-stage stochastic programming model of the weapon target assignment

problem. In this model, consider the probability that an adversary has a total stock-

pile of weapons and shoots a portion of them in the first stage, with the remainder

of the weapons, known to a probability distribution, arriving in the second stage.

An important distinction for this problem is that the second stage target arrivals are

independent of the first stage assignments. Let n1 targets arrive in stage 1, and n2

targets arrive in stage 2. Let the random vector ω ∈ Ω denote the number of targets

in the second stage. Suppose the probabilities of survival, qi, and target values, Vi,

13

for each target i are given. Then the 2-stage WTA programming formulation is:

Z1(x) = minx f1(x) + Eω∈Ω[Z2(x, ωj)] (2.10)

subject to ∑n1

i=1 xi ≤M,

x ≤ b

xi ∈ N+, i = 1 . . . , N

where

f1(x) =

n1∑
i=1

V i
1 (qi1)xi

is the first stage value function of the first stage assignment x and is integer convex,

Eω∈Ω[Z2(x, ωj)] is the expected second stage value and is integer convex (meaning the

relaxation problem is convex) where ωj is a scenario in stage 2 and is solved using

the MMR algorithm,
∑n1

i=1 xi ≤ M is the resource capacity constraint, and b is the

vector denoting the maximum weapons that can be assigned to any one target.

Z2(x, ωj) is the solution to the second stage problem and is expressed as:

Z2(x, ωj) = min
y
f j2 (y) (2.11)

subject to

n(i)∑
i=1

xi +

n2(ωj)∑
i=1

yi = M,

y ≤ b

y ∈ Nn2

where

f j2 (y) =

n2(ω)∑
i=1

V i
2 (ω)(qi2(ω))yi

14

is the second stage value function. f j2 (y) depends on the outcome of ω and is integer-

convex.

Murphey [70] uses a decomposition method to decouple the first and second stage.

The decomposition method first solves a variant of the stage 1 problem called the

current problem:

minx,θ f1(x) + θ (2.12)

subject to

Ax ≤ b,

x ∈ X

(2.13)

with a scalar θ taking the place of the second stage value so that

θ ≥
s∑
j=1

pjZ2(x, ωj)

where s is the total number of scenarios and pj is the probability of scenario j occur-

ring.

Murphey [70] uses stochastic decomposition to come up with approximate solu-

tions for this formulation.

2.1.5 Other Literature of the Dynamic Weapon- Target Assignment

Problem.

Though it has not been researched to the extent of the SWTA problem, the DWTA

problem provides a more practical implementation by including a temporal compo-

nent. As such, the DWTA is a much more complex problem from a mathematical

15

standpoint and has received a fair amount of attention in the literature. Similar to the

SWTA, numerous methods have been employed to provide solutions for various types

of DWTA problems. As the originator of the dynamic instance, Hosein [47] provides

several results which are generalizable to the DWTA problem. Murphey [70][71] uses

stochastic decomposition for the two-stage problem previously defined. An extension

of the generalized two-stage problem called the shoot-look-shoot target assignment

problem also has a fair amount of associated literature, but will be discussed in the

next section. Specific to the general DWTA problem, Chang [24] uses a static WTA

approximation scheme within an iterative linear network flow framework to efficiently

provide high-quality solutions for the DWTA. Because of the integrality constraint of

the decision variables, the chromosome representation within a GA presents a useful

scheme for solving both the static and dynamic versions of the WTA problem. As

such, much work has developed hybrid GAs to assist in solving the DWTA. Wu et al.

[99] apply a modified GA to the DWTA and introduces weapon use deadlines within

the problem formulation. These deadlines follow the principles of scheduling theory,

and are in the form of additional constraints such that a weapon has to be shot at a

target by a specified time or it is rendered unusable. The authors call their method

a modified GA because it applies a basic GA iteratively, assigning a weapon to a

target (possibly suboptimally) immediately before the deadline is reached. Xin et al.

[101] develop a heuristic which uses problem information (domain knowledge) and

constraint programming to assign priorities to assignments. Evolutionary heuristics

which use a hybridized GA with memetic algorithms have also been applied to the

DWTA [25]. Additionally, Khosla [54] applies a hybrid heuristic which uses a simu-

lated annealing (SA) heuristic to determine the fitness of a population within a GA

framework. Other heuristic techniques applied to the DWTA include Tabu Search

[102], ACO with tabu table updates [103], and a modified Hungarian method with

16

PSO [56]. Lastly, exact dynamic programming [91][89] has also been applied to the

DWTA. The last portion of the WTA literature review focuses on the specific shoot-

look-shoot scenario, as well as some miscellaneous WTA formulations and solution

methods not explicitly for WTA fproblems.

2.1.6 Other Target Assignment / Weapons Allocation Literature.

Because of the numerous articles dedicated to it, methods for solving the specific

shoot-look-shoot (SLS) problem, as well as some other miscellaneous allocation meth-

ods, are now discussed. The SLS problem is a dynamic weapon target assignment

problem which allows for multiple allocation stages with some form of battle damage

assessment after assignments are made. At the end of each stage, the outcomes of

the allocations are known according to some probability distribution prior to making

the subsequent stage allocations. The complexity of the SLS problem is the depen-

dency of future stages’ target sets on previous weapon assignments. The utility of

the SLS problem is that it demonstrates the impact current outcomes have on initial

weapons allocations with the knowledge that some weapons need to be kept for future

stages. Additionally, in a multi-stage WTA formulation, a myopic SLS policy could

be implemented at each stage to provide a bound on the solution.

Manor and Kress [64] prove optimality of a multi-stage greedy SLS solution against

a homogeneous target set assuming imperfect damage information. They also show

that the original SLS problem is equivalent to a finite horizon deteriorating ban-

dit problem, which dynamically allocates a single resource amongst a fixed number

of arms. Aviv and Kress [8] evaluate several SLS tactics (such as the persistent

shooter, fixed bound on munitions and dynamic bound on munitions) and analyzes

their efficiency when damage information is uncertain (or incomplete). Glazebrook

and Washburn [35] provide a brief survey of, and further investigate the SLS problem

17

considering several scenarios in which information may be perfect or imperfect, the

time horizon is finite or infinite, and homogeneity (or non-homogeneity) of weapons

is considered. They approach the problem as a partially observable Markov deci-

sion process (POMDP), and apply dynamic programming citing the computational

intractability of their methods as problem size increases. Yost and Washburn [105]

also decompose the problem into a linear program to obtain an initial (bound) set of

policies and use dynamic programming to help improve the policies. The dynamic

programming subproblem is also viewed as a POMDP, as in [35]. Karasakal [51]

applies integer programming decomposition to determine SLS policies for allocating

surface-to-air missiles within a naval task group. Castañon [23] approaches the SLS

problem as a two stage resource allocation where the goal is to maximize the first

stage allocations while considering the second stage recourse requirements. The for-

mulation then takes on a similar form to that of the two-stage stochastic control

problem defined by Murphey [71], and is similar to a constrained two-stage form of

Bellman’s equation [10]. Linear interpolation and Lagrangian decomposition are then

used to quickly approximate recourse actions (the 2nd shooting stage in the SLS).

These values are then used recursively to greedily solve the first stage problem.

Lastly, there are several other refereed journal articles which focus on areas re-

lated to the WTA assignment problem, but are generally not classified as such. For

brevity, and because of their uniqueness, each paper and the methodology used is in-

troduced, but it is left to the reader to determine their specific formulation. Most of

these papers have to do with interceptor allocation specific to ballistic missile defense

(BMD) applications. Gorfinkel [40] uses decision theory to maximize the probability

that a warhead is hit given that it is concealed in a cloud of decoys. Bracken, Falk,

and Miercort [17] extend a model introduced by Phipps [78] in which two players ex-

change nuclear weapons. In this model, one player’s remaining weapons are impacted

18

by the other player’s strike package, thus the constraints of the second player become

a function of the allocation of the first striker. This max-min problem is shown to be

separable, but nonconvex, so traditional methods do not guarantee optimality via a

saddle point. Instead, piecewise linear approximations are used, and solved via branch

and bound. The linear approximations match the nonlinear objective function at a

predefined number of gridpoints; as the number of gridpoints increases, the approx-

imation becomes better, but at the cost of computation time. Metler, Preston, and

Hofmann [68] present various solution techniques for five different defensive weapons

allocation problems. The formulations investigated vary from a generalized DWTA

problem, to a single threat-target assignment problem, while solution methodologies

include linear and non-linear programming, branch and bound, greedy approximation

and others. Wilkening [98] derives the size of defense necessary to meet defense ob-

jectives based on target kill probability, and applies it to national and theater missile

defense. Bertsekas et al. [16] formulates the BMD problem as a Markov decision pro-

cess (MDP) and uses neuro-dynamic programming where the cost-to-go functional

approximation is achieved through neural network architectures. Brown et al. [18]

apply a two-sided model to determine the optimal location to pre-position defensive

platforms with the objective of minimizing the eventual damage from a ballistic mis-

sile attack. Menq et al. [67] uses discrete Markov decision process modeling as a

means for providing distribution functions for BMD so that more accurate planning

and cost analysis may be used in practical settings. Arslan, Marden, and Shamma [7]

develop a game-theoretical formulation for vehicle-target assignment in which a set

of vehicles cooperatively assign themselves to a set of targets to optimize some utility

function.

19

2.2 Approximate Dynamic Programming

2.2.1 Dynamic Programming.

First, the the major concepts and assumptions which are used when considering

dynamic programming as a solution methodology are briefly introduced. As a disci-

pline, dynamic programming is a “collection of mathematical tools used to analyze

sequential decision processes” [29]. As discussed in Denardo [29], regardless of how

unrelated two different processes may seem, there are several underlying components

common to all sequential decision processes. Specifically, at each decision epoch, the

process is in some state, the goal is always (at least it should be) to make the best (or

optimal) decision given the state that one is in, and finally, that based upon what de-

cision is made at that given point, there will be an outcome that one will transition to

via some sort of functional, or transitional equation. It is also assumed that the deci-

sion will either incur a cost, or the decision maker will obtain some immediate reward

for making the decision. Once a transition takes place and the cost has been incurred,

the decision maker will then be faced with an updated decision and the process will

start over. One critical assumption for dynamic programming, however, is that once

the transition has been made, what happened previously is entirely captured in the

new state, thus future decisions do not depend on what happened in the past, and

only depends on where the decision maker is at that epoch. This is also known as

the Markovian property, without which much of the underlying mathematics would

be substantially complex.

As previously discussed, for a generalized dynamic programming problem, several

structural elements will always be present. Using the notational conventions of Bert-

sekas [12][13][15], they are defined as follows. Let k be the index of either a discrete

time step, or a discrete decision epoch in continuous time. Then xk is the state of the

20

system at k, and contains everything necessary to make a decision, uk. In stochastic

cases (discussed further later), there is a noise element, wk, representing a random

occurrence or outcome which may be based on the state, the decision, both, or nei-

ther. Finally, consider a time horizon N which tells the point at which to terminate

recursion or it may represent the number of decision epochs. As will be discussed

later, this horizon may be finite (N <∞) or infinite N =∞. The transition function

for the stochastic formulation is of the following form:

xk+1 = fk(xk, uk, wk), k = 0, 1, . . . , N − 1 (2.14)

where f(·) is a function defining the system dynamics. In dynamic programming,

the costs (or rewards) are also assumed to be additive, meaning that at each decision

epoch, the costs incurred up until the point are represented in some additive form,

and will be added to future costs. The cost function will be some function of the

state, decision and random outcome: gk(xk, uk, wk). Therefore, given a terminal cost

for being in the final state gN(xN), the total cost over time is

gN(xN) +
N−1∑
k=0

gk(xk, uk, wk) (2.15)

Additionally, in literature, the decision uk may be represented as a function of the

current state, or uk(xk). Similarly, the random outcome may be a function of the state

and the decision made, as in the case of weapons allocation, wk(xk, uk), but may also

be itself a random occurrence (such as with the inventory demand example). However,

to remain consistent with Bertsekas, this notation will not be used. In addition, a

more explicit definition of these elements is found in [82] (pg 168).

Dynamic programming problems are solved using Bellman’s equation [10] (ex-

tracted from [12])

21

J∗(x) = min
u∈U(x)

E
w
{g(x, u, w) + J∗(f(x, u, w))} (2.16)

This holds true when moving forward from any state in which the system may be.

This is considered the principle of optimality, and (in words) states that there exists

an optimal solution from any state to the end of the horizon. This is a powerful fact,

and in many cases, this can be used to find all optimal paths (or decisions) from any

state to any other set of states. One example of this is value iteration. During value

iteration, each possible state is iterated over, and the optimal decision is determined.

From these optimal decisions, transitions to a new state will occur, with which value

iteration has provided the optimal decision.

2.2.2 Introduction.

Though the traditional methods for dynamic programming are very powerful,

they fall victim to computational intractability as problem size increases; the curses

of dimensionality. As such, means of mitigating this computational inefficiency must

be examined. One such methodology is approximate dynamic programming. Powell

[82] presents numerous examples of approximate dynamic programming for resource

allocations problems. Because of the underlying sequential structure of the DWTA

(and the possibility for selecting assignments in a sequential nature in the SWTA),

small instances of the WTA problem may be solved using exact methods. However,

as shown in the literature reviewed in Section 2.1, the tractability of these techniques

decreases as problem size increases. Similarly, exact dynamic programming suffers

from the same issues. Coined the three curses of dimensionality, for many solution

methods (value iteration, policy iteration, and their variants), each state, decision,

and (if present) possible outcome (random event or exogenous information process)

need to be iterated over. As such, computational effort increases exponentially as

22

problem size increases. Several texts ([15][13][82]) are dedicated to presenting meth-

ods which address the curses of dimensionality of dynamic programs. Powell [82]

states that all dynamic programs are able to be written in terms of a recursive rela-

tionship relating the expected cost (or reward) of being in a given state at a point in

time, to the expected cost (or reward) of each possible future state. This relation-

ship can make many problem sizes increase exponentially as a function of the state,

decision, or outcome spaces.

A tutorial at the 2013 Industrial and Systems Engineering Research Conference

given by Dan Adelman of The University of Chicago Booth School of Business [1]

provides an insightful overview of the available approximate dynamic programming

methods used to date. Figure 1 shows this hierarchy.

Figure 1. Approximate Dynamic Programming Methodologies

Though the state-of-the-art in approximate dynamic programming has made many

advances since the dates provided in Figure 1, such as the 2nd edition of Powell’s

Approximate Dynamic Programming [82] and the 4th edition of Bertsekas’ Dynamic

Programming and Optimal Control [11] texts, Figure 1 gives a good breakdown from

which to start. Specifically, it is differentiated between the exact and simulation-based

23

approximation methods. It is important to note that in each case, methods are used

to approximate some portion of the problem, usually the expected future costs (or

rewards), often called the “cost-to-go” or “value” function. This cost-to-go function

is the J∗(f(x, u, w)) expressed in Equation 2.16. Whether this is done through some

type of explicit mathematical programming method, or through Monte Carlo (or

other) simulation, these techniques are designed to exploit the special structure of the

specific problem to compute solutions which are nearly optimal, but are done using a

fraction of the computational requirements. Powell [82] also provides a list of problems

that must be addressed when trying to solve approximate dynamic programming

problems in general:

• Forward dynamic programming avoids looping over all possible states, but still

requires an explicit understanding of the one-step transition matrix and the

possible states the system may transition to.

• The values obtained at each current state are known, with the need to know

the values of the states which may be visited,

• Certain policies may cause the system to never visit states which, in the exact

formulations, would net good solutions

• Each problem is unique, and while the approximate dynamic programming

strategy is rather general, it cannot provide a mechanism for determining what

will work best for the specific problem

Using these principles, an overview of some of the more widely used techniques in

literature is no provided, with the goal of providing a sufficient spread while maintain-

ing generality and conciseness. The focus is also restricted to the simulation-based

techniques found in [13] and [82].

24

2.2.3 Lookup Tables and Q-Learning.

In some cases, a system may be so complex that it cannot be explicitly modeled

mathematically. One example would be a complex simulation which needs to be

optimized. The key to using Q-Learning is that the behaviors of the system are able

to be observed directly, and controls are able to be placed on the system iteratively.

Define for each state i (notation for the state is temporarily changed here to allow a

more concise description of transitions) and decision u pair (i, u) for u ∈ U(i), and

the optimal Q-factor by

Q∗(i, u) =
n∑
j=1

pij(u) (g(i, u, j) + αJ∗(j)) . (2.17)

For these problems, instead of approximating the cost-to-go function for the se-

lected policy, at each iteration the Q-factors for each state are updated. This allows

the multiple policy evaluation steps of policy iteration to be avoided. Instead, use

value iteration on Qk+1 = FQk defined by

(FQ)(i, u) =
n∑
j=1

pij(u)

(
g(i, u, j) + α min

v∈U(j)
Q(j, v)

)
, ∀(i, u). (2.18)

Using this relationship, this is equivalent to a discounted Bellman equation, and

the algorithm converges to Q∗ from any starting point Q0. In words, the Q factors are

statistical estimates of the true future cost (or reward) given a state and action, which

is beneficial because instead of needing an explicit transition function simulation

outputs are used to iteratively update the estimates.

25

2.2.4 Approximate Value Iteration.

Next, consider an approach in which a model is known, but the specific one-step

transition probabilities are unable to be determined. For this, Powell [82] suggests

randomly generating a sample of K possible outcomes at each iteration of what may

occur in the system (i.e. the random occurrence wk) and select the probability that

each of those randomly generated outcomes will occur. One such recommendation

is to let pn(wi) = 1
K

(here the probability is indexed by n, denoting the iteration

for which the outcomes have been generated). The expected total costs are then

approximated using the standard recursions of (2.16) using the generated outcome

space. Next, the estimate of the value is updated using

Jn(xn) = (1− αn−1)Jn−1(xn) + αn−1v̂n (2.19)

where v̂n is the approximation discussed above. As will be seen in many of the applica-

tions of approximate dynamic programming, the stochastic smoothing equation (2.19

attempts to use observations of the inherently noisy data to approximate the mo-

ments of the actual distribution from which the observations are being drawn. Powell

[82] provides extensive details on selection of step size, α, and a rigorous discussion

of convergence properties for many instances.

2.2.5 Low-Dimensional Value Function Approximation.

The next method discussed concerns itself with reducing the dimensionality of

the problem, by combining them into aggregate states. The effectiveness for this

method in the context of approximate dynamic programming is that the aggregated

states are used to determine the cost-to-go approximation, and at each iteration all

states are iterated over [82]. In traditional methods, the aggregated states can also

be enumerated over, but in many cases this leads to poor estimations of the problem

26

solution. Another way this method may help is by taking a continuous state space

and discretizing it to use traditional methods. Next, the aggregation framework of

Bertsekas [13] is introduced. Let A be a finite set of aggregate states, and define a

disaggregation probability dxi such that

n∑
i=1

dxi = 1, ∀x ∈ A (2.20)

where x is an aggregate state and i is the original system state. Then, for each

aggregate state y and original system state j, the aggregation probability φjy is

∑
y∈A

φjy = 1, ∀j = 1, . . . , n (2.21)

Note that dxi is essentially the proportion for which x is represented by i, and

φjy is the “degree of membership of j in the aggregate state y.” Define the matrices

D = [{dxi|i = 1, . . . , n}] and Φ = [{φjy|y ∈ A}]. For clarity, these elements of the

sets then represent the elements of their respective matrices. Then an approximation

of Bellman’s equation is obtained by ΦR̂ where

R̂ = DT(ΦR) (2.22)

Here T is the recursion operator defined in Bertsekas [13].

One good example of this which should be applicable for this research is to consider

a multi-stage weapon-target assignment problem formulated by Hosein [48]. At each

time step, one example is to aggregate all future stages into a static weapon target

assignment problem with the remaining weapons and targets.

27

2.2.6 Adaptive Estimation.

Adaptive estimation algorithms are broad and are also centered around the rela-

tionship shown in Equation (2.19). The primary idea is that we are trying to estimate

a value g(x) for being in state x, and ĝ(x) is a somewhat randomized estimate of g(x).

A stochastic gradient algorithm then provides the result of Equation (2.19). There are

many types of methods under Adaptive Estimation, such as recursive least squares,

approximate value iteration, least squares temporal differences, and least squares pol-

icy evaluation. The use of these methods is in determining average costs of being in

each state. For the purposes of this dissertation, each method is introduced with a

short example of the type of problem they are applicable to. For further information,

Powell [82] provides some insightful explanations of these giving closed form deriva-

tion using a single state. Another term (used by Bertsekas) for Adaptive Estimation

algorithms is Approximate Policy Iteration.

Recursive Least Squares

Recursive least squares uses a means of generating approximations for the system

using a linear combination of basis functions Θf (x), where f ∈ F is considered a

feature. The approximation is then

J̃(x) =
∑
f∈F

βfΘf (x) = Θ(x)Tβ (2.23)

where β are traditional regression coefficients. These techniques are able to be applied

any time the value function can successfully be approximated using linear regression.

This art is left to the reader for a specified problem. Specific methods exist for

cases where the analyst has stationary data, non-stationary data, and where multiple

observations are obtainable.

Least Squares Temporal Differences

28

Identified by Powell [82] as one of the more powerful and attractive tools in ap-

proximate dynamic programming, using temporal differences provides a means of up-

dating a functional approximation. At each iteration, estimates of the least squares

regression coefficients β can then be updated. This method fixes a policy and then

finds the best fit for the linear model. Additionally, the standard transition function

is used to determine the next state to visit using this fixed. This is also known as

on-policy learning [82]. The reason this method is so powerful is that it combines

techniques which allow the user to obtain regression coefficient estimates and uses

them in the traditional approximate dynamic programming solution framework.

Least Squares Policy Evaluation

Least squares policy evaluation uses basis functions developed for infinite horizon

applications. At the nth iteration, the regression coefficients are determined by

βn = arg max
β

n∑
i=1

(∑
f

βfΘf (xi)− (Ĉi + γJ̃n−1(xi+1))

)2

(2.24)

where Ĉi is a random variable providing the ith contribution [to the value function]

(this is considered a one-period contribution at the ith step in the infinite horizon).

Again, this method is just another way of determining the expected reward gained

by being in state x to help compute average long-run rewards.

2.2.7 Issues of Simulation-Based Cost Approximation.

As discussed by Bertsekas [13], these methods primarily concern themselves with

optimizing over an approximated single (or multi)-step lookahead approach. Deter-

mining these approximations is where the mathematics and art of dynamic program-

ming merge. Getting an appropriate approximation can take both time and effort,

and may not provide a robust methodology for solving problems which are closely

29

related to the original. Another issue arises with the statistical testing of the ap-

proximations, determining the rate of convergence, and solution quality. Each of the

methods presented (and others found in the literature) have their benefits and draw-

backs. Some may be the correct choice for the problem being investigated, and others

may not be useful at all. The analyst has the task of generating an appropriate model

(if available) and determining which solution technique(s) should be applied.

2.2.8 Approximate Dynamic Programming for Resource Allocation.

Several articles apply approximate dynamic programming for various resource al-

location instances. This section is not intended to be a full literature review of these

applications. Instead, the common themes amongst these papers are captured, and

the feasibility of approximate dynamic programming as a solution technique for the

WTA problem is developed. Powell has done a substantial amount of applied ap-

proximate dynamic programming work in resource allocation within the transporta-

tion industry [80][81][84][82]. One structural factor that is exploited is the declin-

ing marginal return of assigning an additional weapon to any given single target.

As such, the value function is concave. Godfrey and Powell [37] have developed a

method for approximating concave functions and have successfully applied it to a

number of practical applications [80][94]. Castanon has also done work in approxi-

mate dynamic programming for resource control, to include sensor management [21],

multiplatform path planning [77], and stochastic scheduling (along with Bertsekas)

[14]. Another area which has a significant amount of literature is vehicle routing

with stochastic demands [73][86][87][3]. Other resource allocations applications in-

clude activity networks for project planning [32][93], model predictive control [22],

and high-dimensional generalized resource allocation [81], among others.

30

2.3 Summary

This chapter provides a review of relevant literature is presented as a background

for the goals of this dissertation. The key themes for this literature review are

1. The complexity, diversity, and flexibility of the WTA problem

2. The flexibility and applicability of approximate dynamic programming as a

solution for resource allocation problems

Given the literature, there are gaps which must be covered to address the motivat-

ing problem. First, a more practical formulation for the DWTA must be formulated

that considers dynamic weapons capabilities. Development of this new formulation

requires solution methodologies not found in the literature. As a solution method-

ology, approximate dynamic programming is often used for large resource allocation

problems. However, because of the structure and complexity of the WTA problem,

the size of the decision space is often prohibitively large. Therefore, approximate

dynamic programming methodologies which address this issue are investigated. This

research developed in this dissertation specifically addresses each of these gaps.

31

III. Optimal multi-stage allocation of weapons to targets

using adaptive dynamic programming

3.1 Abstract

We consider the optimal allocation of resources (weapons) to a collection of tasks

(targets) with the objective of maximizing the reward for completing tasks (destroy-

ing targets). Tasks arrive in two stages, where the first stage tasks are known and

the second stage task arrivals follow a random distribution. Given the distribution of

these second stage task arrivals, simulation and mathematical programming are used

within a dynamic programming framework to determine optimal allocation strategies.

The special structure of the assignment problem is exploited to recursively update

functional approximations representing future rewards using subgradient information.

Through several theorems, optimality of the algorithm is proven for a two-stage Dy-

namic Weapon-Target Assignment Problem.

3.2 Introduction

The weapon-target assignment (WTA) problem is a model of combat operations

where we maximize the total expected damage caused to the enemy’s targets (or

minimize the value of leaker missiles) using a finite number of weapons. Optimally

assigning interceptors to targets is a subject that has become increasingly important

with the proliferation of intercontinental ballistic missiles (ICBMs). The WTA prob-

lem is known to be NP-complete [60]. In general, two cases of the WTA problem

are considered, static and dynamic. The static case allocates m weapons to n targets

at one time after all problem information is known. The dynamic case provides an

allocation policy over some time horizon, for which more information may arrive as

time progresses. Generally, both formulations contain at least stochastic single shot

32

kill probabilities for weapon-target pairs, and many include additional uncertainties.

One example of a dynamic problem is as follows. Suppose there are two waves of

incoming ICBMs where the number of targets (ICBMs), n, and their values, Vj , in

the first wave is known and the second wave is known only up to a probability distri-

bution. If the single shot probability of the weapon (interceptor) successfully hitting

a target is p, and each shot’s outcome is independent of the outcome of any other

shot, then the decision space for a fixed number of interceptors consists of how many

interceptors to allocate to the first wave verses the number of inceptors allocated for

assignment to the second wave. This formulation is attributed to Murphey [71] who

proposes a stochastic decomposition approximation technique. This chapter provides

an optimal solution for the formulation of [71] by exploiting the special structure of

the problem.

3.3 Literature Review

3.3.1 Static Weapon-Target Assignment.

The SWTA is formulated as follows. Let Vj denote the value of the jth target, Wi

denote the number of available weapons of type i. We assume we have m weapon

types and n targets. Let pij be the single shot probability that a weapon of type i will

kill a target of type j, such that the single shot probability of survival is qij = 1− pij.

Our decision variable xij is the number of weapons of type i assigned to target j. The

defensive SWTA problem is then formulated as a nonlinear integer program:

min
n∑
j=1

Vj(
m∏
i=1

q
xij
ij) (3.1)

subject to

33

n∑
j=1

xij ≤ Wi for all i = 1, 2, . . . ,m, (3.2)

xij ≥ 0 and integer, for all i = 1, 2, . . . ,m, j = 1, 2, . . . , n. (3.3)

Much of the WTA literature has been dedicated to the SWTA problem formula-

tion which was shown to be NP-complete in 1986 by Lloyd and Witsenhausen [60].

As such, much research has been done in the past several decades to determine ef-

ficient methods of identifying optimal solutions. Computationally efficient optimal

methods exist for two cases of the SWTA under simplifying assumptions. First, given

a homogeneous weapon set, pij = pj for all i, denBroeder [30] shows optimality is

achieved by evenly distributing the weapons across as many targets as possible using

the maximum marginal return (MMR) algorithm. The second instance assumes that

each target can have at most one weapon assigned to it [24] [75]. Because our problem

focuses on a special instance of the dynamic WTA (DWTA) problem, we focus our

literature review there.

3.3.2 Dynamic Weapon-Target Assignment.

Though it has not been researched to the extent of the SWTA problem, the

DWTA problem provides a more practical implementation by considering the impact

current decisions have on future states. However, by breaking the problem up into

several decision epochs, the DWTA is a much more complex problem. Similar to

the SWTA, numerous methods have been employed to provide solutions for various

types of DWTA problems. As the originator of the dynamic instance, Hosein [47]

provides several results which are generalizable to the DWTA problem. Additionally,

Castañon [20] and others at ALPHA TECH were developing advanced algorithms

for the DWTA in parallel. Murphey [70] [71] uses stochastic decomposition for the

34

two-stage problem defined in Sect. 3.4. Chang [24] uses a static WTA approximation

scheme within an iterative linear network flow framework to efficiently provide high-

quality solutions for the DWTA. Because of the integer restriction for the decision

variables, the chromosome representation within a GA presents a useful scheme for

solving both the static and dynamic versions of the WTA problem. As such, much

work has developed hybrid GAs to assist in solving the DWTA. Wu et al. [99] apply a

modified GA to the DWTA and introduces weapon use deadlines within the problem

formulation. Xin et al. [101] develop a heuristic which uses problem information

(domain knowledge) and constraint programming to assign priorities to assignments.

Evolutionary heuristics which use a hybridized GA with memetic algorithms have

also been applied to the DWTA [25]. Additionally, Khosla [54] applies a hybrid

heuristic which uses a simulated annealing (SA) type heuristic to determine the fitness

of a population within a GA framework. Other heuristic techniques applied to the

DWTA include Tabu Search [102], ACO with tabu table updates [103], and a modified

Hungarian method with PSO [56] (though this is in an open source text, so it’s rigor

may be unverified). Lastly, exact dynamic programming [89] [91] has also been applied

to the DWTA.

3.4 Problem Formulation

As a simplification to the multi-stage problem posed by Hosein [48], Murphey [69]

defined a two-stage stochastic programming model of the DWTA problem. In this

model, we consider the probability that an adversary has a total stockpile of weapons

and shoots a portion of them in the first stage, with the remainder of the weapons

known to a probability distribution. Let n1 targets arrive in stage 1 with certainty,

and n2 targets arrive in stage 2 according to a known distribution. Let the random

vector ω ∈ Ω denote the number of second stage target arrivals where Ω is the set of

35

all possible arrivals. Suppose the probabilities of survival, qj, and target values, Vj,

for each target j are given. Then the 2-stage WTA programming formulation is:

Z1(x) = max
x

n1∑
j=1

V 1
j (1− (q1

j)
x

(1)
j) + Eω∈Ω[Z2(x(2), ωj)] (3.4)

subject to

n1∑
j=1

x
(1)
j ≤M,

x(1) ≤ b

x
(1)
j ∈ Z+, j = 1 . . . , N

Eω∈Ω[Z2(x(2), ωj)] is the expected second stage value and, given a number of sec-

ond stage weapons, x(2), and a sample realization of targets, ωj, is piecewise inte-

ger concave (for a proof of this, see [2]) and is solved using the MMR algorithm.∑n1

j=1 x
(1)
j ≤ M is the resource capacity constraint, and b is the vector denoting the

maximum weapons that can be assigned to any one target.

Z2(x(2), ωj) is the solution to the second stage problem and is expressed as:

Z2(x(2), ωj) = max
x(2)

n2(ω)∑
j=1

V 2
j (ω)(1− q2

j (ω)x
(2)
j) (3.5)

subject to

n1∑
j=1

x
(1)
j +

n2(ωj)∑
j=1

x
(2)
j = M,

x(2) ≤ b

x
(2)
j ∈ Z+

36

3.5 Theoretical Results

In this section we discuss the methodology used to solve the above two-stage

DWTA problem presented above and present the theoretical results for our solution.

Instead of using the cutting plane approach of Murphey [70], we formulate the problem

as a dynamic programming problem to develop a solution algorithm with the help of

the post-decision dynamic programming formulation and the concave adaptive value

estimation (CAVE) functional approximation algorithm developed by Godfrey and

Powell [39].

3.5.1 Adaptive Dynamic Programming.

Consider a general finite space and discrete time horizon dynamic programming

problem. Let S be the state space of the system with time horizon t = 0, . . . , T .

The state St ∈ S represents the state of the system at time t, and a decision xt that

acts on the system is selected from a finite set U at each time step. Wt is a random

occurrence generated with a known probability distribution and the system evolves

according to a transition function which has the form

St+1 = f1(St, xt,Wt) (3.6)

where f1(·) is a function describing the system dynamics. Next, define the one-period

contribution for being in state St and making decision xt as Ct(St, xt) and express

the T -stage value to be maximized as the expected value of the summation of the T

costs:

max
xt∈U(St)

E

{
T∑
t=0

Ct(St, xt)|S0

}
(3.7)

37

It is well known that problems of the form given in (3.7) can be solved by Bellman’s

optimality equations [12]:

Jt(St) = max
xt

(Ct(St, xt) + EWt {Jt+1(St+1(St, xt,Wt))|St} (3.8)

Problems of this type grow exponentially within the state, decision, and outcome

spaces - known as the curses of dimensionality. Therefore it is necessary to approx-

imate the value function Jt+1(St+1(·)). Adaptive Dynamic Programming provides a

means for stepping forward through time iteratively using sample realizations of our

approximated value function.

3.5.2 Two-Stage DWTA ADP Solution.

Our method uses Monte Carlo sampling of second-stage target arrivals to approx-

imate our value function. By making use of the concavity of the stage 2 function, we

have developed an algorithm which optimally determines the number of interceptors

needed in the second stage. Given a fixed number of weapons and a sample realization

of stage 2 targets, n2, it is clear that f(n2) = maxx(2)

∑n2

j=1 Vj(1− q
x

(2)
j

j) is a piecewise

integer concave function. Here, x
(2)
j denotes the number of weapons allocated to the

jth target in the second stage.

Using the post-decision state dynamic programming notation of Powell [83], if we

assume a piecewise linear concave approximation, then our second stage post decision

value function becomes Jx1 (Sx1) = Eω∈Ω[Ẑ2(x(2), ωj)]. Our post-decision state is then

Sx1 = n2, and for any given number of weapons, the slopes of our function represent

the marginal value of adding one more weapon to the second stage. As such, we

modify the MMR algorithm of denBrodeur [30] while maintaining optimality for the

special case of the DWTA.

Algorithm: MMR Plus

38

Step 0: Given J̄x1 (Sx1),

Initialize xj = 0 ∀j = 1, . . . , N and set xN+1 = x(2)

Set Sj = Vj for j = 1, . . . , N .

Compute the marginal returns MRj = Sj(1− qj),MRN+1 = Jx1 (1)−Jx1 (0) ∀j.

Initialize weapon index i = 1.

While i ≤M , do

Step 1: Find target k for which weapon i has the greatest effect Compute

k = arg maxj=1,...,N+1MRj

Step 2: Increment the allocation to target k: xk ← xk + 1.

If j ≤ N , update the expected surviving value Sk = Skqk, then update

the marginal return MRk = Sk(1− qk),

else increment xN+1 ← xN+1+1 and update the marginal returnMRN+1 =

Jx1 (xN+1 + 1)− Jx1 (xN+1)

set i = i+ 1 and continue

We now prove the existence of a piecewise linear concave function and the opti-

mality of the MMR Plus Algorithm.

Theorem 3.5.1 If Jx1 (Sx1 = n2) = E[Z(x(2), ω)], the MMRPlus algorithm is optimal.

Proof: Given any scenario in stage 2, by the MMR algorithm for the WTA problem,

the solution is monotonic increasing and integer concave [30]. We represent the slopes

of each stage 2 function for the n scenarios as

39

ξ1
1 ≥ ξ1

2 ≥ ξ1
3 ≥ . . .

...

ξn1 ≥ ξn2 ≥ ξn3 ≥ . . . (3.9)

where ξji denotes the marginal reward gained by saving the ith weapon for the second

stage, given the jth target arrival scenario. Let pj, j = 1, . . . , n be the probability of

scenario j. Then, since pj > 0, ∀j, the inequalities remain valid by multiplying the

inequalities by their respective probabilities

p1ξ
1
1 ≥ p1ξ

1
2 ≥ p1ξ

1
3 ≥ . . .

...

pnξ
n
1 ≥ pnξ

n
2 ≥ pnξ

n
3 ≥ . . . (3.10)

Through term by term addition, the inequalities hold to obtain

n∑
j=1

pjξ
j
1 ≥

n∑
j=1

pjξ
j
2 ≥

n∑
j=1

pjξ
j
3 ≥ . . . (3.11)

Therefore, E[Z(x(2), ω)] is monotone increasing and integer concave in x(2).

The resulting optimization problem at stage 1 is an integer optimization with a

monotropic value function for which each separable function is monotonic increasing

and piecewise integer concave. Since there is a single linear constraint coupling the

allocations to all targets, strong duality guarantees the existence of a scalar dual vari-

able λ such that, at the optimal allocations x∗j , j = 1, . . . , N + 1, the right derivatives

40

of each separable function are less than or equal to λ, and the left derivatives are

greater than or equal to λ, and
∑N+1

i=j x∗j = M .

Since all the separable functions are piecewise integer concave, each function has

a finite number of slopes (derivative values). The MMRPlus algorithm searches over

the possible slopes of all the separable functions in decreasing order, modifying the

allocations xj appropriately until
∑N+1

j=1 xj = M .

Since each function for each target and the function for the second stage expected

value is monotonic increasing, by the property of the MMRPlus selecting the function

with the greatest increase in objective value the MMRPlus algorithm is optimal. �

So that we do not have to compute a piecewise linear approximation J̄x1 (Sx1) for

every x(1) by simulation for every ω, our approach only focuses around the optimal

value of x(1). To find the piecewise-linear approximation J̄x1 (Sx1) around the optimal

x(1), we use a version of the CAVE algorithm developed by Godfrey and Powell while

preserving concavity [37]. Given a realization of second stage target arrivals ω and the

current solution of the MMRPlus algorithm where x(2) = M − x(1) = xN+1 weapons

are allocated to the second stage, the left and right derivatives, v−(ω) and v+(ω)

respectively, are calculated as:

v−(x(2), ω) =


Z(x(2), ω)− Z(x(2) − 1, ω), if x(2) 6= 0

0 otherwise

(3.12)

v+(x(2), ω) = Z(x(2) + 1, ω)− Z(x(2), ω) (3.13)

where Z(x(2), ω) is the solution by the MMR algorithm of the second stage problem

given x(2) weapons and sample realization ω.

41

Of course these are the left and right derivatives for only one sample realization

of the problem and for only one particular state which is sufficiently captured in the

number of weapons passed to the second stage,x(2). The piecewise linear approxima-

tion of Eω[Z(x(2), ω)] is defined by a finite set of ordered breakpoints, {(vk, u,)|k ∈ K},

where K = {0, 1, . . . ,M}. Each breakpoint defines a linear segment with vk as the

slope of the segment projected from uk where a breakpoint is defined at each positive

integer up to, and including, M−1. Concavity implies that the slopes are nonincreas-

ing, as v0 ≥ v1 ≥ . . . ≥ vM−1. By Theorem 3.5.1, P (v−(x(2), ω) ≥ v+(x(2), ω)) = 1,

∀x(2) ≥ 0 since the slopes are always monotone decreasing and positive for all real-

izations of targets in stage 2. From the solution of the subproblems by the MMR

algorithm, this can easily be proven for the 2-stage DWTA.

The left subgradient v−(x(2), ω) is smoothed into the approximation slopes to the

left of x(2) to some minimal extent determined by the interval I = [max(0,min(x(2)−

ε−, uk
−

)),min(max(s + ε+, uk
++1),M)]. The same idea is applied to the right of x(2)

for the right subgradient. Concavity is preserved by the following theorem, similar to

the one found in [37]:

Theorem 3.5.2 Consider a concave approximation defined by breakpoints {(νk, uk)|k ∈

K} where νk are the integers in {0, . . . ,M−1}. Using the CAVE algorithm described

above to obtain I = [um, un] with post-decision state, x(2). Concavity is preserved

under the smoothing operation where 0 < α < 1.

Proof: Case I: If um = un no update takes place and concavity of the original function

is preserved.

Case II: I 6= ∅, then we use the updates

νknew = αv−(x(2), ω) + (1− α)νkold for k = m, . . . , x(2) − 1 (3.14)

42

and

νknew = αv+(x(2), ω) + (1− α)νkold for k = x(2), . . . , n− 1 (3.15)

The slopes of the original function decrease monotonically in k.

νm ≥ · · · ≥ νx
(2) ≥ νx

(2)+1 ≥ · · · ≥ νn−1 (3.16)

(1− α)νm ≥ · · · ≥ (1− α)νx
(2) ≥ (1− α)νx

(2)+1 ≥ · · · ≥ (1− α)νn−1 (3.17)

αv−(x(2), ω) + (1− α)νm ≥ · · · ≥ αv−(x(2), ω) + (1− α)νx
(2) ≥

αv+(x(2), ω) + (1− α)νx
(2)+1 ≥ · · · ≥ αv+(x(2), ω) + (1− α)νn−1

(3.18)

Equation 3.16 holds by the concavity of the original function. Equation 3.17 holds

by multiplication of a positive constant. Equation 3.18 holds since v+(x(2), ω) ≤

v−(x(2), ω). Therefore, the resulting function is also concave. �

3.5.3 The Adaptive DWTA Algorithm.

Having explained the components of the algorithm, the MMR, MMRplus and

CAVE algorithms are combined to form the solution algorithm. We let QApprox

represent the current approximation and use the following algorithm to obtain our

approximate dynamic programming solution:

Step 1 Initialization

• j = 0

• Set νi = 0,∀i = 0, . . . ,M − 1

• Set ui = i, ∀i = 0, . . . ,M − 1

• ε− = 2, ε+ = 2

43

Step 2 Forward Simulation

• Solve current problem with current QApprox using MMRplus

• Generate second stage target random sample, ω ∈ Ω

• If j > 20 then ε− = 1, ε+ = 1

• α = 1/(1 + j)

Step 3 Value Function Update

• Determine the left and right derivative, v−(x(2), ω) and v+(x(2), ω), respec-

tively using MMR.

• Update QApprox using the CAVE algorithm.

• If no change in 10 iterations STOP, else j=j+1 and return to Step 2.

We initially set ε− = ε+ = 2 to allow the update of the piecewise linear concave

approximation of the value function to affect, at a minimum, an interval of size

four. Each possible integer value for the approximation is not sampled infinitely

often, so ε− and ε+ allows the stochastic subgradients to be averaged over a greater

interval. The piecewise linear concave approximation of the value function is only

repetitively updated in the neighborhood of the optimal integer value for the second

stage decision. Therefore, the shape of the approximate value function for integer

values far from the optimal integer value may be underestimates or overestimates of

the true slope. However, because the function is concave, the critical region around

the optimal integer value is the most sampled and accurate. The accuracy around

the optimal integer value in the piecewise linear concave approximation of the value

function is all that is needed to provide quality solutions.

After 20 updates we set ε− = ε+ = 1, allowing the minimum updates to occur only

to the left and right slope of the piecewise linear concave approximation of the value

44

function. The size of the initial update interval and the rate at which the minimum

interval is allowed to decrease is problem dependent.

Theorem 3.5.3 Assume the optimal solution is (x1, x2), and that the subgradients

D+ and D− for E[Z(x2, ξ)] are known. Then, if D+(Jx1 (x2)) = D+ and D−(Jx1 (x2)) =

D−, the MMRPlus algorithm will generate the optimal solution (x1, x2).

Proof: As shown in Theorem 3.5.1 the function for E[Q(x2, ξ)] is monotone increas-

ing integer concave. Assume that the MMRPlus algorithm generates the solution

x1, . . . , xN+1 which is not optimal. Because the approximation is integer concave and

increasing, if the stopping slope obtained by MMRPlus, λ is in the interval [D−, D+],

the MMRPlus algorithm will obtain an optimal solution, because all the marginal

returns obtained for targets j = 1, . . . , N will be computed exactly. Hence, there are

two possible cases where the optimal solution is not achieved:

Case I: λ > D+. In this case, this requires that the MMRPlus algorithm find M

slopes with values greater than D+. However, at the optimal solution, there are at

most M − n2 slopes associated with targets j = 1, . . . , N that are greater than D+.

Since the approximation J̃ is integer concave, there are only n2 − 2 slopes greater

than D+, the slope associated with the left derivative at n2. This contradicts the

statement that MMRPlus found M slopes with values greater than D+.

Case II. λ < D−. In this case, the MMRPlus algorithm found less than M slopes

with values greater than or equal to D−. At the optimal solution, MMRPlus has

M − n2 slopes for j = 1, . . . , N that are greater than or equal to D− which is greater

than λ. Furthermore, the integer concavity of J̃2 indicates that there are n2 + 1

slopes greater than or equal to λ for j = N + 1. This contradicts the property that

MMRPlus makes assignments in order of decreasing slopes, and stops after making

M assignments. �

45

Corollary 3.5.4 The result in Theorem 3.5.3 can be relaxed to provide error bounds

for convergence for D+−D+(Jx1 (n2)) and D−−D−(Jx1 (n2)), so that the critical slopes

only have to be accurate to a threshold ε > 0.

Proof: Assume that λ is the optimal solution of the SWTA problem using the

full dynamic programming value-to-go function Jx1 (n), and n2 is the optimal allo-

cation to stage 2. As long as the approximate value to go J̃ has the property that

λ ∈ [D−(J̃x1 (n2), D+(J̃x1 (n2)], the MMRPlus algorithm will find the optimal solution.

Thus, D+(J̃x1 (n2)) ≥ λ ≥ D− and D−(J̃x1 (n2)) ≤ λ ≤ D+.�

3.6 Computational Results and Conclusions

The Adaptive DWTA Algorithm works well for deterministic problems where all

second stage targets arrive with probability 1. Then our algorithm is the equivalent

of the MMR algorithm and yields the optimal solution. In this situation we are

simply dividing a weapon target assignment problem between two stages and since

the gradient of the first stage function is known to be piecewise linear concave [30],

our piecewise linear concave function approximation is exact.

The first example problem has 8 targets in the first stage and up to 8 targets in

the second stage, each with identical values, Vj = 200. There are 12 total weapons.

We assume that the single shot probabilities of survival qj are identical and set to

0.5. We assume that each of the 8 second stage targets has an actual probability of

arrival of 0.5, where the arrival events of different targets are independent. Hence

this leads to 28 = 256 possible arrival events (scenarios) at the second stage. For this

symmetric problem the optimal dynamic programming solution yields an optimal

strategy that uses 8 weapons in the first stage and 4 weapons in the second stage.

Then we conjecture that since the number of first stage targets is equal to the number

of second stage targets with second stage targets having a probability of arrival of

46

0.5, then the number of weapons assigned to the first stage is twice that assigned

to the second stage in the optimal allocation of weapons. Our algorithm obtains

this result. The result of our algorithm is that 8 weapons are assigned to the first

stage and 4 weapons are assigned to the second stage with a vector of slopes for the

approximation function given as

(100.0, 100.0, 99.4, 80.4, 63.8, 63.8, 45.5, 0.0, 0.0, 0.0, 0.0, 0.0)

The marginal value of the first weapon assigned to a target in the first stage is

100, and the second weapon is 50. The 8 first stage targets all attribute a value

of 100 to the objective value for the one weapon assigned to each target. The sec-

ond stage approximate value function shows that the average net value of one more

weapon, beyond the 4 already assigned, to the second stage is 63.8. Therefore, if an

additional weapon became available it should be assigned to the second stage. The

solution converged to the optimal assignment after 5 iterations which is significant

less computation than explicitly determining the second stage required for using the

28 events to calculate the exact second stage function E[Q(n2, ω)] .

The example was run again with 13 weapons for our second example. The allo-

cation of the weapons was 8 to the first stage and 5 to the second stage as expected

with a vector of slopes for the approximation function given as

(100.0, 97.9, 97.9, 93.7, 64.3, 53.2, 53.1, 34.8, 0.0, 0.0, 0.0, 0.0, 0.0)

The vector is one component larger for the 13th weapon. The values around the

5th component should be close to the previous vector since we would expect this

subgradient to be sampled relatively often. The other components are not the same

because they are not in the critical region and are sampled rarely. It is easily seen

47

that the last five components of the vector should not be 0.0 but are never sampled

in the construction of the approximate value function.

We then computed the close form expression for the recourse function and compare

our experimental results with the exact slopes. The first six analytical slopes are

(99.61, 98.05, 91.80, 80.47, 63.87, 52.83)

The critical slopes are the 4th and 5th slopes for the first example and the 5th and

6th slopes for the second example since this is the critical area of the approximate

function where the majority of updates occur. After 5000 iterations of the algorithm

the approximated gradients are within .07 of both critical slopes for the first example

and .43 and .37 of the 5th and 6th slopes, respectively, for the second example.

Fortunately, 5000 iterations are not required as seen by obtaining the answer in 6

iterations of our algorithm, the slopes must only be within a threshold value of the

optimal slopes as shown in Corollary 3.5.4.

For our third example we look at the same problem as described in our first and

second example except that the probability arrivals are a realization of a uniform

distribution U(0, 1) for each second stage target and 50 weapons are assigned. The

probabilities used for this example are

0.480488, 0.888801, 0.275961, 0.840961, 0.768530, 0.719374, 0.825271, 0.123142

The analytic slopes are

(99.99, 99.90, 99.02, 94.69, 82.38, 65.09, 50.76, 47.40, 41.08, 40.00,

31.30, 31.30, 21.79, 21.79, 20.10, 15.51, 13.87, 13.87, 10.75, 10.75, . . .)

48

The slopes found by the Adaptive DWTA Algorithm are

(100.0, 100.0, 100.0, 50.0, 50.0, 50.0, 29.16, 29.16, 29.16, 24.66, 24.66,

24.66, 23.88, 23.78, 23.78, 22.83, 22.81, 13.87, 10.71, 10.71, . . .)

The optimal solution was (x1, x2) = (32, 18) and was converged to after 8 iterations.

Looking at the slope for x2 = 18 we see that the Adaptive DWTA Algorithm con-

verged to the true analytic slope after 5000 iterations of the algorithm taking .218

seconds to converge.

As a fourth and final example, we look at larger example of 100 first stage tar-

gets, 100 second stage targets whose values are each different. The Adaptive DWTA

Algorithm required 1.312 seconds for 5000 iterations and converged to the optimal

answer in 1886 iterations. This is compared to the 2100 = 1.26765 × 1030 scenarios

that exist for calculation of the analytical solution of E[Q(x(2), ω)].

As demonstrated above, our initial results are favorable. Favorable results are

not surprising since we know by Theorem 3.5.1 that E[Q(x(2), ω)] is concave in x(2).

Therefore a piecewise linear concave approximation should be very descriptive if each

slope for each integer value is sampled infinitely often which is NOT the case since we

limit the number of iterations to 5000 for each experiment and the slope is repetitively

sampled at the critical value of x(2). We have shown, however, that the slopes of

the approximation are very close to the slopes of E[Q(x(2), ω)] around the optimal

solution. The slopes obtained by the Adaptive DWTA Algorithm have been proven

sufficient through corollary 3.5.4 and shown through experimentation to obtain the

optimal solutions.

The computational savings obtained by using the Adaptive DWTA Algorithm are

illustrated by the fact that for the fourth example the solution was obtained in 1.312

49

seconds rather than calculating the analytical solution using 1.26765×1030 scenarios.

The Adaptive SWTA Algorithm is shown to be a fast optimal approach.

This chapter develops a solution algorithm for a two-stage dynamic weapon-target

assignment problem and proves solution optimality. Future work will relax weapon

homogeneity assumptions, and investigate the impact of cost constraints and defense

system sensor capability on solution quality.

50

IV. Adaptive Dynamic Programming for a Two-Stage

Dynamic Weapon-Target Assignment Problem

4.1 Abstract

This research investigates the optimal allocation of weapons to a collection of

targets over a two-stage time horizon with battle damage assessment which is more

widely known as the shoot-look-shoot problem. A single wave of targets arrives in

stage one and resources are allocated with the intent of maximizing the value of de-

stroyed targets. The result of the first stage allocations is realized, and the value

of destroyed targets is determined. The remaining resources are allocated to any

remaining targets, results realized, and the additional value of targets destroyed is

determined. Though the shoot-look-shoot problem is more often approached as a

queueing problem where targets continually arrive, this chapter provides a two stage

stochastic formulation. This research investigates allocation of stage dependent re-

sources to non-homogeneous targets. An adaptive dynamic programming algorithm

is developed which provides high-quality solutions in a fraction of the time necessary

to compute an optimal solution and is scalable to large problems. The special struc-

ture of the assignment problem is exploited and subgradient information is used to

update a functional approximation of future rewards.

4.2 Introduction

The subject of this chapter is an effective method for generating high-quality

solutions to a two-stage weapon target assignment problem. The objective is to max-

imize the total expected damage caused to the enemy’s targets using a finite number

of weapons. Optimally assigning interceptors to targets is a subject that has become

more critical with the increase in the technological sophistication of adversaries, and

51

the potential proliferation of intercontinental ballistic missiles (ICBMs). The WTA

problem is known to be NP-complete [60].

In general, two cases of the WTA problem are considered, static and dynamic. The

static case allocates m weapons to n targets at one time given all problem information

is known. The dynamic case provides an allocation policy over some time horizon, for

which more information may arrive as time progresses. Generally, both formulations

contain at least stochastic single shot kill probabilities for weapon-target pairs, and

many include additional uncertainties.

One example of a dynamic problem is as follows. Suppose there are two waves

of incoming targets where the number of targets , n, and their values, Vj for j =

1, 2, . . . , n, in the first wave is known for j = 1, 2, . . . , n and the second wave is known

only up to a probability distribution. If the single shot probability of the weapon

(interceptor) successfully hitting a target is p and each shot’s outcome is independent

of the outcome of any other shot, then the decision space for a fixed number of in-

terceptors consists of how many interceptors to allocate to the first wave verses the

number of inceptors allocated for assignment to the second wave. This formulation is

attributed to Murphey [71] who proposes a stochastic decomposition approximation

technique. Ahner and Parson [4] provide an effective algorithm which provides opti-

mal solutions for the problem discussed above given a fixed number of homogenous

weapons. This research extends the work of Ahner and Parson [4] by incorporating

second stage target dependency on the first stage outcomes. Additionally, weapon

capabilities vary across stages. The remainder of the chapter is structured as follows.

A review of literature is given in Section 4.3 followed by the formal statement of

the problem in Section 4.4. Next, the proposed solution methodology is covered in

Section 4.5, followed by numeric results in Section 4.6. Finally, concluding remarks

and discussion of future research resides in Section 5.6.

52

4.3 Literature Review

The weapon-target assignment problem is a well studied problem with various

sub-formulations. This section presents a review of relevant literature for three of

these formulations, beginning with the static weapon-target assignment problem.

4.3.1 Static Weapon-Target Assignment.

Much of the literature has been dedicated to the SWTA problem formulation,

and several papers have been developed since the 2006 survey by Cai et al. [42]. As

with many NP-complete or other combinatorial optimization problems, the existing

literature applies a wide variety of methods to effectively solve the problem. Ahuja

et al. [5] present the most cited results from recent times and give a benchmark

for solution quality through lower bounding (for the minimization problem) tech-

niques. Their formulation uses integer linear programming and as a general integer

network flow problem using a minimum cost flow to determine a new lower bound (if

minimizing). The authors also provide a very large-scale neighborhood improvement

heuristic algorithm which quickly solves moderately sized instances (up to 80 weapons

and targets) optimally while providing high-quality solutions for larger problems (up

to 200 weapons and targets). As previously discussed, the earliest optimal meth-

ods were presented by denBroeder [30] under a homogenous weapon set assumption.

His method is generally known as the maximum marginal return (MMR) algorithm

(when considering the maximization problem) and assigns weapons sequentially to

the weapon with the highest remaining value until all weapons have been allocated.

This greedy method is also a fast method for bounding of the solution when the ho-

mogeneous weapons assumption has been relaxed. Chang et al. [24], and Orlin [74]

developed optimal methods under the assumption that each target can have no more

53

than one weapon assigned to it. These methods exploit the underlying network flow

structure of the SWTA problem.

Since the first approximation technique for the SWTA was done in 1966 [28], a

gamut of popular metaheuristics have been applied to the SWTA problem. This in-

cludes ant colony optimization (ACO) [57][88], particle swarm [34] [104] (of a slightly

more generalized resource allocation problem), and genetic algorithms (GAs) [19] [58]

[49] [61]. In addition, hybrid methods are used to provide solutions for the SWTA, to

include ACO with SA [97], GA with ACO [33], GA using greedy eugenics to improve

the quality of the offspring [59], and particle swarm with embedded greedy algorithms

[50]. [95] provides a comparison of several heuristic algorithms for the WTA problem

and poses a new hybrid algorithm consisting of particle swarm and random search to

produce higher-quality solutions. In addition to these popular metaheuristic meth-

ods, several other approximation methods have been used for the SWTA. [26] uses

a modified MMR type algorithm after changing the network representation from a

one-to-many to a one-to-one mapping to efficiently approximate the optimal value.

Rosenberger et al. [85] compares the sequential application of the auction algorithm

in a greedy fashion to an exact (but computationally expensive) branching and bound-

ing technique. [62] applies fuzzy reasoning to approximate optimum allocations in

real-time for use on a battlefield. Lastly, Lagrangian relaxation [72] was used to de-

compose the problem into two tractable subproblems while iteratively updating the

Lagrange multipliers. Though an extensive amount of research has been done into

effectively providing high-quality solutions for the SWTA, none distinctly stand out

as the best. Next, a more complex dynamic weapon target assignment formulation is

presented, prior to providing a review of existing literature.

54

4.3.2 Dynamic Weapon-Target Assignment.

Though it has not been researched to the extent of the SWTA problem, the

DWTA problem provides a more practical implementation by considering the impact

current decisions have on future states. However, by breaking the problem up into

several decision epochs, the DWTA is a much more complex problem. Similar to

the SWTA, numerous methods have been employed to provide solutions for various

types of DWTA problems. As the originator of the dynamic instance, Hosein [47]

provides several results which are generalizable to the DWTA problem. Additionally,

Castañon [20] and others at ALPHA TECH were developing advanced algorithms

for the DWTA in parallel. Murphey [70] [71] uses stochastic decomposition for a

slightly different two-stage problem. Chang [24] uses a static WTA approximation

scheme within an iterative linear network flow framework to efficiently provide high-

quality solutions for the DWTA. Because of the integer restriction for the decision

variables, the chromosome representation within a GA presents a useful scheme for

solving both the static and dynamic versions of the WTA problem. As such, much

work has developed hybrid GAs to assist in solving the DWTA. Wu et al. [99] apply a

modified GA to the DWTA and introduces weapon use deadlines within the problem

formulation. Xin et al. [101] develop a heuristic which uses problem information

(domain knowledge) and constraint programming to assign priorities to assignments.

Evolutionary heuristics which use a hybridized GA with memetic algorithms have

also been applied to the DWTA [25]. Additionally, Khosla [54] applies a hybrid

heuristic which uses a simulated annealing (SA) type heuristic to determine the fitness

of a population within a GA framework. Other heuristic techniques applied to the

DWTA include Tabu Search [102], ACO with tabu table updates [103], and a modified

Hungarian method with PSO [56] (though this is in an open source text, so it’s rigor

55

may be unverified). Lastly, exact dynamic programming [89] [91] has also been applied

to the DWTA.

4.3.3 Shoot-Look-Shoot.

The shoot-look-shoot class of problem is generally found in naval literature. Manor

and Kress [64] provides optimality of a multi-stage greedy SLS solution assuming

imperfect damage information. They also show that the original SLS problem is

equivalent to a finite horizon deteriorating bandit problem, which dynamically allo-

cates a single resource amongst a fixed number of arms. Aviv and Kress [8] evaluate

several SLS tactics (such as the persistent shooter, fixed bound on munitions and dy-

namic bound on munitions) and analyzes their efficiency when damage information

is uncertain (or incomplete). Glazebrook and Washburn [35] provide a brief survey

of the SLS problem, and further investigate it by considering several scenarios in

which information may be perfect or imperfect, the time horizon is finite or infinite,

and homogeneity (or non-homogeneity) of weapons is considered. They approach

the problem as a partially observable Markov decision process (POMDP), and apply

dynamic programming citing the computational intractability of their methods as

problem size increases. Yost and Washburn [105] also decompose the problem into a

linear program to obtain an initial (bound) set of policies and dynamic programming

to help improve the policies. The dynamic programming subproblem is also viewed

as a POMDP, as in [35]. Karasakal [51] applies integer programming decomposition

to determine SLS policies for allocating surface-to-air missiles within a naval task

group. Castañon [23] approaches the SLS problem as a two stage resource allocation

where the goal is to maximize the first stage allocations while considering the second

stage recourse requirements. The formulation then takes on a similar form to that

of the two-stage stochastic control problem defined by Murphey [71], and also looks

56

very much like a constrained two-stage form of Bellman’s equation [10]. Linear inter-

polation and Lagrangian decomposition are then used to determine optimal recourse

actions for the 2nd stage. These values are then used recursively to greedily determine

an approximate solution of the first stage problem.

4.4 Problem Formulation

Because it forms the basis from which the formulation is developed, the generalized

static weapon target assignment (SWTA) is first introduced.

4.4.1 Static Weapon-Target Assignment.

The SWTA is formulated as follows. Let Vj denote the value of the jth target, Wi

denote the number of available weapons of type i. It is assumed that there are m

weapon types and n targets. Let pij be the single shot probability that a weapon of

type i will kill a target of type j, such that the single shot probability of survival is

qij = 1 − pij. The decision variable xij is the number of weapons of type i assigned

to target j. The SWTA problem is then formulated as a nonlinear integer program:

min
n∑
j=1

Vj(
m∏
i=1

q
xij
ij) (4.1)

subject to

n∑
j=1

xij ≤ Wi for all i = 1, 2, . . . ,m, (4.2)

xij ≥ 0 and integer, for all i = 1, 2, . . . ,m, j = 1, 2, . . . , n. (4.3)

Much of the WTA literature has been dedicated to the SWTA problem formulation

which was shown to be NP-complete in 1986 by Lloyd and Witsenhausen [60]. As

such, a great deal of research has been done in the past several decades to determine

57

effective methods of identifying optimal solutions. Computationally efficient optimal

methods exist for two cases of the SWTA under simplifying assumptions. First,

given a homogeneous weapon set, pij = pj for all i, denBroeder [30] shows optimality

is achieved by evenly distributing the weapons across as many targets as possible

using the maximum marginal return (MMR) algorithm. The second instance assumes

that each target can have at most one weapon assigned to it [24] [75]. Because this

problem focuses on a special instance of the dynamic WTA (DWTA) problem, relevant

literature from this class is reviewed.

4.4.2 Two-Stage Dynamic Weapon-Target Assignment.

Consider a problem where a single wave of targets arrives, and instead of allocat-

ing all weapons at once, it is done over two stages. Weapon capabilities are stage

dependent, meaning that kill probabilities for stage one and stage two differ. Next

assume the outcome of any stage one weapon allocations are determined prior to

allocating additional resources in stage two. This problem is formulated as follows.

Let N targets arrive in the first stage at which point x1j shots are allocated to target

j, for all j = 1, 2, . . . , N . Let Ω be the set of all possible outcomes of the stage one

allocations, then ω ∈ Ω denotes a sample realization. This formulation allows for

the single shot probabilities of survival, qtj, t = 1, 2 to vary by stage, representing

non homogeneity of weapons. This may be interpreted as two types of weapons,

two weapon locations, or changing capabilities as time goes on. Let J1 be the set

of targets for which weapons are allocated in stage one, target values, Vtj, t = 1, 2

transition probabilistically for each target j ∈ J1 from stage one to two. Let n2 be

the number of remaining targets after the stage one outcome has been determined.

Next, x2j weapons are allocated to each target j ∈ J2(ω) where J2(ω) is the set of

targets in stage two, which depends on the outcome ω. Let C be the resource pool

58

from which weapons are selected. Additionally, there are m1 weapons of type 1 and

m2 weapons of type 2. Then the 2-stage DWTA programming formulation is:

Z1(x) = max
x

N∑
j=1

V1j(1− (q1j)
x1j) + Eω∈Ω[Z2(x2, ω)] (4.4)

where

Z2(x2, ω) = max
x2

n2∑
j=1

V2j(ω)(1− (q2j)
x2j) (4.5)

subject to

x1 + x2 ≤ C (4.6)

x1 ≤ m1 (4.7)

x2 ≤ m2 (4.8)

xtj ∈ N; t = 1, 2; j = 1, . . . , N ; (4.9)

Z2(x2, ω) is the expected second stage value and, given a number of second stage

weapons, m2, and a sample outcome of remaining targets, ω, is piecewise integer

concave (for a proof of this, see [2]) and is solved using the MMR algorithm. Con-

straint (4.6) is the resource constraint, constraints (4.7) and (4.8) are the capacity

constraints, and constraint (4.9) is the integrality constraint on the decision variables.

4.5 Methodology

Because of the special structure of this stochastic program, the work of [4] is ex-

tended to consider the case where a second stage approximation of the value function

is used to allow for efficient solutions of the overall problem. This method uses Monte

59

Carlo sampling of the first stage outcomes to approximate the stage two value func-

tion. Because of the concavity of the stage two function the proposed algorithm is

able to quickly determine an approximation of the tradeoff between using weapons in

the first stage and using weapons in the second stage. Because the second stage uti-

lizes a single resource class, the optimality of the MMR algorithm of denBroeder [30]

is exploited to generate optimal allocations for any sampled ω ∈ Ω. This is further

used to efficiently generate high quality solutions using my less computational time

required to enumerate all possible first stage outcomes.

4.5.1 Adaptive Dynamic Programming.

Consider a general finite space and discrete time horizon dynamic programming

problem. Let S be the state space of the system with time horizon t = 0, . . . , T .

The state St ∈ S represents the state of the system at time t, and a decision xt that

acts on the system is selected from a finite set U at each time step. Wt is a random

occurrence generated with a known probability distribution and the system evolves

according to a transition function which has the form

St+1 = f1(St, xt,Wt) (4.10)

where f1(·) is a function describing the system dynamics. Next, define the one-period

contribution for being in state St and making decision xt as Ct(St, xt) and express

the T -stage value to be maximized as the expected value of the summation of the T

costs:

max
xt∈U(St)

E

{
T∑
t=0

Ct(St, xt)|S0

}
(4.11)

60

It is well known that problems of the form given in (4.11) can be solved by Bell-

man’s optimality equations [12]:

Jt(St) = max
xt

(Ct(St, xt) + EWt {Jt+1(St+1(St, xt,Wt))|St} (4.12)

Problems of this type grow exponentially within the state, decision, and outcome

spaces - known as the curses of dimensionality. Therefore it is necessary to approx-

imate the value function Jt+1(St+1(·)). Adaptive Dynamic Programming provides a

means for stepping forward through time iteratively using sample realizations of the

approximated value function.

4.5.2 Approximation of the Second Stage Value Function.

For any first stage weapon allocation, the number of outcomes grows exponentially

in the number of weapons allocated and targets with weapons allocated to them.

However, because of its concavity, estimates of the second stage value function are able

to be generated by sampling outcomes of the first stage. The concave adaptive value

estimation (CAVE) algorithm of Godfrey and Powell [38] provides such a method

for approximation. CAVE uses stochastic subgradient information representing the

marginal value for saving enough resources to use an additional weapon in stage two.

The CAVE algorithm is shown in Algorithm 1.

4.5.3 Adaptive Dynamic Programming for a Two-Stage DWTA.

The CAVE algorithm is implemented within the MMRPlus algorithm of [4] to

efficiently generate high quality solutions to the problem defined in (4.4) - (4.9).

Powell’s post-decision state notation [83] is adopted and the second stage post decision

value function is defined as

61

Algorithm 1 Concave Adaptive Value Estimation (CAVE) Algorithm [38]

STEP 1 Initialization

• let K = {0}, where v0 = 0, u0 = 0.

• set ε−, ε+, α.

STEP 2 Collect Gradient Information

• Given a state s ≥ 0, sample the gradients π−(s, ω) and π+(s, ω) with random
outcome ω ∈ Ω

STEP 3 Define Smoothing Interval

• Let k− = min{k ∈ K : vk ≤ (1 − α)vk+1 + απ−(s)} and k+ = max{k ∈ K :
(1− α)vk−1 + απ+(s)} ≤ vk

• Define the smoothing interval Q =
[
min{s− ε−, uk−},max{s+ ε+, uk

+}
)

.

• Create new breakpoints at s and the endpoints of Q
STEP 4 Perform Smoothing

• For each segment in Q, vknew = απ + (1 − α)vkold where π = π−(s) if uk < s
and π = π+(s) otherwise.

• Adjust ε−, ε+, α according to step size rules.

• Return to Step 2.

62

Jx1 (Sx1) = Eω∈Ω[Z2(x2, ω)] (4.13)

The post decision state is then Sx1 = n2, and for any given number of weapons, the

slopes produced by CAVE represent the marginal value of reserving a weapon for the

second stage. The MMRPlus algorithm is shown in Algorithm 2.

Algorithm 2 MMRPlus Algorithm [4]

STEP 0 Initialization - Given Jx1 (Sx1)

• xj = 0 ∀j = 1, . . . , N and set xN+1 = x(2)

• Set Sj = Vj for j = 1, . . . , N .

• Compute the marginal returns MRj = Sj(1 − qj),MRN+1 = Jx1 (1) − Jx1 (0)
∀j.
• Initialize weapon index i = 1.

while i ≤M do

• Find target k for which weapon i has the greatest effect, compute k =
arg maxj=1,...,N+1MRj

• Increment the allocation to target k: xk ← xk + 1

if j ≤ N then
Update the expected surviving value Sk = Skqk, and update the marginal

return MRk = Sk(1− qk)
else

Increment xN+1 ← xN+1 + 1 and update the marginal return MRN+1 =
Jx1 (xN+1 + 1)− Jx1 (xN+1)

end if
Set i = i+ 1

end while

Using MMRPlus,the optimal allocation for stage one weapons is determined using

the second stage approximation from the Monte Carlo experimentation. Given a

realization of second stage target arrivals ω and the current solution of the MMRPlus

algorithm where x2 = C − x1 weapons are allocated to the second stage, the left and

right derivatives, v−(ω) and v+(ω) respectively, are calculated as:

63

v−(x2, ω) =


Z(x2, ω)− Z(x2 − 1, ω), if x2 6= 0

0 otherwise

(4.14)

v+(x2, ω) = Z(x2 + 1, ω)− Z(x2, ω) (4.15)

where Z(x2, ω) is the solution by the MMR algorithm of the second stage problem

given x2 weapons and sample realization ω. This ensures that any excess resources

after the first stage allocation are used in the second stage. The algorithm is presented

as Algorithm 3. Note that the second stage probability function is dependent on

the first stage allocation. Therefore, Equation (4.4) is not necessarily concave, and

optimality is not guaranteed as in [4].

Algorithm 3 Adaptive Dynamic Programming Algorithm for 2 Stage DWTA

Initialize: x1 = m1, set ε−, ε+, α,
Initialize: v− = v+ = 0, υi = 0 for i = 1, . . .m1,
Set: a = 1, and fix iterations.
while a < iterations do

Determine optimal assignment of x1 using MMR algorithm
Using the assignment of x1, generate outcome ω ∈ Ω using Monte Carlo

sampling
Set x2 = C − x1

if n2 > 0 then,
Determine optimal assignment of x2 using MMRPlus - call it V
Determine optimal assignment for x2− 1 and x2 + 1 using MMRPlus - call

them J− and J+, respectively
v− = J − J−, v+ = J+ − J

else
v− = v+ = 0

end if
Update υi for i = 1, . . .m1 using CAVE algorithm
a = a+ 1, update ε−, ε+, α

end while

64

4.6 Numeric Results and Discussion

Initially small scale experiments are run so that exact solutions can be determined

for comparison of the proposed method. Two approximations are used as benchmarks

for further comparison. These benchmark approximations are used because because

of their computational simplicity as well as their ability to provide quality solutions

for comparison. All experiments discussed herein use Matlab 2013a on a 3.07 GHz

Intel Xeon with 24 GB RAM.

4.6.1 Small scale experiments.

To test the algorithm, 100 problem instances are randomly generated as follows.

Integer target values are randomly generated, ranging from one to ten, and N is

fixed. Survival probabilities are independently and randomly selected with qtj ∼

UNIF (0.1, 0.4) for t = 1, 2 and j = 1, 2, . . . , N . For the initial set of experiments,

M is fixed at seven, N is varied at seven and eleven and the values computed. Two

approximation schemes are selected for comparison of the proposed method. First, a

greedy approximation developed by Castanon and Wohletz [22] is used that proves

very effective for small scale tests, but suffers extensive computation time for larger

problems. This algorithm is presented as Algorithm 4.

In order to describe the greedy approximation of [22], several items must be de-

fined. Define x1 = (x11, x12, . . . , x1N) and let x+
1j = (x11 . . . x1j x1j +1 x1(j+1) . . . x1N).

Let Ω = {0, 1}N denote the outcome space for a given allocation where ωj = 0 denotes

that target j has been destroyed, and ωj = 1 denotes target j survives. Given a stage

one allocation x1, then

P (ω|x1) =
∏

{j|ωj=0}

(1− (1− p1j)
x1j) ∗

∏
{j|ωj=1}

(1− p1j)
x1j (4.16)

65

In addition, define V(ω) =
∑

j|ωj=0 V1j, and

J(x1) =
∑
ω∈Ω

V(ω)P (ω|x1)J∗2 (ω,M −
N∑
i=1

x1i) (4.17)

The greedy algorithm is then

Algorithm 4 2-stage greedy WTA algorithm [22]

Initialize: x1j = 0, for i = 1, 2, . . . N .

while
∑N

j=1 x1j < M do

For each j, compute MRj(x1) = J(x1)− J(x+
1j)

Select j∗ for which MRj∗(x1) ≤MRj(x
+
1) for all j 6= j∗.

if MRj∗ < 0 then
Set xj∗ = xj∗ + 1

else Break
end if

end while

Because of the second stage dependency on the first stage outcome, Algorithm 4 is

not optimal. However, it has been shown to provide optimal solutions to randomly

generated problems of smaller size [22], and is used to provide a metric for larger

sized problems due to its relative computational tractability. In the second approx-

imation, denoted MMR in the results tables, all possible combinations of x1 and x2

are generated. MMR is then run for each stage on every possible x = (x1, x2), and

the x which maximizes the sum of the two stage expected value is selected. Since

it considers all possible outcomes, the exact expected target destruction value is re-

ported for the CW heuristic. Because of the dependence on first stage outcomes, 1000

monte carlo simulations are run to determine the expected value for the MMR and

ADP policies. The expected value for the MMR method is also presented for further

validation Where appropriate, common random numbers were used to reduce experi-

mental variation. The average optimality gap and associated standard deviations for

the 100 experiments, are presented in Table 1. Additionally, computation time for

66

each method is reported in Table 2. The results of the first 10 experiments for each

problem size are shown in Figure 2.

Table 1. Optimality gap (%) for 100 randomly generated problem instances

CW Heur. ADP MMR Sim
M N %Diff %Diff % Diff
5 5 0.0 0.087 ±1.6 6.44 ±4.55
5 10 0.0 0.074 ±3.7 1.56 ±2.24
10 5 0.0 1.07 ±0.093 2.76 ±1.86
10 10 0.0 1.13 ±1.21 7.36 ±4.53

Table 2. Computation time (seconds) for 100 randomly generated problem instances

M N CW Heur ADP MMR
5 5 0.0058 ±0.0038 0.0815 ±.0214 0.0047 ±0.0112
5 10 0.0116 ±0.0064 0.0740 ±.0086 0.0034 ±0.0005
10 5 0.0192 ±0.0045 0.0779 ±0.0117 0.0072 ±0.0003
10 10 0.1020±0.0586 0.1044 ±0.0072 0.0073 ±0.0009

For this set of small scale experiments, solving exactly or using the first approximation

methods is preferable. However, the value obtained through the ADP algorithm

is very competitive, and the strength of the ADP method comes as problem size

increases.

The next set of experiments varies the number of weapons and targets between

10 and 20 to determine the effectiveness of the method on slightly larger problem

sizes. The CW heuristic and the two-stage MMR approximation remain the principal

benchmarks. For these experiments, 50 test problems are randomly generated using

the same parameters as above with 1000 simulations run on the solutions. Since the

simulated MMR results provide a sufficient estimate of the approximation, they are

reported for this analysis. The average percent difference from the CW heuristic for

the ADP and MMR methods, are presented in Table 3, with computation times in

Table 5.

The CW Heuristic was computed in a reasonable amount of time for problems

with less than 40 weapons or targets. However, these problems take several minutes

67

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40
Value Comparison for W = T = 5, Problems 1−10

Problem Number

V
al

ue

CW Heur
ADP
MMR sim

(a) W = 5, T = 5

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

45

50
Value Comparison for W = 5, T = 10, Problems 1−10

Problem Number

V
al

ue

CW Heur
ADP
MMR sim

(b) W = 5, T = 10

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

45

50

55
Value Comparison for W = 10, T = 5, Problems 1−10

Problem Number

V
al

ue

CW Heur
ADP
MMR sim

(c) W = 10, T = 5

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

Value Comparison for W = 10, T = 10, Problems 1−10

Problem Number

V
al

ue

CW Heur
ADP
MMR sim

(d) W = 10, T = 10

Figure 2. Results for first 10 small sized experiments at varying W & T

Table 3. Gap from CW Heur for 50 randomly generated medium sized problems

Gap(%) ± (std dev)
Weapons Targets ADP MMR

10 20 0.55± 2.91 2.02± 2.09
20 10 0.8± 0.89 3.12± 2.07
20 20 0.87± 0.97 9.78± 4.17

68

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100
Value Comparison for W = 10, T = 20, Problems 1−10

Problem Number

V
al

ue

CW Heur
ADP
MMR sim

(a) W = 10, T = 20

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100
Value Comparison for W = 20, T = 10, Problems 1−10

Problem Number

V
al

ue

CW Heur
ADP
MMR sim

(b) W = 20, T = 10

1 2 3 4 5 6 7 8 9 10
0

50

100

150
Value Comparison for W = 20, T = 20, Problems 1−10

Problem Number

V
al

ue

CW Heur
ADP
MMR sim

(c) W = 20, T = 20

Figure 3. Results for first 10 medium sized experiments at varying W & T

69

each to solve, and in some cases, storage is a constraining factor. Hence, the percent

improvement of the ADP method over that of the MMR method is used as the primary

metric. The results of this analysis are shown in Table 4.

Table 4. Percent difference of ADP over MMR for 50 randomly generated medium
sized problems

Weapons Targets % ∆ (ADP - MMR)
10 40 −0.5± 2.2
20 40 0.39± 3.47
40 10 −0.12± 0.52
40 20 2.63± 2.66
40 40 8.4± 4.9

Table 5. Computational results for 100 randomly generated medium sized problems

Comp Time (s) (± std dev)

Weapons Targets CW Heur ADP MMR

10 20 62.9445± 7.9483 0.1255 ± 0.0213 0.0082 ± 0.0008
10 40 - 0.1153 ± 0.0279 0.0073 ± 0.0005
20 10 54.4406± 9.4137 0.1529 ± 0.017 0.0233 ± 0.0017
20 20 93.8378± 13.7356 0.1938 ± 0.0152 0.0245 ± 0.002
20 40 - 0.197 ± 0.0282 0.0244 ± 0.0026
40 10 - 0.1906 ± 0.0125 0.0715 ± 0.0079
40 20 - 0.246 ± 0.0218 0.00714 ± 0.0032
40 40 - 0.3377 ± 0.0247 0.0861 ± 0.0043

Results show a statistically insignificant difference between the ADP method and

MMR when the number of weapons is far less than the number of targets. This

is an intuitive result because with few weapons, it will be optimal to spread them

out as evenly as possible over the highest valued targets. This suggests that any

approximation which reinforces this principle will generate very similar solutions.

However, as the number of weapons increases to a level greater than or equal to the

number of targets, the ADP outperforms on average. As further evidence of this,

confidence intervals around the difference in the means between the 1000 monte carlo

simulations were developed. Figures 4 and 5 demonstrate the significant improvement

gained through the use of the ADP method as problem size increases, when there are

more weapons than targets.

70

5 10 15 20 25 30 35 40 45 50

−4

−2

0

2

4

6

8

10

Problem Number

M
ea

n
A

D
P

 −
 M

ea
n

M
M

R

95% CIs around difference in means for W = 40, T = 20

Figure 4. 95% CI’s around difference in means (X̄ADP − X̄MMR)

5 10 15 20 25 30 35 40 45 50
−10

−5

0

5

10

15

20

25

30

35

Problem Number

M
ea

n
A

D
P

 −
 M

ea
n

M
M

R

95% CIs around difference in means for W = 40, T = 40

Figure 5. 95% CI’s around difference in means (X̄ADP − X̄MMR)

71

Figure 4 shows approximately 90% of the randomly generated problem instances

showing a statistically significant increase in value, while Figure 5 shows improvement

96% of the time. Again, because both methods spread weapons across the highest

expected return, it is unsurprising that when the targets outnumber the weapons,

both methods are fairly consistent. Conversely, when the number of weapons is

relatively greater than the number of targets, the ADP substantially improves because

it is accounting for the future value gained while generating first stage allocations.

The MMR approximation generally pulls weapons to one stage or the other and

allocates them fully, but the ADP method tends to spread weapons across stages,

improving the likelihood that leakers will be destroyed in stage two. This is evidenced

in the improvement for cases where the number of weapons and targets are equal.

Computation times for the two methods are both less than a second, with the MMR

method generally running faster, but with comparatively poorer performance. The

next set of experiments are done to see how the methods perform on problems of a

much larger size.

4.6.2 Large Scale Experiments.

For the large scale experiments, 50 randomly generated problem instances were run

using the same parameters as in Section 4.6.1. For this set of experiments, the number

of weapons and targets vary between 100, 200 and 400. Because of the insignificant

improvement when there are more targets than weapons, this analysis focuses on the

cases where the number of weapons are greater or equal to that of the targets. With

problems of this size, solution of the greedy algorithm becomes intractable due to the

potential size of the outcome space as the algorithm progresses. Therefore, the MMR

becomes the sole benchmark to determine solution quality. Simulations are run on

the policies of each method, and the results are presented in Table 6.

72

Table 6. Numerical results for 100 randomly generated large sized problems

Weapons Targets % Difference of ADP vs. MMR
100 100 9.19± 4.12%
200 100 3.68± 2.75%
200 200 9.06± 5.11%
400 100 0.22± 0.37%
400 200 4.04± 2.57%
400 400 9.65± 4.32%

Table 7. Computation time (seconds) for 100 randomly generated large sized problems

Weapons Targets ADP MMR
100 100 1.2635 ± 0.0794 1.983 ± 0.067
200 100 1.3027 ± 0.893 2.0743 ± 0.0711
200 200 1.741 ± 0.203 2.3069 ± 0.2406
400 100 1.7233 ± 0.1198 6.2772 ± 0.1323
400 200 2.9153 ± 0.3817 9.5193 ± 1.1262
400 400 3.7753 ± 0.3781 10.4585 ± 0.5697

Results are consistent with the findings of Section 4.6.1, with the notable increase

in performance of the ADP method. As problem size increases, the ADP method

continues outperforming the two stage MMR. Additionally, computation time for the

proposed method is much more competitive as problem size increases. For problems

where there are many targets coming in at a time, this provides a quick approximation

for determining the number of weapons to save for a second stage. Figures 6 and 7

present the simulated values and confidence intervals around the difference in the

simulated means for the first ten problems of each large scale case.

The black lines in Figures 7a-7f are at y = 0. Since the confidence intervals

consistently above this line means that the null hypothesis that the difference in the

means is zero is rejected and there is a significant difference. This is generally true in

all cases except where there are 400 weapons and 100 targets. This is likely due to the

large proportion of weapons to targets and the defined kill probabilities. The ADP

method rarely under performs comparatively, and even when it does, the difference

in destroyed target value is very small practically speaking. The speed of the ADP

73

1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

Value Comparison for W = 100, T = 100, Problems 1−10

Problem Number

V
al

ue

ADP
MMR sim

(a) W = 100, T = 100

1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

700
Value Comparison for W = 200, T = 100, Problems 1−10

Problem Number

V
al

ue

ADP
MMR sim

(b) W = 200, T = 100

1 2 3 4 5 6 7 8 9 10
0

200

400

600

800

1000

1200

Value Comparison for W = 200, T = 200, Problems 1−10

Problem Number

V
al

ue

ADP
MMR sim

(c) W = 200, T = 200

1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

Value Comparison for W = 400, T = 100, Problems 1−10

Problem Number

V
al

ue

ADP
MMR sim

(d) W = 400, T = 100

1 2 3 4 5 6 7 8 9 10
0

200

400

600

800

1000

1200

1400
Value Comparison for W = 400, T = 200, Problems 1−10

Problem Number

V
al

ue

ADP
MMR sim

(e) W = 400, T = 200

1 2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000

2500

3000
Value Comparison for W = 400, T = 400, Problems 1−10

Problem Number

V
al

ue

ADP
MMR sim

(f) W = 400, T = 400

Figure 6. Results for first 10 large scale experiments at varying W & T

74

5 10 15 20 25 30 35 40 45 50
−5

5

15

25

35

45

55

65

75

Problem Number

M
ea

n
A

D
P

 −
 M

ea
n

M
M

R

95% CIs around difference in means for W = 100, T = 100

(a) W = 100, T = 100

5 10 15 20 25 30 35 40 45 50

0

10

20

30

40

50

Problem Number

M
ea

n
A

D
P

 −
 M

ea
n

M
M

R

95% CIs around difference in means for W = 200, T = 100

(b) W = 200, T = 100

5 10 15 20 25 30 35 40 45 50

−20

0

20

40

60

80

100

120

140

160

Problem Number

M
ea

n
A

D
P

 −
 M

ea
n

M
M

R

95% CIs around difference in means for W = 200, T = 200

(c) W = 200, T = 200

5 10 15 20 25 30 35 40 45 50

−2

0

2

4

6

8

Problem Number

M
ea

n
A

D
P

 −
 M

ea
n

M
M

R

95% CIs around difference in means for W = 400, T = 100

(d) W = 400, T = 100

5 10 15 20 25 30 35 40 45 50

0

10

20

30

40

50

60

70

80

90

100

110

Problem Number

M
ea

n
A

D
P

 −
 M

ea
n

M
M

R

95% CIs around difference in means for W = 400, T = 200

(e) W = 400, T = 200

5 10 15 20 25 30 35 40 45 50

0

50

100

150

200

250

300

Problem Number

M
ea

n
A

D
P

 −
 M

ea
n

M
M

R

95% CIs around difference in means for W = 400, T = 400

(f) W = 400, T = 400

Figure 7. 95% CI’s around difference in means (X̄ADP − X̄MMR)

75

algorithm, however, is nearly four times as long for the MMR method on the test

problems, suggesting the desirability of the ADP method.

4.7 Conclusions and Future Research

This research develops an efficient solution algorithm for a two-stage shoot-look-

shoot scenario where the second stage target set is dependent on the first stage al-

locations. Through Monte Carlo simulation, subgradients of the second stage value

function are approximated. These subgradients are then used to get an approxima-

tion of the two-stage value for all first stage allocations. This method has been shown

to be competitive with established techniques for small to medium sized problems,

but preferred as problem size increases. The CW heuristic is able to address problem

instances up to 20 weapons and 20 targets. For those problems, the proposed method

obtained values within 1.2% of optimal solutions found using the CW heuristic. For

large problems, the ADP approach consistently outperformed the MMR heuristic by

up to 8.4% for small problems and up to 9.6% for larger problem instances. The ADP

approach in [4] and further developed here offers significant flexibility to be extended

to numerous other problem formulations. First, the algorithm can be extended to in-

clude the impact of cost on the approximation scheme as well as the effect sensors may

have in the first stage, second stage, or both. Additionally, weapons for this effort are

homogeneous within a stage, so a natural extension will investigate non-homogeneous

weapons in and across stages. Last, because the subgradients represent the marginal

increase in reserving a weapon for future stages, the algorithm may be very effective

in instances where there are more than two stages. Therefore, additional research

may extend this to multiple stages.

76

V. Approximate Dynamic Programming Methods for a

Cooperative Dynamic Weapon-Target Assignment Problem

5.1 Abstract

The dynamic weapon target assignment (DWTA) problem is an extension of the

static weapon-target assignment problem in which assignments are made over time,

instead of all at once. This research investigates a cooperative version of the DWTA

problem where the single-shot probability of kill is conditional upon the current tar-

get set. The sequential nature of the problem lends itself to solution by dynamic

programming. However, because of the curses of dimensionality, large problems often

become computationally intractable. An approximation method is proposed which

reduces the size of the decision space to be investigated. Through ordinal optimiza-

tion a rigorous method for ensuring selection of high-quality decisions from the action

space for any given state is demonstrated. Various distributions are investigated, and

results show that near optimal solutions can be obtained in much less computation

time.

5.2 Introduction

The weapon-target assignment (WTA) problem is a fundamental resource alloca-

tion problem in the field of military operations research where the goal is to assign

weapons to targets such that some objective is optimized based on the number of

targets destroyed. Because of its applicability to numerous issues facing military an-

alysts, such as ballistic missile defense, air-to-ground operations, and integrated air

defense systems (IADS), this problem continues to be of significant operational im-

portance. Additionally, because of the complexity of the various formulations, the

WTA problem also maintains significance in the theoretic realm. Though it is also

77

found under other names, two general types of WTA problem exist: static (SWTA)

and dynamic (DWTA). In both forms, there is a single-shot probability of kill for a

given weapon-target assignment.

First proposed by Manne [63], the static formulation allocates a set of weapons

to targets at one time given all problem information is known. Many variations of

the SWTA exist within the literature (see [66] and [31]). The dynamic case provides

an allocation policy over some time horizon, for which more information may arrive

as time progresses.Many formulations of the DWTA are found, but for each, their

underlying structure consists of the sequential allocation of weapons to targets with

some sort of observed outcome occurring between stages. First formulated by Ho-

sein [48], the dynamic problem has similar probabilistic characteristics as the static

problem, but the complexity is increased with the inclusion of a solution over some

time horizon. In the DWTA problem, weapons allocations impact the future state

space. As such, the DWTA maintains increased complexity for which few solution

techniques exist.

Though it has not been researched to the extent of the SWTA problem, the

DWTA problem provides a more realistic implementation by including a temporal

component. As such, the DWTA is a much more complex problem from a mathemat-

ical standpoint and has received a fair amount of attention in the literature. Similar

to the SWTA, a number of methods have been employed to provide solutions for

various types of DWTA problems. As the originator of the dynamic instance, [47]

provides several results which are generalizable to the DWTA problem. Murphey [70]

[71] use stochastic decomposition for a two-stage DWTA problem. Specific to the

general DWTA problem, Chang et al. [24] use a static WTA approximation scheme

within an iterative linear network flow framework to effectively provide high-quality

solutions for the DWTA. Because of the integer restriction for the decision variables,

78

the chromosome representation within a GA presents a useful scheme for solving both

the static and dynamic versions of the WTA problem. As such, much work has de-

veloped hybrid genetic algorithms (GAs) to assist in solving the DWTA. Wu et al.

[99] apply a modified GA to the DWTA and introduce weapon use deadlines within

the problem formulation. These deadlines follow the principles of scheduling theory,

and are in the form of additional constraints such that a weapon must be shot at a

target by a specified time or it is rendered unusable. The authors call their method

a modified GA because it applies a basic GA iteratively, assigning a weapon to a

target (possibly suboptimally) immediately before the deadline is reached. [101] de-

velop a heuristic which uses problem information (domain knowledge) and constraint

programming to assign priorities to assignments. Evolutionary heuristics which use

a hybridized GA with memetic algorithms have also been applied to the DWTA by

[25]. Additionally, [54] applies a hybrid heuristic which uses a simulated annealing

(SA) type heuristic to determine the fitness of a population within a GA framework.

Other heuristic techniques applied to the DWTA include Tabu Search by Xin et al.

[102], ant colony optimization (ACO) with tabu table updates by [103], and a mod-

ified Hungarian method with particle swarm optimization (PSO) by [56], although

this is provided in an open source text, so it’s rigor may be unverified. Lastly, exact

dynamic programming is applied to specific instances of the DWTA problem [91][89]

The rest of this chapter is structured as follows. Section 5.3 defines the prob-

lem and provides the modeling framework. Next, Section 5.4 presents the proposed

methodology along with a presentation of some numeric examples and computational

results in Section 5.5. Finally, conclusions and future research are presented in Section

5.6.

79

5.3 Problem Definition

This section provides the description of the problem, to include assumptions for

the DWTA problem given in Section 5.3.1, followed by its formulation as an infinite

horizon discrete time Markov decision process (MDP) in Section 5.3.2.

5.3.1 Problem Description.

Consider an offensive weapon target assignment problem consisting of a known

set of weapons used to penetrate an integrated air defense system, of which all targets

are assumed known. The DWTA divides the total duration of the attack into several

discrete intervals in which information is obtained about the outcomes of the previous

allocation. Any targets destroyed are not targeted in subsequent stages, allowing the

operators to make better use of their weapons. To model the various layers of an

IADS, the problem considers single-shot probabilities which depend on the current

target set. The basic assumptions for this DWTA formulation are as follows:

• In each stage, a subset of the remaining weapons is selected and committed

simultaneously

• The problem is solved at each stage using previous stage information

• Targets are present for the entire time horizon with an associated value; their

value goes to zero when destroyed

• The outcome of each stage is perfectly observed prior to the next stage

• Computing the optimal assignment for the current stage always assumes optimal

assignments will be made in subsequent stages

• Weapons are allocated at each stage with the goal of optimizing the objective

value at the end of the final stage

80

• Geospatial characteristics of the weapons or targets are implicitly accounted for

in their effect on the probability space

The elements of this multi-stage problem are next defined and the dynamic pro-

gramming formulation provided.

5.3.2 Problem Formulation.

This problem is modeled as an infinite horizon, discrete time Markov decision

process (MDP) using the collection of objects

{T ,S,A, p(·|S, a), C(S, a,W)} (5.1)

where T is the set of decision epochs, S is the state space, AS represents the set of

allowable actions given the system is in state S, with A =
⋃
S∈S AS, p(·|S, a) is the

probability transition function conditioned on being in state S and making decision

a ∈ AS, and C(S, a,W) is the reward obtained from being in state S, making decision

a, and realizing the outcome W . Each of these elements are described in greater detail

below.

Let T = {1, 2, . . .} be the set of time stages and let t ∈ T denote a specific stage.

Let St = (Rt, Yt) ∈ S denote the state of the system at time t, where Rt is a vector

indicating the number of weapons (of M different types) remaining in inventory and

Yt is a vector indicating the number of targets (of N different types) still functioning.

Rt = (Rt1, Rt2, . . . RtM), where Rtr is the number of weapons of type r at time t,

r = 1, . . . ,M . Yt = (Yt1, Yt2, . . . YtN), where Yty is the number of targets of type y at

time t, each with associated value, Vy, y = 1, . . . , N . A state S ∈ S corresponds to

a particular pair of vectors indicating the number of weapons and targets remaining.

Define pry|Yt as the single-shot probability of kill if weapon type r is allocated to target

type y given the current target set Yt. Define qry|Yt = 1− pry|Yt as the corresponding

81

probability of survival. The conditional probabilities of survival are used to model

the cooperative nature of an IADS; as certain targets are destroyed, the attacker

achieves improved probability of destroying other targets. For brevity, pry = pry|Yt

and qry = qry|Yt is henceforth used.

As with any MDP, at each time step the state determines the set of allowable

controls. Here the decision is a function of the remaining weapons and the current

set of targets in the threat environment. For any epoch, ASt represents the set of

allowable decisions given the system is in state S at time t. Define the decision

variables atryj as the number of weapons of type r to assign to target j, of type y, at

time t. A matrix of decisions and the constraint set can be defined as

at(St) =



at111 at211 . . . atM11

at112 at212 . . . atM12

...
...

. . .
...

at11Yt1 at21Yt1 . . . atM1Yt1

at121 at221 . . . atM21

...
...

. . .
...

at12Yt2 at22Yt2 . . . atM2Yt2

...
...

. . .
...

at1NYtN at2NYtN . . . atMNYtN



(5.2)

and

ASt =

{
a(St)|

T∑
t=1

N∑
y=1

Yty∑
j=1

atryj ≤ R1r for r = 1, 2, . . . ,M ; atryj ∈ N

}
(5.3)

Here the 0 index represents the allowable control of “do nothing”. At each time step,

given a state St, action at, and outcome Wt+1, the system transitions according to

82

St+1 = SM(St, at,Wt+1) (5.4)

where SM(·) is a function describing the system’s dynamics. For our DWTA problem,

states transition in two distinct fashions. First, let

(atr)
M
r=1 = (

N∑
y=1

Yty∑
j=1

atryj) (5.5)

be a vector denoting the number of weapons of type r fired at time t. Then our

weapon state transitions deterministically following

Rt+1 = (Rtr − atr)Mr=1 (5.6)

The target vector transitions probabilistically based upon the allocation policy at

each decision epoch. Let Ŷt+1,yj be a random variable representing the outcome of

the jth target of type y given a decision such that

Ŷt+1,yj =


0 if target j survives the attack,

1 if target j is destroyed during the attack.

(5.7)

for each target type y. Further, define

83

Ŷt+1 =



Ŷt+1,11

Ŷt+1,12

...

Ŷt+1,1Yt1

Ŷt+1,21

Ŷt+1,22

...

Ŷt+1,2Yt2

...

Ŷt+1,N1

Ŷt+1,N2

...

Ŷt+1,NYtN



(5.8)

then the target state element transitions following

Yt+1 =

[
Yty −

Yty∑
j=1

Ŷt+1,yj

]N
y=1

(5.9)

and

P{Yt+1,yj = 0|St, at} =


1−

∏M
r=1(qrj)

atrj if Yt,yj = 1

1 if Yt,yj = 0

(5.10)

P{Yt+1,yj = 1|St, at} =


∏M

r=1(qrj)
atrj if Yt,yj = 1

0 if Yt,yj = 0

(5.11)

Here, qrj represents the single shot survival probability if weapon type r is shot at

target j. This must be done for all active targets with weapons allocated to them at

84

time t. If nt denotes the number of active targets with weapons allocated to them at

stage t, then if Ŷt+1 is the set of possible outcomes known by time t+ 1, |Ŷt+1| = 2nt .

As previously discussed, each target has an associated value, Vj. Then the value

obtained at any time step follows

Ct+1(St, at, Ŷt+1) =
N∑
y=1

Yty∑
j=1

VyŶt+1,yj (5.12)

The value of any target destroyed during the time interval (t, t+1) is accumulated

within the cumulative objective function value. The objective is determine a policy

π ∈ Π mapping each state to an action which maximizes

max
π

Eπ
{∑
t∈T

γCπ
t (St, A

π
t (St))

}
. (5.13)

where Π is the set of all possible policies and γ is the discount factor.

5.4 Solution Methodology

The SWTA problem has been shown to be NP-complete by Lloyd and Witsen-

hausen [60], therefore, any extension is also NP-complete. As conditional kill prob-

abilities are incorporated , the sequence in which weapons are employed becomes

an important factor. The proposed solution to this problem uses approximate dy-

namic programming (ADP). Section 5.4.1 introduces dynamic programming and lays

the foundation for solution using ADP. Section 5.4.2 provides a description of the

approximations used.

85

5.4.1 Dynamic Programming.

5.4.1.1 Value Iteration.

Dynamic programming is a well demonstrated method for solving MDPs such as

the one formulated in 5.3.2. At each time step, t, the value of being in each state is

computed using Bellman’s equations:

Jt(St) = max
at∈At

(Ct(St, at) + γE {Jt+1(St+1)|St}) (5.14)

= max
at∈At

(
Ct(St, at) + γ

∑
s′∈S

P(s′|St, at)Jt+1(s′)

)
. (5.15)

where the state transitions according to equation 6.7. In order to solve the problem

the Gauss-Seidel variant of value iteration is used. This algorithm is

Algorithm 5 Gauss-Seidel Value Iteration Algorithm

1: Initialize: Set J0(s) = 0 ∀s ∈ S., Fix ε > 0, Set n = 1.
2: For each s ∈ S compute:

Jn(s) = max
a∈A

{
C(S, a) + γ

(∑
s′<s

P(s′|s, a)Jn(s′) +
∑
s′≥s

P(s′|s, a)Jn−1(s′)

)}
(5.16)

3: If ||Jn − Jn−1|| < ε(1− γ)/2γ, let πε be the resulting policy that solves 5.22, and
let J ε = Jn and stop; otherwise, set n = n+ 1 and go to 2.

5.4.1.2 Approximate Dynamic Programming.

Approximate dynamic programming is a technique often used for solving high

dimensional resource allocation problems. Many applications exist within the trans-

portation industry [80][81][84] [82]. Further, ADP has been applied to sensor manage-

ment [21], multiplatform path planning [77], and stochastic scheduling [14]. Another

86

area which has a significant amount of literature is vehicle routing with stochas-

tic demands [73][86][87][3]. Other resource allocations applications include activ-

ity networks for project planning [32][93], model predictive control [22], and high-

dimensional generalized resource allocation [81], among others.

The difficulty with practically sized resource allocation problems is that they typi-

cally grow exponentially in the state, action, or outcome spaces; the presented DWTA

problem is no different. Specifically, for this problem, the decision space grows expo-

nentially as a function of the state space. To illustrate this, assume an arbitrary state

St where there are mt weapons remaining and nt targets. There are then (nt + 1)mt

possible actions over which the algorithm must iterate. Much of the focus of approx-

imate dynamic programming is to step forward making use of an estimate for the

future value of our states. Instead of looping over all states and actions in exact value

iteration, this research proposes a reduction of the decision space using the principles

of ordinal optimization.

5.4.2 Value Iteration Using a Reduced Decision Space.

Because of the large number of allocations for any state action pair, the use of

order statistics is proposed to reduce the size of the action space investigated during

value iteration. First, consider the method used by Ho and Sreenivas to optimize

discrete event dynamic systems [46] known as ordinal optimization. The purpose of

this is to, for each state, select a subset of decisions to investigate such that the best

decision from the selected subset is better than a pre-defined population percentile.

Ordinal optimization has been used in a wide range of simulation optimization prob-

lems to effectively generate high quality solutions. Guan, Ho, and Lai [41] use ordinal

optimization to select a set of approximated bidding strategies for electrical power

suppliers. After the subset of options is selected, an exact solution is solved, and the

87

best bidding strategy is selected. Xie, Zhong, and Wu [100] apply a similar approach

to the strengthening of transmission networks through the selection of several alter-

natives, for which more detailed simulations are explored prior to final selection. This

research uses ordinal optimization to select a subset of decisions for each state, such

that the probability of selecting a good enough decision can be fixed. Let ÃSt ⊂ ASt

and |ÃSt | = K. Each action at ∈ ÃSt has a subsequent expected future reward

determined using

Ct+1(St, at) =
∑
s′∈S

P(s′|St, at)Jt+1(s′) (5.17)

Therefore, considering only the subset ÃSt , order the samples such that C
[1]
t+1 <

C
[2]
t+1 < . . . < C

[K]
t+1 the largest order from the sample will be the value which maximizes

Jt(St) = max
ãt∈ÃSt

(
Ct(St, ãt) + γ

∑
s′∈S

P(s′|St, ãt)Jt+1(s′)

)
(5.18)

Define ϕ such that 0 < ϕ < 1 as a population percentile and define ρ such that

0 < ρ < 1 as a desired level of confidence. Then, distribution free confidence intervals

are derived for these percentiles so long as our cumulative density function Φ(a) is

strictly increasing because Φ(a) = ϕ has a unique solution, defined as ξϕ. Next, select

a sample size K which guarantees

P
{
C

[K]
t+1 > ξϕ

}
> ρ, (5.19)

However,

P
{
C

[K]
t+1 > ξϕ

}
= 1− P

{
C

[K]
t+1 < ξϕ

}
= 1− ϕK , (5.20)

which results in

88

1− ϕK > ρ⇒ K ≥
⌈

log(1− ρ)

log(ϕ)

⌉
. (5.21)

This states that, if K samples are selected from any population, with ρ confidence,

ϕ percent of the population would be below the largest order statistic C
[K]
t+1. This

principle is used to reduce the number of actions investigated in value iteratioin, and

with intelligent alteration of the distribution from which our samples are selected,

results in high-quality solutions in much faster computation time. The algorithm is

described in Algorithm 6.

Algorithm 6 Gauss-Seidel value iteration with a reduced decision space

1: Initialize: Set v0(s) = 0 ∀s ∈ S., Fix ε > 0, Set n = 1.
2: For each S ∈ S
3: if |AS| > K then,
4: Generate a subset of decisions ÃS ⊂ AS where |ÃS| = K according to Φ(a).
5: else
6: ÃS = AS
7: end if
8: Compute:

vn(s) = max
a∈ÃS

{
C(S, a) + γ

(∑
s′<s

P(s′|s, a)vn(s′) +
∑
s′≥s

P(s′|s, a)vn−1(s′)

)}
(5.22)

9: If ||vn − vn−1|| < ε(1− γ)/2γ, let πε be the resulting policy that solves 5.22, and
let vε = vn and stop; otherwise, set n = n+ 1 and go to 2.

5.5 Numeric Results

We begin by defining and solving a simple example to illustrate the computational

complexity of the problem. Numeric results for this simple example are presented,

to include sensitivity analysis and the impact of parametric changes. Finally, the

problem is extended to that of a more practical size similar results are discussed.

89

5.5.1 Simple Example Description.

For this example notional future weapons concepts are investigted, each having

different capabilities. The initial state conditions are M = 5, N = 3, m = 7, and

n = 4. Let

R0 =



r1

r2

r3

r4

r5


=



2

0

2

1

2


(5.23)

and

Y0 =


y1

y2

y3

 =


#SAM target type

#Radar target type

#C2 target type

 =


2

1

1

 (5.24)

Then, the initial state vector is S0 = (R0, Y0) meaning there are two weapons of

type 1, 3 and 5, one weapon of type 4, and 0 weapons of type 2. Target type y is

valued according to V = (V1, V2, V3)T = (100, 200, 300)T . Target state transitions are

based on Table 8.

Table 8. Conditional probabilities of the state transitions

Single Shot p kill No SAMs No Radars No SAM
(all target types remain) Remaining Remaining or Radar

Weapon Type SAM Radar C2 Radar C2 SAM C2 C2

1 0.8 0.6 0.5 0.65 0.6 0.95 0.55 0.6
2 0.6 0.8 0.5 0.9 0.55 0.65 0.55 0.6
3 0.6 0.5 0.8 0.6 0.95 0.65 0.85 0.95
4 0.45 0.6 0.375 0.675 0.4125 0.4875 0.4125 0.45
5 0.45 0.375 0.6 0.45 0.7125 0.4875 0.6375 0.7125

Notice that the single shot probabilities of kill are conditional probabilities that

change based upon the targets currently in the threat environment. This is used

90

to model a scenario in which elimination of a certain target type may degrade the

adversarial capability, thus increase the probability of destroying a terminal target.

Here the terminal target is a command and control (C2) target, and the terminal

states are when all weapons have been used, or the C2 target has been destroyed.

Though it is assumed the platform from which weapons are fired is out of threat

range, risk is implicitly added using a discounting factor, γ.

5.5.2 Simple Example Solution.

A walkthrough for the solution of our simple example is presented along with a

brief discussion of the implications of the problem formulation. Using value iteration,

all possible states and decisions must be considered. For this simple example with

seven weapons and four targets, there are 864 states, of which 556 may be transitioned

to feasibly. The computational issue faced is the number of possible decisions when

there are many weapons and targets remaining. For the initial state (n + 1)m =

(4 + 1)7 = 78, 125 possible decisions must be investigated. The optimal action at

t = 0 is

a∗(S0) =



1 0 0 0 0

1 0 0 0 0

0 0 0 1 0

0 0 0 0 0


In this representation, columns reference weapon type, r and rows reference a

specific target j, j = 1, 2, . . . , n. The optimal action is to fire one of the first weapon

type (r = 1) at each of the active SAMs (y = 1), and the only weapon of type r = 4

at the Radar. Note that because of the homogeneity of the SAM targets it would be

91

optimal to alternate which weapons to fire at them while remaining optimal. Using

the data in Table 8 and the target values, the expected single-stage contribution is

C0(S0, A
∗
0) = 0.8 ∗ 100 + 0.45 ∗ 100 + (0.6) ∗ 200 = 280 (5.25)

Recall the weapon state transitions deterministically, so

R1 = (R0r − a0r)r∈R =



2

0

2

1

2


−



2

0

0

1

0


=



0

0

2

0

2


(5.26)

The target state, however, would transition to one of six possible target states:

Y1 ∈




2

1

1

 ,


1

1

1

 ,


0

1

1

 ,


2

0

1

 ,


1

0

1

 ,


0

0

1


 (5.27)

Note that Y1 = (1, 1, 1)T and Y1 = (1, 0, 1)T could each be reached by two different

paths, so caution must be taken when computing their probabilities. For the next

step, assume Y1 = (1, 0, 1)T , meaning one of the SAMs and the RADAR were each

destroyed and kill probabilities transition. The optimal policy for S1 is

a∗(S1) =



0 0 0 0 2

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


(5.28)

92

meaning both weapons of type one are allocated to the remaining SAM target. As

a means of validation, it is expected that V ∗(S1) and A∗(S1) would be the same

regardless of which SAM is remaining in the threat environment. This is confirmed

in the results. The state will now transition to one of two states:

S2 ∈







0

0

2

0

0


,


0

0

1




;





0

0

2

0

0


,


1

0

1






(5.29)

where the obvious optimal decision will be to fire the remaining weapons at the C2

node, at which point the system is guaranteed to transition to a terminal state. An

item of interest comes in looking at the single shot kill probabilities for the differ-

ent scenarios. When no radars are present, notice p1,1 = 0.95, p5,1 = 0.4875, p1,4 =

0.55, p5,4 = 0.6375, however, when there’s only the C2 target remaining the probabil-

ities shift to p1,4 = 0.6 and p5,4 = 0.7125. It is much more advantageous to shoot the

remaining weapon of type one at the SAM because of both the value gained, and the

likelihood that the system will transition to a state where only the C2 remains.

5.5.3 Numeric results for the simple example.

Given an exact solution for our model, numerical comparisons are presented for

the approximation techniques. Using the property from Section 5.4.2 that Φ(a) must

be strictly increasing several discrete distributions are selected that determine how a

subset of actions are selected for each state. Let k(at) be the number of weapons to

fire, these distributions are used to determine the number allocations are generated

for each k(at), which will be some proportion of K.

93

5.5.3.1 Uniform Discrete Distribution.

As an initial choice, a uniform discrete distribution is used, with CDF

Φ(k(at);mmin,ms) =
bk(at)c −mmin + 1

mst −mmin + 1
(5.30)

where mmin is the minimum number of weapons to fire (for our example mmin = 1),

ms is the number of weapons given the state s ∈ S, and k(at) ∈ [mmin,ms]. This

method provides a broad exploration of the allocation space.

5.5.3.2 Binomial Distribution.

Next problem knowledge is used to generate discrete distributions which increases

the likelihood of selecting good actions. For some initial state, unless the discount

factor is low enough, it will be suboptimal to fire all remaining weapons at once.

Similarly, it is likely that firing one weapon during a stage where numerous weapons

remain in inventory may not be optimal. Additionally, because of the combinatoric

nature of the problem, there are a greater number of possible ways of allocating

weapons if k(t) does not lie on the bounds of [mmin,ms]. Therefore a binomial

distribution is used to generate allocations centered around the median number of

weapons in each state.

Φ(k(at),ms, p) =

bk(at)c∑
i=0

(
ms

i

)
pi(1− p)n−i (5.31)

By fixing the sample size at the number of weapons in the state, the success

probability parameter is altered to vary the shape of the distribution. The frequencies

from our distribution are then used multiplied by K following

k̂(at) = dφ(k(at)))Ke (5.32)

94

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16

18

Number of weapons to fire

N
um

be
r

of
 a

llo
ca

tio
ns

 to
 g

en
er

at
e

Probability of success = 0.7

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16

18

Number of weapons to fire

N
um

be
r

of
 a

llo
ca

tio
ns

 to
 g

en
er

at
e

Probability of success = 0.5

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16

18

Number of weapons to fire

N
um

be
r

of
 a

llo
ca

tio
ns

 to
 g

en
er

at
e

Probability of success = 0.3

Figure 8. Binomial Selection Distributions for ϕ = ρ = 0.95⇒ K ≥ 59

where φ represents the binomial probability mass function and k̂(at) is the actual

number of allocations to generate for k(at). The ceiling function guarantees that the

actual number of samples will be greater than or equal to K. Three examples for

K = 59 are presented in Figure 8.

5.5.3.3 Comparative Results.

A comparison of results for the various approximation schemes is now presented for

the small example. The probability paramater φ is varied for the binomial distribution

to see its impact on solution quality. Similarly, ϕ and ρ are varied. The results are

shown in Tables 9-12.

Table 9. Results for ϕ = ρ = 0.95⇒ K ≥ 59

Exact UNIF (1,ms) B(ms, 0.7) B(ms, 0.6) B(ms, 0.5) B(ms, 0.4) B(ms, 0.3)

J∗ 636.582 613.825 624.606 629.017 630.153 628.434 627.406

∆J∗ - 22.757 11.976 7.565 6.429 8.147 9.176

±9.844 ±8.834 ±5.238 ±3.598 ±4.205 ±4.375

%∆J∗ - 3.6% 1.3% 1.3% 1.3% 1.3% 1.4%

±1.5% ±1.4% ±0.8% ±0.6% ±0.7% ±0.7%

Average Worst ∆J(S) - 51.4309 34.269 25.7421 27.0920 24.6047 25.6585

of all states ±9.2023 ±6.3033 ±6.1891 ±5.775 ±5.4376 ±4.459

Average Worst ∆J % - 9.7% 7.1% 5.6% 6.3% 5.8% 6.5%

of all states ±2% ±1.9% ±1.7% ±1.8% ±1.6% ±1.6%

Average ∆J ∀S - 1.7367 1.1106 0.9213 0.9879 1.1178 1.3604

±0.1625 ±0.1441 ±0.0887 ±0.1130 ±0.1166 ±0.0998

Average ∆J ∀S % - 0.3% 0.2% 0.1% 0.2% 0.2% 0.2%

± < 0.0001 ± < 0.0001 ± < 0.0001 ± < 0.0001 ± < 0.0001 ± < 0.0001

Comp Time (sec) 5.952 0.3109 0.3122 0.3097 0.3100 0.3107 0.3035

±0.0227 ±0.0015 ±0.0019 ±0.0022 ±0.0011 ±0.0015 ±0.0017

95

Table 10. Results for ϕ = .95ρ = 0.99⇒ K ≥ 90

Exact UNIF (1,ms) B(ms, 0.7) B(ms, 0.6) B(ms, 0.5) B(ms, 0.4) B(ms, 0.3)

J∗ 636.582 618.235 627.842 631.346 630.912 631.583 630.474

∆J∗ 18.347 8.740 5.236 5.670 4.999 6.108

±8.944 ±5.351 ±4.324 ±3.774 ±3.377 ±3.438

%∆J∗ - 2.9 % 0.8 % 0.8 % 0.8 % 0.8 % 1.0 %

±1.4% ±0.8% ±0.7% ±0.6% ±0.5% ±0.5%

Average Worst ∆J - 42.1246 26.6107 20.8569 20.2236 23.1063 22.0201

±7.1965 ±4.584 ±4.6305 ±4.9219 ±5.6322 ±5.9783

Average Worst ∆J % - 8.2% 5.2% 4.6% 4.7% 5.7% 5.6%

±1.5% ±1.3% ±1.5% ±1.6% ±1.8% ±1.8%

Average ∆J∀S - 1.1065 0.6556 0.5364 0.5382 0.5958 0.7739

±0.1230 ±0.0849 ±0.0826 ±0.0630 ±0.0684 ±0.0702

Average ∆J∀S % - 0.17% 0.1% 0.08% 0.08% 0.09% 0.12%

± < 0.0001 ± < 0.0001 ± < 0.0001 ± < 0.0001 ± < 0.0001 ± < 0.0001

Comp Time (sec) 5.952 0.4084 0.4132 0.4121 0.4128 0.4105 0.4123

±0.0227 ±0.0021 ±0.0021 ±0.0026 ±0.0024 ±0.0014 ±0.0015

Table 11. Results for ϕ = 0.99ρ = 0.95⇒ K ≥ 299

Exact UNIF (1,ms) B(ms, 0.7) B(ms, 0.6) B(ms, 0.5) B(ms, 0.4) B(ms, 0.3)

J∗ 636.582 628.943 633.115 634.9849 635.0977 634.2314 634.3026

∆J∗ - 7.639 3.467 1.597 1.484 2.351 2.279

±4.611 ±3.482 ±1.812 ±1.572 ±2.55 ±2.35

%∆J∗ - 1.2% 0.37% 0.37% 0.37% 0.37% 0.36%

±0.07% ±0.05% ±0.03% ±0.02% ±0.04% ±0.037%

Average Worst ∆J - 19.0955 11.9 8.9806 8.7924 7.7779 10.4195

±3.5135 ±2.8815 ±3.1484 ±2.6031 ±1.513 ±3.5743

Average Worst ∆J % - 3.49% 2.24% 1.7% 1.7% 1.45% 2.1%

±0.687% ±0.61% ±0.67% ±0.62% ±0.413% ±0.96%

Average ∆J∀S - 0.3013 0.1574 0.1087 0.1115 0.1158 0.1510

±0.0637 ±0.0337 ±0.0268 ±0.0176 ±0.0197 ±0.0205

Average ∆J∀S % - 0.047% 0.025% 0.017% 0.018% 0.024% -

± < 0.0001 ± < 0.0001 ± < 0.0001 ± < 0.0001 ± < 0.0001 ± < 0.0001

Comp Time (sec) 5.952 0.8788 0.8800 0.8792 0.8814 0.8778 0.8782

±0.0227 ±0.0036 ±0.0033 ±0.0047 ±0.0030 ±0.0031 ±0.0033

96

Table 12. Results for ϕ = ρ = 0.99⇒ K ≥ 459

Exact UNIF (1,ms) B(ms, 0.7) B(ms, 0.6) B(ms, 0.5) B(ms, 0.4) B(ms, 0.3)

J∗ 636.582 631.74 634.8 635.37 635.58 634.59 635.26

∆J∗ - 4.842 1.782 1.214 1 1.99 1.324

±4.121 ±2.34. ±1.74 ±1.474 ±1.813 ±1.41

%∆J∗ - 0.76% 0.3% 0.3% 0.3% 0.3% 0.3%

±0.65% ±0.37% ±0.27% ±0.23% ±0.285% ±0.22%

Average Worst ∆J - 16.2025 9.7996 6.9378 6.9352 7.9083 8.9068

±3.5294 ±3.7777 ±1.1341 ±0.8392 ±2.9455 ±3.0443

Average Worst ∆J % 2.98% 1.83% 1.31% 1.34% 1.55% 1.76% -

±3.53 ±3.78 ±1.13 ±0.84 ±2.95 ±3.04

Average ∆J∀S - 0.2 0.1009 0.0703 0.0675 0.0863 0.1138

±0.0349 ±0.0283 ±0.0171 ±0.0130 ±0.0150 ±0.0168

Average ∆J∀S % - 0.005% 0.004% 0.003% 0.002% 0.002% 0.003%

± < 0.0001 ± < 0.0001 ± < 0.0001 ± < 0.0001 ± < 0.0001 ± < 0.0001

Comp Time (sec) 5.952 1.0924 1.0933 1.0896 1.0920 1.0892 1.0911

±0.0227 ±0.0049 ±0.0049 ±0.0057 ±0.0035 ±0.0042 ±0.0049

The proposed methods demonstrate a distinct reduction in computation time,

compared to the exact method, for each level of K, with a comparatively small opti-

mality gap. All experiments were performed using MATLAB 2013a on an Intel XEON

X5667 with 24GB RAM. Note that the binomial distribution performs better than

the uniform distribution in all cases. This is not surprising because the shape of the

binomial distribution should reinforce the selection of decisions which are more likely

to increase the long-term objective value. Additionally, within the family of binomial

distributions, B(10, 0.6) or B(10, 0.5) consistently provide better solutions in these

runs. Intuitively, solution quality increases as K increases, though not necessarily in

a linear manner. Figure 9 shows that we get greater improvement in average ∆J (for

all states) going from K = 59 to K = 90 in relation to computation time. Further,

computation time appears fairly linear with respect to K

5.5.4 Sensitivity Analysis.

Next, sensitivity analysis is performed on various parameters within our problem.

First, the impact with which the discount factor γ has on the optimal policy and

value function is investigated. The optimal myopic policy for the small example is

97

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0

5

10

15

20

25

Computation Time (s)

D
iff

er
en

ce
 b

et
w

ee
n

op
tim

al
 a

nd
 a

pp
ro

xi
m

at
e

UNIF
B(0.7)
B(0.6)
B(0.5)
B(0.4)
B(0.3)

K = 59

K = 90

K = 299

K = 459

Figure 9. J∗ − J̃∗ by computation time

a∗myopic(S0) =



1 0 0 0 0

1 0 0 0 0

0 0 0 1 2

0 0 1 1 0


with J∗myopic = 616.75. The values of γ are varied and show the dynamics of the

system become significant around γ = 0.9 where myopic is no longer optimal. Recall

that 1 − γ represents the probability that the platforms are “shot down”, meaning

if the likelihood of being destroyed is > 10%, a static policy will be optimal for the

problem defined.

Next a methodology for generating problem instances is presented for further

analysis. Two additional weapon types are added to the problem, along with an

additional target type, representing a second type of SAM. Because of the sensitivity

of actual data, a means for computing kill probabilities with practical significance

98

Table 13. List of events for defining probability constraints

Event Active Target Types
E SAM 1, SAM 2, Radar, C2

F Radar, C2

G SAM 1 and/or SAM 2, C2

H C2

was needed. First, bounds are set for the probability of kill for each weapon and

target type. Define plry and pury as the lower and upper bounds, respectively. Next,

constraints are imposed on future kill probabilities as follows. Targets are labeled

a, b, c, and d for SAM 1, SAM 2, Radar, and C2 respectively. Additionally, define

the following events; let E denote the event that all target types remain, F denote

the event that all SAM targets have been destroyed, G denote the event where all

Radar targets have been destroyed, and H denote the event where all SAM and Radar

targets have been destroyed. These events are shown in Table 13.

The conditional probability constraints are then

prc|F ≥ prc|E, (5.33)

prd|F ≥ prd|E, (5.34)

pra|G ≥ pra|E, (5.35)

pra|G ≥ pra|E, (5.36)

prd|G ≥ prd|F , (5.37)

prd|H ≥ prd|F , (5.38)

prd|H ≥ prd|G. (5.39)

A nearly orthogonal latin hypercube (NOLH) design for up to seven factors was

used to generate pry|E for all r and y. Here the factors are the target types, with

99

the weapons capabilities denoting the design space to be investigated. This resulted

in 17 potential weapons choices from which M are selected randomly according to a

uniform distribution. Next for each weapon type r, and active target type y (based

upon the specific event), and event F,G, and H, compute the following

pry|F = rand ∗ (pury − pry|E) + pry|E, (5.40)

pry|G = rand ∗ (pury − pry|F) + pry|E, (5.41)

pry|H = rand ∗ (pury − pry|G) + pry|G. (5.42)

This provides exploration of well spaced alternatives for a, b, c, and d and probabilities

that satisfy (5.33) - (5.39). It is assumed erroneous to say weapons capabilities would

degrade as targets are eliminated from the threat environment. Therefore, as threats

are diminished, weapons’ capabilities increase in turn. Note that kill probabilities

are modeled to implicitly factor in both effectiveness of weapons and the risk that

a weapon is shot down during employment. An example matrix which is used for

additional analysis is provided in Table 21.

Table 14. Updated conditional transition probabilities

Single Shot pry No SAMs No Radars No SAM
(all target types remain) Remaining Remaining or Radar

Weapon Type SAM 1 SAM 2 Radar C2 Radar C2 SAM 1 SAM 2 C2 C2

1 0.47 0.51 0.6 0.59 0.67 0.69 0.75 0.65 0.76 0.76
2 0.53 0.68 0.58 0.54 0.65 0.83 0.87 0.7 0.84 0.92
3 0.48 0.56 0.47 0.51 0.58 0.89 0.86 0.94 0.86 0.91
4 0.55 0.58 0.48 0.56 0.7 0.93 0.68 0.64 0.88 0.94
5 0.47 0.65 0.45 0.62 0.83 0.78 0.54 0.71 0.82 0.83
6 0.56 0.48 0.51 0.47 0.74 0.77 0.55 0.78 0.84 0.9
7 0.64 0.51 0.56 0.48 0.65 0.95 0.7 0.68 0.94 0.95

The analysis was re-run using the probabilities in Table 21, the results are pre-

sented in Tables 18-17. This example investigates one target of each type. Based

on the results of the initial experiments, this analysis is only performed for for

B(ms, 0.7), B(ms, 0.5), and B(ms, 0.3). This provides a spread of binomial distri-

100

butions for comparison, but excludes approximation using the uniform distribution

due to its relative poor performance. Additionally, computation time for the next set

of experiments was almost identical to the initial experiments, and is omitted from

the results.

Table 15. Results for ϕ = ρ = 0.95⇒ K ≥ 59 using updated kill probabilities

Exact B(ms, 0.7) B(ms, 0.5) B(ms, 0.3)

J∗ 627.2211 599.0734 612.7626 620.2505

∆J∗ - 28.1477 14.4585 6.9705

±10.2858 ±7.5289 ±2.999

%∆J∗ - 4.488% 2.3% 1.1%

±1.64% ±1.2% ±0.48%

Average Worst ∆J(S) - 73.5004 44.7731 24.1433

of all states ±7.799 ±8.4349 ±8.3095

Average Worst ∆J % - 11.72% 7.14% 3.85%

of all states ±1.24% ±1.34% ±1.32%

Average ∆J ∀S - 3.5588 1.4147 0.596

±0.2746 ±0.1277 ±0.0981

Average ∆J ∀S % - 0.6799% 0.6765% 0.6752%

±0.00044 ±0.0002 ±0.00016

Table 16. Results for ϕ = .95ρ = 0.99⇒ K ≥ 90

Exact B(ms, 0.7) B(ms, 0.5) B(ms, 0.3)

J∗ 627.2211 603.2401 617.1384 621.5328

∆J∗ - 23.981 10.0827 5.6883

±9.8287 ±5.423 ±3.1795

%∆J∗ - 3.82% 1.61% 0.91%

±1.57% ±0.86% ±0.51%

Average Worst ∆J(S) - 65.4856 35.7083 15.9688

of all states ±10.7032 ±6.6988 ±6.1307

Average Worst ∆J % - 10.44% 5.69% 2.55%

of all states ±1.71% ±1.07% ±0.98%

Average ∆J ∀S - 2.4767 0.8271 0.2854

±0.1545 ±0.1239 ±0.0456

Average ∆J ∀S % - 0.6782% 0.6756% 0.6743%

±0.00025 ±0.0002 ±0.00007

101

Table 17. Results for ϕ = 0.99ρ = 0.95⇒ K ≥ 299

Exact B(ms, 0.7) B(ms, 0.5) B(ms, 0.3)

J∗ 627.2211 614.8137 622.1174 624.61

∆J∗ - 12.4074 5.1037 2.6111

±5.9636 ±3.6121 ±1.4042

%∆J∗ - 1.98% 0.81% 0.42%

±0.95% ±0.58% ±0.22%

Average Worst ∆J(S) - 38.7502 16.2579 4.6529

of all states ±5.1409 ±7.4426 ±1.5964

Average Worst ∆J % - 6.18% 2.59% 0.74%

of all states ±0.82% ±1.19% ±0.25%

Average ∆J ∀S - 0.8467 0.1637 0.0409

±0.1146 ±0.0511 ±0.0113

Average ∆J ∀S % - 0.676% 0.675% 0.674%

±0.0002 ±0.0001 ±0.00002

Table 18. Results for ϕ = ρ = 0.99⇒ K ≥ 459 using updated kill probabilities

Exact B(ms, 0.7) B(ms, 0.5) B(ms, 0.3)

J∗ 627.2211 617.0361 624.6009 625.2398

∆J∗ - 10.185 2.602 1..9813

±5.0288 ±2.5558 ±1.0368

%∆J∗ - 1.62% 0.42% 0.32%

±0.80% ±0.41% ±0.17%

Average Worst ∆J(S) - 33.6234 10.1703 3.6597

of all states ±5.5104 ±6.0695 ±0.9198

Average Worst ∆J % - 5.36% 1.62% 0.58%

of all states ±0.88% ±0.97% ±0.15%

Average ∆J ∀S - 0.6189 0.0808 0.026

±0.0809 ±0.0276 ±0.0065

Average ∆J ∀S % - 0.6752% 0.6744% 0.6743%

±0.00013 ±0.00004 ±0.00001

The results are fairly consistent with the initial experiments, with a few excep-

tions. The greatest improvement seen with the second set of experiments comes with

a binomial parameter of φ = 0.3, where as the most improvement was previously ob-

tained using the binomial success parameter of φ = 0.4, 0.5, or 0.6. One explanation

for this change is that the method reinforces reservation of weapons for future stages

given the updated probability tables. With the arbitrarily generated kill probabili-

ties, the sequential destruction of targets was not as necessary because for each stage,

weapons which had great effect on different target types were likely present. This

early-stage effectiveness may cause the method to fire more weapons earlier.

102

5.5.5 Numeric results for larger problems.

Using the information gleaned from Section 5.5.3.3 the effectiveness of the pro-

posed method is performed on larger problem instance. Because of the improvement

in solution quality with a comparatively small increase in computation time, K is

fixed at 59. Additionally, because the greatest improvement in solution quality was

obtained using various binomial distributions, they are investigated further in large

scale problems. Since the size of the decision space for these problems is so large (a

problem with 10 weapons and 10 targets has |AS0 | ≈ 26B), comparison with the exact

optimal is computationally prohibitive. Instead, a myopic approach is developed. In

the myopic approach, the decision space becomes the set of all possible weapons able

to be allocated for a given state. Essentially, this means that for any given initial

state, A = S. For each decision, a static weapon-target assignment problem is solved

through simple recursion to determine the optimal allocation for the state-action pair

while using the dynamic kill probabilities. Because the decision space is much small

in this case, exact value iteration can be used. However, the decisions are now myopic

due to their single-stage solution. The number of states over which must be iterated

is the primary metric in determining adequate problem size. An example with 20

weapons and 20 targets has over seven million states, at which point storage and

computation becomes an issue. Therefore, for the demonstrated analysis, the prob-

lem size is limited to ten or 12 weapons and seven or ten targets. This limitation also

provides some practicality in a geographic sense, as threats which are farther away

will likely not be considered in an optimal policy given the problem assumptions. The

cases with seven targets have two each of SAM1, SAM2, and radar, with a single C2

target. The problems with ten targets have four SAM1 targets, three SAM2 targets,

two radars, and one C2. Weapons were arbitrarily selected such that each weapon

type had at least one, and the remainder were spread evenly across weapon types.

103

For the ten weapon problems, R0 = (2121121)T and for the tweleve weapon problems,

R0 = (2221122)T . For the ADP method, the success parameter is set to φ = 0.4, 0.5,

and 0.6 and ten replications of each are run. The results are reported in Table 19.

Table 19. Results of large scale experiments

Weapons Targets Distribution # States J∗
myopic J∗

dynamic %Improvement

10 7 B(ms, 0.4) 991.1161± 13.9186 13.5± 1.59%
10 7 B(ms, 0.5) 18, 816 873.24 967.1818± 19.2715 10.76± 2.21%
10 7 B(ms, 0.6) 969.4806± 12.5804 11.02± 1.44%
12 7 B(ms, 0.4) 1062.9± 6.2844 10.33± 0.65%
12 7 B(ms, 0.5) 46, 570 963.39 1049.3± 8.0023 8.92± 0.83%
12 7 B(ms, 0.6) 1046.4± 8.8097 8.61± 0.91%
10 10 B(ms, 0.4) 1026.7± 14.0966 9.01± 1.5%
10 10 B(ms, 0.5) 29, 676 941.878 985.1773± 17.9595 4.6± 1.9%
10 10 B(ms, 0.6) 975.6688± 24.7253 3.5± 2.63%

Table 20. Computation time (in seconds) of large scale experiments

Weapons Targets Myopic ADP
10 7 653.8± 2.27 15.4436± 0.0758
12 7 1, 586.3± 7.34 38.7864± .1587
10 10 1, 034.2± 4.38 25.2761± 0.1794

As is expected, there is a significant improvement gained in this analysis with

the proposed method. By considering the impact current allocations have on the

future, the ADP method shows an approximate improvement of 10% over the myopic

solution. The large scale problems also suggest further evidence that, given the kill

probabilities from Table 21, it is beneficial to reserve more weapons for future stages.

Additionally, the proposed method gains validation when considering the binomial

distribution with φ = 0.6. Because of the shape of the binomial distribution, more

decisions are selected which reinforce the firing of a greater number of weapons at each

stage. Firing many weapons early on does not allow for the dynamic kill probabilities

to take full effect, and solution quality degrades.

The other benefit of the proposed method is that computation time is small con-

sidering the number of states and actions over which are iterated. As can be seen in

104

Table 20, the ADP method consistently outperforms the exact myopic solution. This

is due to the increase in the size of the decision space as problem size increases.

5.6 Conclusions

This chapter presents a new class of weapon-target assignment in which kill proba-

bilities are dependent on the current target set and change over time. An approximate

dynamic programming solution method is introduced which incorporates a reduced

decision space using the properties of order statistics. This reduced decision space

is used to quickly provide high-quality solutions. Several distributions are described

to determine how elements from the decision space are selected. Results for the ex-

amples tested show that solutions for small scale problems are within 1% of optimal

using a small subset of the full decision space. The large scale problems tested also

show vast improvement over myopic decision policies.

Future research will include investigation of different approximation dynamic pro-

gramming techniques. The structure of this problem is such that the size of the deci-

sion space is prohibitively large, so methods which address this curse of dimensionality

are desired. Though it was slower computationally, implementing a multi-step look

ahead solution within the myopic framework may result in better solution quality be-

cause it is an exact method in the sense that it iterates over the full state and decision

spaces. Additionally, a reduced decision space could be coupled with state reduction

techniques such as aggregation to further reduce computation time while maintaining

solution quality. Investigating roll-out algorithms which take into account the future

impact of current decisions may be implementable within a simulation framework to

quickly determine optimal policies for problems of a larger size.

105

VI. An Integrated Simulation Framework for Optimal

Weapons-Mix Determination

6.1 Abstract

Genetic algorithms (GAs) are often used for solving stochastic optimization prob-

lems because of their exploratory and exploitative properties. GAs can be powerful

tools which effectively search a problem’s solution space, but in many cases they have

their limitations. If the solution space of the problem to be investigated is too large,

GAs may suffer from sub-optimality or slow convergence. Further, if the problem to

be optimized is of a black-box nature, global optimality is difficult to prove. This

research investigates an embedded optimization framework in which a GA is used to

optimize the mix of concept weapons. A knapsack formulation is used to determine

the best mix of weapons, with a weapon-target assignment problem used to determine

optimal weapons capabilities. The utility of each weapon type is initially unknown

and determined through simulated employment. However, because the capabilities,

namely the probability of destroying a target given the current target set, of each

weapon type are unique, their allocation is dependent on the current mix of weapons

being tested. Further, the sequencing and allocation policies also depend on the ca-

pabilities of the current weapons’ mix. A portion of the gene structure within the

GA is dedicated to the sequence or allocation policy in which the weapons are used.

This research proposes two solutions to this problem for a GA. First, a gene structure

which includes the sequencing of weapons is proposed, and at each stage, a static

weapon-target assignment problem is solved optimally to determine the weapons’ al-

location. As an alternative, a method is proposed which uses approximate dynamic

programming (ADP) to determine near optimal allocation strategies in order to re-

duce the design space searched by the GA. In each case, the fitness function for each

106

design point, or weapon set, is determined through simulation. Results demonstrate

that the ADP method converges in fewer generations than the baseline GA, while the

baseline GA converges with less computation time.

6.2 Introduction

Combat simulations provide a means for military analysts to investigate a wide

range of problems using fewer resources than testing actual systems. Many scenarios

are able to be simulated in which real-world data would not be feasibly attainable. Air

Force Research Laboratory (AFRL) analysts are developing an integrated framework

which will help investigate the proposed effects of future weapons systems in a variety

of scenarios. Part of this effort is to determine synergistic effects of weapons against

an integrated air defense system (IADS) and consequently optimize a mix of weapons

classes to load onto an aircraft. The previous optimization strategy uses a genetic al-

gorithm (GA) which generates and updates populations of candidate solutions. These

candidate solutions are tested by stepping forward and backward through time, ran-

domly selecting allocation policies, simulating engagement outcomes, and continuing

on until a terminal state has been realized. Upon success of a simulated mission, a

candidate allocation strategy is stored for further testing. This process is repeated for

each weapons mix within the GA until a locally optimal strategy has been determined

or some other termination criteria has been met.

This chapter introduces methods for the optimal aircraft weaponeering using an

embedded optimization framework in order to maximize the damage against a known

set of targets. Embedded optimization problems use the optimal solution of one

problem in order to optimize a primary objective function.

Because of their complexity, examples of embedded optimization problems are

sparsely found in the literature. Some examples are the location of groundwater

107

systems [9], incorporating chaotic maps for PSO parameter adaptation [6], and the

optimization of hydrogen networks [106].

The primary objective function for this embedded optimization problem represents

a constrained knapsack problem where the utility of each item depends on the total

set of items within the knapsack. A genetic algorithm is developed to search the

candidate solutions which are then tested within a simulation to determine their

combined utility. Next, a multi-stage dynamic weapon-target assignment (DWTA)

problem is solved using approximate dynamic programming (ADP) which generates

near optimal sequential allocation strategies for the current set of weapons.

The remainder of the chapter is structured as follows. Section 6.3 introduces

the knapsack problem and gives the formal definition for each element, including

the DWTA subproblem. The GA methodology is discussed in Section 6.4 where

the solution of the DWTA through ADP is developed. Next, numerical results are

presented in Section 6.5, and some conclusions and areas for future research are in

Section 6.6.

6.3 Problem Formulation

The problem is formulated as a multi-dimensional knapsack problem which rep-

resents a mix of weapons loaded on a set of aircraft. The objective for this problem

is to optimize the set of weapons such that, when employed against a known set of

targets, damage to the targets is maximized. The utilities are determined by solving

a dynamic weapon target assignment problem using the existing weapon set. First

the multi-dimensional knapsack problem is formally presented.

108

6.3.1 Multi-dimensional Knapsack Problem.

Let xij denote the number of weapons of type i, i = 1, 2, . . . ,M to load onto

aircraft j, j = 1, 2, . . . , N . Define ui as the utility, which is considered an effectiveness

measure, of weapon type i, cj as the capacity of aircraft j, and wi as the size or weight

of weapon i. Additionally, let Ij be the set of weapon types that are able to go on

aircraft type j. The objective is then

max
x

N∑
j=1

M∑
i=1

uixij (6.1)

subject to

M∑
i=1

wixij = cj for j = 1, 2, . . . N (6.2)

xij ∈ N if i ∈ Ij, 0 otherwise. (6.3)

One novelty of this problem is that the utilities are functions of the weapons

currently in the solution. Let ~x = (x11, x12, . . . , x1N , x21, x22, . . . x2N , . . . xMN) be the

current decision vector, and ~u = (u1, u2, . . . , uM) be the current vector of weapon

utility. Then ~u = f(~x), where f(·) is a function defined by the solution to a separate

subproblem. For this research, the utilities are based upon the weapons’ effects within

a dynamic weapon target assignment problem. This problem can be solved exactly,

approximately, or even estimated through simulation.

Various methods have been used to solve knapsack problems, from dynamic pro-

gramming [53] [79] [65], to numerous heuristics such as ant colony optimization (ACO)

[55] [92], tabu search [43] [36], and GAs [27] [90]. Additional references can be found

109

in [53]. Next the DWTA problem is presented as it forms the basis for defining

weapons’ utilities.

6.3.2 Dynamic Weapon-Target Assignment Problem.

The weapon-target assignment (WTA) problem is a model of combat operations

which maximizes the total expected damage caused to the enemy’s targets (or min-

imize the value of leaker missiles) using a limited number of weapons. Optimally

assigning interceptors to targets is a subject that has become increasingly important

with the proliferation of ballistic missiles. The WTA problem is known to be NP-

complete [60]. In general, two cases of the WTA problem are considered, static and

dynamic. The static case concerns itself with n known targets and m known weapon

types within a single stage. Optimal solution algorithms are known for two cases of

the static WTA (SWTA) problem. These cases are when all the weapons are iden-

tical [30] [52] and when the targets can receive at most one weapon [24] [75]. The

dynamic case can involve additional stochastic elements, multiple stages and other

unique characteristics. While no efficient exact solutions of the generalized SWTA

problem exist, much research has been done to effectively determine near optimal

allocation policies [42]. Specifically, various heuristics have been applied to include

generalized network flow [5], genetic algorithms [59] [99], neural networks [96] and

Lagrange relaxation [72].

6.3.2.1 Dynamic Weapon-Target Assignment Problem.

The problem is modeled as an infinite horizon, discrete time Markov decision

process (MDP) using the collection of objects

{T ,S,A, p(·|S, a), C(S, a,W)} (6.4)

110

where T is the set of decision epochs, S is the state space, AS represents the set of

allowable actions given the system is in state S, with A =
⋃
S∈S AS, p(·|S, a) is the

probability transition function conditioned on being in state S and making decision

a ∈ AS, and C(S, a,W) is the reward obtained from being in state S, making decision

a, and realizing the outcome W .

Let T = {1, 2, . . .} be the set of time stages and let t ∈ T denote a specific stage.

Let St = (Rt, Yt) ∈ S denote the state of the system at time t, where Rt is a vector

indicating the number of weapons (of M different types) remaining in inventory and

Yt is a vector indicating the number of targets (of N different types) still functioning.

Rt = (Rt1, Rt2, . . . RtM), where Rtr is the number of weapons of type r at time t,

r = 1, . . . ,M . Yt = (Yt1, Yt2, . . . YtN), where Yty is the number of targets of type y at

time t, each with associated value, Vy, y = 1, . . . , N . A state S ∈ S corresponds to

a particular pair of vectors indicating the number of weapons and targets remaining.

Define pry|Yt as the single-shot probability of kill if weapon type r is allocated to target

type y given the current target set Yt. Define qry|Yt = 1− pry|Yt as the corresponding

probability of survival. The conditional probabilities of survival are used to model

the cooperative nature of an IADS; as certain targets are destroyed, the attacker

achieves improved probability of destroying other targets. For brevity, pry = pry|Yt

and qry = qry|Yt is henceforth used.

As with any MDP, at each time step the state determines the set of allowable

controls. The decision is a function of the remaining weapons and the current set of

targets in the threat environment. For any epoch, ASt represents the set of allowable

decisions given the system is in state S at time t. Define the decision variables atryj

as the number of weapons of type r to assign to target j, of type y, at time t. A

matrix of decisions and the constraint set can be defined as

111

a(St) =



at111 at211 . . . atM11

at112 at212 . . . atM12

...
...

. . .
...

at11Yt1 at21Yt1 . . . atM1Yt1

at121 a221 . . . aM21

...
...

. . .
...

at12Yt2 at22Yt2 . . . atM2Yt2

...
...

. . .
...

at1NYtN at2NYtN . . . atMNYtN



(6.5)

and

ASt =

{
a(St)|

T∑
t=1

N∑
y=1

Yty∑
j=1

atryj ≤ R1r for r = 1, 2, . . . ,M ; atryj ∈ N

}
(6.6)

Here the 0 index represents the allowable control of “do nothing”. At each time step,

given a state St, action at, and outcome Wt+1, the system transitions according to

St+1 = SM(St, at,Wt+1) (6.7)

where SM(·) is a function describing the system’s dynamics. For the DWTA problem,

states transition in two distinct fashions. First, let

(atr)
M
r=1 = (

N∑
y=1

Yty∑
j=1

atryj) (6.8)

be a vector denoting the number of weapons of type r fired at time t. Then the

weapon state transitions deterministically following

112

Rt+1 = (Rtr − atr)Mr=1 (6.9)

The target vector transitions probabilistically based upon the allocation policy at

each decision epoch.

Let Ŷt+1,yj be a random variable representing the outcome of the jth target of type

y given a decision such that

Ŷt+1,yj =


0 if target j survives the attack,

1 if target j is destroyed during the attack.

(6.10)

for each target type y. Further, define

Ŷt+1 =



Ŷt+1,11

Ŷt+1,12

...

Ŷt+1,1Yt1

Ŷt+1,21

Ŷt+1,22

...

Ŷt+1,2Yt2

...

Ŷt+1,N1

Ŷt+1,N2

...

Ŷt+1,NYtN



(6.11)

then the target state element transitions following

113

Yt+1 =

[
Yty −

Yty∑
j=1

Ŷt+1,yj

]N
y=1

(6.12)

and

P{Yt+1,yj = 0|St, at} =


1−

∏M
r=1(qrj)

atrj if Yt,yj = 1

1 if Yt,yj = 0

(6.13)

P{Yt+1,yj = 1|St, at} =


∏M

r=1(qrj)
atrj if Yt,yj = 1

0 if Yt,yj = 0

(6.14)

Here, qrj represents the single shot survival probability if weapon type r is shot at

target j. This must be done for all active targets with weapons allocated to them at

time t. If nt denotes the number of active targets with weapons allocated to them at

stage t, then if Ŷt+1 is the set of possible outcomes known by time t+ 1, |Ŷt+1| = 2nt .

As previously discussed, each target has an associated value, Vj. Then the value

obtained at any time step follows

Ct+1(St, at, Ŷt+1) =
N∑
y=1

Yty∑
j=1

VyŶt+1,yj (6.15)

We accumulate the value of any target destroyed during the time interval (t, t+1).

The objective is determine a policy π ∈ Π mapping each state to an action which

maximizes

max
π

Eπ
{∑
t∈T

γCπ
t (St, A

π
t (St))

}
. (6.16)

where Π is the set of all possible policies and γ is the discount factor.

114

The DWTA problem provides a more practical implementation by including a

temporal component. As such, the DWTA is a much more complex problem from

a mathematical standpoint which has received a fair amount of attention in the lit-

erature. Similar to the SWTA, numerous methods have been employed to provide

solutions for various types of DWTA problems. As the originator of the dynamic

instance, [47] provides several results which are generalizable to the DWTA problem.

[70] and [71] uses stochastic decomposition for the two-stage problem previously de-

fined. An extension of the generalized two-stage problem called the shoot-look-shoot

target assignment problem also has a fair amount of associated literature, but as it

us fundamentally different, it is not discussed herein. Specific to the general DWTA

problem, [24] uses a static WTA approximation scheme within an iterative linear

network flow framework to effectively provide high-quality solutions for the DWTA.

Because of the integer restriction for the decision variables, the chromosome represen-

tation within a GA presents a useful scheme for solving both the static and dynamic

versions of the WTA problem. As such, much work has developed hybrid GAs to

assist in solving the DWTA. [99] apply a modified GA to the DWTA and introduces

weapon use deadlines within the problem formulation. These deadlines follow the

principles of scheduling theory, and are in the form of additional constraints such

that a weapon has to be shot at a target by a specified time or it is rendered unus-

able. The authors call their method a modified GA because it applies a basic GA

iteratively, assigning a weapon to a target (possibly suboptimally) immediately be-

fore the deadline is reached. [101] develop a heuristic which uses problem information

(domain knowledge) and constraint programming to assign priorities to assignments.

Evolutionary heuristics, which use a hybridized GA with memetic algorithms, have

also been applied to the DWTA by [25]. Additionally, [54] applies a hybrid heuristic

which uses a simulated annealing (SA) type heuristic to determine the fitness of a

115

population within a GA framework. Other heuristic techniques applied to the DWTA

include Tabu Search [102], ACO with tabu table updates [103], and a modified Hun-

garian method with PSO [56] (though this is in an open source text, so it’s rigor

may be unverified). Lastly, exact dynamic programming [91][89] has also been ap-

plied to the DWTA. The last portion of the WTA literature review focuses on the

specific shoot-look-shoot scenario, as well as some miscellaneous methods which are

not explicitly weapon-target assignment problems.

6.4 Methodology

In this section the solution approach is discussed, to include the specific details of

the GA, and the near-optimal allocation generation using ADP. Finally, the integrated

framework is introduced, and the various algorithms are presented.

6.4.1 Genetic Algorithms.

Because of its complexity and the stochastic nature of the decision variable util-

ities, achieving an optimal mix of weapon types under constraints may not be effi-

ciently obtained through traditional optimization methods. Because of the ability to

specifically design its heuristic characteristics, GAs provide a flexible means for inves-

tigating combinatorial optimization problems, especially those with integer solutions.

Genetic algorithms are search procedures intended to mimic the natural evolution of

biologic systems in which characteristics which provide improvement to the fitness

are selected in lieu of those in which quality is not demonstrated. Genetic algorithms

have been shown effective in a wide range of resource allocation problems including

project scheduling [45] [44], knapsack problems [27] [90], and target assignment [99]

[25]. The general steps of a GA are presented in Algorithm 7.

116

Algorithm 7 General steps of a GA

Initialize

• Generate population P ,

• Set parent selection, mutation, and crossover parameters

while number of generations has not been reached do

• Determine Fitness of each population member

• Select the parent population for mating

• Generate offspring using crossover rules and parent population

• Ensure feasibility of offspring and correct any infeasibility

• Determine any mutated member(s)

end while

The GA is developed by structuring the gene, computing the fitness function,

determining how to select the parent population, and dictating how offspring are

generated through crossover and mutation.

6.4.1.1 Gene Structure.

For a knapsack problem with known utilities or value, the gene consists of a string

of N integer elements defining a feasible mix of weapons [27]. Because the weapon

utility is uncertain, the gene is structured to accommodate allocation information

used to solve the DWTA during simulation. Specific elements of the gene are also

designated for each aircraft type to ensure the feasibility with constraint (6.2). For

the first method, the gene includes a string of integer characters representing the

time step in which the weapon is to be fired. Define T as the maximum number of

engagement time periods and sk as the stage in which the kth weapon will be used,

k = 1, 2, . . . ,Mj for j = 1, 2, . . . , N , and sk ∈ {1, 2, . . . , T}. An example is shown in

Figure 10 with two aircraft being used. In this example, aircraft one has a capacity of

eight, aircraft two has a capacity of two, and wi = 1 for i = 1, 2, . . . , N = 7. For this

example, an additional constraint is induced that the four weapon types which can

117

0 4 2 2 1 0 1 4 3 4 1 1 2 1 2 2 2

Aircraft 1 Aircraft 2

Weapon type

4 weapons of type 2

Current mix of weapons

2 3 4 5 7

One each of weapon type 2, 3,
and 4 are fired in stage 1

Stage in which weapons are fired

Figure 10. Gene structure for method one

fit on aircraft one cannot fit on aircraft two, and though the three types of weapons

are able to be placed on aircraft two, their capabilities are such that they will not be

selected for inclusion on aircraft one in an optimal solution. For the example shown,

the current gene has zero weapons of type one, four weapons of type two, two weapons

of type three and four, and one each of weapon type five and seven. Additionally, this

genetic structure provides the stage in which the weapons are to be fired. Set T = 4,

then one each of weapon type two, three, and four are fired in stage one, followed

by one each of weapon type three through seven, and the remaining weapons of type

two are fired in stages three and four.

The second method uses the weapon mix portion of the gene structure, but in

place of the stage selection, each gene is used to solve a DWTA problem through

ADP. The ADP solution methods are from [76] and generate near optimal allocations

for any mix of weapons based on the targets represented in the simulation. Figure 11

presents this solution framework.

6.4.1.2 Initial Population.

Similar to the work of Chu [27], the initial population size is set to P = 50,

and genes are generated randomly. Feasibility of each gene in the initial population

is ensured by randomly adding weapons to slots on the aircraft until constraint 6.2

118

Genetic
Algorithm

W
e

a
p

on
 D

a
ta

T
a

rg
et

 D
at

a

S
ce

na
ri

o
D

a
ta

Dynamic
Programming

WTA
Gene Information

Combat
Simulation

G
e

n
e

In
fo

rm
a

tio
n

Simulation Outputs
Used as Fitness

Lookup Table with
Optimum decision

given combat
simulation state

Figure 11. Simulation framework using ADP solution of DWTA

has been satisfied. This operation is performed independently for each aircraft j =

1, 2, . . . , N . Once a feasible gene structure has been generated for each aircraft they

are combined to make a full gene. The genes of the initial population are used within

the simulation framework to determine their relative fitness before parent selection.

6.4.1.3 Fitness determination.

For each method, a Monte Carlo simulation is used to determine the fitness of

the current mix of weapons. For the first method, a static weapon target assignment

problem (SWTA) is solved using the weapons fired during a specific stage. Because

the number of weapons to be fired at any give stage is generally small, a recursive

method is used to optimally generate single stage assignments. The second method,

however, uses ADP to solve the DWTA formulated in Section 6.3.2.1 for the current

gene. Allocation policies for all possible states are approximated using the methods

119

discussed in Section 6.4.2. These policies are used as inputs within the Monte Carlo

simulation via a lookup table. As the simulation steps through time, allocations are

applied based on the DWTA outputs and the outcomes simulated and the state is

updated. In each case, 1,000 simulations are run to determine the expected weapons

effectiveness against the targets. This average value is then used as the fitness within

the GA.

6.4.1.4 Selection of Parent Population.

Parent selection is the determination and assignment of individuals in the pop-

ulation which have comparatively favorable genes which should be passed on to the

offspring. Two parents are selected and crossover operators are used to generate

offspring. An elitist model is employed within the GA where the top ζ% of genes

are selected as primary mates. The remainder of the population is divided equally

amongst the primary mates to make the next generation. This portion of the pop-

ulation is called secondary mates. The top P (1 − ζ)/P ∗ ζ are assigned to the top

primary mate, the next group of secondary mates are assigned to the second primary

mate, and so on. This parental scheme is employed in both GA methods investigated.

6.4.1.5 Crossover and Mutation.

The integer representation of the genetic structure allows for an easy crossover op-

erator implementation. Because GAs are generally insensitive to crossover operator

choice [27], the crossover selection is generated randomly based on uniform selection.

For method one, a second crossover point is included which is restricted to the se-

quencing portion of the genetic structure. This allows for better exploration of the

design space. This second crossover is also uniformly selected. An example of the

crossover operator is shown in Figure 12

120

0 4 2 2 1 0 1 4 3 4 1 1 2 1 2 2 2 Parent 1

4 2 1 1 0 0 2 2 4 1 3 1 1 2 4 3 2 Parent 2

Crossover 1 Crossover 2

4 2 1 1 0 0 1 2 4 1 3 1 2 1 2 2 2 Offspring 1

0 4 2 2 1 0 2 4 3 4 1 1 1 2 4 3 2 Offspring 2

Figure 12. Crossover operator for method one

The crossover operator for method two is restricted to a single crossover point in

the weapons mix portion of the gene structure. In this scheme, each set of parents

generates two children, so the size of the next generation remains constant. Based

on the recommendations of Chu and Beasley [27], these operators were arbitrarily

selected, but were kept because computational results were positive. Additionally,

a mutation parameter η is implemented to determine if any offspring elements are

changed randomly. The mutation probability can help increase or decrease explo-

ration, but is traditionally set to a small value. A random check occurs for each

gene, and when applicable, a new value is randomly selected for single element of the

weapons mix gene structure.

6.4.1.6 Offspring Feasibility Correction.

In certain cases, the offspring created by crossover and mutation operations are

infeasible, because of the equality constraints of (6.2). To guarantee feasibility a repair

operator is applied based on the offspring gene and random selection. If the equality

constraints are not satisfied randomly selected elements from the gene structure are

121

either increased or decreased until feasibility is regained. This represents adding or

removing weapons from aircraft so that the aircraft always carries the maximum

allowable. This repair operator was selected to increase the exploration capacity of

the GA. The repair algorithm is as follows:

Algorithm 8 GA offspring gene repair operator

if
∑M

i=1wixij < cj for any j then
For each j where (6.2) is violated
while

∑M
i=1wixij < cj do

• randomly select an element i from the gene structure for aircraft j

• Set xij = xij + 1

end while
else

if
∑M

i=1wixij > cj for any j then
For each j where (6.2) is violated
while

∑M
i=1wixij > cj do

• randomly select an element i from the gene structure for aircraft j

• Set xij = xij − 1

end while
end if

end if

This operator is easily implemented and provides further exploration of the design

space because of its random nature.

6.4.2 Solution of the DWTA.

As stated, Method 2 integrates an approximate dynamic programming routine

to reduce the space investigated by the GA. Instead of using the design structure

presented in Section 6.4.1 it is updated to the following.

D(P) = (R1, R2, . . . , RM) (6.17)

122

This design point is then fed to the ADP routine which determines atij for all t ∈ T ,

i = 1, . . . ,m, and j = 1, . . . , n. This is represented in Figure 11

6.5 Numerical Results and Discussion

Two sets of experiments were performed to determine the efficacy of each method.

The first set of experiments explores the case where c1 = 6 and c2 = 2, and there are

five targets following Yt = (2, 1, 1, 1)T and V = (100, 150, 200, 300). As in [76], the

probabilities which define state transitions for both sets of experiments are defined in

Table 21.

Table 21. Updated conditional transition probabilities

Single Shot pry No SAMs No Radars No SAM
(all target types remain) Remaining Remaining or Radar

Weapon Type SAM 1 SAM 2 Radar C2 Radar C2 SAM 1 SAM 2 C2 C2

1 0.47 0.51 0.6 0.59 0.67 0.69 0.75 0.65 0.76 0.76
2 0.53 0.68 0.58 0.54 0.65 0.83 0.87 0.7 0.84 0.92
3 0.48 0.56 0.47 0.51 0.58 0.89 0.86 0.94 0.86 0.91
4 0.55 0.58 0.48 0.56 0.7 0.93 0.68 0.64 0.88 0.94
5 0.47 0.65 0.45 0.62 0.83 0.78 0.54 0.71 0.82 0.83
6 0.56 0.48 0.51 0.47 0.74 0.77 0.55 0.78 0.84 0.9
7 0.64 0.51 0.56 0.48 0.65 0.95 0.7 0.68 0.94 0.95

After several iterations, a population size of 50 was selected as a reasonable size

to begin exploration of the design space. For each method, the same initial popula-

tion was used, and, as appropriate, common random numbers were used to reduce

experimental noise. In addition, because of the convergence properties demonstrated,

50 generations were used. A representative example of the experimental results are

presented in Figure 13.

In this instance, the baseline GA with randomly generated sequencing outper-

formed the integrated ADP GA method, though solution quality may be of prac-

tical insignificance. For the baseline GA, the solution is x = (x·1 = (2, 1, 3, 0),

x·2 = (0, 0, 2)) and the weapons would be fired (myopically) over two stages. For the

123

0 5 10 15 20 25 30 35 40 45 50
640

650

660

670

680

690

700

710

720

730

740

750

Generation

B
es

t f
itn

es
s

va
lu

e

Small Scale Genetic Algorithm Results

ADP Current Generation Best
ADP Best So Far
GA w/Seq Current Generation Best
GA w/Seq Best So Far

Figure 13. Plot of small scale genetic algorithm results

integrated ADP method the solution is x = (x·1 = (0, 4, 0, 0) and x·2 = (2, 0, 0)). In

both cases, the mix of weapons was converged to rather quickly (approximately 10

generations), while the sequencing or allocations strategy continued evolving. As a

note, from an acquisition perspective, because the development, maintenance, and

sustainment costs associated with numerous high-value weapon types, the integrated

ADP method may have resulted in a more desirable solution.

The second set of experiments were on a slightly larger problem where c1 = 8, c2 =

2, Yt = (2, 2, 2, 1)T , and V = (100, 150, 200, 300). The results for the larger problem

are shown in Figure 14.

For the second experiment, Figure 14 shows the marked improvement in solution

quality using the integrated ADP method. Consistent with the results found in

[76], there is an approximately 15.5% improvement over the random sequencing with

myopic allocation. One explanation in the difference in results is because, as problem

size increases, there is a greater benefit of allocating weapons while considering the

impact those allocations may have on the future of the system. The solutions for the

124

0 5 10 15 20 25 30 35 40 45 50
500

550

600

650

700

750

800

850

900

950

1000

Generation

B
es

t F
itn

es
s

V
al

ue

Larger problem size Genetic Algorithm Results

ADP Current Generation Best
ADP Best So Far
GA w/Seq Current Generation Best
GA w/Seq Best So Far

Figure 14. Plot of small scale genetic algorithm results

baseline and ADP methods are x = (x·1 = (2, 5, 1, 0), x·2 = (0, 1, 1)) and x = (x·1 =

(2, 5, 0, 1), x·2 = (1, 0, 1)), respectively. The fact that both methods converged to very

similar solutions provides some validation of the proposed solution framework. It also

further emphasizes the impact that the system dynamics will have on the solution.

Additionally, looking at the set of solutions presented, weapon type two appears to

be a dominant weapon that would be of interest to those making critical acquisition

decisions.

6.6 Conclusions

This research presents an embedded optimization problem in which the solution

of a WTA problem is used to determine the utility needed to solve a multidimensional

knapsack problem. Two methods were presented that are shown to converge to qual-

ity solutions using different allocation determinations. For larger problem sizes, the

integrated ADP method outperforms the baseline method with random sequencing

125

and myopic allocation. The quality in solution, however, comes at a price. Because

each gene represents a unique optimization problem, the ADP method must load

problem data into memory prior to executing a solution. As problem size increases,

this may be computationally impractical when compared to the random sequencing

method. Since both methods converged to a similar solution for the multidimensional

knapsack problem, it may be more effective to do a quick GA search of the space using

the baseline method and follow it up using ADP to determine a better employment

strategy. This may, however, be mitigated through the use of better computing lan-

guages, higher powered computers, distributed computing. Additionally, numerous

other areas will be explored in this ongoing research area. First, this formulation

assumes known weapons effects, when that may not necessarily be the case. Future

research will consider Bayesian updates of the kill probabilities as a feedback from

the simulation outputs. Additionally, because they have been shown to be effective,

hybrid heuristics may be explored to improve solution quality in fewer generations.

As alluded to, analysts may be interested in only exploring a few weapon types fur-

ther, so constraints may be added to the knapsack problem that reduce the number

of weapon types allowed in any single gene structure. Similarly, if certain weapon

types are able to be used on either aircraft, but some weapon types are only allowed

on a specific aircraft, complexity increases. Another area would use heuristics for

the static WTA problem solved that will consider the impact of allocations on future

events. This may help increase solution quality for the much faster baseline method.

Lastly, the ultimate purpose of this is to integrate it within a high-level combat simu-

lation in lieu of the simple Monte Carlo simulation presented above. This will provide

analysts with a means for effectively determining which weapons concepts to explore

further, how to appropriately fit a set of aircraft with these weapon types, and how

to effectively employ them within a given scenario.

126

VII. Conclusions and Recomendations

Several conclusions can be highlighted based on DP extensions and computational

results. This chapter reviews the research, provides concluding insights about the

results, and identifies topics for future research efforts.

7.1 Summary of Effort

Throughout this effort, several significant and original contributions are made

to the field of operations research by developing new models for investigation and

identifying novel solution techniques and performing computational studies. First,

an efficient solution methodology is presented that determines optimal weapons al-

location for a two-stage DWTA problem instance. This is the first provably optimal

algorithm for this problem instance. Next, the two-stage problem is extended and

considers the dependency across stages when determining allocation policies which

demonstrates improvement over existing methods and effective scalability for large

problems. In addition, this dissertation formulates and solves a previously undefined

instance of the DWTA problem that incorporates dynamic probabilities of kill using

problem structure to develop effective solution strategies. To address this problem,

a rigorous and novel approximate dynamic programming method is developed which

reduces the size of the decision space to a more computationally tractable size. Sev-

eral distributions were investigated which use the problem structure to reinforce the

selection quality decisions. Finally, an embedded optimization problem which seeks

to optimize an aircraft weaponeering policy is developed. This optimization problem

defines the utility of a weapon through the solution to a weapon-target assignment

problem. These utilities are then used to solve a constrained multi-dimensional knap-

sack problem that represents placing weapons on a set of aircraft. A GA is used as

127

the solution framework, and two techniques that integrate the sequential allocation of

weapons into the gene structure are compared and contrasted. Through the develop-

ment of the GA, this dissertation effectively determines locally optimal weaponeering

policies. In addition, this research develops a defensible methodology for real-time

allocation strategies within simulation applications for current practitioners.

7.2 Conclusion

Results for this research demonstrate the contribution of the effort. In each case

tested, high quality solutions are generated in much less computation time, com-

paratively. For the two-stage problem, the algorithms ability to determine optimal

solutions is proven through several theorems. Further, the computational complexity

of the method is shown to provide solutions in a much more efficient manner. Next,

computational results for the two-stage extension demonstrate the effectiveness of the

adaptive dynamic programming methodology in obtaining near optimal solutions for

various problem instances in much less computation times than what currently exists

in the literature. Additionally, results show a substantial improvement in solution

quality in less computation time than other techniques have demonstrated as prob-

lem size increases. Because of the combinatorial nature of the weapon target assign-

ment, determining an exact solution using dynamic programming is computationally

intractable. Further, current literature does not provide methods to appropriately ad-

dress the vast size of the decision space for any given state. The solution methodology

presented in this research greatly reduces the size of the decision space necessary for

investigation, and exploits the special structure of the problem to maintain solution

quality in an efficient manner. Finally, by integrating the sequential allocation policies

into a GA, two options are available which trade off computation time for solution

quality when determining optimal weapons mix. Results show that random genera-

128

tion of the sequence with a myopic allocation strategy is fast, but does not give the

solution quality provided by determining near optimal sequential allocation policies

using ADP. Overall, this research presents a defensible approach that addresses gaps

in the literature and novel approaches for the solution of the motivating problems. In

each case, numerous tests are run and the results presented. As with many research

efforts, as many questions get answered, new questions arise.

7.3 Future work

With each of the presented areas of research comes a stream of potential future

research. Extensions may be investigated for each of the problem types, along with

the increase in complexity through the alteration of assumptions. For each effort, an

associated discussion of future research is presented.

7.3.1 Shoot-look-shoot.

The two-stage DWTA problem has many identifiable extensions. First, the model

can be extended to include the impact of cost on the approximation scheme as well as

the effect sensors may have in the first stage, second stage, or across both stages. Addi-

tionally, as weapons for this effort are currently homogeneous within a stage, a natural

extension will investigate non-homogeneous weapons in and across stages. Further,

because the subgradients represent the marginal increase in reserving a weapon for

future stages, the algorithm may be very effective in instances where there are more

than two stages. Therefore, additional research may extend this to multiple stages.

Finally, the presented method starts with all weapons initially allocated in stage one.

This research may be extended to explore the initial allocation of weapons in the

second stage, or some other initial allocation policy.

129

7.3.2 Cooperative DWTA Problem.

Because this is a novel formulation, there is an extensive list of future work. First,

different approximate dynamic programming techniques should be investigated to

address the dimensionality of the decision space. Though it was slower computa-

tionally, implementing a multi-step look ahead solution within the myopic framework

may result in better solution quality because it is an exact method in the sense that

it iterates over the full state and decision spaces. Additionally, a reduced decision

space could be coupled with state reduction techniques such as aggregation to further

reduce computation time while maintaining solution quality. Finally, investigating

roll-out algorithms which take into account the future impact of current decisions

may be implementable within a simulation framework to quickly determine optimal

policies for problems of a larger size.

7.3.3 Embedded Optimization Framework.

Finally, the embedded optimization framework is in its infancy and much is left

to be accomplished. First, the present formulation assumes known weapons effects,

though because future weapons concepts are being investigated, weapons effects are

likely unknown. Future research will consider Bayesian updates of the kill probabili-

ties as a feedback from the simulation outputs. Additionally, because they have been

shown to be effective, hybrid heuristics may be explored to further improve solution

quality. As alluded to, analysts may be interested in only exploring a few weapon

types further, so constraints may be added to the knapsack problem that reduce the

number of weapon types allowed in any single gene structure. Similarly, aircraft-

specific weapons may be investigated as an additional constraint in the model. This

would likely increase the complexity of the model and may impact the effectiveness of

the developed solution methodology. Another area would use heuristics for the static

130

WTA problem solved that consider the impact of allocations on future events. This

may help increase solution quality for the much faster baseline method. The ultimate

purpose of this research effort is to integrate it within a high-level combat simulation

in lieu of the simple Monte Carlo simulation. This will provide analysts with a means

for effectively determining which weapons concepts to explore further, how to appro-

priately fit a set of aircraft with these weapon types, and how to effectively employ

them within a given scenario. Lastly, making use of distributed computing as well

as high-powered computing resources should be investigated to assist with real-time

decision making.

131

Appendix A. Data Tables and additional figures

132

11 12 13 14 15 16 17 18 19 20
0

5

10

15

20

25

30

35

40
Value Comparison for W = T = 5, Problems 11−20

Problem Number

V
al

ue

CW Heur
ADP
MMR sim

(a) W = 5, T = 5

11 12 13 14 15 16 17 18 19 20
0

5

10

15

20

25

30

35

40

45

50
Value Comparison for W = 5, T = 10, Problems 11−20

Problem Number

V
al

ue

CW Heur
ADP
MMR sim

(b) W = 5, T = 10

11 12 13 14 15 16 17 18 19 20
0

5

10

15

20

25

30

35

40

45

50

55
Value Comparison for W = 10, T = 5, Problems 11−20

Problem Number

V
al

ue

CW Heur
ADP
MMR sim

(c) W = 10, T = 5

11 12 13 14 15 16 17 18 19 20
0

10

20

30

40

50

60

70

Value Comparison for W = 10, T = 10, Problems 11−20

Problem Number

V
al

ue

CW Heur
ADP
MMR sim

(d) W = 10, T = 10

Figure 15. Results for small sized experiments at varying W & T

133

21 22 23 24 25 26 27 28 29 30
0

5

10

15

20

25

30

35

40
Value Comparison for W = T = 5, Problems 21−30

Problem Number

V
al

ue

CW Heur
ADP
MMR sim

(a) W = 5, T = 5

21 22 23 24 25 26 27 28 29 30
0

5

10

15

20

25

30

35

40

45

50
Value Comparison for W = 5, T = 10, Problems 21−30

Problem Number

V
al

ue

CW Heur
ADP
MMR sim

(b) W = 5, T = 10

21 22 23 24 25 26 27 28 29 30
0

5

10

15

20

25

30

35

40

45

50

55
Value Comparison for W = 10, T = 5, Problems 21−30

Problem Number

V
al

ue

CW Heur
ADP
MMR sim

(c) W = 10, T = 5

21 22 23 24 25 26 27 28 29 30
0

10

20

30

40

50

60

70

Value Comparison for W = 10, T = 10, Problems 21−30

Problem Number

V
al

ue

CW Heur
ADP
MMR sim

(d) W = 10, T = 10

Figure 16. Results for small sized experiments at varying W & T

134

31 32 33 34 35 36 37 38 39 40
0

5

10

15

20

25

30

35

40
Value Comparison for W = T = 5, Problems 31−40

Problem Number

V
al

ue

CW Heur
ADP
MMR sim

(a) W = 5, T = 5

31 32 33 34 35 36 37 38 39 40
0

5

10

15

20

25

30

35

40

45

50
Value Comparison for W = 5, T = 10, Problems 31−40

Problem Number

V
al

ue

CW Heur
ADP
MMR sim

(b) W = 5, T = 10

31 32 33 34 35 36 37 38 39 40
0

5

10

15

20

25

30

35

40

45

50

55
Value Comparison for W = 10, T = 5, Problems 31−40

Problem Number

V
al

ue

CW Heur
ADP
MMR sim

(c) W = 10, T = 5

31 32 33 34 35 36 37 38 39 40
0

10

20

30

40

50

60

70

Value Comparison for W = 10, T = 10, Problems 31−40

Problem Number

V
al

ue

CW Heur
ADP
MMR sim

(d) W = 10, T = 10

Figure 17. Results for small sized experiments at varying W & T

135

41 42 43 44 45 46 47 48 49 50
0

5

10

15

20

25

30

35

40
Value Comparison for W = T = 5, Problems 41−50

Problem Number

V
al

ue

CW Heur
ADP
MMR sim

(a) W = 5, T = 5

41 42 43 44 45 46 47 48 49 50
0

5

10

15

20

25

30

35

40

45

50
Value Comparison for W = 5, T = 10, Problems 41−50

Problem Number

V
al

ue

CW Heur
ADP
MMR sim

(b) W = 5, T = 10

41 42 43 44 45 46 47 48 49 50
0

5

10

15

20

25

30

35

40

45

50

55
Value Comparison for W = 10, T = 5, Problems 41−50

Problem Number

V
al

ue

CW Heur
ADP
MMR sim

(c) W = 10, T = 5

41 42 43 44 45 46 47 48 49 50
0

10

20

30

40

50

60

70

Value Comparison for W = 10, T = 10, Problems 41−50

Problem Number

V
al

ue

CW Heur
ADP
MMR sim

(d) W = 10, T = 10

Figure 18. Results for small sized experiments at varying W & T

136

51 52 53 54 55 56 57 58 59 60
0

5

10

15

20

25

30

35

40
Value Comparison for W = T = 5, Problems 51−60

Problem Number

V
al

ue

CW Heur
ADP
MMR sim

(a) W = 5, T = 5

51 52 53 54 55 56 57 58 59 60
0

5

10

15

20

25

30

35

40

45

50
Value Comparison for W = 5, T = 10, Problems 51−60

Problem Number

V
al

ue

CW Heur
ADP
MMR sim

(b) W = 5, T = 10

51 52 53 54 55 56 57 58 59 60
0

5

10

15

20

25

30

35

40

45

50

55
Value Comparison for W = 10, T = 5, Problems 51−60

Problem Number

V
al

ue

CW Heur
ADP
MMR sim

(c) W = 10, T = 5

51 52 53 54 55 56 57 58 59 60
0

10

20

30

40

50

60

70

Value Comparison for W = 10, T = 10, Problems 51−60

Problem Number

V
al

ue

CW Heur
ADP
MMR sim

(d) W = 10, T = 10

Figure 19. Results for small sized experiments at varying W & T

137

61 62 63 64 65 66 67 68 69 70
0

5

10

15

20

25

30

35

40
Value Comparison for W = T = 5, Problems 61−70

Problem Number

V
al

ue

CW Heur
ADP
MMR sim

(a) W = 5, T = 5

61 62 63 64 65 66 67 68 69 70
0

5

10

15

20

25

30

35

40

45

50
Value Comparison for W = 5, T = 10, Problems 61−70

Problem Number

V
al

ue

CW Heur
ADP
MMR sim

(b) W = 5, T = 10

61 62 63 64 65 66 67 68 69 70
0

5

10

15

20

25

30

35

40

45

50

55
Value Comparison for W = 10, T = 5, Problems 61−70

Problem Number

V
al

ue

CW Heur
ADP
MMR sim

(c) W = 10, T = 5

61 62 63 64 65 66 67 68 69 70
0

10

20

30

40

50

60

70

Value Comparison for W = 10, T = 10, Problems 61−70

Problem Number

V
al

ue

CW Heur
ADP
MMR sim

(d) W = 10, T = 10

Figure 20. Results for small sized experiments at varying W & T

138

71 72 73 74 75 76 77 78 79 80
0

5

10

15

20

25

30

35

40
Value Comparison for W = T = 5, Problems 71−80

Problem Number

V
al

ue

CW Heur
ADP
MMR sim

(a) W = 5, T = 5

71 72 73 74 75 76 77 78 79 80
0

5

10

15

20

25

30

35

40

45

50
Value Comparison for W = 5, T = 10, Problems 71−80

Problem Number

V
al

ue

CW Heur
ADP
MMR sim

(b) W = 5, T = 10

71 72 73 74 75 76 77 78 79 80
0

5

10

15

20

25

30

35

40

45

50

55
Value Comparison for W = 10, T = 5, Problems 71−80

Problem Number

V
al

ue

CW Heur
ADP
MMR sim

(c) W = 10, T = 5

71 72 73 74 75 76 77 78 79 80
0

10

20

30

40

50

60

70

Value Comparison for W = 10, T = 10, Problems 71−80

Problem Number

V
al

ue

CW Heur
ADP
MMR sim

(d) W = 10, T = 10

Figure 21. Results for small sized experiments at varying W & T

139

81 82 83 84 85 86 87 88 89 90
0

5

10

15

20

25

30

35

40
Value Comparison for W = T = 5, Problems 81−90

Problem Number

V
al

ue

CW Heur
ADP
MMR sim

(a) W = 5, T = 5

81 82 83 84 85 86 87 88 89 90
0

5

10

15

20

25

30

35

40

45

50
Value Comparison for W = 5, T = 10, Problems 81−90

Problem Number

V
al

ue

CW Heur
ADP
MMR sim

(b) W = 5, T = 10

81 82 83 84 85 86 87 88 89 90
0

5

10

15

20

25

30

35

40

45

50

55
Value Comparison for W = 10, T = 5, Problems 81−90

Problem Number

V
al

ue

CW Heur
ADP
MMR sim

(c) W = 10, T = 5

81 82 83 84 85 86 87 88 89 90
0

10

20

30

40

50

60

70

Value Comparison for W = 10, T = 10, Problems 81−90

Problem Number

V
al

ue

CW Heur
ADP
MMR sim

(d) W = 10, T = 10

Figure 22. Results for small sized experiments at varying W & T

140

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40
Value Comparison for W = T = 5, Problems 1−10

Problem Number

V
al

ue

CW Heur
ADP
MMR sim

(a) W = 5, T = 5

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

45

50
Value Comparison for W = 5, T = 10, Problems 1−10

Problem Number

V
al

ue

CW Heur
ADP
MMR sim

(b) W = 5, T = 10

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

45

50

55
Value Comparison for W = 10, T = 5, Problems 1−10

Problem Number

V
al

ue

CW Heur
ADP
MMR sim

(c) W = 10, T = 5

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

Value Comparison for W = 10, T = 10, Problems 1−10

Problem Number

V
al

ue

CW Heur
ADP
MMR sim

(d) W = 10, T = 10

Figure 23. Results for small sized experiments at varying W & T

141

11 12 13 14 15 16 17 18 19 20
0

10

20

30

40

50

60

70

80

Value Comparison for W = 10, T = 20, Problems 11−20

Problem Number

V
al

ue

CW Heur
ADP
MMR sim

(a) W = 10, T = 20

11 12 13 14 15 16 17 18 19 20
0

10

20

30

40

50

60

70

Value Comparison for W = 20, T = 10, Problems 11−20

Problem Number

V
al

ue

CW Heur
ADP
MMR sim

(b) W = 20, T = 10

11 12 13 14 15 16 17 18 19 20
0

20

40

60

80

100

120

Value Comparison for W = 10, T = 10, Problems 11−20

Problem Number

V
al

ue

CW Heur
ADP
MMR sim

(c) W = 20, T = 20

Figure 24. Results for medium sized experiments at varying W & T

142

21 22 23 24 25 26 27 28 29 30
0

10

20

30

40

50

60

70

80

Value Comparison for W = 10, T = 20, Problems 21−30

Problem Number

V
al

ue

CW Heur
ADP
MMR sim

(a) W = 10, T = 20

21 22 23 24 25 26 27 28 29 30
0

10

20

30

40

50

60

70

Value Comparison for W = 20, T = 10, Problems 21−30

Problem Number

V
al

ue

CW Heur
ADP
MMR sim

(b) W = 20, T = 10

21 22 23 24 25 26 27 28 29 30
0

20

40

60

80

100

120

Value Comparison for W = 10, T = 10, Problems 21−30

Problem Number

V
al

ue

CW Heur
ADP
MMR sim

(c) W = 20, T = 20

Figure 25. Results for medium sized experiments at varying W & T

143

31 32 33 34 35 36 37 38 39 40
0

10

20

30

40

50

60

70

80

Value Comparison for W = 10, T = 20, Problems 31−40

Problem Number

V
al

ue

CW Heur
ADP
MMR sim

(a) W = 10, T = 20

31 32 33 34 35 36 37 38 39 40
0

10

20

30

40

50

60

70

Value Comparison for W = 20, T = 10, Problems 31−40

Problem Number

V
al

ue

CW Heur
ADP
MMR sim

(b) W = 20, T = 10

31 32 33 34 35 36 37 38 39 40
0

20

40

60

80

100

120

Value Comparison for W = 10, T = 10, Problems 31−40

Problem Number

V
al

ue

CW Heur
ADP
MMR sim

(c) W = 20, T = 20

Figure 26. Results for medium sized experiments at varying W & T

144

41 42 43 44 45 46 47 48 49 50
0

10

20

30

40

50

60

70

80

Value Comparison for W = 10, T = 20, Problems 41−50

Problem Number

V
al

ue

CW Heur
ADP
MMR sim

(a) W = 10, T = 20

41 42 43 44 45 46 47 48 49 50
0

10

20

30

40

50

60

70

Value Comparison for W = 20, T = 10, Problems 41−50

Problem Number

V
al

ue

CW Heur
ADP
MMR sim

(b) W = 20, T = 10

41 42 43 44 45 46 47 48 49 50
0

20

40

60

80

100

120

Value Comparison for W = 10, T = 10, Problems 41−50

Problem Number

V
al

ue

CW Heur
ADP
MMR sim

(c) W = 20, T = 20

Figure 27. Results for medium sized experiments at varying W & T

145

11 12 13 14 15 16 17 18 19 20
0

100

200

300

400

500

600

Value Comparison for W = 100, T = 100, Problems 11−20

Problem Number

V
al

ue

ADP
MMR sim

(a) W = 100, T = 100

11 12 13 14 15 16 17 18 19 20
0

100

200

300

400

500

600

700
Value Comparison for W = 200, T = 100, Problems 11−20

Problem Number

V
al

ue

ADP
MMR sim

(b) W = 200, T = 100

11 12 13 14 15 16 17 18 19 20
0

200

400

600

800

1000

1200

Value Comparison for W = 200, T = 200, Problems 11−20

Problem Number

V
al

ue

ADP
MMR sim

(c) W = 200, T = 200

11 12 13 14 15 16 17 18 19 20
0

100

200

300

400

500

600

Value Comparison for W = 400, T = 100, Problems 11−20

Problem Number

V
al

ue

ADP
MMR sim

(d) W = 400, T = 100

11 12 13 14 15 16 17 18 19 20
0

200

400

600

800

1000

1200

1400
Value Comparison for W = 400, T = 200, Problems 11−20

Problem Number

V
al

ue

ADP
MMR sim

(e) W = 400, T = 200

11 12 13 14 15 16 17 18 19 20
0

500

1000

1500

2000

2500

3000
Value Comparison for W = 400, T = 400, Problems 11−20

Problem Number

V
al

ue

ADP
MMR sim

(f) W = 400, T = 400

Figure 28. Results for first 10 large scale experiments at varying W & T

146

21 22 23 24 25 26 27 28 29 30
0

100

200

300

400

500

600

Value Comparison for W = 100, T = 100, Problems 21−30

Problem Number

V
al

ue

ADP
MMR sim

(a) W = 100, T = 100

21 22 23 24 25 26 27 28 29 30
0

100

200

300

400

500

600

700
Value Comparison for W = 200, T = 100, Problems 21−30

Problem Number

V
al

ue

ADP
MMR sim

(b) W = 200, T = 100

21 22 23 24 25 26 27 28 29 30
0

200

400

600

800

1000

1200

Value Comparison for W = 200, T = 200, Problems 21−30

Problem Number

V
al

ue

ADP
MMR sim

(c) W = 200, T = 200

21 22 23 24 25 26 27 28 29 30
0

100

200

300

400

500

600

Value Comparison for W = 400, T = 100, Problems 21−30

Problem Number

V
al

ue

ADP
MMR sim

(d) W = 400, T = 100

21 22 23 24 25 26 27 28 29 30
0

200

400

600

800

1000

1200

1400
Value Comparison for W = 400, T = 200, Problems 21−30

Problem Number

V
al

ue

ADP
MMR sim

(e) W = 400, T = 200

21 22 23 24 25 26 27 28 29 30
0

500

1000

1500

2000

2500

3000
Value Comparison for W = 400, T = 400, Problems 21−30

Problem Number

V
al

ue

ADP
MMR sim

(f) W = 400, T = 400

Figure 29. Results for first 10 large scale experiments at varying W & T

147

31 32 33 34 35 36 37 38 39 40
0

100

200

300

400

500

600

Value Comparison for W = 100, T = 100, Problems 31−40

Problem Number

V
al

ue

ADP
MMR sim

(a) W = 100, T = 100

31 32 33 34 35 36 37 38 39 40
0

100

200

300

400

500

600

700
Value Comparison for W = 200, T = 100, Problems 31−40

Problem Number

V
al

ue

ADP
MMR sim

(b) W = 200, T = 100

31 32 33 34 35 36 37 38 39 40
0

200

400

600

800

1000

1200

Value Comparison for W = 200, T = 200, Problems 31−40

Problem Number

V
al

ue

ADP
MMR sim

(c) W = 200, T = 200

31 32 33 34 35 36 37 38 39 40
0

100

200

300

400

500

600

Value Comparison for W = 400, T = 100, Problems 31−40

Problem Number

V
al

ue

ADP
MMR sim

(d) W = 400, T = 100

31 32 33 34 35 36 37 38 39 40
0

200

400

600

800

1000

1200

1400
Value Comparison for W = 400, T = 200, Problems 31−40

Problem Number

V
al

ue

ADP
MMR sim

(e) W = 400, T = 200

31 32 33 34 35 36 37 38 39 40
0

500

1000

1500

2000

2500

3000
Value Comparison for W = 400, T = 400, Problems 31−40

Problem Number

V
al

ue

ADP
MMR sim

(f) W = 400, T = 400

Figure 30. Results for first 10 large scale experiments at varying W & T

148

41 42 43 44 45 46 47 48 49 50
0

100

200

300

400

500

600

Value Comparison for W = 100, T = 100, Problems 41−50

Problem Number

V
al

ue

ADP
MMR sim

(a) W = 100, T = 100

41 42 43 44 45 46 47 48 49 50
0

100

200

300

400

500

600

700
Value Comparison for W = 200, T = 100, Problems 41−50

Problem Number

V
al

ue

ADP
MMR sim

(b) W = 200, T = 100

41 42 43 44 45 46 47 48 49 50
0

200

400

600

800

1000

1200

Value Comparison for W = 200, T = 200, Problems 41−50

Problem Number

V
al

ue

ADP
MMR sim

(c) W = 200, T = 200

41 42 43 44 45 46 47 48 49 50
0

100

200

300

400

500

600

Value Comparison for W = 400, T = 100, Problems 41−50

Problem Number

V
al

ue

ADP
MMR sim

(d) W = 400, T = 100

41 42 43 44 45 46 47 48 49 50
0

200

400

600

800

1000

1200

1400
Value Comparison for W = 400, T = 200, Problems 41−50

Problem Number

V
al

ue

ADP
MMR sim

(e) W = 400, T = 200

41 42 43 44 45 46 47 48 49 50
0

500

1000

1500

2000

2500

3000
Value Comparison for W = 400, T = 400, Problems 41−50

Problem Number

V
al

ue

ADP
MMR sim

(f) W = 400, T = 400

Figure 31. Results for first 10 large scale experiments at varying W & T

149

Bibliography

[1] D. Adelman. Overview of approximate dynamic programming using math pro-
gramming. Industrial and Systems Engineering Research Conference Tutorial
Session, 2013.

[2] D.K. Ahner. Planning and control of unmanned aerial vehicles in a stochastic
environment. Doctor of Philosophy dissertation, Boston University, 2005.

[3] D.K. Ahner. Real-time planning and control of army uavs under uncer-
tainty. AIAA Journal of Aerospace Computing, Information and Communi-
cation, (4):798–815, 2007.

[4] D.K. Ahner and C.R. Parson. Optimal multi-stage allocation of weapons to
targets using adaptive dynamic programming. Optim Lett, 2014.

[5] Kumar A. Jha K.C. Ahuja, R.K. and J.B. Orlin. Exact and heuristic algorithms
for the weapon-target assignment problem. Operations Research, 55(6):1136–
1146, 2007.

[6] Akin E. Alatas, B. and A.B. Ozer. Chaos embedded particle swarm optimization
algorithms. Chaos, Solitons & Fractals, 40(4):1715–1734, 2009.

[7] Marden J.R. Arslan, G. and J.S. Shamma. Autonomous vehicle-target assign-
ment: A game-theoretical formulation. Journal of Dynamic Systems, Measure-
ment, and Control, 129(5):584–596, 2007.

[8] Y. Aviv and M. Kress. Evaluating the effectiveness of shoot-look-shoot tactics in
the presence of incomplete damage information. Military Operations Research,
3(1):79–89, 1997.

[9] S.N. Bashi-Azghadi and R. Kerachian. Locating monitoring wells in ground-
water systems using embedded optimization and simulation models. Science of
the Total Environment, 408(10):2189–2198, 2010.

[10] R.E. Bellman. Dynamic Programming. Princeton University Press, Princeton,
NJ, 1957.

[11] D.P. Bertsekas. Dynamic Programming and Optimal Control. Athena Scientific,
Belmont, MA, 2007.

[12] D.P. Bertsekas. Dynamic programming and optimal control, volume 1. Athena
Scientific, 2012.

[13] D.P. Bertsekas. Dynamic programming and optimal control, volume 2. Athena
Scientific, 2012.

150

[14] D.P. Bertsekas and D.A. Castanon. Rollout algorithms for stochastic scheduling
problems. Journal of Heuristics, 5(1):89–108, 1999.

[15] D.P. Bertsekas and J. Tsitsiklis. Neuro Dynamic Programming. Athena Scien-
tific, Belmont, MA, 1996.

[16] Homer M.L. Logan D.A. Patek S.D. Bertsekas, D.P. and N.R. Sandell. Missile
defense and interceptor allocation by neuro-dynamic programming. Systems,
Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on,
30(1):42–51, 2000.

[17] Jerome Bracken, James E Falk, and Frederic A Miercort. A strategic weapons
exchange allocation model. Operations Research, 25(6):968–976, 1977.

[18] Gerald Brown, Matthew Carlyle, Douglas Diehl, Jeffrey Kline, and Kevin
Wood. A two-sided optimization for theater ballistic missile defense. Oper-
ations research, 53(5):745–763, 2005.

[19] QY Cao and ZB He. A genetic algorithm of solving wta problem. Control
Theory and Applications, 18(1):76279, 2001.

[20] D.A. Castanon. Advanced weapon-target assignment algorithm quarterly re-
port. Tr-337, ALPHA TECH Inc., Burlington, Massachusetts, 1987.

[21] D.A. Castanon. Approximate dynamic programming for sensor management.
In Decision and Control, 1997., Proceedings of the 36th IEEE Conference on,
volume 2, pages 1202–1207. IEEE, 1997.

[22] D.A. Castanon and J.M. Wohletz. Model predictive control for dynamic unreli-
able resource allocation. In Decision and Control, 2002, Proceedings of the 41st
IEEE Conference on, volume 4, pages 3754–3759. IEEE, 2002.

[23] D.A. Castanon and J.M. Wohletz. Model predictive control for stochastic re-
source allocation. Automatic Control, IEEE Transactions on, 54(8):1739–1750,
2009.

[24] James R.M. Chang, S.C. and J.J. Shaw. Assignment algorithm for kinetic
energy weapons in boost phase defence. In Decision and Control, 1987. 26th
IEEE Conference on, volume 26, pages 1678–1683. IEEE, 1987.

[25] Jie Chen, Bin Xin, ZhiHong Peng, LiHua Dou, and Juan Zhang. Evolutionary
decision-makings for the dynamic weapon-target assignment problem. Science
in China Series F: Information Sciences, 52(11):2006–2018, 2009.

[26] Lina Chen, ChuanJun Ren, and Su Deng. An efficient approximation for
weapon-target assignment. In Computing, Communication, Control, and Man-
agement, 2008. CCCM’08. ISECS International Colloquium on, volume 1, pages
764–767. IEEE, 2008.

151

[27] P.C. Chu and J.E. Beasley. A genetic algorithm for the multidimensional knap-
sack problem. Journal of Heuristics, 4(1):63–86, 1998.

[28] R.H. Day. Allocating weapons to target complexes by means of nonlinear pro-
gramming. Operations Research, 14(6):992–1013, 1966.

[29] E.V. Denardo. Dynamic programming: models and applications. Dover Publi-
cations, 1982.

[30] Ellison R.E. denBroeder, Jr. G.G. and L. Emerling. On optimum target assign-
ments. Operations Research, 7(3):322–326, 1959.

[31] A.R. Eckler and S.A. Burr. Mathematical models of target coverage and missile
allocation. Technical report, DTIC Document, 1972.

[32] Salah E Elmaghraby. Resource allocation via dynamic programming in activity
networks. European Journal of Operational Research, 64(2):199–215, 1993.

[33] Tiao-ping Fu, Yu-shu Liu, and Jian-hua Chen. Improved genetic and ant colony
optimization algorithm for regional air defense wta problem. In Innovative Com-
puting, Information and Control, 2006. ICICIC’06. First International Confer-
ence on, volume 1, pages 226–229. IEEE, 2006.

[34] Shang Gao and JY Yang. Solving weapon-target assignment problem by par-
ticle swarm optimization algorithm. Systems Engineering and Electronics,
27(7):1250–1252, 2005.

[35] K. Glazebrook and A. Washburn. Shoot-look-shoot: A review and extension.
Operations Research, 52(3):454–463, 2004.

[36] F. Glover. Tabu search-part i. ORSA Journal on computing, 1(3):190–206,
1989.

[37] G.A. Godfrey and W.B. Powell. An adaptive, distribution-free algorithm for
the newsvendor problem with censored demands, with applications to inventory
and distribution. Management Science, 47(8):1101–1112, 2001.

[38] G.A. Godfrey and W.B. Powell. An adaptive, distribution-free algorithm for
the newsvendor problem with censored demands, with applications to inventory
and distribution. Management Science, 47(8):1101–1112, 2001.

[39] G.A. Godfrey and W.B. Powell. An adaptive dynamic programming algorithm
for dynamic fleet management, i: Single period travel times. Transportation
Science, 36(1):21–39, 2002.

[40] M. Gorfinkel. A decision-theory approach to missile defense. Operations Re-
search, 11(2):199–209, 1963.

152

[41] Ho Y.C. Guan, X. and F. Lai. An ordinal optimization based bidding strategy
for electric power suppliers in the daily energy market. Power Systems, IEEE
Transactions on, 16(4):788–797, 2001.

[42] Y. Cheen H. Cai, J. Liu and H. Wang. Survey of the research on dynamic
weapon-target assignment problem. Journal of Systems Engineering and Elec-
tronics, 17(3):559–565.

[43] S. Hanafi and A. Freville. An efficient tabu search approach for the 0–1 mul-
tidimensional knapsack problem. European Journal of Operational Research,
106(2):659–675, 1998.

[44] S. Hartmann. A competitive genetic algorithm for resource-constrained project
scheduling. Naval Research Logistics, 45(7):733–750, 1998.

[45] T. Hegazy. Optimization of resource allocation and leveling using genetic algo-
rithms. Journal of construction engineering and management, 125(3):167–175,
1999.

[46] Sreenivas R.S. Ho, Y.C. and P. Vakili. Ordinal optimization of deds. Discrete
Event Dynamic Systems, 2(1):61–88, 1992.

[47] P.A. Hosein and M. Athans. Some analytical results for the dynamic weapon-
target allocation problem. Technical report, DTIC Document, 1990.

[48] Walton J.T. Hosein, P.A. and M. Athans. Dynamic weapon-target assignment
problems with vulnerable c2 nodes. 1988.

[49] Fredrik Johansson and Göran Falkman. An empirical investigation of the static
weapon-target allocation problem. In Proceedings of the 3rd Skövde Workshop
on Information Fusion Topics, 2009.

[50] Fredrik Johansson and Goran Falkman. Real-time allocation of firing units to
hostile targets. Journal of Advances in Information Fusion, 6(2):187–199, 2011.

[51] Orhan Karasakal. Air defense missile-target allocation models for a naval task
group. Computers & Operations Research, 35(6):1759–1770, 2008.

[52] J.D. Katter. A solution of the multi-weapon, multi-target assignment problem.
Working paper 26957, MITRE, 1986.

[53] Pferschy U. Kellerer, H. and D. Pisinger. Knapsack Problems. Springer Verlag,
2004.

[54] D. Khosla. Hybrid genetic approach for the dynamic weapon-target allocation
problem. In Proceedings of SPIE, volume 4396, pages 248–263. SHE, 2001.

153

[55] Min Kong, Peng Tian, and Yucheng Kao. A new ant colony optimization
algorithm for the multidimensional knapsack problem. Computers & Operations
Research, 35(8):2672–2683, 2008.

[56] Cédric Leboucher, Hyo-Sang Shin, Patrick Siarry, Rachid Chelouah, Stéphane
Le Ménec, and Antonios Tsourdos. Recent Advances on Meta-Heuristics
and Their Applications to Real Scenarios, chapter A Two-Step Optimisation
Method for Dynamic Weapon Target Assignment Problem. InTech, 2013.

[57] Lee C.Y. Lee, Z.J. and S.F. Su. An immunity-based ant colony optimization
algorithm for solving weapon–target assignment problem. Applied Soft Com-
puting, 2(1):39–47, 2002.

[58] Su S.F. Lee, Z.J. and C.Y. Lee. A genetic algorithm with domain knowledge
for weapon-target assignment problems. Journal of the Chinese Institute of
Engineers, 25(3):287–295, 2002.

[59] Su S.F. Lee, Z.J. and C.Y. Lee. Efficiently solving general weapon-target as-
signment problem by genetic algorithms with greedy eugenics. Systems, Man,
and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 33(1):113–121,
2003.

[60] S.P. Lloyd and H.S. Witsenhausen. Weapons allocation is np-complete. In 1986
Summer Computer Simulation Conference, pages 1054–1058, 1986.

[61] Mian W. Lu, Y. and M. Li. The air defense missile optimum target assignment
based on the improved genetic algorithm. Journal of Theoretical and Applied
Information Technology, 48(2), 2013.

[62] K. Leblebicioğlu M.A. Sahin. Approximating the optimal mapping for weapon
target assignment by fuzzy reasoning. Information Sciences, 2013.

[63] A.S. Manne. A target-assignment problem. Operations Research, 6(3):346–351,
1958.

[64] G. Manor and M. Kress. Optimality of the greedy shooting strategy in the pres-
ence of incomplete damage information. Naval Research Logistics, 44(7):613–
622, 1997.

[65] Pisinger D. Martello, S. and P. Toth. Dynamic programming and strong bounds
for the 0-1 knapsack problem. Management Science, 45(3):414–424, 1999.

[66] S. Matlin. A review of the literature on the missile-allocation problem. Opera-
tions Research, 18(2):334–373, 1970.

[67] Jau-yeu Menq, Pan-chio Tuan, and Ta-sheng Liu. Discrete markov ballistic
missile defense system modeling. European journal of operational research,
178(2):560–578, 2007.

154

[68] William A Metler, Fred L Preston, and Jim Hofmann. A suite of weapon
assignment algorithms for a sdi mid-course battle manager. Technical report,
DTIC Document, 1990.

[69] R. Murphey. Approximation and Complexity in Numerical Optimization Con-
tinuous and Discrete Problems, volume 42, chapter An Approximate Algorithm
for a Weapon Assignment Stochastic Program. Kluwer Academic, 2000.

[70] R.A. Murphey. An approximate algorithm for a weapon target assignment
stochastic program. Nonconvex Optimization and its Applications, 42:406–421,
2000.

[71] R.A. Murphey. Target-based weapon target assignment problems. In Nonlinear
Assignment Problems, pages 39–53. Springer, 2000.

[72] Yu Z. Ma F. Ni, M. and X. Wu. A lagrange relaxation method for solving
weapon-target assignment problem. Mathematical Problems in Engineering,
2011, 2011.

[73] C. Novoa and R. Storer. An approximate dynamic programming approach for
the vehicle routing problem with stochastic demands. European Journal of
Operational Research, 196(2):509–515, 2009.

[74] D. Orlin. Optimal weapons allocation against layered defenses. Naval Research
Logistics (NRL), 34(5):605–617, 1987.

[75] D. Orlin. Optimal weapons allocation against layered defenses. Naval Research
Logistics, 34(5):605–617, 1987.

[76] Ahner D.K. Robbins M.J. Parson, C.R. Approximate dynamic programming
methods for a cooperative dynamic weapon-target assignment problem. Work-
ing paper, 2014.

[77] Logan D.A. Patek, S.D. and D.A. Castanon. Approximate dynamic program-
ming for the solution of multiplatform path planning problems. In Systems,
Man, and Cybernetics, 1999. IEEE SMC’99 Conference Proceedings. 1999 IEEE
International Conference on, volume 1, pages 1061–1066. IEEE, 1999.

[78] TE Phipps and AL Karp. Optimum allocation of effort for deterrence. Technical
report, DTIC Document, 1962.

[79] D. Pisinger. A minimal algorithm for the multiple-choice knapsack problem.
European Journal of Operational Research, 83(2):394–410, 1995.

[80] Shapiro J.A. Powell, W.B. and H.P. Simão. An adaptive dynamic programming
algorithm for the heterogeneous resource allocation problem. Transportation
Science, 36(2):231–249, 2002.

155

[81] Warren B Powell, A George, B Bouzaiene-Ayari, and HP Simao. Approximate
dynamic programming for high dimensional resource allocation problems. In
Neural Networks, 2005. IJCNN’05. Proceedings. 2005 IEEE International Joint
Conference on, volume 5, pages 2989–2994. IEEE, 2003.

[82] W.B. Powell. Approximate Dynamic Programming: Solving the curses of di-
mensionality, volume 703. John Wiley & Sons, 2007.

[83] W.B. Powell. Approximate Dynamic Programming: Solving the curses of di-
mensionality, volume 703. Wiley-Interscience, 2007.

[84] W.B. Powell and B. Van Roy. Approximate dynamic programming for high di-
mensional resource allocation problems. Handbook of learning and approximate
dynamic programming, pages 261–280, 2004.

[85] Hwang H.S. Pallerla R.P. Yucel A. Wilson R.L. Rosenberger, J.M. and E.G.
Brungardt. The generalized weapon target assignment problem. In 10th In-
ternational Command and Control Research and Technology Symposium: The
Future of C2, 2005.

[86] N. Secomandi. Comparing neuro-dynamic programming algorithms for the ve-
hicle routing problem with stochastic demands. Computers & Operations Re-
search, 27(11):1201–1225, 2000.

[87] Nicola Secomandi. A rollout policy for the vehicle routing problem with stochas-
tic demands. Operations Research, 49(5):796–802, 2001.

[88] Gao Shang. Solving weapon-target assignment problems by a new ant colony
algorithm. In Computational Intelligence and Design, 2008. ISCID’08. Inter-
national Symposium on, volume 1, pages 221–224. IEEE, 2008.

[89] Topi Sikanen. Solving weapon target assignment problem with dynamic pro-
gramming. Technical report, Tech. Rep. 55670, 2008.

[90] S.N. Sivanandam and S.N. Deepa. Genetic Algorithm Optimization Problems.
Springer, 2008.

[91] Richard M Soland. Optimal terminal defense tactics when several sequential
engagements are possible. Operations Research, 35(4):537–542, 1987.

[92] C. Solnon and K. Ghédira. Ant colony optimization for multi-objective opti-
mization problems. International Journal on Computer Science, 2010.

[93] Anabela P Tereso, M Madalena T Araújo, and Salah E Elmaghraby. Adaptive
resource allocation in multimodal activity networks. International Journal of
Production Economics, 92(1):1–10, 2004.

156

[94] Huseyin Topaloglu and Warren B Powell. Dynamic-programming approxima-
tions for stochastic time-staged integer multicommodity-flow problems. IN-
FORMS Journal on Computing, 18(1):31–42, 2006.

[95] Ayes Turan. Algorithms for the weapon-target allocation problem. Masters
Thesis, 2012.

[96] E. Wacholder. A neural network-based optimization algorithm for the static
weapon-target assignment problem. ORSA Journal on computing, 1(4):232–
246, 1989.

[97] Jun Wang, Xiaoguang Gao, and Yongwen Zhu. Solving algorithm for ta opti-
mization model based on aco-sa. Systems Engineering and Electronics, Journal
of, 22(4):628–639, 2011.

[98] Dean A Wilkening. A simple model for calculating ballistic missile defense
effectiveness. Science & Global Security, 8(2):183–215, 2000.

[99] Wang H. Lu F. Wu, L. and P. Jia. An anytime algorithm based on modified ga
for dynamic weapon-target allocation problem. In Evolutionary Computation,
2008. CEC 2008.(IEEE World Congress on Computational Intelligence). IEEE
Congress on, pages 2020–2025. IEEE, 2008.

[100] Zhong J. Xie, M. and F.F. Wu. Multiyear transmission expansion planning using
ordinal optimization. Power Systems, IEEE Transactions on, 22(4):1420–1428,
2007.

[101] Bin Xin, Jie Chen, Zhihong Peng, Lihua Dou, and Juan Zhang. An efficient
rule-based constructive heuristic to solve dynamic weapon-target assignment
problem. Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE
Transactions on, 41(3):598–606, 2011.

[102] Bin Xin, Jie Chen, Juan Zhang, Lihua Dou, and Zhihong Peng. Efficient decision
makings for dynamic weapon-target assignment by virtual permutation and
tabu search heuristics. Systems, Man, and Cybernetics, Part C: Applications
and Reviews, IEEE Transactions on, 40(6):649–662, 2010.

[103] Wang Yanxia, Qian Longjun, Guo Zhi, and Ma Lifeng. Weapon target assign-
ment problem satisfying expected damage probabilities based on ant colony al-
gorithm. Journal of Systems Engineering and Electronics, 19(5):939–944, 2008.

[104] P.Y. Yin and J.Y. Wang. A particle swarm optimization approach to the non-
linear resource allocation problem. Applied Mathematics and Computation,
183(1):232–242, 2006.

[105] K.A. Yost and A.R. Washburn. Optimizing assignment of air-to-ground assets
and bda sensors. Military Operations Research, 5(2):77–91, 2000.

157

[106] Liao Z. Wang J. Jiang B. Zhou, L. and Y. Yang. Hydrogen sulfide removal
process embedded optimization of hydrogen network. International Journal of
Hydrogen Energy, 37(23):18163–18174, 2012.

158

Standard Form 298 (Rev. 8/98)

REPORT DOCUMENTATION PAGE

Prescribed by ANSI Std. Z39.18

Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any
penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (Include area code)

asharp
Sticky Note
Accepted set by asharp

asharp
Sticky Note
Accepted set by asharp

asharp
Sticky Note
Accepted set by asharp

CPARSON
Sticky Note
Marked set by CPARSON

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Background
	Motivation
	Research Contributions
	Paper Structure

	Literature Review
	Weapon-Target Assignment Problem
	Static Weapon-Target Assignment Problem
	Current Literature of the Static Weapon- Target Assignment Problem
	Dynamic Weapon-Target Assignment Problem
	Two-Stage DWTA
	Other Literature of the Dynamic Weapon- Target Assignment Problem
	Other Target Assignment / Weapons Allocation Literature

	Approximate Dynamic Programming
	Dynamic Programming
	Introduction
	Lookup Tables and Q-Learning
	Approximate Value Iteration
	Low-Dimensional Value Function Approximation
	Adaptive Estimation
	Issues of Simulation-Based Cost Approximation
	Approximate Dynamic Programming for Resource Allocation

	Summary

	Optimal multi-stage allocation of weapons to targets using adaptive dynamic programming
	Abstract
	Introduction
	Literature Review
	Static Weapon-Target Assignment
	Dynamic Weapon-Target Assignment

	Problem Formulation
	Theoretical Results
	Adaptive Dynamic Programming
	Two-Stage DWTA ADP Solution
	The Adaptive DWTA Algorithm

	Computational Results and Conclusions

	Adaptive Dynamic Programming for a Two-Stage Dynamic Weapon-Target Assignment Problem
	Abstract
	Introduction
	Literature Review
	Static Weapon-Target Assignment
	Dynamic Weapon-Target Assignment
	Shoot-Look-Shoot

	Problem Formulation
	Static Weapon-Target Assignment
	Two-Stage Dynamic Weapon-Target Assignment

	Methodology
	Adaptive Dynamic Programming
	Approximation of the Second Stage Value Function
	Adaptive Dynamic Programming for a Two-Stage DWTA

	Numeric Results and Discussion
	Small scale experiments
	Large Scale Experiments

	Conclusions and Future Research

	Approximate Dynamic Programming Methods for a Cooperative Dynamic Weapon-Target Assignment Problem
	Abstract
	Introduction
	Problem Definition
	Problem Description
	Problem Formulation

	Solution Methodology
	Dynamic Programming
	Value Iteration Using a Reduced Decision Space

	Numeric Results
	Simple Example Description
	Simple Example Solution
	Numeric results for the simple example
	Sensitivity Analysis
	Numeric results for larger problems

	Conclusions

	An Integrated Simulation Framework for Optimal Weapons-Mix Determination
	Abstract
	Introduction
	Problem Formulation
	Multi-dimensional Knapsack Problem
	Dynamic Weapon-Target Assignment Problem

	Methodology
	Genetic Algorithms
	Solution of the DWTA

	Numerical Results and Discussion
	Conclusions

	Conclusions and Recomendations
	Summary of Effort
	Conclusion
	Future work
	Shoot-look-shoot
	Cooperative DWTA Problem
	Embedded Optimization Framework

	Data Tables and additional figures
	Bibliography

	1_REPORT_DATE_DDMMYYYY: 26-12-2014
	2_REPORT_TYPE: Dissertation
	3_DATES_COVERED_From__To: Oct 2011 - Dec 2014
	4_TITLE_AND_SUBTITLE: Approximate Dynamic Programming for Military Resource Allocation
	5a_CONTRACT_NUMBER:
	5b_GRANT_NUMBER:
	5c_PROGRAM_ELEMENT_NUMBER:
	5d_PROJECT_NUMBER:
	5e_TASK_NUMBER:
	5f_WORK_UNIT_NUMBER:
	6_AUTHORS: Parson, Carl, R.
	7_PERFORMING_ORGANIZATION: Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
Wright-Patterson AFB OH 45433-7765
	8_PERFORMING_ORGANIZATION: AFIT-ENS-DS-14-D-16
	9_SPONSORINGMONITORING_AG: AFRL/RW
Capt Melanie Walton
101 West Eglin Blvd, Bldg 13 Rm 233
Eglin AFB, FL 32542
(850) 882-3231
	10_SPONSORMONITORS_ACRONY: AFRL/RW
	1_1_SPONSORMONITORS_REPOR:
	12_DISTRIBUTIONAVAILABILI: Distribution Statement A. Approved for Public Release;Distribution Unlimited
	13_SUPPLEMENTARY_NOTES: This work is declared a work of the U.S. Government and is not subject to copyright protection in the United States.
	14ABSTRACT: This research considers the optimal allocation of weapons to a collection of targets with the objective of maximizing the value of destroyed targets. The weapon-target assignment (WTA) problem is a classic non-linear combinatorial optimization problem with an extensive history in operations research literature. The dynamic weapon target assignment (DWTA) problem aims to assign weapons optimally over time using the information gained to improve the outcome of their engagements. This research investigates various formulations of the DWTA problem and develops algorithms for their solution. Finally, an embedded optimization problem is introduced in which optimization of the multi-stage DWTA is used to determine optimal weaponeering of aircraft. Approximate dynamic programming is applied to the various formulations of the WTA problem. Like many in the field of combinatorial optimization, the DWTA problem suffers from the curses of dimensionality and exact solutions are often computationally intractability. As such, approximations are developed which exploit the special structure of the problem and allow for efficient convergence to high-quality local optima. Finally, a genetic algorithm solution framework is developed to test the embedded optimization problem for aircraft weaponeering.

	15_SUBJECT_TERMS: Weapon-Target Assignment, Dynamic Programming, Stochastic Programming, Stochastic Optimization
	a_REPORT: U
	bABSTRACT: U
	c_THIS_PAGE: U
	17_limitation_of_abstract: UU
	number_of_pages: 173
	19a_NAME_OF_RESPONSIBLE_P: Dr. Darryl K. Ahner, AFIT/ENS
	19b_TELEPHONE_NUMBER_Incl: (937) 255-3636 x4708 darryl.ahner@afit.edu
	Reset:

