AWARD NUMBER: W81XWH-13-1-0463

TITLE: The Ketogenic Diet and Potassium Channel Function

PRINCIPAL INVESTIGATOR: Dr. Geoffrey Murphy

CONTRACTING ORGANIZATION: Regents of the University of Michigan
Ann Arbor, MI 48109

REPORT DATE: October 2014

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
The overall objective of this Discovery Award is to explore the hypothesis the ketogenic diet regulates neuronal excitability by influencing potassium channel activity via the auxiliary potassium channel subunit Kvβ2. To test this hypothesis we have examining the impact of the ketogenic diet on mice in which the gene that encodes Kvβ2 has been deleted (Kvβ2 KO mice) using an in vitro model of seizure induction. We have examined the first cohort of Kvβ2 KO mice and somewhat surprisingly it appears that Kvβ2 KO mice on a normal diet (ND) exhibit a lower frequency of in vitro bursting activity (seizures) which is reversed by treatment with the ketogenic diet (KD). Conversely, the latency to the first in vitro burst event is reduced in Kvβ2 KO mice on ND compared to wild-type mice on a ND. This effect was also reversed by the ketogenic diet. We are continuing to increase the sample size for this cohort and are developing additional computational tools to further analyze the seizure data.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>4</td>
</tr>
<tr>
<td>2. Keywords</td>
<td>4</td>
</tr>
<tr>
<td>3. Overall Project Summary</td>
<td>4-5</td>
</tr>
<tr>
<td>4. Key Research Accomplishments</td>
<td>5</td>
</tr>
<tr>
<td>5. Conclusion</td>
<td>5</td>
</tr>
<tr>
<td>7. Inventions, Patents and Licenses</td>
<td>6</td>
</tr>
<tr>
<td>8. Reportable Outcomes</td>
<td>6</td>
</tr>
<tr>
<td>9. Other Achievements</td>
<td>6</td>
</tr>
<tr>
<td>10. References</td>
<td>6</td>
</tr>
<tr>
<td>11. Appendices</td>
<td>6</td>
</tr>
</tbody>
</table>
1. Introduction:
The overall goal of this Discovery Award is to explore the hypothesis that the ketogenic diet (KD), which is used to treat epilepsy (primarily in children) exerts a positive effect on seizure activity by regulating neuronal excitability via a subclass of potassium auxiliary subunits known as Kvβ subunits. Therefore we have been treating genetically engineered mice that lack these subunits (specifically the Kvβ2 subunit) with the KD and examining the interaction of diet and seizure activity in vitro.

2. Keywords:
Epilepsy, Ketogenic Diet, Seizure Disorder, Potassium Channels, Neurophysiology

3. Overall Project summary:
Within the last year we have established a reasonably sized breeding colony of mice to support our research goals. As anticipated we have not encountered any issues in maintaining/genotyping this colony. To date we have made a significant number of recordings from mice lacking the Kvβ2 subunit (Kvβ2 KO mice) to compare to wild-type (WT) littermate controls. A sample recording from a typical experiment is presented in Figure 1 below (scale bars: 100 µV and 5 min, 30 sec, 10 ms for A, B & C respectively).

Figure 1: Sample Recording
Recordings are made in CA3 region of the hippocampal slices prepared under standard conditions (e.g. (Moore, Throesch et al. 2011)). After a stable baseline was recording, the normal artificial cerebrospinal fluid (aCSF) was replaced with aCSF which contained 0.5 mM magnesium (Low Mg2+ in Fig 1A above) and was continuously perfused throughout the remainder of the recording. Typically, after several minutes of low Mg2+ spontaneous rhythmic burst events were observed (Fig 1B) which consisted of a biphasic waveform containing multiple spikes of varying amplitude (Fig 1C). For these experiments mice (Kv\textbeta\textbeta2 KO & WT) were fed either a normal diet (Purina 5010) or a KD diet that consisted of ~75% fat (BioServ F3666) for a period of up to six weeks. Using the latency to the first burst event as an indicator of seizure susceptibility we found that on the normal diet the Kv\beta\textbeta2 KO mice appear to be more susceptible under normal diet (ND) conditions when compared to WT littermates (Figure 2). However there was no significant difference between KO mice and WT mice on the ketogenic diet (Figure 2). In addition we measured the rate at which the bursting occurred during the recording. Figures 3 and 4 present the average instantaneous frequency of bursts recorded for 10 minutes after the occurrence of the first event (2 min bins). Somewhat surprisingly, the Kv\beta\textbeta2 KO mice exhibit a significant lower frequency of events when maintained on ND when compared to WT mice (Figure 3). This difference in burst frequency was eliminated when the Kv\beta\textbeta2 KO mice were maintained on a KD (Figure 4).

4. Key Research Accomplishments:
Nothing to report

5. Conclusion:
Although our study is still ongoing and therefore definitive conclusions will need to be deferred, at this point we make the interim conclusion that in our in vitro seizure model, deletion of Kv\beta\textbeta2 appears to modestly reduce seizure susceptibility while also reducing the rate of repetitive bursting. Paradoxically, under ketogenic conditions hippocampal slices from the Kv\beta\textbeta2 KO mice appear to be similar to WT mice in terms of latency to the first event and event frequency. At present or sample size for this study is reasonable (min 7 slices per group), over the next six months we will increase this number to ensure that these findings are in fact reproducible. In addition, we are developing computational tools to analyze the complex waveforms generated during the bursting. At present we are investigating to what extent if any the amplitude and inter-burst frequency of the events are modulated by loss of Kv\beta\textbeta. Finally we are conducting similar experiments using the Kv\beta\textbeta2\textDelta\textgamma\text90F mice.
6. Publications, Abstracts and Presentations:
Nothing to report

7. Inventions, Patents and Licenses:
Nothing to report

8. Reportable outcomes:
Nothing to report

9. Other Achievements:
Nothing to report

10. References:

11. Appendices:
None