Design of Phosphorus-Containing MWIR Type-II Superlattices for Infrared Photon Detectors

Christoph H. Grein, Michael E. Flatté, Member, IEEE, Allan J. Evans, Member, IEEE, Andrew D. Hood, William E. Tennant, Senior Member, IEEE, and Vaidya Nathan

(Invited Paper)

Abstract—Type-II strained layer superlattices (SLSs) offer a broad range of design degrees of freedom to help optimize their properties as absorber layers of infrared photon detectors. We theoretically examine a new class of mid-wavelength infrared (2–5 μm bandpass) Type-II structures with two-layer InGaSb/InPsb and four-layer InAs/GaSb/InAs/InPsb SLS periods. Phosphorus-containing SLSs are a promising approach to improving infrared photon detector performance due to providing a new set of material properties, including favorable valence band offsets. P-based SLSs of four-layer type InAs/GaSb/InAs/InPsb were found to be among the best 5-μm gap SLSs that we have modeled. Among the studied designs, the lowest dark current in an ideal structure is predicted for a four-layer 23.6 Å InAs/20 Å GaSb/23.6 Å InAs/60 Å InP_{0.62}Sb_{0.38} SLS. Its predicted ideal dark current is about 35 times lower than an n-type HgCdTe-based photodiode absorber and six times lower than a p-type HgCdTe one for the same bandgap, temperature, and dopant concentration. We also discuss a defect mitigation strategy that involves positioning the SLS gap in an energy range that avoids defect levels and show how this applies to the aforementioned P-containing SLS.

Index Terms—Auger recombination, detector, infrared, Type-II superlattice.

I. INTRODUCTION

HIGH-quality, high-operating temperature infrared photodiodes based on HgCdTe are typically limited in sensitivity by Auger recombination in their absorber layers [1].

Type-II strained layer superlattices (SLSs) based on InAs/GaInSb are of interest in part because they offer the possibility to design features into their electronic band structures that reduce the rate of Auger recombination, for example, by reducing the density of available final states. The ability of the InAs/GaSb material system to achieve small infrared energy gaps was first predicted in 1977 [2]. Its theoretical proposal as a high-performing material system for infrared detection was made in 1987 [3], suggesting optical absorption similar to that of HgCdTe alloys and effective masses that lead to favorable electrical properties, such as low photovoltaic device tunneling currents and good carrier mobility. The experimental realization of infrared energy gaps and optical absorption comparable to HgCdTe took place in 1990 [4]. Theoretical predictions of Auger lifetimes orders of magnitude longer in InAs/GaInSb SLS than in HgCdTe alloys were made in 1992 [5] and confirmed experimentally with photoconductive response measurements in 1994 [6].

Designing an SLS to exhibit Auger suppression via final state optimization becomes more challenging as the SLS bandgap increases due to the increasing number of SLS subbands that exist in critical final state regions of the electronic band structure [7]. Mid-wavelength infrared (MWIR) SLSs are therefore particularly challenging to optimize. To our knowledge, this is the first quantitative consideration of P-containing Type-II SLS for infrared detector applications. We initially examined SLS absorber layers of the form GaSb/InPsb (containing two-layer per SLS period), where the InPsb layer was lattice-matched to GaSb, but were unable to reach a 5-μm bandgap at 200 K. Turning to InGaSb/InPsb, with strained InPsb and a strain-balanced unit cell, gave the freedom to reach the desired bandgap. We then examined P-containing SLS designs with four layers per period, which are predicted to exhibit substantially better device performance. The latter two classes are discussed in the following. In addition, we suggest a strategy to mitigate the deleterious effects of defects in mediating recombination that is currently limiting the performance of Type-II SLS-based photodetectors.

II. ELECTRONIC STRUCTURE

The SLSs were designed to possess a 5-μm bandgap wavelength at 200 K. The calculations of the electronic band structure are based on a 14-band bulk basis for the III–V constituents of the SLS, and an envelope-function-based SLS Kp formalism [8]. The SLS is considered to be a highly anisotropic periodic structure. The zone-center states are calculated in Fourier space using a 14-band basis for the envelope functions. The need to rely on a 14-band basis rather than the more common eight-band basis arises because of the sensitivity of the optical and electronic properties to the electronic structure in the secondary regions of the band structure. Errors inherent
Design of Phosphorus-Containing MWIR Type-II Superlattices for Infrared Photon Detectors

Type-II strained layer superlattices (SLSs) offer a broad range of design degrees of freedom to help optimize their properties as absorber layers of infrared photon detectors. We theoretically examine a new class of mid-wavelength infrared (2-5 μm bandpass) Type-II structures with two-layer InGaSb/InPSb and four-layer InAs/GaSb/InAs/InPSb SLS periods. Phosphorous-containing SLSs are a promising approach to improving infrared photon detector performance due to providing a new set of material properties, including favorable valence band offsets. P-based SLSs of four-layer type InAs/GaSb/InAs/InPSb were found to be among the best 5-μm gap SLSs that we have modeled. Among the studied designs, the lowest dark current in an ideal structure is predicted for a four-layer 23.6 Å InAs/20 Å GaSb/23.6 Å InAs/60 Å InP0.62Sb0.38 SLS. Its predicted ideal dark current is about 35 times lower than an n-type HgCdTe-based photodiode absorber and six times lower than a p-type HgCdTe one for the same bandgap, temperature, and dopant concentration. We also discuss a defect mitigation strategy that involves positioning the SLS gap in an energy range that avoids defect levels and show how this applies to the aforementioned P-containing SLS.
in the eight-band model become significantly more pronounced as the states one is interested in become farther from the band edge. This is particularly relevant in MWIR structures relative to longer wavelength ones.

The use of Fourier space to solve the envelope function equations at the zone center avoids the issues associated with matching conditions at sharp interfaces and also provides a sensible way to choose a balanced basis set for the SLS \(Kp \) calculations. Momentum matrix elements are then evaluated among these SLS states, and a \(Kp \) calculation using the SLS states is performed. We have checked the convergence of the \(Kp \) calculations by increasing the number of Fourier terms up to the point where the highest order term has a wavelength of order the atomic spacing, and confirmed that the results do not change.

III. COMPUTATION OF OPTICAL ABSORPTION AND RECOMBINATION RATES

SLS optical absorption coefficients were computed directly from the SLS \(Kp \) energy bands and matrix elements. The absorption spectrum of HgCdTe was obtained from semiempirical equation (7) in [9] and will be employed later in the computation of dark currents for comparison with the SLS.

Auger recombination rate calculations, which are computationally more intensive, require additional approximations and are thus characteristically less accurate than optical properties. The highly nonparabolic band structures and momentum matrix elements are used directly as input for the computation of SLS Auger lifetimes. They are input into the Auger rate computations in the form of lookup tables with a mesh spacing of 0.002 Å\(^{-1}\). The principal methods employed are discussed in [7], and have been extended to include the effects of SLS Umklapp processes [10], which have shown to contribute approximately half of the total rate of Auger recombination in SLS. The transition matrix elements are evaluated using a statically screened Coulomb interaction and first-order \(Kp \) for the wave function overlaps. The multidimensional \(K \)-space integrals are evaluated employing an adaptive mesh Monte Carlo algorithm. For HgCdTe, the Auger lifetimes were computed from the Blakemore expression [11] with \(|F_1F_2| = 0.2 \) and \(\gamma = 6 \). Both Auger-7 and Auger-1 recombination mechanisms were included in all cases.

Radiative recombination is not included in the calculations due to Humphrey’s [12] suggestion that standard radiative lifetime estimates, such as those obtained by the van Roosbroeck–Shockley expression [13], are significantly underestimated. Defect-mediated recombination is not included in the calculations. Actual lifetimes are expected to be shorter than those predicted here due to the presence of recombination-mediating defects (see Section VI).

IV. COMPUTATION OF IDEAL PHOTODIODE DARK CURRENTS

A valuable means of comparing the potential performance of various infrared photon detectors is by estimating their dark currents. We computed the diffusion-limited dark currents of the examined Type-II SLS- and, for reference, HgCdTe-based absorber layer photodiodes using the expression:

\[
eG_{th} = e \frac{n_{min}d}{\tau_A}
\]

where \(e \) is the electron charge, \(G_{th} \) is the thermal generation rate, \(n_{min} \) is the minority carrier concentration, \(d \) is the absorber layer physical thickness (assumed to be less than the minority carrier diffusion length), and \(\tau_A \) is the minority carrier Auger lifetime. This expression considers only the diffusion current coming from absorber region, and as such represents the lowest possible dark current from a classical p-n photodiode (and indeed also an nBn-based device [14]).

To facilitate comparisons between the SLS and HgCdTe, we consider for each material system a 5-\(\mu \)m bandgap and a 200 K operating temperature. The parameters in (1) were obtained as follows. The minority carrier concentrations \(n_{min} \) of the SLS were computed directly from the electronic band structure as obtained using the SLS \(Kp \) method using Fermi statistics at the temperature under consideration. This method is described in Grein et al. [7], with the specific material parameters and calculations described in [8]. P-type dopant concentrations of \(1 \times 10^{15}, 1 \times 10^{16}, \) and \(1 \times 10^{17} \text{ cm}^{-3} \) with all acceptors singly ionized were considered. The minority carrier concentrations of the HgCdTe alloys were computed employing the Hansen and Schmit expression [15]. For HgCdTe, we considered separately p-type dopant concentrations of \(1 \times 10^{15}, 1 \times 10^{16}, \) and \(1 \times 10^{17} \text{ cm}^{-3} \), and n-type dopant concentrations of \(1 \times 10^{15}, 1 \times 10^{16}, \) and \(1 \times 10^{17} \text{ cm}^{-3} \). \(d \) was chosen to be 5 \(\mu \)m for the HgCdTe absorber (corresponding to a 10 \(\mu \)m optical thickness for a perfectly reflecting contact giving a double pass of the infrared radiation). The absorption coefficient \(\alpha \) of all considered SLS and HgCdTe cases was taken to be the absorption coefficient at 9/10 of the gap wavelength \(\lambda_g \). \(d \) for the SLS was computed to give the same \(\alpha d \) product as HgCdTe.

V. RESULTS FOR IDEAL SUPERLATTICES

A. 56 Å \(\text{In}_{0.22}\text{Ga}_{0.78}\text{Sb}/160 \text{ Å InP}_{0.68}\text{Sb}_{0.32} \) Two-Layer SLS

The computed 200 K electronic band structure of 56 Å \(\text{In}_{0.22}\text{Ga}_{0.78}\text{Sb}/160 \text{ Å InP}_{0.68}\text{Sb}_{0.32} \) SLS, which is strain balanced to a GaSb substrate, is shown in Fig. 1. It is predicted to have a 249.3-meV (4.97 \(\mu \)m) bandgap. Its long period is due to the need to minimize quantum confinement energies to realize
an MWIR gap, which is associated with the fact that the band alignment is staggered Type II and not broken gap Type II like it is for InAs/GaSb-based SLS [16]. Not surprisingly, the long period for this Type-II SLS with only two layers in a period results in weak electron–hole overlaps and hence weak optical absorption. For a p-type dopant concentration of \(1 \times 10^{15} \text{ cm}^{-3}\) and a temperature of 200 K, we compute a hole–hole Auger (Auger-7) lifetime of 9.8 \(\times 10^{-3}\) s (Auger coefficient \(\gamma_{3hh} = 1.0 \times 10^{-28} \text{ cm}^6/\text{s}\)). This low Auger coefficient results from the weak overlap matrix elements, which are similar to those that enter into the optical absorption. As such, while this structure is expected to exhibit weak Auger recombination, it is not of practical value as an infrared photodiode absorber layer due to its weak absorption requiring very thick absorber layers (and very long diffusion lengths) to achieve significant quantum efficiency.

B. P-Containing Four-Layer SLS Design

The electronic structure of a four-layer SLS structure with layer compositions and thicknesses 23.6 Å InAs/20 Å GaSb/23.6 Å InAs/60 Å InP\(_{0.62}\)Sb\(_{0.38}\), and a 248.3-meV (5 \(\mu\)m) bandgap at 200 K is shown in Fig. 2. It is of a W-structure design [17] and is strain-balanced to a GaSb substrate. We compute an Auger coefficient \(\gamma_{3hh} = 7.9 \times 10^{-28} \text{ cm}^6/\text{s}\) for this structure. Its optical absorption coefficient is plotted in Fig. 3 and compared with the two-layer design of the previous section and bulk HgCdTe. We see that the absorption is significantly stronger than that of the two-layer design and comparable to HgCdTe at its onset.

As described in Section IV, the dark currents of infrared photodiodes based on SLS and HgCdTe were compared by scaling the thickness of the SLS absorber layer to give the same \(\alpha d\) product as for a 5-\(\mu\)m-thick HgCdTe absorber. The \(\alpha\) and \(d\) values for 23.6 Å InAs/20 Å GaSb/23.6 Å InAs/60 Å InP\(_{0.62}\)Sb\(_{0.38}\) are compared with those for HgCdTe in Table I. Note that the weaker absorption of the P-containing four-layer SLS relative to HgCdTe at \(9\alpha_d/10\) means that this design requires a thicker absorber region than HgCdTe to produce the same quantum efficiency.

The computed minority carrier lifetimes for the P-containing four-layer SLS, p-type Hg\(_{0.715}\)Cd\(_{0.285}\)Te and then n-type Hg\(_{0.715}\)Cd\(_{0.285}\)Te having increasingly shorter lifetimes. The corresponding dark currents are presented in Fig. 5. For all doping choices, the lowest dark current is predicted for the 23.6 Å InAs/20 Å GaSb/23.6 Å InAs/60 Å InP\(_{0.62}\)Sb\(_{0.38}\) SLS and the highest for n-type Hg\(_{0.715}\)Cd\(_{0.285}\)Te, with about 1.5 orders of magnitude between these two. Fig. 6 plots Rule 07 (a useful estimator for state-of-the-art HgCdTe dark current density) [18] together with the dark currents as predicted in Fig. 5 for \(10^{13} \text{ cm}^{-3}\) doping.

In summary, the consideration of a P-based electron–hole barrier layer of the SLS structure has resulted in a design that is predicted to yield ideal MWIR photodiodes with dark currents 35 times lower than those based on an n-type HgCdTe absorber.
Fig. 4. Computed minority carrier lifetimes τ_{min} of p- and n-type doped Hg$_{0.715}$Cd$_{0.285}$Te (MCT) and the p-type 23.6 Å InAs/20 Å GaSb/23.6 Å InAs/60 Å InP$_{0.62}$Sb$_{0.38}$ SLS (P-containing four-layer SLS), all at 200 K.

Fig. 5. Computed dark currents for diffusion-limited diodes with absorber layers consisting of the same materials as in Fig. 4 and absorber layer thicknesses as in Table I, all at 200 K.

Fig. 6. Rule 07 (line) with specific dark current predictions for diffusion-limited diodes with absorber layers consisting of the same materials as in Fig. 4.

and six times lower than a p-type HgCdTe one for the same bandgap, temperature, and dopant concentration. Moreover, the needed absorber layer thickness is only about 25% greater than that of HgCdTe to produce the same quantum efficiency at a wavelength of 4.5 μm.

VI. DEFECT-MITIGATION STRATEGY

Present-day Type-II SLS-based photodetectors remain defect-limited in their performance [19]. We propose here a defect-mitigation strategy that does not require the elimination of defects but rather limits the effectiveness of existing defects in mediating recombination. We note that this strategy applies to contributions to the photodiode dark current from defect-mediated generation and recombination in SLS-based absorber and depletion layers, unlike other strategies that reduce or eliminate dark current contributions arising from only depletion regions or surfaces [14], [19].

The strategy is based on the assumption that the current-limiting defects arise from states native to one or both of the component materials (GaSb and its alloys or InAs and its alloys). Adroit use of this proposed approach allows engineering the position of the energy gap of an SLS to a desired absolute energy range that ideally does not contain component material defect levels or at least results in shallow defects that are less effective in mediating Shockley–Read–Hall recombination. Fig. 7 shows the bandgaps of four SLS relative to bulk GaSb, bulk InAs, and bulk InP$_{0.62}$Sb$_{0.38}$ to demonstrate this concept. The absolute energy gap positions of the SLS were designed to have varying degrees of overlap with the bulk GaSb gap. We see that shallow donors or mid-gap defects in GaSb would be resonances in these SLS designs. Shallow acceptors in GaSb could become deep-level defects in the SLS; however, their exact position in the SLS gap (or outside of it) can be positioned by appropriate SLS design. A major conclusion is that it is possible to tune the absolute position of the energy gap of a 5-μm bandgap SLS at 200 K by design variation. This has implications with regard to the defects that mediate Shockley–Read–Hall recombination, namely a particular defect level may be a deleterious deep-level one in one design yet a less-harmful shallow one or even a resonance in another design. As such, when a particular defect level is discovered in a particular SLS design, other designs can...
be generated using the tools presented in this paper with the same cutoff wavelength but positioning the same defect level either shallower or completely out of the gap, thereby diminishing its harmful effects on recombination lifetimes. We note that this strategy can be effective no matter what the origin of the defect (intrinsic or extrinsic), but it does require that those defect levels most deleterious to recombination lifetimes can be positioned outside of the SLS bandgap or at least near the band edges. This may be challenging if a particular defect produces multiple states that all readily mediate recombination and they are distributed over an energy range comparable to the SLS bandgap.

VII. SUMMARY

We theoretically examined Type-II SLS structures with two-layer InGaSb/InP, and four-layer InAs/GaSb/InAs/InP SLS periods for utilization as absorber layers of MWIR photodetectors. Among the studied designs, the lowest dark current in an ideal structure is predicted for a four-layer 23.6 Å InAs/20 Å GaSb/23.6 Å InAs/60 Å InP0.62Sb0.38 SLS. Its predicted ideal dark current is about 35 times lower than an n-type HgCdTe-based absorber and six times lower than a p-type HgCdTe one for the same bandgap, temperature, and dopant concentration. We also proposed a defect mitigation strategy that involves positioning the SLS gap in an energy range that avoids defect levels. This study points the need for future exploration of the many degrees of freedom offered in infrared SLS to optimize both intrinsic material properties and minimize the influence of defects.

ACKNOWLEDGMENT

The authors would like to thank the support of A. Hahn, L. Brown, and Dr. G. Brown for their continued support and guidance during this program.

REFERENCES

Christoph H. Grein received the B.Sc. degree in mathematics and physics from the University of New Brunswick, Fredericton, NB, Canada, in 1984, and the Ph.D. degree in physics from Princeton University, Princeton, NJ, in 1989.

After postdoctoral research at the Max Plank Institute for Solid State Research, Stuttgart, and in the Division of Applied Sciences, Harvard University, he joined the faculty of the University of Illinois at Chicago, Chicago, in 1993, where he is currently a Professor in the Department of Physics. He is also the President of Episensors, Inc., Bolingbrook, IL. He has authored more than 175 scientific papers principally in the areas of infrared materials and device technology. He is an Associate Editor of Applied Physics Letters. His current research interests include carrier recombination in narrow-gap semiconductors, charge and heat transport in semiconductor superlattice-based devices, and heteroaxial crystal growth.

Dr. Grein is a Fellow of the International Society for Optical Engineers and a member of the American Physical Society.

Michael E. Flatté (M’00) received the A.B. degree in physics from Harvard University, Cambridge, MA, in 1988, and the Ph.D. degree in physics from the University of California, Santa Barbara, Santa Barbara, in 1992.

After postdoctoral research at the Institute for Theoretical Physics, University of California, Santa Barbara, and in the Division of Applied Sciences, Harvard University, he joined the faculty of The University of Iowa, Iowa City, in 1995, where he is currently a F. Wendell Miller Professor in the Department of Physics and Astronomy. He is also a consultant with Episensors, Inc., Bolingbrook, IL. His current research interests include spin dynamics in semiconductors and metals, carrier dynamics in narrow-gap semiconductor superlattices, electrovariable nanoplasmonics, single-dopant properties in semiconductors, novel spintronic devices, and solid-state realizations of quantum computation.

Dr. Flatté is a Fellow of the American Association for the Advancement of Science and of the American Physical Society, and a member of the IEEE Electron Devices Society, Magnetics Society, and Photonics Society. He is also a member of the Materials Research Society, the Optical Society of America, and American Vacuum Society.
Andrew D. Hood was born in Naperville, IL, in 1981. He received the B.S. and Ph.D. degrees in electrical engineering from Northwestern University, Evanston, IL, in 2003 and 2008, respectively.

His Ph.D. research was focused on the development of high-operating-temperature, high-power, infrared GaInAs-AlInAs-InP quantum cascade lasers based on strained-layer superlattices. He is currently the Director of Advanced Technology Development at Teledyne Imaging Sensors, Camarillo, CA. From 2010 to 2012, he was a Program Manager in the National & Department of Defense Space segment of Teledyne Imaging Sensors, where he managed programs to develop III–V based type-II superlattice infrared focal plane array technology. From 2008 to 2010, he was a Molecular Beam Epitaxy (MBE) Growth Scientist in the Detector Materials Department, Teledyne Imaging Sensors, where he served as the Technical Lead on superlattice programs and also helped develop HgCdTe MBE growth on Si and GaAs substrates. He has authored more than 50 scientific papers in the areas of infrared materials and device technology.

Dr. Evans received a Professional Certificate in project management from the University of California, Santa Barbara, in 2011. He was the recipient of the International Society for Optical Engineers Best Paper Award at the Photonics West Optoelectronic Symposium in 2005.

Vaidya Nathan received the Ph.D. degree in physics from the University of Rhode Island, in 1978.

He has held several technical positions in the Air Force Research Laboratory, Kirtland AFB, NM, where he is currently a Senior Research Physicist. He is investigating the physical properties and processing parameters that control the performance of infrared and visible detectors, readout devices, and hybrids in benign and hostile environments. He is involved in the study of the mechanisms of radiation-induced degradation in the performance of the above, and methods to mitigate the adverse effects of radiation. He is involved in planning, execution, and managing of R&D programs in infrared detectors for U.S. Air Force and Missile Defense Academy. He has published 81 research papers in refereed journals such as Physical Review, the Journal of Applied Physics, Applied Optics, the Journal of Quantum Electronics, the IEEE TRANSACTIONS ON ELECTRON DEVICES, Semiconductor Science and Technology, the Journal of Electronic Materials, Solid State Communications, etc., and conference proceedings. He has authored an extensive review article on multiphoton absorption in solids, which is still being cited. His research work has been cited throughout the world in excess of 250 times. He has given invited lectures of his research at several universities and government laboratories.

Dr. Nathan has been acting as a Research Advisor for Air Force Materiel Command/National Research Council Postdoctoral Research Associateship Program for Passive Sensors since 1983. He serves on the program committees for Military Sensing Symposium IR Materials Specialty Conference. He has served on the International Society for Optical Engineer’s Conference on IR Materials and Detectors for six years and as Session Chair for these and several other conferences. He has served as a Referee on papers submitted for publication in Physical Review, the Journal of Electronic Materials, and the IEEE TRANSACTIONS ON ELECTRON DEVICES.