
UNCLASSIFIED

Implementation of Geometric Algebra in

MATLAB R© with Applications

Leonid K. Antanovskii

Weapons and Combat Systems Division

Defence Science and Technology Organisation

DSTO–TR–3021

ABSTRACT

Geometric Algebra is the most appropriate unifying mathematical language
to describe diverse problems in mathematics, physics, engineering and com-
puter science. In combination with Projective Geometry it provides an effi-
cient framework for computer vision and robotics, where image processing and
recognition play the central rôle. This document addresses a gentle introduc-
tion to Geometric Algebra followed by its implementation in MATLAB. The
developed fully vectorized code is thoroughly tested. Several applications are
presented in the form of unit tests, amongst which are some basic algorithms
for the reconstruction of a three-dimensional structure from two-dimensional
images.

APPROVED FOR PUBLIC RELEASE

UNCLASSIFIED



DSTO–TR–3021 UNCLASSIFIED

Published by

DSTO Defence Science and Technology Organisation
PO Box 1500
Edinburgh, South Australia 5111, Australia

Telephone: 1300 333 362
Facsimile: (08) 7389 6567

c© Commonwealth of Australia 2014
AR No. AR 016–076
September, 2014

APPROVED FOR PUBLIC RELEASE

ii UNCLASSIFIED



UNCLASSIFIED DSTO–TR–3021

Implementation of Geometric Algebra in MATLAB R© with
Applications

Executive Summary

Geometric Algebra is the most appropriate unifying mathematical language to describe
diverse problems in mathematics, physics, engineering and computer science. In combina-
tion with Projective Geometry it provides an efficient framework for computer vision and
robotics, where image processing and recognition play the central rôle. This document
addresses a gentle introduction to Geometric Algebra followed by its implementation in
MATLAB. The developed fully vectorized code is thoroughly tested. Several applications
are presented in the form of unit tests, amongst which are some basic algorithms for the
reconstruction of a three-dimensional structure from two-dimensional images.

UNCLASSIFIED iii



DSTO–TR–3021 UNCLASSIFIED

THIS PAGE IS INTENTIONALLY BLANK

iv UNCLASSIFIED



UNCLASSIFIED DSTO–TR–3021

Contents

1 Introduction 1

2 Geometric algebra 1

2.1 Clifford algebra of 3-dimensional vector space . . . . . . . . . . . . . . . . 6

2.2 Clifford algebra of 4-dimensional vector space . . . . . . . . . . . . . . . . 7

3 Projective geometry 8

3.1 Incidence relations in projective plane P2 . . . . . . . . . . . . . . . . . . 9

3.2 Incidence relations in projective space P3 . . . . . . . . . . . . . . . . . . 10

4 Application to 3D reconstruction 12

5 Description of the developed MATLAB code 15

6 Discussion 16

References 17

Appendices

A Multiplication tables 18

B Listing of clifford algebra.m 21

C Listing of clifford algebra test.m 34

D Listing of geometric algebra test.m 42

UNCLASSIFIED v



DSTO–TR–3021 UNCLASSIFIED

Figures

1 Pinhole camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Epipolar geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

vi UNCLASSIFIED



UNCLASSIFIED DSTO–TR–3021

Tables

A1 Geometric products of the basis multivectors of C
(
R3
)

. . . . . . . . . . . . . 18

A2 Progressive outer products of the basis multivectors of C
(
R3
)

. . . . . . . . . 18

A3 Regressive outer products of the basis multivectors of C
(
R3
)

. . . . . . . . . 18

A4 Geometric products of the basis multivectors of C
(
R4
)

. . . . . . . . . . . . . 19

A5 Progressive outer products of the basis multivectors of C
(
R4
)

. . . . . . . . . 20

UNCLASSIFIED vii



DSTO–TR–3021 UNCLASSIFIED

THIS PAGE IS INTENTIONALLY BLANK

viii UNCLASSIFIED



UNCLASSIFIED DSTO–TR–3021

1 Introduction

It has been recognized that Geometric Algebra is the most appropriate unifying mathe-
matical language to describe diverse problems in mathematics, physics, engineering and
computer science [Hestenes & Sobczyk 1987, Corrochano & Sobczyk 2001, Perwass 2009].
In particular, in combination with Projective Geometry it provides an efficient framework
for computer vision and robotics, where image processing and recognition play the central
rôle.

There are several algebraic structures suitable for the formalization of geometric oper-
ations, such as Gibbs vector algebra, Grassmann algebra, Grassmann–Cayley algebra and
Clifford algebra. The classical vector algebra operates on vectors but has limitations when
dealing with more complex geometric constructs. Grassmann algebra is equipped with
an exterior product, also called a progressive outer product, which is useful for building
higher dimensional objects from lower dimensional objects, for example, when creating
a line joining two points or a plane passing through three points in a projective space.
Grassmann–Cayley algebra is additionally equipped with a regressive outer product which
formalizes the operation of intersection of linear objects, such as the creation of a line of
intersection between two planes. Finally, Clifford algebra additionally contains an inner
product which is used to describe parallelism and orthogonality.

In this document we confine ourselves to Clifford algebra generated by a vector space
equipped with a positive definite scalar product. Note that the Grassmann and Grassmann–
Cayley algebras can be factored out from Clifford algebra, and hence they are part of it.
In our context these algebraic structures are identified with Geometric Algebra.

We provide a gentle introduction to Geometric Algebra and Projective Geometry to
fix definitions and notations, and recall basic relations between algebraic and geometric
operations. The developed MATLAB code for a range of Clifford algebras, based on the
algebra multiplication tables given in Appendix A, is presented in Appendix B. The fully
vectorized code is thoroughly tested against the basic properties of the Clifford algebra
operations and derived identities by a suite of unit tests given in Appendix C.

When combined with projective spaces, the real power of Clifford algebra emerges. In
particular, the effectiveness of Geometric Algebra manifests itself by an elegant and concise
form of equations for intricate geometric constructs. We present another suite of unit tests
in Appendix D which demonstrates this power. We apply this technique to the derivation
of basic algorithms for the projection of a three-dimensional object to two-dimensional
images, followed by its reconstruction from a sequence of images.

2 Geometric algebra

Consider an n-dimensional vector space Rn over the field of real numbers R, equipped
with a positive definite scalar product denoted by the centred dot

Rn × Rn 3 (a, b) 7→ a · b ∈ R . (1)

Choose an orthonormal basis {e1, . . . , en} characterized by the identities ei · ej = δij
where δij is the Kronecker symbol. The Clifford algebra C (Rn) is defined by the following

UNCLASSIFIED 1



DSTO–TR–3021 UNCLASSIFIED

multiplication rules on the basis elements

ei ej + ej ei = 2δij (2)

in combination with the additional axioms of associativity and distributivity [Lang 2002,
Garling 2011, Hestenes & Sobczyk 1987].

We denote the multiplication operation in the Clifford algebra by juxtaposition. This
product is called the geometric or Clifford product to distinguish it from other products
to be introduced. The multiplication rules on the basis vectors can be written as

ei ej = ei · ej + ei ∧ ej (3)

where the inner (scalar) and outer (wedge) products are expressed for any vectors a, b in
terms of the geometric product

a · b =
1

2
(a b+ b a) , a ∧ b =

1

2
(a b− b a) . (4)

For the basis orthonormal vectors we have e2i = 1 and ei ej = ei ∧ ej = −ej ∧ ei = −ej ei
provided that i 6= j. The elements of C (Rn) are called multivectors, hypercomplex numbers
or Clifford numbers.

The basis multivectors of the Clifford algebra are constructed by the collection {eI}
where the compound index I is a subset of the set {1, 2, . . . , n}. For convenience we adopt
the notation e∅ = 1 (when I = ∅) and set

eI = ei1 i2 ... ik ≡ ei1 ei2 . . . eik for I = {i1, i2, . . . , ik} (5)

where we will always assume that 1 ≤ i1 < i2 < . . . < ik ≤ n. Obviously, the basis
multivectors contain the basis vectors when k = 1.

It is straightforward to generate the multiplication table of the basis multivectors of the
Clifford algebra, because eI eJ = ±eK for some compound index K. The procedure is as
follows. Move each factor ejq for q = 1, . . . , l in the product ei1 ei2 . . . eik ej1 ej2 . . . ejl to
the left by swapping it with the immediate left neighbour eip while ip > jq, and changing
the sign of the product according to the anti-commutativity law. Stop when either ip < jq
or ip = jq. In the latter case set eip ejq = 1. In the end of the procedure the indices of
the product factors become sorted which produce the final index K and the sign of the
equivalent product. For example,

e23 e12 = e2 e3 e1 e2 = −e2 e1 e3 e2 = e1 e2 e3 e2 = −e1 e2 e2 e3 = −e1 e3 = −e13 . (6)

In particular, we have proved that a general multivector A is expressed by the formal sum

A =
∑
I

AI eI (7)

where AI are real numbers.

The multiplication rule is extended to all multivectors by linearity using the distribu-
tivity law. By virtue of the formal sum (7), we immediately arrive at the direct sum
decomposition of the Clifford algebra

C (Rn) = C0 (Rn)⊕ C1 (Rn)⊕ . . . ⊕ Cn (Rn) (8)

2 UNCLASSIFIED



UNCLASSIFIED DSTO–TR–3021

where Ck (Rn) is spanned by those eI whose index I is composed of k integers. The
number k is called the grade of the vector subspace Ck (Rn), and the elements of Ck (Rn)
are called k-vectors. The dimension of Ck (Rn) is equal to ‘n choose k’, namely

dim Ck (Rn) =

(
n

k

)
≡ n!

k! (n− k)!
. (9)

In particular,

dim C (Rn) =

n∑
k=0

dim Ck (Rn) =

n∑
k=0

(
n

k

)
= 2n . (10)

Hence the Clifford algebra generated by an n-dimensional vector space is 2n-dimensional.

The vector subspace C0 (Rn) is isomorphic to R, which is also a central subalgebra.
By definition, a subalgebra is central if all its elements commute with the elements of the
algebra [Lang 2002]. The centre of an algebra is the set of elements commuting with all
elements, which is obviously a (maximal) central subalgebra [Lang 2002]. It is known that
the centre of C (Rn) is C0 (Rn) for n even, or C0 (Rn)⊕ Cn (Rn) for n odd.

Note that 0-vectors are called scalars, n-vectors are pseudoscalars, and 1-vectors C1 (Rn)
are naturally identified with vectors Rn. The following direct sum of the even-grade sub-
spaces

C+ (Rn) = C0 (Rn)⊕ C2 (Rn)⊕ . . . ⊕ C2bn/2c (Rn) (11)

is in fact a subalgebra because it is closed under multiplication. Indeed, the product of
two even-grade elements has an even grade. The dimension of C+ (Rn) is equal to 2n−1.
The even subalgebra C+ (Rn) plays an important rôle in the definition of spinors [Hestenes
& Sobczyk 1987, Hurley & Vandyck 2000].

It is worthwhile noting that, since scalars are embedded in a Clifford algebra, the
multiplication by scalars coincides with the ordinary multiplication of algebra elements.
Therefore, from the algebraic point of view, Clifford algebras are indeed rings [Lang 2002].

Let us extend the inner and outer products from 1-vectors to all multivectors. A
general multivector A has the direct sum decomposition

A =
n∑
k=0

〈A〉k (12)

where the grade-projection operator of C (Rn) to Ck (Rn) is denoted by the angular bracket

C (Rn) 3 A 7→ 〈A〉k ∈ Ck (Rn) . (13)

It is convenient to extend the grade-projection operator to identical zero for k > n or
k < 0. It suffices to define the inner and outer products on elements of given grades and
extend them by linearity to all multivectors. Having said that we define

A ·B =

n∑
k=0

n∑
l=0

〈〈A〉k 〈B〉l〉|k−l| , (14)

UNCLASSIFIED 3



DSTO–TR–3021 UNCLASSIFIED

A ∧B =
n∑
k=0

n∑
l=0

〈〈A〉k 〈B〉l〉k+l . (15)

It is easy to verify that these definitions are consistent with the original definitions for
1-vectors. Note that α ·A = A ·α = α∧A = A∧α = αA = Aα for any scalar α ∈ C0 (Rn).
The inner product combines the left and right contraction in a single expression. It is
worthwhile emphasizing that neither is the inner product symmetric nor is the outer
product antisymmetric. It is important to stress that the outer product is associative,
whereas the inner product is not.

The following identities exploiting the outer and inner products can be proved in a
straightforward manner

a · (b ∧ c) = (a · b) c− (a · c) b ∀ a, b, c ∈ Rn , (16)

(a ∧ b) · (c ∧ d) = (a · d) (b · c)− (a · c) (b · d) ∀ a, b, c, d ∈ Rn , (17)

a ∧ C ∧ b = −b ∧ C ∧ a ∀ a, b ∈ Rn , ∀C ∈ C (Rn) , (18)

a1 ∧ . . . ∧ an = det [a1 . . . an] e1 ... n ∀ ai ∈ Rn . (19)

In the last identity the expression [a1 . . . an] denotes a square matrix of order n, formed
by the components of the n vectors arranged as columns (or rows).

These identities can be generalized, for example, the identity (16) is a particular case
of the following identity

a ·B =

k∑
i=1

(−1)i−1 (a · bi) Bi ∀ a, b1, . . . , bk ∈ Rn (20)

where B = b1 ∧ . . . ∧ bk and Bi is obtained from B by omitting the factor bi. Obviously,
by virtue of anticommutativity, we have B = (−1)i−1 bi ∧Bi.

Another important operation on a multivector A, denoted by Ã, is called the reversion.
To define it, express a multivector A in the form (12) and reverse the order of the factors
in the basis multivectors. This procedure gives the expression

Ã =
n∑
k=0

(−1)
k (k−1)

2 〈A〉k . (21)

In particular, the reversion has no effect on scalar or vector components.

In order to represent a k-dimensional subspace of Rn and associate algebraic operations
of projection and rejection, it is convenient to define a k-blade B such that the subspace Rk
becomes the kernel of the map

Rn 3 a 7→ a ∧B ∈ C (Rn) . (22)

By definition, a k-blade B is the product of k orthonormal vectors, namely

B = b1 . . . bk . (23)

4 UNCLASSIFIED



UNCLASSIFIED DSTO–TR–3021

We always assume that k ≥ 1. It is clear that the blade B has a geometric inverse B−1

given by the reversion B̃, which can be also expressed as

B−1 = bk . . . b1 . (24)

Indeed, BB−1 = B−1B = 1 due to the orthonormality of the blade factors. Now, if the
vectors {b1, . . . , bk} span a subspace Rk ⊂ Rn, then we immediately calculate the projected
(parallel) and rejected (perpendicular) components of a vector a by the following formulae

a‖ = (a ·B) B−1 , a⊥ = (a ∧B) B−1 . (25)

It is straightforward to verify that a = a‖ + a⊥ and a‖ · a⊥ = 0. These simple formulae
have no analogue in Vector Algebra for k > 1. In particular, for a vector a and a blade B,
the identities aB = a ·B + a∧B and B a = B · a+B ∧ a take place, which generalize the
identity a b = a · b+ a ∧ b directly following from the definitions (4).

Since the dimensions of Ck (Rn) and Cn−k (Rn) are equal, there exists a natural isomor-
phism called the dual operator, which is closely related to the Hodge star operator. The
dual operator is defined by the following map of basis k-vectors to basis (n− k)-vectors

∗ei1 i2 ... ik = (−1)|σ| ej1 j2 ... jn−k
(26)

where the compound index J = {j1, j2, . . . , jn−k} is uniquely determined by the condition
J = {1, 2, . . . , n} \ I with I = {i1, i2, . . . , ik}, and |σ| is the parity of the permutation

σ =

(
1 2 . . . n

i1 i2 . . . ik j1 j2 . . . jn−k

)
. (27)

Recall that 1 ≤ i1 < i2 < . . . < in ≤ n and 1 ≤ j1 < j2 < . . . < jn−k ≤ n. In particular,
we immediately obtain that ∗1 = e1 2 ... n and ∗e1 2 ... n = 1. It is straightforward to verify
that the inverse dual operator on basis multivectors has the expression

∗−1ei1 i2 ... ik = (−1)|τ | ej1 j2 ... jn−k
(28)

where |τ | is the parity of the permutation

τ =

(
1 2 . . . n

j1 j2 . . . jn−k i1 i2 . . . ik

)
. (29)

The dual operator (and its inverse) is extended from the basis multivectors to the entire
Clifford algebra by linearity.

Note that if A is a k-blade, 1 ≤ k < n, then B = ∗A is a (n−k)-blade representing the
orthogonal complement of the k-dimensional vector subspace defined by A. In particular,
the product AB is a nonzero pseudoscalar or, equivalently, a n-blade.

Let us define the anti-wedge product ∨ in terms of the wedge product ∧ and the dual
operator by the formula

A ∨B = ∗−1 (∗A ∧ ∗B) . (30)

UNCLASSIFIED 5



DSTO–TR–3021 UNCLASSIFIED

Since the product ∧ increases and ∨ decreases grades, the wedge and anti-wedge products
are also called the progressive and regressive outer products, respectively. It is important
to stress that the regressive outer product is also associative. Indeed, since

(A ∨B) ∨ C = ∗−1 (∗A ∧ ∗B ∧ ∗C) = A ∨ (B ∨ C) , (31)

the associativity of the regressive outer product is the direct consequence of the associa-
tivity of the progressive outer product.

If we keep only the progressive outer product ∧ in a Clifford algebra but all the other
products are forgotten, the resulting algebraic structure is called a Grassmann algebra.
The Grassmann algebra is associative, and can be constructed with no explicit use of a
scalar product in the original vector space. For example, the outer product can be defined
in terms of an alternating tensor product. Note that the dual isomorphism in a Clifford
algebra relies on the existence of a non-degenerate scalar product (not necessarily positive
definite). In Grassmann algebra, which has less structure because the scalar product
may not naturally exist, a similar duality can be established by specifying a nonzero
pseudoscalar, a volume element, which particularly defines an orientation of the vector
space. In essence, this leads to the definition of the Grassmann–Cayley algebra which is
equipped with the progressive and regressive outer products.

2.1 Clifford algebra of 3-dimensional vector space

Consider a 3-dimensional vector space R3 and generate the corresponding Clifford algebra
C
(
R3
)

spanned by 8 basis multivectors. The multiplication table of the basis multivectors
is presented in Table A1, and the progressive outer products are given in Table A2.

The dual operator is calculated on the basis multivectors in a straightforward manner,
namely

∗1 = e123 , ∗e123 = 1 , (32)

∗e1 = e23 , ∗e2 = −e13 , ∗e3 = e12 , (33)

∗e12 = e3 , ∗e13 = −e2 , ∗e23 = e1 . (34)

In particular, we obtain the expression: ∗−1 = ∗.

For any two 1-vectors a, b we get the identity ∗ (a ∧ b) = a × b where the symbol ×
denotes the cross product in a 3-dimensional Euclidean space. Note that the cross product
is not associative, whereas the outer product is. The dual operator allows one to calculate
the regressive outer products of the basis multivectors. The result is shown in Table A3.

It is seen that the scalar unit 1 and pseudoscalar unit e123 commute with all the
other basis multivectors with respect to the geometric product, and therefore the subspace
spanned by {1, e123} forms the central subalgebra of the Clifford algebra C

(
R3
)
, which

is isomorphic to the set of complex numbers C. Actually, this central subalgebra is the
centre of the algebra. The pseudoscalar unit e123 plays the rôle of the imaginary unit.
In general, any element a ∈ C

(
R3
)

squaring to −1 (for example a = e12) generates a
2-dimensional central subalgebra spanned by {1, a}, which is isomorphic to C. However,
such a subalgebra is not central.

6 UNCLASSIFIED



UNCLASSIFIED DSTO–TR–3021

The even subalgebra C+
(
R3
)

is isomorphic to the algebra of quaternions H spanned
by the basis {1, i, j,k} satisfying the identities

i2 = j2 = k2 = −1 , i j = k = −j i , j k = i = −k j , k i = j = −i k . (35)

The isomorphism is established by the correspondence

i = −e23 ≡ − ∗ e1 , j = e13 ≡ − ∗ e2 , k = −e12 ≡ − ∗ e3 . (36)

The inverse of a nonzero quaternion q ∈ C+
(
R3
)

is given by the formula

q−1 =
q̃

q q̃
(37)

where the product q q̃ is obviously a positive scalar. The quaternion q induces a rotation
of the vector space R3 by the map a 7→ ρq(a) = q a q−1. Indeed, it is straightforward to
demonstrate that ρq(a) ∈ R3 and ρq(a) · ρq(b) = a · b for all a, b ∈ R3. In addition, this
map preserves the space orientation: ρq(c) = ρq(a)× ρq(b) whenever c = a× b.

Note that the quaternion q is determined by the rotation ρq up to a nonzero scale.
In particular, the multiplicative group of normalized quaternions, which is a unit sphere
{q q̃ = 1} in the four-dimensional space of quaternion components, is a double covering of
the group of rotations of a three-dimensional Euclidean space (ρq = ρ−q). The map q 7→ ρq
of the group of normalized quaternions to the group of rotations is a group homomorphism
since ρq1 q2 = ρq1 ρq2 [Lang 2002].

There are several other subalgebras such as that spanned by {1, e1, e2, e12}, which is
isomorphic to C

(
R2
)
. In general, any pair of orthonormal vectors generates a subalgebra

of C
(
R3
)
, which is isomorphic to C

(
R2
)
.

The less trivial example is the commutative subalgebra spanned by {1, e1, e23, e123},
which corresponds to tessarines also called bicomplex numbers. In general, any vector a
squaring to 1 generates a tessarine subalgebra spanned by {1, a, a e123, e123}.

2.2 Clifford algebra of 4-dimensional vector space

Consider a 4-dimensional vector space R4 and generate the corresponding Clifford algebra
C
(
R4
)

spanned by 16 basis multivectors. The multiplication table of the basis multivectors
is presented in Table A4, and the progressive outer products are given in Table A5. The
dual operator is calculated on the basis multivectors as follows

∗1 = e1234 , ∗e1234 = 1 , (38)

∗e1 = e234 , ∗e2 = −e134 , ∗e3 = e124 , ∗e4 = −e123 , (39)

∗e123 = e4 , ∗e124 = −e3 , ∗e134 = e2 , ∗e234 = −e1 , (40)

∗e12 = e34 , ∗e13 = −e24 , ∗e14 = e23 , (41)

∗e23 = e14 , ∗e24 = −e13 , ∗e34 = e12 . (42)

UNCLASSIFIED 7



DSTO–TR–3021 UNCLASSIFIED

Note that ∗−1 6= ∗. The 1-vectors are dual to 3-vectors, whereas the 2-vectors are self-dual.
There are many subalgebras of C

(
R4
)
, such as C

(
R3
)

generated by any three orthonormal
vectors of R4. In particular, Table A1 is a subtable of Table A4.

This algebra naturally arises in Projective Geometry that models the 3-dimensional Eu-
clidean space completed with a plane at infinity using four homogeneous coordinates. Note
that in Physics a 4-dimensional vector space equipped with an indefinite scalar product
with signature (+,−,−,−) models Minkowski spacetime, so the multiplication tables and
the dual operator are computed differently. Alternatively, the Minkowski spacetime can
be identified with the subspace C0

(
R3
)
⊕ C1

(
R3
)

whose elements are called paravectors.

3 Projective geometry

Consider an n-dimensional projective space Pn over real numbers R, which is identified
with the set of all straight lines through the origin in Rn+1 [Casse 2006]. It is convenient to
introduce homogeneous coordinates (x1, x2, . . . , xn+1) specifying a particular line in Rn+1,
a point of Pn, assuming that at least one of the xi is nonzero. A point of Pn is defined by
(x1, x2, . . . , xn+1) up to a nonzero scale. Even if we normalize the homogeneous coordinates
by the condition

x21 + x22 + . . . + x2n+1 = 1 , (43)

the corresponding line will still be defined by (x1, x2, . . . , xn+1) up to a factor ±1. So, from
the topological point of view, a projective space Pn is obtained from an n-dimensional
sphere defined by (43) by identifying (glueing) diametrically opposite points. For a point
X ∈ Pn we denote homogeneous coordinates by X̂ = (x1, x2, . . . , xn+1) ∈ Rn+1 keeping in
mind the unimportance of an overall scaling.

It is worthwhile noting that the projective space Pn includes Rn through the following
map called homogenization

Rn 3 (x1, x2, . . . , xn) 7→ (x1, x2, . . . , xn, 1) ∈ Rn+1 . (44)

The inverse projection called dehomogenization is defined by the map

Rn+1 3 (x1, x2, . . . , xn+1) 7→
(

x1
xn+1

,
x2
xn+1

, . . . ,
xn
xn+1

)
∈ Rn (45)

which makes sense only if xn+1 6= 0. By definition, a point of Pn lies at infinity if xn+1 = 0.

Construct the Clifford algebra C
(
Rn+1

)
using the set of homogeneous coordinates as

the underlying vector space. Note that two points X1, X2 of Pn are equal if and only
if X̂1 ∧ X̂2 = 0. Let X1, X2 be two distinct points of Pn represented by homogeneous
coordinates X̂1, X̂2. In particular, the 1-vectors X̂1, X̂2 are not collinear. Define the
nonzero 2-vector L̂ = X̂1 ∧ X̂2 which represents a two-dimensional plane in Rn+1 passing
though X̂1, X̂2 and the origin. The dehomogenization (45) maps this plane to a line L
in Rn passing through X1 and X2. If both X1 and X2 are at infinity, the line L will be
also at infinity, therefore L is a line in Pn. This line as a set is defined by the kernel of
the map

Rn+1 3 X̂ 7→ X̂ ∧ L̂ ∈ C3
(
Rn+1

)
. (46)

8 UNCLASSIFIED



UNCLASSIFIED DSTO–TR–3021

Clearly, X̂1 ∧ L̂ = X̂2 ∧ L̂ = 0 or, equivalently, X1, X2 ∈ L by construction. Note that the
overall scales of the homogeneous coordinates do not change the line as a set.

Likewise, three points X1, X2, X3 of a projective space Pn whose vectors of homo-
geneous coordinates are not coplanar with the origin of Rn+1 define a two-dimensional
plane P in Pn by the nonzero 3-vector P̂ = X̂1 ∧ X̂2 ∧ X̂3 (we assume n > 2). This plane
as a set is defined by the kernel of the map

Rn+1 3 X̂ 7→ X̂ ∧ P̂ ∈ C4
(
Rn+1

)
. (47)

Clearly, X̂1 ∧ P̂ = X̂2 ∧ P̂ = X̂3 ∧ P̂ = 0, thus reinstating the fact that X1, X2, X3 ∈ P by
construction. A plane P can be also obtained from a line L represented by a 2-vector L̂
and a point X represented by a 1-vector X̂ using the product P̂ = L̂ ∧ X̂.

In other words, the progressive outer product provides an efficient way to build objects
of higher dimension from objects of lower dimension. This operation is called a ‘join’. The
complementary operation called a ‘meet’ is handled by the regressive outer product, and
corresponds to the intersection of objects. It is worthwhile emphasizing that, though the
algebraic operations of Clifford algebra are always carried out, the result can be zero. This
situation indicates that the resulting object is invalid. For example, this happens when
two identical objects are multiplied.

3.1 Incidence relations in projective plane P2

Consider two distinct lines L1 and L2 in P2 represented by two 2-vectors in C
(
R3
)
. Com-

pute the regressive product X̂ = L̂1 ∨ L̂2 which is obviously a 1-vector and therefore
represents a point X of P2. It is straightforward to prove that X is the intersection point
of the lines L1 and L2 possibly lying at infinity. Also note that a point X belongs to a
line L if either X̂ ∧ L̂ = 0 or X̂ ∨ L̂ = 0.

Two points X1, X2 of the projective plane P2 are equal if either X̂1 ∧ X̂2 = 0 or
X̂1∨X̂2 = 0. Likewise, two lines L1, L2 are equal if either L̂1∧L̂2 = 0 or L̂1∨L̂2 = 0. There
is a natural duality between points and lines established by the mutual correspondences
L̂ = ∗X̂ and X̂ = ∗L̂.

Let A1, B1, C1 and A2, B2, C2 be two triplets of collinear points in the projective
plane P2. Algebraically, this means that Â1 ∧ B̂1 ∧ Ĉ1 = 0 and Â2 ∧ B̂2 ∧ Ĉ2 = 0. Then
the intersection points A, B, C constructed by the rules

Â =
(
B̂1 ∧ Ĉ2

)
∨
(
B̂2 ∧ Ĉ1

)
, (48)

B̂ =
(
Ĉ1 ∧ Â2

)
∨
(
Ĉ2 ∧ Â1

)
, (49)

Ĉ =
(
Â1 ∧ B̂2

)
∨
(
Â2 ∧ B̂1

)
, (50)

must be also collinear, that is Â ∧ B̂ ∧ Ĉ = 0. This is the statement of the theorem of
Pappus. A dual version of this theorem exists in which collinear points are replaced with
concurrent lines.

UNCLASSIFIED 9



DSTO–TR–3021 UNCLASSIFIED

Now assume that the points A1, B1, C1 and A2, B2, C2 are not collinear but form two
non-degenerate triangles. Construct the intersection points A, B, C of the corresponding
triangle sides by the rules

Â =
(
B̂1 ∧ Ĉ1

)
∨
(
B̂2 ∧ Ĉ2

)
, (51)

B̂ =
(
Ĉ1 ∧ Â1

)
∨
(
Ĉ2 ∧ Â2

)
, (52)

Ĉ =
(
Â1 ∧ B̂1

)
∨
(
Â2 ∧ B̂2

)
, (53)

and compute the pseudoscalar p = Â∧ B̂∧ Ĉ which vanishes if and only if the intersection
points are collinear. Draw three lines La, Lb, Lc through the corresponding vertices of the
triangles, namely

L̂a = Â1 ∧ Â2 , L̂b = B̂1 ∧ B̂2 , L̂c = Ĉ1 ∧ Ĉ2 , (54)

and compute the scalar q = L̂a ∨ L̂b ∨ L̂c which vanishes if and only if the lines are
concurrent. The theorem of Desargues states that p and q vanish simultaneously. This
statement follows from the explicit formula

∗p = −I1 I2 q , I1 = Â1 ∧ B̂1 ∧ Ĉ1 , I2 = Â2 ∧ B̂2 ∧ Ĉ2 , (55)

in combination with the fact that the pseudoscalars I1, I2 do not vanish (recall that the
triangles are not degenerate).

3.2 Incidence relations in projective space P3

Now consider a line L and a plane P in P3 represented respectively by an appropriate
2-vector L̂ and a 3-vector P̂ in C

(
R4
)
. Then the product X̂ = L̂∨ P̂ , which is obviously a

1-vector, represents the intersection point X. The intersection of two planes, P1 and P2,
is given by the product L̂ = P̂1 ∨ P̂2 which is a 2-vector in C

(
R4
)

and therefore represents
a line L. The point of intersection of three planes is represented by the triple product
X̂ = P̂1 ∨ P̂2 ∨ P̂3 which is obviously a 1-vector. These operations work for general (non-
degenerate) configurations.

Using either the regressive or progressive product, multiply a point and a plane to get
a signed minimum distance between them. Likewise, multiply two lines L1 and L2 to get a
special signed crossing value. Depending on the product, the result will be either a scalar
or pseudoscalar. If the crossing value vanishes, say L̂1∧ L̂2 = 0, the lines are coplanar and
hence intersect. The homogeneous coordinates of the intersection point X belong to the
kernel of the map

R4 3 X̂ 7→
(
X̂ ∧ L̂1, X̂ ∧ L̂2

)
∈ C3

(
R4
)
× C3

(
R4
)
. (56)

In other words, we have to find a nonzero solution to the system of equations{
X̂ ∧ L̂1 = 0

X̂ ∧ L̂2 = 0
(57)

10 UNCLASSIFIED



UNCLASSIFIED DSTO–TR–3021

which is equivalent to an overdetermined system of 8 homogeneous linear equations for 4
components of X̂. The solution can be efficiently obtained by the Singular Value De-
composition (SVD) algorithm of Linear Algebra [Golub & Van Loan 1996]. The matrix
equation is derived in a straightforward manner by observing that the equation X̂ ∧ L̂ = 0
is equivalent to

l23 −l13 l12 0
l24 −l14 0 l12
l34 0 −l14 l13
0 l34 −l24 l23



x1
x2
x3
x4

 =


0
0
0
0

 (58)

where

X̂ = x1 e1 + x2 e2 + x3 e3 + x4 e4 , (59)

L̂ = l12 e12 + l13 e13 + l14 e14 + l23 e23 + l24 e24 + l34 e34 . (60)

Note that the six coefficients in the line representation (60) are the Plücker coordinates.

The Plücker coordinates providing an economic parametrization of all lines in P3 are
not arbitrary but satisfy a constraint imposed by the Klein quadric

l12 l34 − l13 l24 + l14 l23 = 0 . (61)

A line L̂ = X̂ ∧ Ŷ constructed by two points has the expression

L̂ = (x1 y2 − x2 y1) e12 + (x1 y3 − x3 y1) e13 + (x1 y4 − x4 y1) e14
+ (x2 y3 − x3 y2) e23 + (x2 y4 − x4 y2) e24 + (x3 y4 − x4 y3) e34

(62)

which no longer contains any information about the 1-vectors X̂, Ŷ used to create it. This
is contrary to a parametric representation of a line L passing through points X, Y . It is
straightforward to check that the constraint (61) is imposed for the line (62).

Two points X1, X2 of the projective space P3 are equal if X̂1 ∧ X̂2 = 0. Likewise, two
planes P1, P2 are equal if P̂1 ∨ P̂2 = 0. There is a natural duality between points and
planes established by the correspondences P̂ = ∗X̂ and X̂ = ∗P̂ .

The incidence relations with lines are more involved. Two lines L1, L2 are equal if the
kernel of the map (56) is two-dimensional. This question can be efficiently answered using
the SVD algorithm, or by the direct calculation of the rank r of the matrix

M
(
L̂1, L̂2

)
=



l
(1)
23 −l(1)13 l

(1)
12 0

l
(1)
24 −l(1)14 0 l

(1)
12

l
(1)
34 0 −l(1)14 l

(1)
13

0 l
(1)
34 −l(1)24 l

(1)
23

l
(2)
23 −l(2)13 l

(2)
12 0

l
(2)
24 −l(2)14 0 l

(2)
12

l
(2)
34 0 −l(2)14 l

(2)
13

0 l
(2)
34 −l(2)24 l

(2)
23


(63)

where l
(m)
ij are the Plücker coordinates of the line L̂m. The lines are not coplanar if r = 4,

the lines have a unique point of intersection if r = 3, and the lines coincide if r = 2. The
case r < 2 never happens because a valid line as a set is a one-dimensional object.

UNCLASSIFIED 11



DSTO–TR–3021 UNCLASSIFIED

4 Application to 3D reconstruction

In this section we provide a theoretical background for 3D reconstruction using Geometric
Algebra. We derive several important concepts and relations from [Hartley & Zisserman
2003] in a simple and elegant form.

The three-dimensional space will be modelled by the projective space P3. To apply
efficient algebraic methods when building geometric objects, we generate the Clifford alge-
bra C

(
R4
)
. We will slightly abuse notation by using the same symbol for an object in P3

and its representation in C
(
R4
)
. Recall that the object representation in C

(
R4
)

is defined
up to a nonzero scale.

H
HHH

HHHH
HHHH

HH
HHH

HHH
HHHH

P

��
��

��
��

��
��

��
��

��

r
C

r
O

6

HHHj
~A

~B

Figure 1: Pinhole camera

A pinhole camera is completely described by its optical centre C and projection plane P
both considered to be objects of the projective space P3. It is always guaranteed that C
does not belong to P , which is equivalent to C ∧ P 6= 0. The projective space P3 has
no natural metric structure. However, image points are measured in Cartesian coordi-
nates of the projection plane which does have a metric. So, it is important to establish a
parametrization of image points in P3 in terms of the Cartesian coordinates of the projec-
tion plane. This can be done, for example, by identifying some point O, say the principal
point, with the origin of the coordinate system and choosing two points A, B on the
axes of the orthogonal coordinates. The four points C, O, A, B completely determine
the pinhole camera, in particular P = O ∧ A ∧ B. A point X in the projection plane P
has the representation X = aA + bB + cO where the scalars a, b, c are defined up to a
common scale. These scalars are directly related to the Cartesian coordinates. Indeed,
since all the points X, O, A, B are finite (not lying at infinity), we can dehomogenize them
and set a + b + c = 1 without loss of generality. As a result, we get the representation
X = O + a (A−O) + b (B −O) where a, b are the Cartesian coordinates. The direction
vectors ~A = A−O and ~B = B−O belong to the plane at infinity of P3, and are orthogonal
by construction. The Cartesian coordinates are now readily computed by the formulae

a =
~A · ~X
~A · ~A

, b =
~B · ~X
~B · ~B

, (64)

12 UNCLASSIFIED



UNCLASSIFIED DSTO–TR–3021

where ~X = X−O is the direction vector. The scalar product is induced by the projection
plane P .

It is important to emphasize that it makes sense to talk about orthogonality of par-
ticular vectors constructed from the projection plane P . In fact, most problems of 3D
reconstruction are formulated as a mathematical problem of fitting a projective (or affine)
variety [Cox, Little & O’Shea 2007] to measurement points by minimizing a cost function
associated with the metric structure of projection planes.

Let X ∈ P3 be an arbitrary point different from the optical centre C. The following
map projects the point X to the projection plane P

X 7→ P ∨ (C ∧X) . (65)

This map generates the camera matrix when the projected point is represented in the
Cartesian coordinates of the projection plane P followed by the homogenization procedure.
The size of the camera matrix is 3-by-4 as it maps four homogeneous coordinates of the
point X to the three homogeneous coordinates a, b, c of the projection plane.

Now let L be an arbitrary line in P3 not containing the optical centre C. The projection
of this line to the plane P is given by the similar map

L 7→ P ∨ (C ∧ L) . (66)

The result is the unique line of intersection of two planes.

HHH
HHH

HHHH
HH

H
HHH

HHH
HHH

HH

Pα
���

���
����

��

�
���

���
���

��

Pβ

r
Cα

r
Cβ

rOαβ rOβα
�
�
�
�
�
�

�
�
�

HH
HHH

HHH
HHH

HHH
HHH

H
HH

H
HH

H

rX

rXα

rXβ

A
A
A
A
A
A
A
A
A
A
A
A
A
A

Eαβ

�
�
�
�
�
�
�
�
�
�
�
�
�

Eβα

Figure 2: Epipolar geometry

In multiview geometry we are provided with a sequence of optical centres and projection
planes which we label by some index. Given two camera configurations (Cα, Pα) and
(Cβ, Pβ) we construct the base line Cα∧Cβ and intersect it with the projection planes (see
Figure 2). The intersection points are respectively the epipoles Oαβ and Oβα. The epipolar

UNCLASSIFIED 13



DSTO–TR–3021 UNCLASSIFIED

lines Eαβ and Eβα are formed by the intersection of a plane containing the baseline with
the projection planes. Obviously, all the epipolar lines in a projection plane are concurrent
as they contain the epipole, and therefore have the geometry of the projective line P1.

There exists the fundamental mapping Φαβ between the epipolar lines, induced by the
pencil of planes containing the baseline. Algebraically, the fundamental mapping is given
by the formula

Φαβ : P1 3 Eαβ 7→ Eβα = (Cα ∧ Eαβ) ∨ Pβ ∈ P1 . (67)

It is straightforward to prove that the mapping Φαβ is well defined (recall that Cβ /∈ Pβ)
and is invertible. Indeed, by virtue of symmetry, we have Φβα = Φ−1αβ .

It is clear that, if Xα ∈ Pα and Xβ ∈ Pβ are two images of some point X, then
Xα ∈ Eαβ and Xβ ∈ Eβα as shown in Figure 2. Algebraically, this is equivalent to the
constraint

Φαβ (Xα ∧Oαβ) ∧Xβ = 0 (68)

where the epipole has the expression Oαβ = Pα ∨ (Cα ∧ Cβ). This equation produces
the fundamental matrix [Hartley & Zisserman 2003] when Xα and Xβ are respectively
represented in coordinates of the planes Pα and Pβ.

Given two image points Xα, Xβ satisfying the constraint (68), the point X is recovered
by the intersection of the optical rays Cα ∧ Xα and Cβ ∧ Xβ. This operation called
triangulation is well defined if the optical rays are coplanar. The later is equivalent to (68)
but a simpler form which does not involve the projection plane Pβ is as follows

Xα ∧ Cα ∧ Cβ ∧Xβ = 0 . (69)

The triangulation problem reduces to the system of equations{
X ∧ Cα ∧Xα = 0
X ∧ Cβ ∧Xβ = 0

(70)

which is of the form (57). A nonzero solution (up to a scaling factor) exists provided that
the constraint (69) is imposed. The conditions for Xα ∈ Pα and Xβ ∈ Pβ are equivalent
to the following

Xα ∧ Pα = 0 , Xβ ∧ Pβ = 0 . (71)

Here the progressive product in the inclusion tests can be replaced with the regressive
product, since points and planes are in the duality relationship.

It is worthwhile emphasizing that the projection planes do not appear explicitly in
the triangulation problem. This is because we consider the image points belonging to the
projective space P3.

The triangulation procedure solves the following problem of 3D reconstruction in a
closed form: “Given two camera configurations and arrays of pairs of matching image
points satisfying the constraint (69) exactly, find the corresponding spatial points.”

However, in reality, the 3D reconstruction procedure is complicated by the presence of
unavoidable noise in the measurements of image points. In particular, we cannot assume

14 UNCLASSIFIED



UNCLASSIFIED DSTO–TR–3021

any longer that the constraint (69) is exactly satisfied. Another problem is associated with
a priori unknown camera configurations. Finally, the matching points when automatically
produced may not be in correspondence at all. Such points are called outliers as opposed
to inliers, and must be eliminated. The fundamental matrix plays the crucial rôle in the
elimination procedure [Hartley & Zisserman 2003].

In the two-view geometry the reconstruction of lines is less restrictive. Let Lα and Lβ
be two image lines in the planes Pα and Pβ, not containing the epipoles Oαβ and Oβα,
respectively. In other words, neither of them is an epipolar line. Then the reconstructed
line L is given by the formula

L = (Cα ∧ Lα) ∨ (Cβ ∧ Lβ) . (72)

The result is the unique line of intersection of two different planes. However, this advantage
turns out to be disadvantage as there is no way to eliminate outlying lines. The situation
becomes different in the three-view geometry [Hartley & Zisserman 2003].

If both projection lines are epipolar lines, then the planes are either equal or intersect
at the base line. The base line is obviously projected to the epipoles of the projection
planes, hence this situation cannot generate image lines. If only one projection line is
epipolar, say Lα, but the other line Lβ is not, then both planes Cα ∧ Lα and Cβ ∧ Lβ
contain the optical centre Cβ. Therefore, the reconstructed line L contains Cβ and must
be projected to the epipole Oβα. This can be reformulated in the following way. If a line L
contains the optical centre of one view, then in the other view it must be projected to
either an epipolar line or the epipole.

As in the triangulation problem, the projection planes do not appear explicitly in the
solution. The conditions for Lα ⊂ Pα and Lβ ⊂ Pβ are equivalent to the following

Lα ∨ Pα = 0 , Lβ ∨ Pβ = 0 . (73)

Here the regressive product in the inclusion tests cannot be replaced with the progressive
product.

5 Description of the developed MATLAB code

In this section we briefly describe the MATLAB code developed. Basic algebraic operations
of the Clifford algebra, currently supporting dimensions up to n = 4, are implemented in
the clifford algebra.m file whose content is provided in Appendix B. This reusable
MATLAB function has to be placed on the MATLAB path to be called from different
directories.

For the sake of code performance, we have deliberately avoided the construction of
MATLAB classes. Instead, a collection of multivectors is represented by an ordinary
matrix containing 2n columns. The fully vectorized code is capable of operating on large
arrays of multivectors in an efficient way. Factors in binary products can be either arrays of
multivectors of the same number of rows or an array and a single multivector represented
by a row matrix.

UNCLASSIFIED 15



DSTO–TR–3021 UNCLASSIFIED

The unit tests of the Clifford algebra implementation are provided in Appendix C.
The basic properties of algebraic operations and known identities derived in Clifford alge-
bra are thoroughly tested using randomly generated arrays of multivectors. For example,
we have validated the associativity of geometric, progressive and regressive products, the
basic properties of scalar, inner and cross products, and the properties of subalgebras
including even subalgebra, complex and bicomplex numbers, and quaternions. The intro-
duced operations, such as the dual, reverse and blade operations, are also tested. The
last test displays the performance of the vectorized geometric product against its serial
counterpart.

The application of Clifford algebra to Projective Geometry is given in Appendix D.
The unit tests include the validation of basic incidence relations and celebrated theorems
of Projective Geometry such as those of Pappus and Desargues. Also, epipolar geometry,
fundamental map, and the point and line reconstruction procedures are tested.

6 Discussion

We have presented a fully vectorized MATLAB code for the basic operations of Geometric
Algebra whose real power manifests itself when particularly combined with Projective Ge-
ometry. The developed code is thoroughly tested and can be used in various applications
which involve complicated geometric constructs. The vectorized code can be applied to
real-time simulations when there is a requirement to operate on large arrays of multivec-
tors. For example, quaternions naturally embedded in the Clifford algebra C

(
R3
)

can be
utilized to implement fast rotation of large arrays of 3D objects.

Having mainly in mind the application of the Clifford algebra to the reconstruction of a
three-dimensional structure from a sequence of images, we confined ourselves to a positive
definite scalar product when defining the algebra multiplication rules. The extension of
the code to an indefinite scalar product which arises in the geometry of spacetime is
straightforward.

Acknowledgement

The author is grateful to Dr Leszek Swierkowski from DSTO for helpful discussion and
valuable comments.

16 UNCLASSIFIED



UNCLASSIFIED DSTO–TR–3021

References

Casse, R. (2006) Projective Geometry: An Introduction, Oxford University Press, Oxford.

Corrochano, E. B. & Sobczyk, G., eds (2001) Geometric Algebra with Applications in
Science and Engineering, Birkhäuser, Boston.

Cox, D., Little, J. & O’Shea, D. (2007) Ideals, Varieties, and Algorithms: An Introduction
to Computational Algebraic Geometry and Commutative Algebra, 3rd edn, Springer,
New York.

Garling, D. J. H. (2011) Clifford Algebras: An Introduction, Cambridge University Press,
Cambridge.

Golub, G. H. & Van Loan, C. F. (1996) Matrix Computations, 3rd edn, The John Hopkins
University Press, Baltimore.

Hartley, R. & Zisserman, A. (2003) Multiple View Geometry in Computer Vision, 2nd
edn, Cambridge University Press, Cambridge.

Hestenes, D. & Sobczyk, G. (1987) Clifford Algebra to Geometric Calculus: A Unified
Language for Mathematics and Physics, Vol. 5 of Fundamental Theories of Physics,
Springer, Berlin.

Hurley, D. J. & Vandyck, M. A. (2000) Geometry, Spinors and Applications, Springer,
Berlin.

Lang, S. (2002) Algebra, Vol. 211 of Graduate Texts in Mathematics, revised 3rd edn,
Springer, New York.

Perwass, C. (2009) Geometric Algebra with Applications in Engineering, Springer, Berlin.

UNCLASSIFIED 17



DSTO–TR–3021 UNCLASSIFIED

Appendix A Multiplication tables

The multiplication tables of two Clifford algebras, C
(
R3
)

and C
(
R4
)
, are given in this ap-

pendix. The basis multivectors in the leftmost column and in the top row are respectively
the left and right factors (multiplicand and multiplier) of the binary products.

Table A1: Geometric products of the basis multivectors of C
(
R3
)

1 e1 e2 e3 e12 e13 e23 e123
1 1 e1 e2 e3 e12 e13 e23 e123
e1 e1 1 e12 e13 e2 e3 e123 e23
e2 e2 −e12 1 e23 −e1 −e123 e3 −e13
e3 e3 −e13 −e23 1 e123 −e1 −e2 e12
e12 e12 −e2 e1 e123 −1 −e23 e13 −e3
e13 e13 −e3 −e123 e1 e23 −1 −e12 e2
e23 e23 e123 −e3 e2 −e13 e12 −1 −e1
e123 e123 e23 −e13 e12 −e3 e2 −e1 −1

Table A2: Progressive outer products of the basis multivectors of C
(
R3
)

∧ 1 e1 e2 e3 e12 e13 e23 e123
1 1 e1 e2 e3 e12 e13 e23 e123
e1 e1 0 e12 e13 0 0 e123 0

e2 e2 −e12 0 e23 0 −e123 0 0

e3 e3 −e13 −e23 0 e123 0 0 0

e12 e12 0 0 e123 0 0 0 0

e13 e13 0 −e123 0 0 0 0 0

e23 e23 e123 0 0 0 0 0 0

e123 e123 0 0 0 0 0 0 0

Table A3: Regressive outer products of the basis multivectors of C
(
R3
)

∨ 1 e1 e2 e3 e12 e13 e23 e123
1 0 0 0 0 0 0 0 1

e1 0 0 0 0 0 0 1 e1
e2 0 0 0 0 0 −1 0 e2
e3 0 0 0 0 1 0 0 e3
e12 0 0 0 1 0 e1 e2 e12
e13 0 0 −1 0 −e1 0 e3 e13
e23 0 1 0 0 −e2 −e3 0 e23
e123 1 e1 e2 e3 e12 e13 e23 e123

18 UNCLASSIFIED



UNCLASSIFIED DSTO–TR–3021

Table A4: Geometric products of the basis multivectors of C
(
R4
)

1 e1 e2 e3 e4 e12 e13 e14
1 1 e1 e2 e3 e4 e12 e13 e14
e1 e1 1 e12 e13 e14 e2 e3 e4
e2 e2 −e12 1 e23 e24 −e1 −e123 −e124
e3 e3 −e13 −e23 1 e34 e123 −e1 −e134
e4 e4 −e14 −e24 −e34 1 e124 e134 −e1
e12 e12 −e2 e1 e123 e124 −1 −e23 −e24
e13 e13 −e3 −e123 e1 e134 e23 −1 −e34
e14 e14 −e4 −e124 −e134 e1 e24 e34 −1

e23 e23 e123 −e3 e2 e234 −e13 e12 e1234
e24 e24 e124 −e4 −e234 e2 −e14 −e1234 e12
e34 e34 e134 e234 −e4 e3 e1234 −e14 e13
e123 e123 e23 −e13 e12 e1234 −e3 e2 e234
e124 e124 e24 −e14 −e1234 e12 −e4 −e234 e2
e134 e134 e34 e1234 −e14 e13 e234 −e4 e3
e234 e234 −e1234 e34 −e24 e23 −e134 e124 −e123
e1234 e1234 −e234 e134 −e124 e123 −e34 e24 −e23

e23 e24 e34 e123 e124 e134 e234 e1234
1 e23 e24 e34 e123 e124 e134 e234 e1234
e1 e123 e124 e134 e23 e24 e34 e1234 e234
e2 e3 e4 e234 −e13 −e14 −e1234 e34 −e134
e3 −e2 −e234 e4 e12 e1234 −e14 −e24 e124
e4 e234 −e2 −e3 −e1234 e12 e13 e23 −e123
e12 e13 e14 e1234 −e3 −e4 −e234 e134 −e34
e13 −e12 −e1234 e14 e2 e234 −e4 −e124 e24
e14 e1234 −e12 −e13 −e234 e2 e3 e123 −e23
e23 −1 −e34 e24 −e1 −e134 e124 −e4 −e14
e24 e34 −1 −e23 e134 −e1 −e123 e3 e13
e34 −e24 e23 −1 −e124 e123 −e1 −e2 −e12
e123 −e1 −e134 e124 −1 −e34 e24 −e14 −e4
e124 e134 −e1 −e123 e34 −1 −e23 e13 e3
e134 −e124 e123 −e1 −e24 e23 −1 −e12 −e2
e234 −e4 e3 −e2 e14 −e13 e12 −1 e1
e1234 −e14 e13 −e12 e4 −e3 e2 −e1 1

UNCLASSIFIED 19



DSTO–TR–3021 UNCLASSIFIED

Table A5: Progressive outer products of the basis multivectors of C
(
R4
)

∧ 1 e1 e2 e3 e4 e12 e13 e14
1 1 e1 e2 e3 e4 e12 e13 e14
e1 e1 0 e12 e13 e14 0 0 0

e2 e2 −e12 0 e23 e24 0 −e123 −e124
e3 e3 −e13 −e23 0 e34 e123 0 −e134
e4 e4 −e14 −e24 −e34 0 e124 e134 0

e12 e12 0 0 e123 e124 0 0 0

e13 e13 0 −e123 0 e134 0 0 0

e14 e14 0 −e124 −e134 0 0 0 0

e23 e23 e123 0 0 e234 0 0 e1234
e24 e24 e124 0 −e234 0 0 −e1234 0

e34 e34 e134 e234 0 0 e1234 0 0

e123 e123 0 0 0 e1234 0 0 0

e124 e124 0 0 −e1234 0 0 0 0

e134 e134 0 e1234 0 0 0 0 0

e234 e234 −e1234 0 0 0 0 0 0

e1234 e1234 0 0 0 0 0 0 0

∧ e23 e24 e34 e123 e124 e134 e234 e1234
1 e23 e24 e34 e123 e124 e134 e234 e1234
e1 e123 e124 e134 0 0 0 e1234 0

e2 0 0 e234 0 0 −e1234 0 0

e3 0 −e234 0 0 e1234 0 0 0

e4 e234 0 0 −e1234 0 0 0 0

e12 0 0 e1234 0 0 0 0 0

e13 0 −e1234 0 0 0 0 0 0

e14 e1234 0 0 0 0 0 0 0

e23 0 0 0 0 0 0 0 0

e24 0 0 0 0 0 0 0 0

e34 0 0 0 0 0 0 0 0

e123 0 0 0 0 0 0 0 0

e124 0 0 0 0 0 0 0 0

e134 0 0 0 0 0 0 0 0

e234 0 0 0 0 0 0 0 0

e1234 0 0 0 0 0 0 0 0

20 UNCLASSIFIED



UNCLASSIFIED DSTO–TR–3021

Appendix B Listing of clifford algebra.m

%CA = CLIFFORD_ALGEBRA(n)

%

%Clifford algebra of an n-dimensional vector space. Multivectors are

%represented by 2^n-column matrices. All algebraic operations are

%vectorized.

%

% d = CA.dimension - algebra dimension (d = 2^n)

% c = CA.set_scalar(s) - create multivector from scalar

% s = CA.get_scalar(c) - extract scalar from multivector

% c = CA.set_vector(v) - create multivector from vector

% v = CA.get_vector(c) - extract vector from multivector

% c = CA.even(c) - projection to the even subalgebra

% c = CA.reverse(c) - reversion operator on multivector

% c = CA.dual(c) - dual operator on multivector

% c = CA.dual_inv(c) - inverse dual operator on multivector

% c = CA.product(a,b) - geometric product of two multivectors

% c = CA.product_p(a,b) - progressive outer product of two multivectors

% c = CA.product_r(a,b) - regressive outer product of two multivectors

% c = CA.product_s(a,b) - inner (scalar) product of two multivectors

% CA.display() - display basic information

%

%Copyright (C) 2014 Defence Science and Technology Organisation

%

%Created by Leonid K. Antanovskii

function CA = clifford_algebra(n)

switch n

case {1,2,3,4}

otherwise

error(’Space dimension %d not supported.’,n);

end

d = 2^n;

function check_dimension(c)

if size(c,2) ~= d

error(’Wrong multivector dimension.’);

end

end

function c = set_scalar(s)

if size(s,2) ~= 1

error(’Wrong scalar dimension.’);

end

c = zeros(size(s,1),d);

c(:,1) = s;

end

function c = set_vector(v)

if size(v,2) ~= n

error(’Wrong vector dimension.’);

end

c = zeros(size(v,1),d);

c(:,2:n+1) = v;

end

function s = get_scalar(c)

check_dimension(c);

s = c(:,1);

end

function v = get_vector(c)

check_dimension(c);

v = c(:,2:n+1);

end

UNCLASSIFIED 21



DSTO–TR–3021 UNCLASSIFIED

function c = reverse(c)

check_dimension(c);

switch n

case 1

case 2

c = [c(:,1:3),-c(:,4)];

case 3

c = [c(:,1:4),-c(:,5:8)];

case 4

c = [c(:,1:5),-c(:,6:15),c(:,16)];

end

end

function c = even(c)

check_dimension(c);

switch n

case 1

c(:,2) = 0.0;

case 2

c(:,[2,3]) = 0.0;

case 3

c(:,[2,3,4,8]) = 0.0;

case 4

c(:,[2,3,4,5,12,13,14,15]) = 0.0;

end

end

function c = dual(c)

check_dimension(c);

switch n

case 1

c = dual1d(c);

case 2

c = dual2d(c);

case 3

c = dual3d(c);

case 4

c = dual4d(c);

end

end

function c = dual_inv(c)

check_dimension(c);

switch n

case 1

c = dual1d(c);

case 2

c = dual2d_inv(c);

case 3

c = dual3d(c);

case 4

c = dual4d_inv(c);

end

end

function c = product(a,b)

check_dimension(a);

check_dimension(b);

switch n

case 1

c = product1d(a,b);

case 2

c = product2d(a,b);

case 3

c = product3d(a,b);

case 4

c = product4d(a,b);

22 UNCLASSIFIED



UNCLASSIFIED DSTO–TR–3021

end

end

function c = product_p(a,b)

check_dimension(a);

check_dimension(b);

switch n

case 1

c = product1d_p(a,b);

case 2

c = product2d_p(a,b);

case 3

c = product3d_p(a,b);

case 4

c = product4d_p(a,b);

end

end

function c = product_r(a,b)

check_dimension(a);

check_dimension(b);

switch n

case 1

c = product1d_r(a,b);

case 2

c = product2d_r(a,b);

case 3

c = product3d_r(a,b);

case 4

c = product4d_r(a,b);

end

end

function c = product_s(a,b)

check_dimension(a);

check_dimension(b);

switch n

case 1

c = product1d(a,b);

case 2

c = product2d_s(a,b);

case 3

c = product3d_s(a,b);

case 4

c = product4d_s(a,b);

end

end

function display

fprintf(’Function: %s\n’,mfilename);

fprintf(’Space dimension: %d\n’,n);

fprintf(’Algebra dimension: %d\n’,d);

fprintf(’Basis multivectors:\n’);

switch n

case 1

fprintf(’\te(1) = 1 - scalar\n’);

fprintf(’\te(2) = e1 - vector (or pseudoscalar)\n’);

case 2

fprintf(’\te(1) = 1 - scalar\n’);

fprintf(’\te(2) = e1 - vector 1\n’);

fprintf(’\te(3) = e2 - vector 2\n’);

fprintf(’\te(4) = e12 - pseudoscalar\n’);

case 3

fprintf(’\te(1) = 1 - scalar\n’);

fprintf(’\te(2) = e1 - vector 1\n’);

fprintf(’\te(3) = e2 - vector 2\n’);

fprintf(’\te(4) = e3 - vector 3\n’);

UNCLASSIFIED 23



DSTO–TR–3021 UNCLASSIFIED

fprintf(’\te(5) = e12 - bi-vector 1\n’);

fprintf(’\te(6) = e13 - bi-vector 2\n’);

fprintf(’\te(7) = e23 - bi-vector 3\n’);

fprintf(’\te(8) = e123 - pseudoscalar\n’);

case 4

fprintf(’\te(1) = 1 - scalar\n’);

fprintf(’\te(2) = e1 - vector 1\n’);

fprintf(’\te(3) = e2 - vector 2\n’);

fprintf(’\te(4) = e3 - vector 3\n’);

fprintf(’\te(5) = e4 - vector 4\n’);

fprintf(’\te(6) = e12 - bi-vector 1\n’);

fprintf(’\te(7) = e13 - bi-vector 2\n’);

fprintf(’\te(8) = e14 - bi-vector 3\n’);

fprintf(’\te(9) = e23 - bi-vector 4\n’);

fprintf(’\te(10) = e24 - bi-vector 5\n’);

fprintf(’\te(11) = e34 - bi-vector 6\n’);

fprintf(’\te(12) = e123 - tri-vector 1\n’);

fprintf(’\te(13) = e124 - tri-vector 2\n’);

fprintf(’\te(14) = e134 - tri-vector 3\n’);

fprintf(’\te(15) = e234 - tri-vector 4\n’);

fprintf(’\te(16) = e1234 - pseudoscalar\n’);

end

end

CA.dimension = d;

CA.set_scalar = @set_scalar;

CA.get_scalar = @get_scalar;

CA.set_vector = @set_vector;

CA.get_vector = @get_vector;

CA.even = @even;

CA.reverse = @reverse;

CA.dual = @dual;

CA.dual_inv = @dual_inv;

CA.product = @product;

CA.product_p = @product_p;

CA.product_r = @product_r;

CA.product_s = @product_s;

CA.display = @display;

end

%==========================================================================

function c = dual1d(c)

c0 = c(:,1);

c1 = c(:,2);

c = [c1,c0];

end

%==========================================================================

function c = product1d(a,b)

a0 = a(:,1);

a1 = a(:,2);

b0 = b(:,1);

b1 = b(:,2);

c0 = a0.*b0 + a1.*b1;

c1 = a0.*b1 + a1.*b0;

c = [c0,c1];

end

%==========================================================================

function c = product1d_p(a,b)

a0 = a(:,1);

a1 = a(:,2);

b0 = b(:,1);

b1 = b(:,2);

c0 = a0.*b0;

24 UNCLASSIFIED



UNCLASSIFIED DSTO–TR–3021

c1 = a0.*b1 + a1.*b0;

c = [c0,c1];

end

%==========================================================================

function c = product1d_r(a,b)

a = dual1d(a);

b = dual1d(b);

c = product1d_p(a,b);

c = dual1d(c);

end

%==========================================================================

function c = dual2d(c)

c0 = c(:,1);

c1 = c(:,2);

c2 = c(:,3);

c12 = c(:,4);

c = [c12,c2,-c1,c0];

end

%==========================================================================

function c = dual2d_inv(c)

c0 = c(:,1);

c1 = c(:,2);

c2 = c(:,3);

c12 = c(:,4);

c = [c12,-c2,c1,c0];

end

%==========================================================================

function c = product2d(a,b)

a0 = a(:,1);

a1 = a(:,2);

a2 = a(:,3);

a12 = a(:,4);

b0 = b(:,1);

b1 = b(:,2);

b2 = b(:,3);

b12 = b(:,4);

c0 = a0.*b0 + a1.*b1 + a2.*b2 - a12.*b12;

c1 = a0.*b1 + a1.*b0 - a2.*b12 + a12.*b2;

c2 = a0.*b2 + a1.*b12 + a2.*b0 - a12.*b1;

c12 = a0.*b12 + a1.*b2 - a2.*b1 + a12.*b0;

c = [c0,c1,c2,c12];

end

%==========================================================================

function c = product2d_p(a,b)

a0 = a(:,1);

a1 = a(:,2);

a2 = a(:,3);

a12 = a(:,4);

b0 = b(:,1);

b1 = b(:,2);

b2 = b(:,3);

b12 = b(:,4);

c0 = a0.*b0;

c1 = a0.*b1 + a1.*b0;

c2 = a0.*b2 + a2.*b0;

c12 = a0.*b12 + a1.*b2 - a2.*b1 + a12.*b0;

UNCLASSIFIED 25



DSTO–TR–3021 UNCLASSIFIED

c = [c0,c1,c2,c12];

end

%==========================================================================

function c = product2d_r(a,b)

a = dual2d(a);

b = dual2d(b);

c = product2d_p(a,b);

c = dual2d_inv(c);

end

%==========================================================================

function c = product2d_s(a,b)

a0 = a(:,1);

a1 = a(:,2);

a2 = a(:,3);

a12 = a(:,4);

b0 = b(:,1);

b1 = b(:,2);

b2 = b(:,3);

b12 = b(:,4);

c0 = a0.*b0 + a1.*b1 + a2.*b2 - a12.*b12;

c1 = a0.*b1 + a1.*b0 - a2.*b12 + a12.*b2;

c2 = a0.*b2 + a1.*b12 + a2.*b0 - a12.*b1;

c12 = a0.*b12 + a12.*b0;

c = [c0,c1,c2,c12];

end

%==========================================================================

function c = dual3d(c)

c0 = c(:,1);

c1 = c(:,2);

c2 = c(:,3);

c3 = c(:,4);

c12 = c(:,5);

c13 = c(:,6);

c23 = c(:,7);

c123 = c(:,8);

c = [c123,c23,-c13,c12,c3,-c2,c1,c0];

end

%==========================================================================

function c = product3d(a,b)

a0 = a(:,1);

a1 = a(:,2);

a2 = a(:,3);

a3 = a(:,4);

a12 = a(:,5);

a13 = a(:,6);

a23 = a(:,7);

a123 = a(:,8);

b0 = b(:,1);

b1 = b(:,2);

b2 = b(:,3);

b3 = b(:,4);

b12 = b(:,5);

b13 = b(:,6);

b23 = b(:,7);

b123 = b(:,8);

c0 = a0.*b0 ...

+ a1.*b1 + a2.*b2 + a3.*b3 ...

- a12.*b12 - a13.*b13 - a23.*b23 ...

26 UNCLASSIFIED



UNCLASSIFIED DSTO–TR–3021

- a123.*b123;

c1 = a0.*b1 ...

+ a1.*b0 - a2.*b12 - a3.*b13 ...

+ a12.*b2 + a13.*b3 - a23.*b123 ...

- a123.*b23;

c2 = a0.*b2 ...

+ a1.*b12 + a2.*b0 - a3.*b23 ...

- a12.*b1 + a13.*b123 + a23.*b3 ...

+ a123.*b13;

c3 = a0.*b3 ...

+ a1.*b13 + a2.*b23 + a3.*b0 ...

- a12.*b123 - a13.*b1 - a23.*b2 ...

- a123.*b12;

c12 = a0.*b12 ...

+ a1.*b2 - a2.*b1 + a3.*b123 ...

+ a12.*b0 - a13.*b23 + a23.*b13 ...

+ a123.*b3;

c13 = a0.*b13 ...

+ a1.*b3 - a2.*b123 - a3.*b1 ...

+ a12.*b23 + a13.*b0 - a23.*b12 ...

- a123.*b2;

c23 = a0.*b23 ...

+ a1.*b123 + a2.*b3 - a3.*b2 ...

- a12.*b13 + a13.*b12 + a23.*b0 ...

+ a123.*b1;

c123 = a0.*b123 ...

+ a1.*b23 - a2.*b13 + a3.*b12 ...

+ a12.*b3 - a13.*b2 + a23.*b1 ...

+ a123.*b0;

c = [c0,c1,c2,c3,c12,c13,c23,c123];

end

%==========================================================================

function c = product3d_p(a,b)

a0 = a(:,1);

a1 = a(:,2);

a2 = a(:,3);

a3 = a(:,4);

a12 = a(:,5);

a13 = a(:,6);

a23 = a(:,7);

a123 = a(:,8);

b0 = b(:,1);

b1 = b(:,2);

b2 = b(:,3);

b3 = b(:,4);

b12 = b(:,5);

b13 = b(:,6);

b23 = b(:,7);

b123 = b(:,8);

c0 = a0.*b0;

c1 = a0.*b1 + a1.*b0;

c2 = a0.*b2 + a2.*b0;

c3 = a0.*b3 + a3.*b0;

c12 = a0.*b12 + a1.*b2 - a2.*b1 + a12.*b0;

c13 = a0.*b13 + a1.*b3 - a3.*b1 + a13.*b0;

c23 = a0.*b23 + a2.*b3 - a3.*b2 + a23.*b0;

c123 = a0.*b123 ...

+ a1.*b23 - a2.*b13 + a3.*b12 ...

+ a12.*b3 - a13.*b2 + a23.*b1 ...

+ a123.*b0;

c = [c0,c1,c2,c3,c12,c13,c23,c123];

end

UNCLASSIFIED 27



DSTO–TR–3021 UNCLASSIFIED

%==========================================================================

function c = product3d_r(a,b)

a = dual3d(a);

b = dual3d(b);

c = product3d_p(a,b);

c = dual3d(c);

end

%==========================================================================

function c = product3d_s(a,b)

a0 = a(:,1);

a1 = a(:,2);

a2 = a(:,3);

a3 = a(:,4);

a12 = a(:,5);

a13 = a(:,6);

a23 = a(:,7);

a123 = a(:,8);

b0 = b(:,1);

b1 = b(:,2);

b2 = b(:,3);

b3 = b(:,4);

b12 = b(:,5);

b13 = b(:,6);

b23 = b(:,7);

b123 = b(:,8);

c0 = a0.*b0 + a1.*b1 + a2.*b2 + a3.*b3 ...

- a12.*b12 - a13.*b13 - a23.*b23 - a123.*b123;

c1 = a0.*b1 + a1.*b0 - a2.*b12 - a3.*b13 ...

+ a12.*b2 + a13.*b3 - a23.*b123 - a123.*b23;

c2 = a0.*b2 + a1.*b12 + a2.*b0 - a3.*b23 ...

- a12.*b1 + a13.*b123 + a23.*b3 + a123.*b13;

c3 = a0.*b3 + a1.*b13 + a2.*b23 + a3.*b0 ...

- a12.*b123 - a13.*b1 - a23.*b2 - a123.*b12;

c12 = a0.*b12 + a3.*b123 + a12.*b0 + a123.*b3;

c13 = a0.*b13 - a2.*b123 + a13.*b0 - a123.*b2;

c23 = a0.*b23 + a1.*b123 + a23.*b0 + a123.*b1;

c123 = a0.*b123 + a123.*b0;

c = [c0,c1,c2,c3,c12,c13,c23,c123];

end

%==========================================================================

function c = dual4d(c)

c0 = c(:,1);

c1 = c(:,2);

c2 = c(:,3);

c3 = c(:,4);

c4 = c(:,5);

c12 = c(:,6);

c13 = c(:,7);

c14 = c(:,8);

c23 = c(:,9);

c24 = c(:,10);

c34 = c(:,11);

c123 = c(:,12);

c124 = c(:,13);

c134 = c(:,14);

c234 = c(:,15);

c1234 = c(:,16);

c = [c1234,...

c234,-c134,c124,-c123,...

c34,-c24,c23,c14,-c13,c12,...

c4,-c3,c2,-c1,...

28 UNCLASSIFIED



UNCLASSIFIED DSTO–TR–3021

c0];

end

%==========================================================================

function c = dual4d_inv(c)

c0 = c(:,1);

c1 = c(:,2);

c2 = c(:,3);

c3 = c(:,4);

c4 = c(:,5);

c12 = c(:,6);

c13 = c(:,7);

c14 = c(:,8);

c23 = c(:,9);

c24 = c(:,10);

c34 = c(:,11);

c123 = c(:,12);

c124 = c(:,13);

c134 = c(:,14);

c234 = c(:,15);

c1234 = c(:,16);

c = [c1234,...

-c234,c134,-c124,c123,...

c34,-c24,c23,c14,-c13,c12,...

-c4,c3,-c2,c1,...

c0];

end

%==========================================================================

function c = product4d(a,b)

a0 = a(:,1);

a1 = a(:,2);

a2 = a(:,3);

a3 = a(:,4);

a4 = a(:,5);

a12 = a(:,6);

a13 = a(:,7);

a14 = a(:,8);

a23 = a(:,9);

a24 = a(:,10);

a34 = a(:,11);

a123 = a(:,12);

a124 = a(:,13);

a134 = a(:,14);

a234 = a(:,15);

a1234 = a(:,16);

b0 = b(:,1);

b1 = b(:,2);

b2 = b(:,3);

b3 = b(:,4);

b4 = b(:,5);

b12 = b(:,6);

b13 = b(:,7);

b14 = b(:,8);

b23 = b(:,9);

b24 = b(:,10);

b34 = b(:,11);

b123 = b(:,12);

b124 = b(:,13);

b134 = b(:,14);

b234 = b(:,15);

b1234 = b(:,16);

c0 = a0.*b0 ...

+ a1.*b1 + a2.*b2 + a3.*b3 + a4.*b4 ...

- a12.*b12 - a13.*b13 - a14.*b14 - a23.*b23 - a24.*b24 - a34.*b34 ...

UNCLASSIFIED 29



DSTO–TR–3021 UNCLASSIFIED

- a123.*b123 - a124.*b124 - a134.*b134 - a234.*b234 ...

+ a1234.*b1234;

c1 = a0.*b1 + a1.*b0 - a2.*b12 - a3.*b13 - a4.*b14 ...

+ a12.*b2 + a13.*b3 + a14.*b4 - a23.*b123 - a24.*b124 - a34.*b134 ...

- a123.*b23 - a124.*b24 - a134.*b34 + a234.*b1234 ...

- a1234.*b234;

c2 = a0.*b2 ...

+ a1.*b12 + a2.*b0 - a3.*b23 - a4.*b24 ...

- a12.*b1 + a13.*b123 + a14.*b124 + a23.*b3 + a24.*b4 - a34.*b234 ...

+ a123.*b13 + a124.*b14 - a134.*b1234 - a234.*b34 ...

+ a1234.*b134;

c3 = a0.*b3 ...

+ a1.*b13 + a2.*b23 + a3.*b0 - a4.*b34 ...

- a12.*b123 - a13.*b1 + a14.*b134 - a23.*b2 + a24.*b234 + a34.*b4 ...

- a123.*b12 + a124.*b1234 + a134.*b14 + a234.*b24 ...

- a1234.*b124;

c4 = a0.*b4 ...

+ a1.*b14 + a2.*b24 + a3.*b34 + a4.*b0 ...

- a12.*b124 - a13.*b134 - a14.*b1 - a23.*b234 - a24.*b2 - a34.*b3 ...

- a123.*b1234 - a124.*b12 - a134.*b13 - a234.*b23 ...

+ a1234.*b123;

c12 = a0.*b12 ...

+ a1.*b2 - a2.*b1 + a3.*b123 + a4.*b124 ...

+ a12.*b0 - a13.*b23 - a14.*b24 + a23.*b13 + a24.*b14 - a34.*b1234 ...

+ a123.*b3 + a124.*b4 - a134.*b234 + a234.*b134 ...

- a1234.*b34;

c13 = a0.*b13 ...

+ a1.*b3 - a2.*b123 - a3.*b1 + a4.*b134 ...

+ a12.*b23 + a13.*b0 - a14.*b34 - a23.*b12 + a24.*b1234 + a34.*b14 ...

- a123.*b2 + a124.*b234 + a134.*b4 - a234.*b124 ...

+ a1234.*b24;

c14 = a0.*b14 ...

+ a1.*b4 - a2.*b124 - a3.*b134 - a4.*b1 ...

+ a12.*b24 + a13.*b34 + a14.*b0 - a23.*b1234 - a24.*b12 - a34.*b13 ...

- a123.*b234 - a124.*b2 - a134.*b3 + a234.*b123 ...

- a1234.*b23;

c23 = a0.*b23 ...

+ a1.*b123 + a2.*b3 - a3.*b2 + a4.*b234 ...

- a12.*b13 + a13.*b12 - a14.*b1234 + a23.*b0 - a24.*b34 + a34.*b24 ...

+ a123.*b1 - a124.*b134 + a134.*b124 + a234.*b4 ...

- a1234.*b14;

c24 = a0.*b24 ...

+ a1.*b124 + a2.*b4 - a3.*b234 - a4.*b2 ...

- a12.*b14 + a13.*b1234 + a14.*b12 + a23.*b34 + a24.*b0 - a34.*b23 ...

+ a123.*b134 + a124.*b1 - a134.*b123 - a234.*b3 ...

+ a1234.*b13;

c34 = a0.*b34 ...

+ a1.*b134 + a2.*b234 + a3.*b4 - a4.*b3 ...

- a12.*b1234 - a13.*b14 + a14.*b13 - a23.*b24 + a24.*b23 + a34.*b0 ...

- a123.*b124 + a124.*b123 + a134.*b1 + a234.*b2 ...

- a1234.*b12;

c123 = a0.*b123 ...

+ a1.*b23 - a2.*b13 + a3.*b12 - a4.*b1234 ...

+ a12.*b3 - a13.*b2 + a14.*b234 + a23.*b1 - a24.*b134 + a34.*b124 ...

+ a123.*b0 - a124.*b34 + a134.*b24 - a234.*b14 ...

+ a1234.*b4;

c124 = a0.*b124 ...

+ a1.*b24 - a2.*b14 + a3.*b1234 + a4.*b12 ...

+ a12.*b4 - a13.*b234 - a14.*b2 + a23.*b134 + a24.*b1 - a34.*b123 ...

+ a123.*b34 + a124.*b0 - a134.*b23 + a234.*b13 ...

- a1234.*b3;

c134 = a0.*b134 ...

+ a1.*b34 - a2.*b1234 - a3.*b14 + a4.*b13 ...

+ a12.*b234 + a13.*b4 - a14.*b3 - a23.*b124 + a24.*b123 + a34.*b1 ...

- a123.*b24 + a124.*b23 + a134.*b0 - a234.*b12 ...

+ a1234.*b2;

c234 = a0.*b234 ...

30 UNCLASSIFIED



UNCLASSIFIED DSTO–TR–3021

+ a1.*b1234 + a2.*b34 - a3.*b24 + a4.*b23 ...

- a12.*b134 + a13.*b124 - a14.*b123 + a23.*b4 - a24.*b3 + a34.*b2 ...

+ a123.*b14 - a124.*b13 + a134.*b12 + a234.*b0 ...

- a1234.*b1;

c1234 = a0.*b1234 ...

+ a1.*b234 - a2.*b134 + a3.*b124 - a4.*b123 ...

+ a12.*b34 - a13.*b24 + a14.*b23 + a23.*b14 - a24.*b13 + a34.*b12 ...

+ a123.*b4 - a124.*b3 + a134.*b2 - a234.*b1 + a1234.*b0;

c = [c0,c1,c2,c3,c4,c12,c13,c14,c23,c24,c34,c123,c124,c134,c234,c1234];

end

%==========================================================================

function c = product4d_p(a,b)

a0 = a(:,1);

a1 = a(:,2);

a2 = a(:,3);

a3 = a(:,4);

a4 = a(:,5);

a12 = a(:,6);

a13 = a(:,7);

a14 = a(:,8);

a23 = a(:,9);

a24 = a(:,10);

a34 = a(:,11);

a123 = a(:,12);

a124 = a(:,13);

a134 = a(:,14);

a234 = a(:,15);

a1234 = a(:,16);

b0 = b(:,1);

b1 = b(:,2);

b2 = b(:,3);

b3 = b(:,4);

b4 = b(:,5);

b12 = b(:,6);

b13 = b(:,7);

b14 = b(:,8);

b23 = b(:,9);

b24 = b(:,10);

b34 = b(:,11);

b123 = b(:,12);

b124 = b(:,13);

b134 = b(:,14);

b234 = b(:,15);

b1234 = b(:,16);

c0 = a0.*b0;

c1 = a0.*b1 + a1.*b0;

c2 = a0.*b2 + a2.*b0;

c3 = a0.*b3 + a3.*b0;

c4 = a0.*b4 + a4.*b0;

c12 = a0.*b12 + a1.*b2 - a2.*b1 + a12.*b0;

c13 = a0.*b13 + a1.*b3 - a3.*b1 + a13.*b0;

c14 = a0.*b14 + a1.*b4 - a4.*b1 + a14.*b0;

c23 = a0.*b23 + a2.*b3 - a3.*b2 + a23.*b0;

c24 = a0.*b24 + a2.*b4 - a4.*b2 + a24.*b0;

c34 = a0.*b34 + a3.*b4 - a4.*b3 + a34.*b0;

c123 = a0.*b123 + a1.*b23 - a2.*b13 + a3.*b12 ...

+ a12.*b3 - a13.*b2 + a23.*b1 + a123.*b0;

c124 = a0.*b124 + a1.*b24 - a2.*b14 + a4.*b12 ...

+ a12.*b4 - a14.*b2 + a24.*b1 + a124.*b0;

c134 = a0.*b134 + a1.*b34 - a3.*b14 + a4.*b13 ...

+ a13.*b4 - a14.*b3 + a34.*b1 + a134.*b0;

c234 = a0.*b234 + a2.*b34 - a3.*b24 + a4.*b23 ...

+ a23.*b4 - a24.*b3 + a34.*b2 + a234.*b0;

UNCLASSIFIED 31



DSTO–TR–3021 UNCLASSIFIED

c1234 = a0.*b1234 ...

+ a1.*b234 - a2.*b134 + a3.*b124 - a4.*b123 ...

+ a12.*b34 - a13.*b24 + a14.*b23 + a23.*b14 - a24.*b13 + a34.*b12 ...

+ a123.*b4 - a124.*b3 + a134.*b2 - a234.*b1 + a1234.*b0;

c = [c0,c1,c2,c3,c4,c12,c13,c14,c23,c24,c34,c123,c124,c134,c234,c1234];

end

%==========================================================================

function c = product4d_r(a,b)

a = dual4d(a);

b = dual4d(b);

c = product4d_p(a,b);

c = dual4d_inv(c);

end

%==========================================================================

function c = product4d_s(a,b)

a0 = a(:,1);

a1 = a(:,2);

a2 = a(:,3);

a3 = a(:,4);

a4 = a(:,5);

a12 = a(:,6);

a13 = a(:,7);

a14 = a(:,8);

a23 = a(:,9);

a24 = a(:,10);

a34 = a(:,11);

a123 = a(:,12);

a124 = a(:,13);

a134 = a(:,14);

a234 = a(:,15);

a1234 = a(:,16);

b0 = b(:,1);

b1 = b(:,2);

b2 = b(:,3);

b3 = b(:,4);

b4 = b(:,5);

b12 = b(:,6);

b13 = b(:,7);

b14 = b(:,8);

b23 = b(:,9);

b24 = b(:,10);

b34 = b(:,11);

b123 = b(:,12);

b124 = b(:,13);

b134 = b(:,14);

b234 = b(:,15);

b1234 = b(:,16);

c0 = a0.*b0 ...

+ a1.*b1 + a2.*b2 + a3.*b3 + a4.*b4 ...

- a12.*b12 - a13.*b13 - a14.*b14 - a23.*b23 - a24.*b24 - a34.*b34 ...

- a123.*b123 - a124.*b124 - a134.*b134 - a234.*b234 ...

+ a1234.*b1234;

c1 = a0.*b1 + a1.*b0 - a2.*b12 - a3.*b13 - a4.*b14 ...

+ a12.*b2 + a13.*b3 + a14.*b4 - a23.*b123 - a24.*b124 - a34.*b134 ...

- a123.*b23 - a124.*b24 - a134.*b34 + a234.*b1234 ...

- a1234.*b234;

c2 = a0.*b2 ...

+ a1.*b12 + a2.*b0 - a3.*b23 - a4.*b24 ...

- a12.*b1 + a13.*b123 + a14.*b124 + a23.*b3 + a24.*b4 - a34.*b234 ...

+ a123.*b13 + a124.*b14 - a134.*b1234 - a234.*b34 ...

+ a1234.*b134;

c3 = a0.*b3 ...

32 UNCLASSIFIED



UNCLASSIFIED DSTO–TR–3021

+ a1.*b13 + a2.*b23 + a3.*b0 - a4.*b34 ...

- a12.*b123 - a13.*b1 + a14.*b134 - a23.*b2 + a24.*b234 + a34.*b4 ...

- a123.*b12 + a124.*b1234 + a134.*b14 + a234.*b24 ...

- a1234.*b124;

c4 = a0.*b4 ...

+ a1.*b14 + a2.*b24 + a3.*b34 + a4.*b0 ...

- a12.*b124 - a13.*b134 - a14.*b1 - a23.*b234 - a24.*b2 - a34.*b3 ...

- a123.*b1234 - a124.*b12 - a134.*b13 - a234.*b23 ...

+ a1234.*b123;

c12 = a0.*b12 + a3.*b123 + a4.*b124 + a12.*b0 - a34.*b1234 ...

+ a123.*b3 + a124.*b4 - a1234.*b34;

c13 = a0.*b13 - a2.*b123 + a4.*b134 + a13.*b0 + a24.*b1234 ...

- a123.*b2 + a134.*b4 + a1234.*b24;

c14 = a0.*b14 - a2.*b124 - a3.*b134 + a14.*b0 - a23.*b1234 ...

- a124.*b2 - a134.*b3 - a1234.*b23;

c23 = a0.*b23 + a1.*b123 + a4.*b234 - a14.*b1234 + a23.*b0 ...

+ a123.*b1 + a234.*b4 - a1234.*b14;

c24 = a0.*b24 + a1.*b124 - a3.*b234 + a13.*b1234 + a24.*b0 ...

+ a124.*b1 - a234.*b3 + a1234.*b13;

c34 = a0.*b34 + a1.*b134 + a2.*b234 - a12.*b1234 + a34.*b0 ...

+ a134.*b1 + a234.*b2 - a1234.*b12;

c123 = a0.*b123 - a4.*b1234 + a123.*b0 + a1234.*b4;

c124 = a0.*b124 + a3.*b1234 + a124.*b0 - a1234.*b3;

c134 = a0.*b134 - a2.*b1234 + a134.*b0 + a1234.*b2;

c234 = a0.*b234 + a1.*b1234 + a234.*b0 - a1234.*b1;

c1234 = a0.*b1234 + a1234.*b0;

c = [c0,c1,c2,c3,c4,c12,c13,c14,c23,c24,c34,c123,c124,c134,c234,c1234];

end

UNCLASSIFIED 33



DSTO–TR–3021 UNCLASSIFIED

Appendix C Listing of clifford algebra test.m

%CLIFFORD_ALGEBRA_TEST(N,tol)

%

%Unit tests of basic operations of Clifford algebra.

%

%Copyright (C) 2014 Defence Science and Technology Organisation

%

%Created by Leonid K. Antanovskii

function clifford_algebra_test(N,tol)

fprintf(’Testing Clifford algebra\n’);

if nargin < 2

rng(’default’);

tol = 1.0e-14;

if nargin < 1

N = 100000;

end

end

for n = 1:4

fprintf(’Space dimension: %d\n’,n);

test_geometric_product(n,tol,N);

test_progressive_product(n,tol,N);

test_regressive_product(n,tol,N);

test_scalar_product(n,tol,N);

test_inner_product(n,tol,N);

test_even_subalgebra(n,N);

test_reverse_operator(n,tol,N);

test_dual_operator(n,tol,N);

test_blade_feature(n,tol,N);

test_identity_1(n,tol,N);

test_identity_2(n,tol,N);

test_identity_3(n,tol,N);

test_identity_4(n,tol,N);

test_identity_5(n,tol);

end

test_cross_product(tol,N);

test_complex_number(tol,N);

test_central_subalgebra(tol,N);

test_bicomplex_number(tol,N);

test_quaternion(tol,N);

test_performance(N);

end

%==========================================================================

function test_geometric_product(n,tol,N)

fprintf(’Geometric product test\n’);

CA = clifford_algebra(n);

d = CA.dimension;

% random multivectors

a = 2.0*rand(N,d) - 1.0;

b = 2.0*rand(N,d) - 1.0;

c = 2.0*rand(N,d) - 1.0;

% check associativity

q = CA.product(CA.product(a,b),c) - CA.product(a,CA.product(b,c));

assert(all(q(:) < tol));

end

%==========================================================================

function test_progressive_product(n,tol,N)

fprintf(’Progressive outer product test\n’);

34 UNCLASSIFIED



UNCLASSIFIED DSTO–TR–3021

CA = clifford_algebra(n);

d = CA.dimension;

% random multivectors

a = 2.0*rand(N,d) - 1.0;

b = 2.0*rand(N,d) - 1.0;

c = 2.0*rand(N,d) - 1.0;

% check associativity

q = CA.product_p(CA.product_p(a,b),c) - CA.product_p(a,CA.product_p(b,c));

assert(all(q(:) < tol));

end

%==========================================================================

function test_regressive_product(n,tol,N)

fprintf(’Regressive outer product test\n’);

CA = clifford_algebra(n);

d = CA.dimension;

% random multivectors

a = 2.0*rand(N,d) - 1.0;

b = 2.0*rand(N,d) - 1.0;

c = 2.0*rand(N,d) - 1.0;

% check associativity

q = CA.product_r(CA.product_r(a,b),c) - CA.product_r(a,CA.product_r(b,c));

assert(all(q(:) < tol));

end

%==========================================================================

function test_scalar_product(n,tol,N)

fprintf(’Scalar product test\n’);

CA = clifford_algebra(n);

a = 2.0*rand(N,n) - 1.0;

b = 2.0*rand(N,n) - 1.0;

ab1 = CA.set_scalar(dot(a,b,2));

a = CA.set_vector(a);

b = CA.set_vector(b);

ab2 = CA.product_s(a,b);

assert(norm(ab1 - ab2,inf) < tol);

end

%==========================================================================

function test_inner_product(n,tol,N)

fprintf(’Inner product test\n’);

CA = clifford_algebra(n);

for k = 1:n

fprintf(’\twedge product of %d vectors\n’,k);

a = CA.set_vector(2.0*rand(N,n) - 1.0);

b = cell(k,1);

for i = 1:k

b{i} = CA.set_vector(2.0*rand(N,n) - 1.0);

end

p = b{1};

for i = 2:k

p = CA.product_p(p,b{i});

end

UNCLASSIFIED 35



DSTO–TR–3021 UNCLASSIFIED

p = CA.product_s(a,p);

q = CA.set_vector(zeros(N,n));

for i = 1:k

s = CA.product_s(a,b{i});

for j = 1:k

if j ~= i

s = CA.product_p(s,b{j});

end

end

q = q + (-1)^(i-1)*s;

end

assert(norm(p - q,inf) < tol);

end

end

%==========================================================================

function test_even_subalgebra(n,N)

fprintf(’Even subalgebra test\n’);

CA = clifford_algebra(n);

d = CA.dimension;

% random even multivectors

a = CA.even(2.0*rand(N,d) - 1.0);

b = CA.even(2.0*rand(N,d) - 1.0);

% check subalgebra property

c = CA.product(a,b);

assert(norm(CA.even(c) - c,inf) == 0.0);

end

%==========================================================================

function test_reverse_operator(n,tol,N)

fprintf(’Reversion operator test\n’);

CA = clifford_algebra(n);

d = CA.dimension;

% random multivectors

a = 2.0*rand(N,d) - 1.0;

% check involution

b = CA.reverse(a);

c = CA.reverse(b);

assert(norm(a - c,inf) < tol);

end

%==========================================================================

function test_dual_operator(n,tol,N)

fprintf(’Dual operator test\n’);

CA = clifford_algebra(n);

d = CA.dimension;

% random multivectors

a = 2.0*rand(N,d) - 1.0;

% check inversion

b = CA.dual(a);

c = CA.dual_inv(b);

assert(norm(a - c,inf) < tol);

end

%==========================================================================

function test_blade_feature(n,tol,N)

36 UNCLASSIFIED



UNCLASSIFIED DSTO–TR–3021

fprintf(’Blade feature test\n’);

CA = clifford_algebra(n);

e = CA.set_scalar(1.0); % unit

v = orth(2.0*rand(n,n) - 1.0); % random orthonormal basis

for k = 1:n

fprintf(’\t%d-blade\n’,k);

% construct a blade

A = e;

for i = 1:k

a = CA.set_vector(v(i,:));

A = CA.product(A,a);

end

% random vectors

a = CA.set_vector(2.0*rand(N,n) - 1.0);

% check blade properties

p = CA.product(a,A) - CA.product_s(a,A) - CA.product_p(a,A);

assert(all(p(:) < tol));

p = CA.product(A,a) - CA.product_s(A,a) - CA.product_p(A,a);

assert(all(p(:) < tol));

end

for k = 1:n-1

fprintf(’\t%d-blade and complementary %d-blade\n’,k,n-k);

% construct complementary blades

A = e;

A_inv = e;

for i = 1:k

a = CA.set_vector(v(i,:));

A = CA.product(A,a);

A_inv = CA.product(a,A_inv);

end

B = CA.dual(A);

V = CA.product(A,B); % must be a volume form (pseudoscalar)

% check blade inversion

assert(norm(CA.product(A,A_inv) - e,inf) < tol);

assert(norm(CA.product(A_inv,A) - e,inf) < tol);

% check compatibility with reversion

assert(norm(CA.reverse(A) - A_inv,inf) < tol);

% check blade orthogonality

assert(norm(CA.product_s(A,B),inf) < tol);

assert(norm(CA.product_p(A,B) - V,inf) < tol);

% random vectors

a = CA.set_vector(2.0*rand(N,n) - 1.0);

% projection and rejection

p = CA.product(CA.product_s(a,A),A_inv);

r = CA.product(CA.product_p(a,A),A_inv);

% check identities

assert(norm(p + r - a,inf) < tol); % sum decomposition

assert(norm(CA.product_s(p,r),inf) < tol); % orthogonality

assert(norm(CA.product_p(p,A),inf) < tol); % inclusion of projected

assert(norm(CA.product_p(r,B),inf) < tol); % inclusion of rejected

assert(norm(CA.product_s(p,B),inf) < tol); % normality of projected

assert(norm(CA.product_s(r,A),inf) < tol); % normality of rejected

assert(norm(CA.product_p(a,V),inf) < tol); % complete vector space

end

UNCLASSIFIED 37



DSTO–TR–3021 UNCLASSIFIED

end

%==========================================================================

function test_identity_1(n,tol,N)

fprintf(’Test of identity: a^b = -b^a\n’);

CA = clifford_algebra(n);

% random vectors

a = CA.set_vector(2.0*rand(N,n) - 1.0);

b = CA.set_vector(2.0*rand(N,n) - 1.0);

% check antisymmetry

q = CA.product_p(a,b) + CA.product_p(b,a);

assert(all(q(:) < tol));

end

%==========================================================================

function test_identity_2(n,tol,N)

fprintf(’Test of identity: a.(b^c) = (a.b)c - (a.c)b\n’);

CA = clifford_algebra(n);

% random vectors

a = CA.set_vector(2.0*rand(N,n) - 1.0);

b = CA.set_vector(2.0*rand(N,n) - 1.0);

c = CA.set_vector(2.0*rand(N,n) - 1.0);

% check the identity

abc1 = CA.product_s(a,CA.product_p(b,c));

abc2 = CA.product(CA.product_s(a,b),c) - CA.product(CA.product_s(a,c),b);

assert(norm(abc1 - abc2,inf) < tol);

end

%==========================================================================

function test_identity_3(n,tol,N)

fprintf(’Test of identity: (a^b).(c^d) = (a.d)(b.c) - (a.c)(b.d)\n’);

CA = clifford_algebra(n);

% random vectors

a = CA.set_vector(2.0*rand(N,n) - 1.0);

b = CA.set_vector(2.0*rand(N,n) - 1.0);

c = CA.set_vector(2.0*rand(N,n) - 1.0);

d = CA.set_vector(2.0*rand(N,n) - 1.0);

% check the identity

ab = CA.product_p(a,b);

cd = CA.product_p(c,d);

ab_cd = CA.product_s(ab,cd);

a_d = CA.product_s(a,d);

b_c = CA.product_s(b,c);

a_c = CA.product_s(a,c);

b_d = CA.product_s(b,d);

assert(norm(ab_cd - (a_d.*b_c - a_c.*b_d),inf) < tol);

end

%==========================================================================

function test_identity_4(n,tol,N)

fprintf(’Test of identity: a^C^b = -b^C^a\n’);

CA = clifford_algebra(n);

d = CA.dimension;

% random vectors

a = CA.set_vector(2.0*rand(N,n) - 1.0);

b = CA.set_vector(2.0*rand(N,n) - 1.0);

38 UNCLASSIFIED



UNCLASSIFIED DSTO–TR–3021

% random multivectors

c = 2.0*rand(N,d) - 1.0;

% check antisymmetry

acb = CA.product_p(a,CA.product_p(c,b));

bca = CA.product_p(b,CA.product_p(c,a));

assert(norm(acb + bca,inf) < tol);

end

%==========================================================================

function test_identity_5(n,tol)

fprintf(’Test of identity: a_1^...^a_n = det(a)e_{1...n}\n’);

CA = clifford_algebra(n);

d = CA.dimension;

% random basis vectors

v = 2.0*rand(n,n) - 1.0;

% check the identity

p = CA.set_scalar(1.0);

for i = 1:n

p = CA.product_p(p,CA.set_vector(v(i,:)));

end

q = det(v);

assert(abs(p(d) - q) < tol);

end

%==========================================================================

function test_cross_product(tol,N)

fprintf(’Test of cross product: a x b = *(a^b)\n’);

CA = clifford_algebra(3);

% random vectors

a = 2.0*rand(N,3) - 1.0;

b = 2.0*rand(N,3) - 1.0;

% check the identity

ab1 = CA.set_vector(cross(a,b,2));

a = CA.set_vector(a);

b = CA.set_vector(b);

ab2 = CA.dual(CA.product_p(a,b));

assert(norm(ab1 - ab2,inf) < tol);

end

%==========================================================================

function test_complex_number(tol,N)

fprintf(’Complex number test\n’);

CA = clifford_algebra(3);

% random complex numbers

z1 = 2.0*rand(N,2) - 1.0;

c1 = [z1(:,1),zeros(N,6),z1(:,2)];

z1 = complex(z1(:,1),z1(:,2));

z2 = 2.0*rand(N,2) - 1.0;

c2 = [z2(:,1),zeros(N,6),z2(:,2)];

z2 = complex(z2(:,1),z2(:,2));

% check the products

c = CA.product(c1,c2);

z = z1.*z2;

cz = [real(z),zeros(N,6),imag(z)];

assert(norm(cz - c,inf) < tol);

end

UNCLASSIFIED 39



DSTO–TR–3021 UNCLASSIFIED

%==========================================================================

function test_central_subalgebra(tol,N)

fprintf(’Central subalgebra test\n’);

CA = clifford_algebra(3);

% random complex numbers

z = 2.0*rand(N,2) - 1.0;

z = [z(:,1),zeros(N,6),z(:,2)];

% random multivectors

c = 2.0*rand(N,8) - 1.0;

% check commutativity

zc = CA.product(z,c);

cz = CA.product(c,z);

assert(norm(zc - cz,inf) < tol);

end

%==========================================================================

function test_bicomplex_number(tol,N)

fprintf(’Bicomplex number test\n’);

CA = clifford_algebra(3);

% random bicomplex numbers

a = 2.0*rand(N,4) - 1.0;

a = [a(:,1:2),zeros(N,4),a(:,3:4)];

b = 2.0*rand(N,4) - 1.0;

b = [b(:,1:2),zeros(N,4),b(:,3:4)];

% check commutativity

q = CA.product(a,b) - CA.product(b,a);

assert(all(q(:) < tol));

end

%==========================================================================

function test_quaternion(tol,N)

fprintf(’Quaternion test\n’);

CA = clifford_algebra(3);

e = CA.set_scalar(ones(N,1)); % units

% random quaternions and their inverses

q = CA.even(2.0*rand(N,8) - 1.0);

q_inv = CA.reverse(q);

s = CA.product_s(q,q_inv);

s(:,1) = 1.0./s(:,1);

q_inv = CA.product(s,q_inv);

% check quaternion inversion

assert(norm(CA.product(q,q_inv) - e,inf) < tol);

assert(norm(CA.product(q_inv,q) - e,inf) < tol);

% random vectors and their vector/scalar products

a = CA.set_vector(2.0*rand(N,3) - 1.0);

b = CA.set_vector(2.0*rand(N,3) - 1.0);

c = CA.dual(CA.product_p(a,b));

s = CA.product_s(a,b);

% rotated vectors and their vector/scalar products

a1 = CA.product(q,CA.product(a,q_inv));

b1 = CA.product(q,CA.product(b,q_inv));

c1 = CA.dual(CA.product_p(a1,b1));

s1 = CA.product_s(a1,b1);

40 UNCLASSIFIED



UNCLASSIFIED DSTO–TR–3021

% check space invariance

a2 = CA.set_vector(CA.get_vector(a1));

assert(norm(a2 - a1,inf) < tol);

b2 = CA.set_vector(CA.get_vector(b1));

assert(norm(b2 - b1,inf) < tol);

% check isometric property

assert(norm(s1 - s,inf) < tol);

% check orientation preserving property

c2 = CA.product(q,CA.product(c,q_inv));

assert(norm(c2 - c1,inf) < tol);

end

%==========================================================================

function test_performance(N)

fprintf(’Performance test\n’);

CA = clifford_algebra(4);

CA.display();

d = CA.dimension;

% random multivectors

A = 2.0*rand(N,d) - 1.0;

b = 2.0*rand(1,d) - 1.0;

fprintf(’Array size: %d\n’,N);

% vectorized multiplication

tic;

CA.product(A,b);

vector_time = toc;

% serial multiplication

tic;

for i = 1:N

a = A(i,:);

CA.product(a,b);

end

serial_time = toc;

fprintf(’Performance factor: %g\n’,serial_time/vector_time);

end

UNCLASSIFIED 41



DSTO–TR–3021 UNCLASSIFIED

Appendix D Listing of geometric algebra test.m

%GEOMETRIC_ALGEBRA_TEST(N,tol)

%

%Unit tests of application of geometric algebra to projective geometry.

%

%Copyright (C) 2014 Defence Science and Technology Organisation

%

%Created by Leonid K. Antanovskii

function geometric_algebra_test(N,tol)

fprintf(’Testing geometric algebra\n’);

if nargin < 2

rng(’default’);

tol = 1.0e-13;

if nargin < 1

N = 100000;

end

end

test_projective_space2D(tol,N);

test_projective_space3D(tol,N);

test_pappus_theorem(tol,N);

test_desargues_theorem(tol,N);

test_plucker_coordinates(tol,N);

test_epipolar_geometry(tol,N);

test_fundamental_map(tol,N);

test_point_reconstruction(tol,N);

test_line_reconstruction(tol,N);

end

%==========================================================================

function test_projective_space2D(tol,N)

fprintf(’Incidence test in projective plane\n’);

CA = clifford_algebra(3);

% original points

X1 = CA.set_vector(2.0*rand(N,3) - 1.0);

X2 = CA.set_vector(2.0*rand(N,3) - 1.0);

X3 = CA.set_vector(2.0*rand(N,3) - 1.0);

% lines passing through point pairs

L12 = CA.product_p(X1,X2);

L13 = CA.product_p(X1,X3);

L23 = CA.product_p(X2,X3);

% intersection points

Y1 = CA.product_r(L12,L13);

Y2 = CA.product_r(L12,L23);

Y3 = CA.product_r(L13,L23);

% comparison

q = CA.product_p(X1,Y1);

assert(all(q(:) < tol));

q = CA.product_p(X2,Y2);

assert(all(q(:) < tol));

q = CA.product_p(X3,Y3);

assert(all(q(:) < tol));

end

%==========================================================================

function test_projective_space3D(tol,N)

fprintf(’Incidence test in projective space\n’);

CA = clifford_algebra(4);

42 UNCLASSIFIED



UNCLASSIFIED DSTO–TR–3021

% original points

X1 = CA.set_vector(2.0*rand(N,4) - 1.0);

X2 = CA.set_vector(2.0*rand(N,4) - 1.0);

X3 = CA.set_vector(2.0*rand(N,4) - 1.0);

X4 = CA.set_vector(2.0*rand(N,4) - 1.0);

% planes passing through point triplets

P123 = CA.product_p(CA.product_p(X1,X2),X3);

P124 = CA.product_p(CA.product_p(X1,X2),X4);

P134 = CA.product_p(CA.product_p(X1,X3),X4);

P234 = CA.product_p(CA.product_p(X2,X3),X4);

% intersection points

Y1 = CA.product_r(CA.product_r(P123,P124),P134);

Y2 = CA.product_r(CA.product_r(P123,P124),P234);

Y3 = CA.product_r(CA.product_r(P123,P134),P234);

Y4 = CA.product_r(CA.product_r(P124,P134),P234);

% comparison

q = CA.product_p(X1,Y1);

assert(all(q(:) < tol));

q = CA.product_p(X2,Y2);

assert(all(q(:) < tol));

q = CA.product_p(X3,Y3);

assert(all(q(:) < tol));

q = CA.product_p(X4,Y4);

assert(all(q(:) < tol));

end

%==========================================================================

function test_pappus_theorem(tol,N)

fprintf(’Pappus’’ theorem test\n’);

CA = clifford_algebra(3);

% first triplet of collinear points

A1 = CA.set_vector(2.0*rand(N,3) - 1.0);

B1 = CA.set_vector(2.0*rand(N,3) - 1.0);

C1 = rand*A1 + rand*B1;

% check collinearity

q = CA.product_p(CA.product_p(A1,B1),C1);

assert(all(q(:) < tol));

% second triplet of collinear points

A2 = CA.set_vector(2.0*rand(N,3) - 1.0);

B2 = CA.set_vector(2.0*rand(N,3) - 1.0);

C2 = rand*A2 + rand*B2;

% check collinearity

q = CA.product_p(CA.product_p(A2,B2),C2);

assert(all(q(:) < tol));

% intersection points

A = CA.product_r(CA.product_p(B1,C2),CA.product_p(B2,C1));

B = CA.product_r(CA.product_p(C1,A2),CA.product_p(C2,A1));

C = CA.product_r(CA.product_p(A1,B2),CA.product_p(A2,B1));

% check collinearity of the intersection points

q = CA.product_p(CA.product_p(A,B),C);

assert(all(q(:) < tol));

end

%==========================================================================

function test_desargues_theorem(tol,N)

fprintf(’Desargues’’ theorem test\n’);

UNCLASSIFIED 43



DSTO–TR–3021 UNCLASSIFIED

CA = clifford_algebra(3);

% triangle vertices in projective plane

A1 = CA.set_vector(2.0*rand(N,3) - 1.0);

B1 = CA.set_vector(2.0*rand(N,3) - 1.0);

C1 = CA.set_vector(2.0*rand(N,3) - 1.0);

A2 = CA.set_vector(2.0*rand(N,3) - 1.0);

B2 = CA.set_vector(2.0*rand(N,3) - 1.0);

C2 = CA.set_vector(2.0*rand(N,3) - 1.0);

% intersection points of triangle sides

A = CA.product_r(CA.product_p(B1,C1),CA.product_p(B2,C2));

B = CA.product_r(CA.product_p(C1,A1),CA.product_p(C2,A2));

C = CA.product_r(CA.product_p(A1,B1),CA.product_p(A2,B2));

% test for collinearity of points

p = CA.product_p(CA.product_p(A,B),C);

% lines through triangle vertices

La = CA.product_p(A1,A2);

Lb = CA.product_p(B1,B2);

Lc = CA.product_p(C1,C2);

% test for concurrency of lines

q = CA.product_r(CA.product_r(La,Lb),Lc);

% non-degenerate transformations

p = CA.dual(p);

i1 = CA.product_p(CA.product_p(A1,B1),C1);

i2 = CA.product_p(CA.product_p(A2,B2),C2);

s = -CA.product(i1,i2);

q = CA.product(s,q);

% (p = 0 <=> q = 0) follows from p = q

assert(norm(p - q,inf) < tol);

end

%==========================================================================

function test_plucker_coordinates(tol,N)

fprintf(’Plucker coordinates test\n’);

CA = clifford_algebra(4);

% random points

X1 = CA.set_vector(2.0*rand(N,4) - 1.0);

X2 = CA.set_vector(2.0*rand(N,4) - 1.0);

% lines through points

L = CA.product_p(X1,X2);

% check Klein quadric

q = klein_quadric(L);

assert(all(q < tol));

% random planes

P1 = CA.dual(X1);

P2 = CA.dual(X2);

% lines through planes

L = CA.product_r(P1,P2);

% check Klein quadric

q = klein_quadric(L);

assert(all(q < tol));

end

44 UNCLASSIFIED



UNCLASSIFIED DSTO–TR–3021

%==========================================================================

function test_epipolar_geometry(tol,N)

fprintf(’Epipolar geometry test\n’);

CA = clifford_algebra(4);

% first camera centre and projection plane

C1 = CA.set_vector(2.0*rand(1,4) - 1.0);

P1 = CA.dual(CA.set_vector(2.0*rand(1,4) - 1.0));

% second camera centre and projection plane

C2 = CA.set_vector(2.0*rand(1,4) - 1.0);

P2 = CA.dual(CA.set_vector(2.0*rand(1,4) - 1.0));

% base line and epipoles

B = CA.product_p(C1,C2);

O1 = CA.product_r(B,P1);

O2 = CA.product_r(B,P2);

% random points

X = CA.set_vector(2.0*rand(N,4) - 1.0);

% planes through the baseline and the points

P = CA.product_p(B,X);

% projection rays

L1 = CA.product_p(C1,X);

L2 = CA.product_p(C2,X);

% projection points

X1 = CA.product_r(P1,L1);

X2 = CA.product_r(P2,L2);

% epipolar lines

E1 = CA.product_r(P,P1);

E2 = CA.product_r(P,P2);

% check incidence

q = CA.product_p(E1,X1);

assert(all(q(:) < tol));

q = CA.product_p(E2,X2);

assert(all(q(:) < tol));

q = CA.product_p(E1,O1);

assert(all(q(:) < tol));

q = CA.product_p(E2,O2);

assert(all(q(:) < tol));

end

%==========================================================================

function test_fundamental_map(tol,N)

fprintf(’Fundamental map test\n’);

CA = clifford_algebra(4);

% first camera centre and projection plane

C1 = CA.set_vector(2.0*rand(1,4) - 1.0);

P1 = CA.dual(CA.set_vector(2.0*rand(1,4) - 1.0));

% second camera centre and projection plane

C2 = CA.set_vector(2.0*rand(1,4) - 1.0);

P2 = CA.dual(CA.set_vector(2.0*rand(1,4) - 1.0));

% base line and epipoles

B = CA.product_p(C1,C2);

O1 = CA.product_r(B,P1);

O2 = CA.product_r(B,P2);

UNCLASSIFIED 45



DSTO–TR–3021 UNCLASSIFIED

% planes through the baseline and random points

P = CA.product_p(B,CA.set_vector(2.0*rand(N,4) - 1.0));

% epipolar lines induced by the planes

E1 = CA.product_r(P,P1);

E2 = CA.product_r(P,P2);

% check incidence with the epipoles

assert(norm(CA.product_p(O1,E1),inf) < tol);

assert(norm(CA.product_p(O2,E2),inf) < tol);

% action of the fundamental map

F1 = CA.product_r(CA.product_p(C2,E2),P1); % E2 -> F1

F2 = CA.product_r(CA.product_p(C1,E1),P2); % E1 -> F2

% check incidence with the epipoles

assert(norm(CA.product_p(O1,F1),inf) < tol);

assert(norm(CA.product_p(O2,F2),inf) < tol);

% check line equalities

for i = 1:N

A = [

line_matrix(E1(i,:))

line_matrix(F1(i,:))

];

assert(rank(A,tol) == 2);

end

for i = 1:N

A = [

line_matrix(E2(i,:))

line_matrix(F2(i,:))

];

assert(rank(A,tol) == 2);

end

end

%==========================================================================

function test_point_reconstruction(tol,N)

fprintf(’Point reconstruction test\n’);

CA = clifford_algebra(4);

% first camera centre and projection plane

C1 = CA.set_vector(2.0*rand(1,4) - 1.0);

P1 = CA.dual(CA.set_vector(2.0*rand(1,4) - 1.0));

% second camera centre and projection plane

C2 = CA.set_vector(2.0*rand(1,4) - 1.0);

P2 = CA.dual(CA.set_vector(2.0*rand(1,4) - 1.0));

% random points to project and recover

X = CA.set_vector(2.0*rand(N,4) - 1.0);

% projection rays

L1 = CA.product_p(C1,X);

L2 = CA.product_p(C2,X);

% projection points

X1 = CA.product_r(P1,L1);

X2 = CA.product_r(P2,L2);

% check inclusion using both outer products

assert(norm(CA.product_p(X1,P1),inf) < tol);

assert(norm(CA.product_p(X2,P2),inf) < tol);

assert(norm(CA.product_r(X1,P1),inf) < tol);

assert(norm(CA.product_r(X2,P2),inf) < tol);

46 UNCLASSIFIED



UNCLASSIFIED DSTO–TR–3021

% reconstructed projection rays

L1 = CA.product_p(C1,X1);

L2 = CA.product_p(C2,X2);

% check signed crossing values

q = CA.product_p(L1,L2);

assert(all(q(:) < tol));

% check incidence with ray 1

q = CA.product_p(L1,X);

assert(all(q(:) < tol));

% check incidence with ray 2

q = CA.product_p(L2,X);

assert(all(q(:) < tol));

% line intersection points

v = zeros(N,4);

for i = 1:N

A = [

line_matrix(L1(i,:))

line_matrix(L2(i,:))

];

[~,D,V] = svd(A,0);

assert(abs(D(4,4)) < tol);

v(i,:) = V(:,4)’;

end

Y = CA.set_vector(v);

% check recovered triangulation points

q = CA.product_p(X,Y);

assert(all(q(:) < tol));

end

%==========================================================================

function test_line_reconstruction(tol,N)

fprintf(’Line reconstruction test\n’);

CA = clifford_algebra(4);

% first camera centre and projection plane

C1 = CA.set_vector(2.0*rand(1,4) - 1.0);

P1 = CA.dual(CA.set_vector(2.0*rand(1,4) - 1.0));

% second camera centre and projection plane

C2 = CA.set_vector(2.0*rand(1,4) - 1.0);

P2 = CA.dual(CA.set_vector(2.0*rand(1,4) - 1.0));

% random lines to project and recover

L = CA.product_p(...

CA.set_vector(2.0*rand(N,4) - 1.0),...

CA.set_vector(2.0*rand(N,4) - 1.0));

% projected lines

L1 = CA.product_r(P1,CA.product_p(C1,L));

L2 = CA.product_r(P2,CA.product_p(C2,L));

% check inclusion

assert(norm(CA.product_r(L1,P1),inf) < tol);

assert(norm(CA.product_r(L2,P2),inf) < tol);

% reconstructed lines

L0 = CA.product_r(CA.product_p(C1,L1),CA.product_p(C2,L2));

% check line equalities

for i = 1:N

A = [

UNCLASSIFIED 47



DSTO–TR–3021 UNCLASSIFIED

line_matrix(L(i,:))

line_matrix(L0(i,:))

];

assert(rank(A,tol) == 2);

end

end

%==========================================================================

function q = klein_quadric(L)

l12 = L(:,6);

l13 = L(:,7);

l14 = L(:,8);

l23 = L(:,9);

l24 = L(:,10);

l34 = L(:,11);

q = l12.*l34 - l13.*l24 + l14.*l23;

end

%==========================================================================

function A = line_matrix(L)

A = [

L(9),-L(7),L(6),0.0

L(10),-L(8),0.0,L(6)

L(11),0.0,-L(8),L(7)

0.0,L(11),-L(10),L(9)

];

end

48 UNCLASSIFIED



Page classification: UNCLASSIFIED

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION
DOCUMENT CONTROL DATA

1. CAVEAT/PRIVACY MARKING

2. TITLE

Implementation of Geometric Algebra in
MATLAB R© with Applications

3. SECURITY CLASSIFICATION

Document (U)
Title (U)
Abstract (U)

4. AUTHORS

Leonid K. Antanovskii

5. CORPORATE AUTHOR

Defence Science and Technology Organisation
PO Box 1500
Edinburgh, South Australia 5111, Australia

6a. DSTO NUMBER

DSTO–TR–3021
6b. AR NUMBER

AR 016–076
6c. TYPE OF REPORT

Technical Report
7. DOCUMENT DATE

September, 2014

8. FILE NUMBER

2014/1169256/1
9. TASK NUMBER

AIR07/213
10. TASK SPONSOR

RAAF Air
Combat Group

11. No. OF PAGES

48
12. No. OF REFS

10

13. URL OF ELECTRONIC VERSION

http://www.dsto.defence.gov.au/

publications/scientific.php

14. RELEASE AUTHORITY

Chief, Weapons and Combat Systems Division

15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT

Approved for Public Release

OVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DOCUMENT EXCHANGE, PO BOX 1500,
EDINBURGH, SOUTH AUSTRALIA 5111

16. DELIBERATE ANNOUNCEMENT

No Limitations

17. CITATION IN OTHER DOCUMENTS

No Limitations

18. DSTO RESEARCH LIBRARY THESAURUS

Science Mathematics Algebra Clifford Algebra
Geometry Projective Geometry
Algorithms Object Reconstruction

19. ABSTRACT

Geometric Algebra is the most appropriate unifying mathematical language to describe diverse problems
in mathematics, physics, engineering and computer science. In combination with Projective Geome-
try it provides an efficient framework for computer vision and robotics, where image processing and
recognition play the central rôle. This document addresses a gentle introduction to Geometric Algebra
followed by its implementation in MATLAB. The developed fully vectorized code is thoroughly tested.
Several applications are presented in the form of unit tests, amongst which are some basic algorithms
for the reconstruction of a three-dimensional structure from two-dimensional images.

Page classification: UNCLASSIFIED


	ABSTRACT
	Executive Summary
	Contents
	1 Introduction
	2 Geometric algebra
	2.1 Clifford algebra of 3-dimensional vector space
	2.2 Cliffrd algebra of 4-dimensional vector space


	3 Projective geometry
	3.1 Incidence relations in projective plane P2
	3.2 Incidence relations in projective space P3Now

	4 Application to 3D reconstruction
	5 Description of the developed MATLAB code
	6 Discussion
	Acknowledgement
	References
	Appendix A Multiplication tables
	Appendix B Listing of clifford algebra.m
	Appendix C Listing of clifford algebra test.m
	Appendix D Listing of geometric algebra test.m
	DISTRIBUTION LIST
	DOCUMENT CONTROL DATA

