NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.
Working with Evenly Spaced Rectangular Surface Grids Using C++

Robert J Yager
Weapons and Materials Research Directorate, ARL
This report presents a set of functions, written in C++, that is designed to work with evenly spaced rectangular surface grids. Grids of this type have a variety of applications, including representing terrain features and storing spatial probability information. Relative to other methods of storing surface information, they can be advantageous when calculation time is critical.
Contents

<table>
<thead>
<tr>
<th>List of Figures</th>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgments</td>
<td>vi</td>
</tr>
<tr>
<td>1. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2. Derivations</td>
<td>1</td>
</tr>
<tr>
<td>2.1 Evenly Spaced Rectangular Surface Grids Defined</td>
<td>1</td>
</tr>
<tr>
<td>2.2 Bilinear Interpolations</td>
<td>3</td>
</tr>
<tr>
<td>2.3 Line-Surface Intersections (Cells)</td>
<td>4</td>
</tr>
<tr>
<td>2.4 Line-Surface Intersections (Grids)</td>
<td>7</td>
</tr>
<tr>
<td>2.5 Surface Gradients and Normal Vectors</td>
<td>9</td>
</tr>
<tr>
<td>2.6 Scaled Coordinates</td>
<td>9</td>
</tr>
<tr>
<td>3. Calculating Indices: The SafeIndex() Function</td>
<td>10</td>
</tr>
<tr>
<td>3.1 SafeIndex() Code</td>
<td>10</td>
</tr>
<tr>
<td>3.2 SafeIndex() Parameters</td>
<td>10</td>
</tr>
<tr>
<td>3.3 SafeIndex() Return Value</td>
<td>10</td>
</tr>
<tr>
<td>4. Performing Interpolations: The Interpolate() Function</td>
<td>11</td>
</tr>
<tr>
<td>4.1 Interpolate() Code</td>
<td>11</td>
</tr>
<tr>
<td>4.2 Interpolate() Parameters</td>
<td>11</td>
</tr>
<tr>
<td>4.3 Interpolate() Return Value</td>
<td>11</td>
</tr>
<tr>
<td>4.4 Interpolate() Simple Example</td>
<td>11</td>
</tr>
<tr>
<td>4.5 Interpolate() Image Example</td>
<td>12</td>
</tr>
<tr>
<td>5.1 CellIntersect() Code</td>
<td>15</td>
</tr>
<tr>
<td>5.2 CellIntersect() Parameters</td>
<td>15</td>
</tr>
<tr>
<td>5.3 CellIntersect() Return Value</td>
<td>16</td>
</tr>
<tr>
<td>5.4 CellIntersect() Simple Example</td>
<td>16</td>
</tr>
</tbody>
</table>
List of Figures

Fig. 1 An evenly spaced rectangular surface grid...2
Fig. 2 A linear interpolation..3
Fig. 3 A bilinear interpolation..4
Fig. 4 Possible cell intersections for line segment L intersecting a surface.........................7
Fig. 5 Example surface ...12
Fig. 6 Image generated by example code from Section 4.5...13
Fig. 7 Color-to-value key..13
Fig. 8 Image generated by example code from Section 5.5...18
Fig. 9 Image generated by example code from Section 6.5...21
Fig. 10 Image generated by example code from Section 7.4...24
Fig. 11 Average time per iteration for the Interpolate(), CellIntersect(), and Gradient() functions...26
Fig. 12 Topographic image of the far side of the moon...29
Fig. 13 Topographic view of a portion of the far side of the moon...31
Fig. 14 Topographic view of the moon but with surface occultations drawn in black............31
Fig. 15 View of the magnitude of the scaled surface gradient for a portion of the far side of the moon..32
Acknowledgments

I would like to thank Mary Arthur of the US Army Research Laboratory’s Weapons and Materials Research Directorate. Mary provided technical and editorial recommendations that improved the quality of this report.
1. Introduction

This report presents a set of functions, written in C++, that is designed to work with evenly spaced rectangular surface grids. Grids of this type have a variety of applications, including representing terrain features and storing spatial probability information. Relative to other methods of storing surface information, they can be advantageous when calculation time is critical.

The functions that are described in this report have been grouped into the yBilinear namespace, which is summarized at the end of this report. Functions for calculating surface interpolations, line-surface intersections, and surface gradients are included. The functions are based on bilinear interpolations and have been templated to allow for a variety of pointers and containers.

The yBilinear namespace relies exclusively on standard C++ operations and functions. However, example code that is included in this report makes use of the yRandom namespace for generating pseudorandom numbers and the yBmp namespace for creating images.

2. Derivations

2.1 Evenly Spaced Rectangular Surface Grids Defined

Surface information can be stored in evenly spaced rectangular grids, as shown in Fig. 1, where each dot represents a grid point with associated \(x\), \(y\), and \(z\) coordinates.

Since surface grids are assumed to be evenly spaced, \(x_i\) and \(y_j\) values can be stored implicitly:

\[x_i = x_0 + i\Delta x \quad \text{for} \quad 0 \leq i < m\]

and

\[y_j = y_0 + j\Delta y \quad \text{for} \quad 0 \leq j < n,\]

where \(x_0\) and \(y_0\) are used to locate the lower-left corner of the grid, and \(\Delta x\) and \(\Delta y\) are defined to be the difference between consecutive \(x\) and \(y\) values, respectively.

\[\Delta x \equiv x_{i+1} - x_i.\]

\[\Delta y \equiv y_{j+1} - y_j.\]
Eqs. 5 and 6 can be used to find grid indices given spatial coordinates.

\[i = \text{trunc} \left(\frac{x - x_0}{\Delta x} \right) \]
(5)

and

\[j = \text{trunc} \left(\frac{y - y_0}{\Delta y} \right), \]
(6)

where the \text{trunc}() function rounds toward zero to the nearest integer.

Eqs. 7 and 8 can be used to find maximum values for the \(x \) and \(y \) coordinates.

\[x_{\text{max}} \equiv x_{m-1} = x_0 + (m - 1)\Delta x. \]
(7)

\[y_{\text{max}} \equiv y_{n-1} = y_0 + (n - 1)\Delta y. \]
(8)
2.2 Bilinear Interpolations

Bilinear interpolations can be used to estimate surface values for locations that are between grid points.

To calculate a bilinear interpolation, begin with the equation for calculating a linear interpolation, which is easily derived from the point-slope equation of a line (Fig. 2):

\[y = \frac{x-x_a}{x_\beta-x_a}(y_\beta-y_a) + y_a. \] \hspace{1cm} (9)

A bilinear interpolation can be calculated by performing 3 linear interpolations. First, use Eq. 9 to interpolate in the \(\hat{y} \) direction (shown in green in Fig. 3):

\[z_\alpha = \frac{y-y_j}{y_{j+1}-y_j}(z_{i,j+1}-z_{i,j}) + z_{i,j}. \] \hspace{1cm} (10)

\[z_\beta = \frac{y-y_j}{y_{j+1}-y_j}(z_{i+1,j+1}-z_{i+1,j}) + z_{i+1,j}. \] \hspace{1cm} (11)

Next, interpolate in the \(\hat{x} \) direction (shown in red in Fig. 3):

\[z = \frac{x-x_i}{x_{i+1}-x_i}(z_\beta-z_\alpha) + z_\alpha. \] \hspace{1cm} (12)
Eqs. 2 and 4 can be used to rewrite Eqs. 10 and 11 in terms of y_0 and Δy:

$$z_\alpha = \left(\frac{y-y_0}{\Delta y}\right)(z_{i,j+1} - z_{i,j}) + z_{i,j}.$$ \hspace{1cm} (13)

$$z_\beta = \left(\frac{y-y_0}{\Delta y}\right)(z_{i+1,j+1} - z_{i+1,j}) + z_{i+1,j}.$$ \hspace{1cm} (14)

Similarly, Eqs. 1 and 3 can be used to rewrite Eq. 12 in terms of x_0 and Δx:

$$z = \left(\frac{x-x_0}{\Delta x}\right)(z_\beta - z_\alpha) + z_\alpha.$$ \hspace{1cm} (15)

2.3 Line-Surface Intersections (Cells)

Suppose that a line, L, passes through the points \bar{L}_0 and \bar{L}_1, where

$$\bar{L}_0 = L_{0,x}\hat{x} + L_{0,y}\hat{y} + L_{0,z}\hat{z} \text{ and } \bar{L}_1 = L_{1,x}\hat{x} + L_{1,y}\hat{y} + L_{1,z}\hat{z}.$$ \hspace{1cm} (16)

Let \bar{p} represent a point that lies on L, where
\(\vec{p} = x\hat{x} + y\hat{y} + z\hat{z} . \) (17)

\(\vec{L}_0 \) and \(\vec{L}_1 \) can be used to construct a parametric equation for \(\vec{p} \) as a function of \(t \):

\[\vec{p} = (\vec{L}_1 - \vec{L}_0) t + \vec{L}_0 . \] (18)

The parameter \(t \) represents the scaled distance from \(\vec{L}_0 \) to \(\vec{L}_1 \) along \(L \). Thus, if \(t = 0 \), \(\vec{p} \) is located at \(\vec{L}_0 \). If \(t = 1 \), \(\vec{p} \) is located at \(\vec{L}_1 \).

From Eqs. 17 and 18,

\[x = C_0 t + L_{0,x}, \quad y = C_1 t + L_{0,y}, \quad \text{and} \quad z = C_2 t + L_{0,z} , \] (19)

where

\[C_0 \equiv L_{1,x} - L_{0,x}, \quad C_1 \equiv L_{1,y} - L_{0,y}, \quad \text{and} \quad C_2 \equiv L_{1,z} - L_{0,z} . \] (20)

Substituting Eqs. 10 and 11 into Eq. 12 and making use of Eqs. 3 and 4,

\[z(x, y) = [(x - x_{i+1})(y - y_{j+1})z_{i,j} - (x - x_{i})(y - y_{j+1})z_{i+1,j} \]
\[-(x - x_{i+1})(y - y_{j})z_{i,j+1} + (x - x_{i})(y - y_{j})z_{i+1,j+1}] / \Delta x \Delta y . \] (21)

Substituting Eq. 19 into Eq. 21 results in an equation that can be used to find \(t \) at the point where \(L \) intersects the surface:

\[C_2 t + L_{0,z} = [(C_0 t + L_{0,x} - x_{i+1})(C_1 t + L_{0,y} - y_{j+1})z_{i,j} \]
\[-(C_0 t + L_{0,x} - x_{i})(C_1 t + L_{0,y} - y_{j+1})z_{i+1,j} \]
\[-(C_0 t + L_{0,x} - x_{i+1})(C_1 t + L_{0,y} - y_j)z_{i,j+1} \]
\[+ (C_0 t + L_{0,x} - x_{i})(C_1 t + L_{0,y} - y_j)z_{i+1,j+1}] / \Delta x \Delta y . \] (22)

Rearranging terms,

\[(C_2 t + L_{0,z}) \Delta x \Delta y = [(C_0 t - (x_{i+1} - L_{0,x}))(C_1 t - (y_{j+1} - L_{0,y}))z_{i,j} \]
\[-(C_0 t - (x_i - L_{0,x}))(C_1 t - (y_{j+1} - L_{0,y}))z_{i+1,j} \]
\[-(C_0 t - (x_{i+1} - L_{0,x}))(C_1 t - (y_j - L_{0,y}))z_{i,j+1} \]
\[+ (C_0 t - (x_i - L_{0,x}))(C_1 t - (y_j - L_{0,y}))z_{i+1,j+1} . \] (23)

Another set of constants can be used to make Eq. 23 a bit more manageable:

\[C_3 \equiv x_{i+1} - L_{0,x} , \quad C_4 \equiv y_{j+1} - L_{0,y} , \quad C_5 \equiv x_i - L_{0,x} , \quad C_6 \equiv y_j - L_{0,y} . \] (24)

Thus,
\[(C_2 t + L_{0,z}) \Delta x \Delta y = (C_0 t - C_3)(C_1 t - C_4)z_{i,j} \]
\[-(C_0 t - C_5)(C_1 t - C_4)z_{i+1,j} \]
\[-(C_0 t - C_3)(C_1 t - C_6)z_{i,j+1} \]
\[+ (C_0 t - C_5)(C_1 t - C_6)z_{i+1,j+1} . \]

(25)

Expanding quadratics,

\[(C_2 t + L_{0,z}) \Delta x \Delta y = (C_0 C_1 t^2 - (C_1 C_3 + C_0 C_4) t + C_3 C_4)z_{i,j} \]
\[-(C_0 C_1 t^2 - (C_1 C_5 + C_0 C_4) t + C_5 C_4)z_{i+1,j} \]
\[-(C_0 C_1 t^2 - (C_1 C_3 + C_0 C_6) t + C_3 C_6)z_{i,j+1} \]
\[+ (C_0 C_1 t^2 - (C_1 C_5 + C_0 C_6) t + C_5 C_6)z_{i+1,j+1} . \]

(26)

Regrouping terms,

\[C_0 C_1 (z_{i,j} - z_{i+1,j} - z_{i,j+1} + z_{i+1,j+1})t^2 \]
\[+ [-(C_1 C_3 + C_0 C_4)z_{i,j} + (C_1 C_5 + C_0 C_4)z_{i+1,j} \]
\[+ (C_1 C_3 + C_0 C_6)z_{i,j+1} - (C_1 C_5 + C_0 C_6)z_{i+1,j+1} - C_2 \Delta x \Delta y]t \]
\[+ C_3 C_4 z_{i,j} - C_5 C_4 z_{i+1,j} - C_3 C_6 z_{i,j+1} + C_5 C_6 z_{i+1,j+1} - L_{0,z} \Delta x \Delta y = 0 . \]

(27)

Note that Eq. 27 is a quadratic in standard form:

\[at^2 + bt + c = 0 , \]

(28)

where

\[a = C_0 C_1 \left(z_{i,j} - z_{i+1,j} - z_{i,j+1} + z_{i+1,j+1} \right) , \]

(29)

\[b = -(C_1 C_3 + C_0 C_4)z_{i,j} + (C_1 C_5 + C_0 C_4)z_{i+1,j} \]
\[+ (C_1 C_3 + C_0 C_6)z_{i,j+1} - (C_1 C_5 + C_0 C_6)z_{i+1,j+1} - C_2 \Delta x \Delta y , \]

(30)

and

\[c = C_3 C_4 z_{i,j} - C_5 C_4 z_{i+1,j} - C_3 C_6 z_{i,j+1} + C_5 C_6 z_{i+1,j+1} - L_{0,z} \Delta x \Delta y . \]

(31)

Finally, solving for \(t\),

\[t = \begin{cases}
\frac{s}{s \in \mathbb{R}} & \text{for } a = 0, b = 0, \text{ and } c = 0 \\
\text{undefined} & \text{for } a = 0, b = 0, \text{ and } c \neq 0 \\
\frac{-c}{b} & \text{for } a = 0 \text{ and } b \neq 0 \\
-\frac{-b \pm \sqrt{b^2 - 4ac}}{2a} & \text{for } a \neq 0
\end{cases} . \]

(32)
For the \(a \neq 0 \) case, if the discriminant is less than zero, then no real solutions exist, implying that \(L \) does not intersect the surface.

2.4 Line-Surface Intersections (Grids)

Testing for intersection between a line segment, \(L \), and an evenly spaced rectangular surface grid involves checking for intersection between one or more simple cell surfaces, each defined by Eq. 21. Figure 4 shows the projection of \(L \) onto the \(x-y \) plane, with the cells that \(L \) might intersect highlighted in yellow.

![Diagram of line segment intersecting a surface grid](image)

Fig. 4 Possible cell intersections for line segment \(L \) intersecting a surface

The following algorithm can be used to find indices that are associated with cells that line segment \(L \) might intersect.

1. **Initial Calculations:**
 a. Define \(i \) and \(j \) to be the \(x \) and \(y \) indices, respectively, of the current cell that is being checked. Use Eqs. 5 and 6, along with values for \(L_{0,x} \) and \(L_{0,y} \), to set initial values for \(i \) and \(j \). Restrict initial values of \(i | 0 \leq i < m-1 \) and \(j | 0 \leq j < n-1 \).
b. Define I and J to be the x and y indices, respectively, that are associated with the end of the line segment. Use Eqs. 5 and 6, along with values for $L_{1,x}$ and $L_{1,y}$, to set I and J. Restrict values of $I \mid 0 \leq I < m - 1$ and $J \mid 0 \leq J < n - 1$.

c. Define Δi and Δj to be directional quantities that can be used to increment i and j. Use Eqs. 33 and 34 to set Δi and Δj:

$$\Delta i = \begin{cases}
1 & \text{for } i < I \\
-1 & \text{otherwise}
\end{cases}$$ (33)

$$\Delta j = \begin{cases}
1 & \text{for } j < J \\
-1 & \text{otherwise}
\end{cases}$$ (34)

2. Outer Loop:

a. Define i_t to be the index associated with the location where the projection of L onto the $x-y$ plane crosses a constant-y reference line (e.g., the location of the green dot in Fig. 4).

b. If $J = J$, set $i_t = I$.

Otherwise, use Eqs. 35 and 36 to calculate y_t, then x_t. Use x_t, along with Eq. 5, to calculate i_t. Restrict the value of $i_t \mid 0 \leq i_t < m - 1$.

$$y_t = \begin{cases}
(j + 1)\Delta y + y_0 & \text{for } \Delta j = 1 \\
 j\Delta y + y_0 & \text{otherwise}
\end{cases}.$$ (35)

$$x_t = \frac{y_t - L_{0,y}}{L_{1,y} - L_{0,y}} (L_{1,x} - L_{0,x}) + L_{0,x}.$$ (36)

3. Inner Loop:

a. Store i and j.

b. If $\Delta i(i - i_t) \leq 0$, increment i by Δi then repeat step 3a. Otherwise, continue to step 4.

4. End Condition:

a. Increment j by Δj and i by $-\Delta i$.

b. If $\Delta j(J - j) \geq 0$, then jump back to step 2b. Otherwise, the algorithm is complete. The stored values for i and j represent the complete set of cells that line segment L may intersect.
2.5 Surface Gradients and Normal Vectors

To avoid confusion between the dependent variable $z(x,y)$ and the independent variable z, define $\phi(x,y) = z(x,y)$. Then, from Eq. 21,

$$\phi(x,y) = [(x-x_{i+1})(y-y_{j+1})z_{i,j} - (x-x_i)(y-y_{j+1})z_{i+1,j} - (x-x_{i+1})(y-y_j)z_{i,j+1} + (x-x_i)(y-y_j)z_{i+1,j+1}] / \Delta x \Delta y.$$ \hfill (37)

From the definition of the del operator,

$$\vec{\nabla} f(x,y,z) = \frac{\partial f}{\partial x} \hat{x} + \frac{\partial f}{\partial y} \hat{y} + \frac{\partial f}{\partial z} \hat{z}.$$ \hfill (38)

$$\Rightarrow \vec{\nabla} \phi = \left[(y-y_{j+1})(z_{i,j} - z_{i+1,j}) / \Delta x \Delta y - (y-y_j)(z_{i,j+1} - z_{i+1,j+1}) / \Delta x \Delta y \right] \hat{x}$$

$$+ \left[(x-x_{i+1})(z_{i,j} - z_{i,j+1}) / \Delta x \Delta y - (x-x_i)(z_{i,j+1} - z_{i+1,j+1}) / \Delta x \Delta y \right] \hat{y}. \hfill (39)$$

Thus, Eq. 39 is the gradient of the surface defined by Eq. 21. Note that $\vec{\nabla} \phi$ is not of unit length.

A number of useful surface properties can easily be calculated based on the gradient:

The $x-y$ components of the direction of steepest ascent are given by $(\nabla \phi)_x$ and $(\nabla \phi)_y$ from Eq. 39.

The slope in the direction of steepest ascent is given by

$$|\vec{\nabla} \phi| = \sqrt{(\nabla \phi)_x^2 + (\nabla \phi)_y^2}, \hfill (40)$$

and the unit-normal vector \hat{n} is given by

$$\hat{n} = \frac{-(\nabla \phi)_x \hat{x} - (\nabla \phi)_y \hat{y} + \hat{z}}{\sqrt{(\nabla \phi)_x^2 + (\nabla \phi)_y^2 + 1}}. \hfill (41)$$

Recall that unit-normal surface vectors are not unique. Specifically, if \hat{n} is a unit-normal surface vector, then $-\hat{n}$ is also a unit-normal surface vector. \hat{n} has been chosen to have a positive \hat{z} component.

2.6 Scaled Coordinates

Eqs. 42 and 43 provide a means to convert to and from scaled coordinates.

$$s_x \equiv \frac{x-x_0}{\Delta x} \quad \text{and} \quad s_y \equiv \frac{y-y_0}{\Delta y}. \hfill (42)$$

$$x = x_0 + s_x \Delta x \quad \text{and} \quad y = y_0 + s_y \Delta y. \hfill (43)$$
The benefit of working with scaled coordinates is that they simplify calculations by introducing unit intervals and zero offsets. Thus, they allow for making the following substitutions when working with equations prior to Eq. 42:

\[
x \rightarrow s_x, \quad y \rightarrow s_y, \quad \Delta x \rightarrow 1, \quad \Delta y \rightarrow 1, \quad x_0 \rightarrow 0, \quad y_0 \rightarrow 0, \quad x_i \rightarrow i, \quad \text{and} \quad y_j \rightarrow j.
\] (44)

The use of scaled coordinates in the code that follows has 2 advantages: they make the code run slightly faster, and they reduce the required number of user-supplied parameters.

3. Calculating Indices: The SafeIndex() Function

The SafeIndex() function uses Eq. 5 (or 6), as well as the substitutions from Eq. 44, to calculate the grid index that is associated with a user-supplied scaled coordinate. The grid index is then modified to be compatible with other functions described in this report:

\[
k = \begin{cases}
0 & \text{for } s < 0 \\
m - 2 & \text{for } s \geq m - 2 \\
\text{trunc}(s) & \text{otherwise}
\end{cases}.
\] (45)

3.1 SafeIndex() Code

```c
inline int SafeIndex(//<=====CALCULATE A SAFE INDEX AT A GIVEN SCALED LOCATION
int m,//<------------------NUMBER OF GRID INDICES (m SHOULD BE AT LEAST 2)
double s){//<------------------------A GRID LOCATION IN SCALED COORDINATES
return s<0?0:s>m-2?m-2:int(s);
}~~~YAGENAUT@GMAIL.COM~~~~~~~~~~~~~~~~~~~~~~~~~LAST~UPDATED~16AUG2014~~~~~~
```

3.2 SafeIndex() Parameters

- **m** specifies the array size that is associated with the scaled distance \(s \). Typically, \(m \) refers to \(m \) when \(s = s_x \) and \(n \) when \(s = s_y \). \(m \) should be greater than 1.

- **s** specifies a scaled distance, typically either \(s_x \) or \(s_y \) from Eq. 42.

3.3 SafeIndex() Return Value

The SafeIndex() function returns the index \(k \) from Eq. 45.
4. Performing Interpolations: The Interpolate() Function

The Interpolate() function uses Eqs. 13, 14, and 15, as well as the substitutions from Eq. 44, to perform bilinear interpolations. The equations have been coded in a slightly more compact form:

\[z_\alpha = (s_y - j)(z_{i+1,j+1} - z_{i,j}) + z_{i+1,j} \]

\[z = (s_x - i)((s_y - j)(z_{i+1,j+1} - z_{i+1,j}) + z_{i+1,j} - z_\alpha) + z_\alpha. \]

4.1 Interpolate() Code

```cpp
template<class T> double Interpolate(  // <================= BILINEAR INTERPOLATION
    const T& Z,  // <-------------- POINT TO Z WHERE Z[i][j]=Z(X[i],Y[j])
    int i, int j,  // <----------------- GRID INDICES (0<=i<m-1 & 0<=j<n-1)
    double sx, double sy)  // <----------- A GRID LOCATION IN SCALED COORDINATES
{   double za=(sy-j)*(Z[i][j+1]-Z[i][j])+Z[i][j];
    return (sx-i)*((sy-j)*(Z[i+1][j+1]-Z[i+1][j])+Z[i+1][j]-za)+za;
}  // ~~~~~ YAGENAUT@GMAIL.COM ~~~~~~~~~~~~~~~~~~~~~~~~~~ LAST~UPDATED~16AUG2014~~~~~
```

4.2 Interpolate() Parameters

- **Z**: Points to a 2-index array of values that represents \(z(x, y) \), where \(Z[i][j] = z(x_i, y_j) \).
- **i**: Specifies \(i \), an index that is associated with the \(x \) axis. Values for \(i \) cannot be less than zero or greater than \(m-2 \), where \(m \) is the first-index size of \(Z \).
- **j**: Specifies \(j \), an index that is associated with the \(y \) axis. Values for \(j \) cannot be less than zero or greater than \(n-2 \), where \(n \) is the second-index size of \(Z \).
- **sx**: Specifies \(s_x \), a scaled distance from Eq. 42.
- **sy**: Specifies \(s_y \), a scaled distance from Eq. 42.

4.3 Interpolate() Return Value

The Interpolate() function returns \(z \) from Eq. 47.

4.4 Interpolate() Simple Example

The following example begins by defining the surface that is shown in Fig. 5. The Interpolate() function is then used to estimate \(z \) at \(x = 1.5 \) and \(y = 0.5 \).
Fig. 5 Example surface

```
#include <cstdio>
#include "y_bilinear.h"

int main()
{
    const int m=5, n=3;
    double Z[m][n]={1,1,0 , 1,0,0 , 0,1,0 , 0,0,0 , 1,0,1};
    double x=1.5, y=.5;
    int i=yBilinear::SafeIndex(m,x), j=yBilinear::SafeIndex(n,y);
    double z=yBilinear::Interpolate(Z,i,j,x,y);
    printf("At x=%.1f and y=%.1f, z=%.1f\n",x,y,z);
}
```

OUTPUT:

```
At x=1.5 and y=0.5, z=0.5
```

4.5 Interpolate() Image Example

The following example begins by defining the Rainbow() function, which can be used to map numbers to colors. Next, the example defines the surface that is shown in Fig. 5. Functions from the yBmp namespace, along with the Interpolate() function, are used to create a pseudo-color image of the surface. Finally, the image is written to a BMP file, which is displayed in Fig. 6. The color-to-value key is shown in Fig. 7.
inline void Rainbow()
{
 unsigned char C[3],
 double x,
 double min, double max,
 if(x<min){C[0]=C[1]=C[2]=0; /**/ return; }//set too small values to black
 if(x>max){C[0]=C[1]=C[2]=255; /**/ return; }//set too large values to white
 x=(1-(x-min)/(max-min))*8; // remap x to a range of 8 to 0
 C[0]=int((3<x&&x<5)||x>7 ?-fabs(x/2-3)+1.5:5<=x&&x<=7?1:0)*255); // blue
 C[1]=int((1<x&&x<3)||5<x&&x<7?-fabs(x/2-2)+1.5:3<=x&&x<=5?1:0)*255); // green
 C[2]=int((x<1||3<x&&x<5?-fabs(x/2-1)+1.5:1<=x&&x<=3?1:0)*255); // red
}

#include "y_bmp.h"
#include "y_bilinear.h"
int main()
{ /*create an image from a surface using Interpolate()*/
 const int m=5,n=3,M=1000,N=500;
 double Z[m][n]={1,1,0,0,0,0,0,1,0,1,0,1};
 unsigned char*I=yBmp::NewImage(M,N,255);
 for(int q=0;q<M;++q)for(int p=0;p<N;++p){
 double x=q*(m-1)*1./(M-1),y=p*(n-1)*1./(N-1);
 int i=yBilinear::SafeIndex(m,x),j=yBilinear::SafeIndex(n,y);
 double z=yBilinear::Interpolate(Z,i,j,x,y);
 Rainbow(yBmp::GetPixel(I,q,p),z,0,1);
 }
 yBmp::WriteBmpFile("interpolate.bmp",I);
}

Fig. 6 Image generated by example code from Section 4.5.

Fig. 7 Color-to-value key

The CellIntersect() function uses equations from Section 2.3 to calculate the point where a line intersects a simple surface that is defined by Eq. 21. To simplify the CellIntersect() function, the equations from Section 2.3 have to be rewritten in terms of scaled coordinates:

Eqs. 20 and 24 can be converted to scaled coordinates using the substitutions given in Eq. 44:

\[C_0 = L_{i,s_x} - L_{0,s_x}, \quad C_1 = L_{i,s_y} - L_{0,s_y}, \quad C_2 = L_{i,z} - L_{0,z}. \]
\[C_3 = i + 1 - L_{0,s_z}, \quad C_4 = j + 1 - L_{0,s_z}, \quad C_5 = i - L_{0,s_z}, \quad C_6 = j - L_{0,s_z}. \]

The same is true for Eqs. 29, 30, and 31:

\[a = C_0 C_1 \left(z_{i,j} - z_{i+1,j} - z_{i,j+1} + z_{i+1,j+1} \right), \]
\[b = -(C_1 C_3 + C_0 C_4) z_{i,j} + (C_1 C_5 + C_0 C_4) z_{i+1,j} + (C_1 C_3 + C_0 C_6) z_{i,j+1} - (C_1 C_5 + C_0 C_6) z_{i+1,j+1} - C_2, \]
\[c = C_3 C_4 z_{i,j} - C_5 C_6 z_{i,j+1} - C_3 C_6 z_{i,j+1} + C_5 C_6 z_{i+1,j+1} - L_{0,z}. \]

Scaled coordinates at the point of intersection can be found by substituting \(t \) from Eq. 32 into Eq. 19 (after converting to scaled coordinates):

\[s_x = C_0 t + L_{0,s_x}, \quad s_y = C_1 t + L_{0,s_y}, \quad z = C_2 t + L_{0,z}. \]

Note that line \(L \) will intersect the surface at 0, 1, 2, or infinitely many locations.

If \(L \) intersects the surface at 2 locations, then the rules for selecting which intersection to choose are somewhat complicated: The CellIntersect() function attempts to find the first intersection, when traveling from \(\bar{L}_0 \) toward \(\bar{L}_1 \), that is within the bounds given by \(x_i \leq s_x \leq x_{i+1} \) and \(y_j \leq s_y \leq y_{j+1} \). If no intersection is found, then the function attempts to find the first intersection when traveling from \(\bar{L}_0 \) toward \(\bar{L}_1 \) (regardless of whether or not it is within the cell's boundaries). If an intersection still isn't found, then the function uses the first intersection when traveling from \(\bar{L}_0 \) away from \(\bar{L}_1 \).
5.1 CellIntersect() Code

```cpp
template<class T> int CellIntersect( // <==================LINE-CELL INTERSECTION
const T& Z, // <----------------------POINTER TO Z WHERE Z[i][j]=Z(X[i],Y[j])
int i, int j, // <-------------------------GRID INDICES (0<=i<m-1 & 0<=j<n-1)
const double L[6], // <------------A SCALED LINE {L0SX,L0SY,L0Z,L1SX,L1SY,L1Z}
double& sx, double& sy, double& z, // <----SCALED INTERSECTION POINT (CALCULATED)
double epsilon=1E-9){// <------------------VALUE FOR DIVISION-BY-ZERO CHECK
    double C0=L[3]-L[0], C1=L[4]-L[1], C2=L[5]-L[2];
    double C5=i-L[0], C6=j-L[1], C3=C5+1, C4=C6+1;
    double a=C0*C1*(Z[i][j]-Z[i+1][j]-Z[i][j+1]+Z[i+1][j+1]),
b=-(C1*C3+C0*C4)*Z[i][j]+(C1*C5+C0*C4)*Z[i+1][j][j]
+ (C1*C3+C0*C6)*Z[i][j+1]- (C1*C5+C0*C6)*Z[i][j+1][j+1]-C2,
c=C3*C4*Z[i][j]-C5*C4*Z[i][j+1][j]-C3*C6*Z[i][j+1]+C5*C6*Z[i+1][j+1]-L[2];
    double t, D;
    if(fabs(a)<epsilon&&fabs(b)<epsilon)return fabs(c)<epsilon?-1:0;
    if(fabs(a)<epsilon)t=-c/b,sx=C0*t+L[0], sy=C1*t+L[1], z=C2*t+L[2];
    else{
        if((D=b*b-4*a*c)<0)return 0;//..no intersection, <sx,sy,sz> not calculated
        t=(-b-sqrt(D))/2/a,sx=C0*t+L[0], sy=C1*t+L[1], z=C2*t+L[2];
        double tb=(-b+sqrt(D))/2/a,sxb=C0*tb+L[0], syb=C1*tb+L[1], z=tb+C2*tb+L[2];
        if(t>=0&&t<=1&&tb>=0&&tb<=1){
            bool ra=sx<i||sx>i+1||sy<j||sy>j+1?1:0;
            bool rb=sxb<i||sxb>i+1||syb<j||syb>j+1?1:0;
            if(ra&&rb&&tb){sx=sxb, sy=syb, z=zb; return 1;}
            else if(ra||!rb&&tb)t=tb, sx=sxb, sy=syb, z=zb;
            else if(t>tb&&tb>0||t<=0&&t<tb)t=tb, sx=sxb, sy=syb, z=zb;
        }
        if(sx<i||sx>i+1||sy<j||sy>j+1) return 1; //......................out of bounds
        if(t<0?2:(t>1?3:4)); //.....line (2), ray (3), or segment (4) intersections
    }
    //~~~~YAGENAUT@GMAIL.COM~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~LAST~UPDATED~16AUG2014~~~~~~
```

5.2 CellIntersect() Parameters

- **Z** points to a 2-index array of values that represents \(z(x,y) \), where \(Z[i][j] = z(x_i,y_j) \).

- **i** specifies \(i \), an index that is associated with the \(x \) axis. Values for \(i \) cannot be less than zero or greater than \(m-2 \), where \(m \) is the first-index size of \(Z \).

- **j** specifies \(j \), an index that is associated with the \(y \) axis. Values for \(j \) cannot be less than zero or greater than \(n-2 \), where \(n \) is the second-index size of \(Z \).

- **L** specifies 2 points that define a line (\(L=\{ \vec{L}_{0x}, \vec{L}_{0y}, \vec{L}_{1x}, \vec{L}_{1y}, \vec{L}_{1z} \} \)).

- **sx** is the calculated value for \(s_x \), the point of intersection between \(L \) and the surface in scaled coordinates (see Eq. 53). If the function’s return value is –1 or 0, then \(sx \) is not calculated.
\textbf{sy} \hspace{1cm} \textbf{sy} \text{ is the calculated value for } s_y, \text{ the point of intersection between } L \text{ and the surface in scaled coordinates (see Eq. 53). If the function’s return value is } -1 \text{ or } 0, \text{ then } \textbf{sy} \text{ is not calculated.}

\textbf{z} \hspace{1cm} \textbf{z} \text{ is the calculated value for } z, \text{ the point of intersection between } L \text{ and the surface (see Eq. 53). If the function’s return value is } -1 \text{ or } 0, \text{ then } \textbf{z} \text{ is not calculated.}

\textbf{epsilon} \hspace{1cm} \textbf{epsilon} \text{ specifies the minimum nonzero value for both } a \text{ from Eq. 50 and } b \text{ from Eq. 51. Thus, if } |a| \text{ is less than } \textbf{epsilon}, \text{ then } a \text{ is considered to be zero, and if } |b| \text{ is less than } \textbf{epsilon}, \text{ then } b \text{ is considered to be zero.}

\textbf{5.3 CellIntersect() Return Value}

In addition to (possibly) calculating values for \textbf{sx}, \textbf{sy}, and \textbf{z}, the \text{CellIntersect()} function returns 1 of 6 values (–1, 0, 1, 2, 3, or 4):

- A return value of –1 indicates that \(a\), \(b\), and \(c\) from Eq. 28 are all effectively zero. This means that line \(L\) intersects the surface at an infinite number of points. For a return value of –1, \textbf{sx}, \textbf{sy}, and \textbf{z} are not calculated.

- A return value of 0 indicates that the line defined by \(L\) does not intersect the surface at any point (and, thus, \textbf{sx}, \textbf{sy}, and \textbf{z} are not calculated).

- A return value of 1 indicates that the line defined by \(L\) intersects the surface at a point that is outside the boundaries of the cell.

- A return value of 2 (or greater) indicates that the line defined by \(L\) intersects the surface within the bounds of the cell.

- A return value of 3 (or greater) indicates that the ray defined by \(L\) (from \(\vec{L}_0\) to \(\vec{L}_1\)) intersects the surface within the bounds of the cell.

- A return value of 4 indicates that the line segment defined by \(L\) intersects the surface within the bounds of the cell.

\textbf{5.4 CellIntersect() Simple Example}

The following example begins by defining the surface that is shown in Fig. 5. The \text{CellIntersect()} function is then used to determine the point of intersection between the surface and a vertical line located at \(x = 1.5\), \(y = 0.5\).
5.5 **CellIntersect() Image Example**

The following example begins by defining the surface that is shown in Fig. 5. Note that the
surface is a composite of 8 simple surfaces that are each described by Eq. 21. Next, the
CellIntersect() function is used to calculate the point of intersection between the simple surface
that corresponds with the \(i = 0, j = 0 \) cell and \(10^7 \) randomly chosen lines. Functions from the
yBmp namespace, along with the Rainbow() function (presented in Section 4.5), are used to
create a pseudo-color image of the intersections. Finally, the image is written to a BMP file,
which is displayed in Fig. 8. The color-to-value key is shown in Fig. 7. Since the intersecting
lines are randomly generated, not all points are represented. Non-plotted points are shown in
white.
6. Calculating Line-Surface Intersections: The Line() Function

The Line() function is designed to work with the CellIntersect() function to determine the point of intersection (if it exists) between a line segment, \(L \), and an evenly spaced rectangular surface grid. This is accomplished by first using the Line() function to find a set of cells that \(L \) may intersect, then using the CellIntersect() function to test each of the cells for intersection.

The set of cells specified by the Line() function is typically much smaller than the set of all cells that makes up a surface. Thus, the primary purpose of the Line() function is to reduce the number of cells that must be tested using the CellIntersect() function. For some scenarios, it may be possible to further reduce the number of cells that need to be tested by performing additional tests after calling the Line() function but before calling the CellIntersect() function.

The Line() function uses the algorithm presented in Section 2.4 to determine the indices of the cells that line segment \(L \) might intersect when traveling from \(L_0 \) to \(L_1 \). However, the algorithm has been optimized in 2 ways.

Eq. 36, which is used to find \(i_r \), can be written to allow for some calculations to be removed from the outer loop:

\[
x_r = (f + b_j)M + P \quad ,
\]

(54)

where
\[b_j \equiv \begin{cases} 1 & \text{for } \Delta j = 1 \\ 0 & \text{otherwise} \end{cases} \] \tag{55}

\[M \equiv \begin{cases} \frac{L_{i,x} - L_{0,x}}{L_{i,y} - L_{0,y}} & \text{for } j \neq J \\ 0 & \text{otherwise} \end{cases} \] \tag{56}

and

\[P \equiv L_{0,x} - L_{1,x} M. \] \tag{57}

The Line() function has been written to take advantage of the fact that the algorithm presented in Section 2.4 is more efficient for lines whose slopes are closer to horizontal than vertical. If \(|I - i| > |J - j|\) then the algorithm is used as described. Otherwise, the location where the projection of \(L\) onto the \(x - y\) plane crosses a constant \(x\) reference line (rather than a constant \(y\) reference line) is found. This results in modified outer and inner loops that are very similar to those in Section 2.4, but where indices and measured values associated with the \(x\) and \(y\) axes have been exchanged.

6.1 Line() Code

```c
inline int Line(//<=====================================LINE-GRID INTERSECTION
 int m, int n,//<-----NUMBERS OF GRID INDICES (m AND n SHOULD BE AT LEAST 2)
 const double L[6],//<--A SCALED LINE SEGMENT {L0SX,L0SY,L0Z,L1SX,L1SY,L1Z}
 int*A, int*B){//<--------STORAGE FOR CELL INDICES (FOR EACH, SIZE >= m+n-3)
 int i=SafeIndex(m,*L), j=SafeIndex(n,L[1]), I=SafeIndex(m,L[3]),
 J=SafeIndex(n,L[4]), di=i<i?1:-1, dj=j<j?1:-1, bi=di>0?1:0, bj=dj>0?1:0, k=0;
 double M=J-j?(L[3]-*L)/(L[4]-L[1]):0, N=I-i?1/M:0, P=*L-L[1]*M, Q=-P*N;
 if(abs(I-i)>abs(J-j))for(int it, dj*(J-j)>=0; j+=dj, i-=di)//dj* selects < or >
 for(it=j-J?SafeIndex(m,(j+bj)*M+P):I; di*(i-it)<=0; i+=di)A[k]=i, B[k++]=j;
 else for(int jt, di*(I-i)>=0; i+=di, j-=dj)//................di* selects < or >
 for(jt=i-I?SafeIndex(n,(i+bi)*N+Q):J; dj*(j-jt)<=0; j+=dj)A[k]=i, B[k++]=j;
 return k;//.......................the number of elements to check in A and B
 }
```

6.2 Line() Parameters

\[m \] \quad \text{specifies } m, \text{ the number of horizontal values that the surface grid contains. } m \text{ must be greater than 1.}

\[n \] \quad \text{specifies } n, \text{ the number of vertical values that the surface grid contains. } n \text{ must be greater than 1.}

\[L \] \quad \text{specifies 2 points that define a line segment } \{L_{0,x}, L_{0,y}, L_{0,z}, L_{1,x}, L_{1,y}, L_{1,z}\}.

\[A \] \quad A \text{ points to storage for } x\text{-axis indices. The size of } A \text{ must be at least } m+n-3.

\[B \] \quad B \text{ points to storage for } y\text{-axis indices. The size of } B \text{ must be at least } m+n-3.
6.3 Line() Return Value

In addition to calculating values for \(\mathbf{A} \) and \(\mathbf{B} \), the Line() function returns the number of index pairs that are generated. The indices found in \(\mathbf{A} \) and \(\mathbf{B} \) are stored in the order in which they are found when traveling from \(L_0 \) to \(L_1 \).

6.4 Line() Simple Example

The following example begins by defining the surface that is shown in Fig. 5. The Line() and CellIntersect() functions are then used to determine the point of intersection between the surface and a vertical line located at \(x = 1.5 \), \(y = 0.5 \).

```c
#include <cstdio>
#include "y_bilinear.h"

int main(){
    const int m=5,n=3;
    double x0=0,y0=0,dx=1,dy=1,Z[m][n]={1,1,0 , 1,0,0 , 0,1,0 , 0,0,0 , 1,0,1};
    double L[6]={1.5,1.5,1,1.5,5,5.0};
    int *A=new int[m+n],*B=new int[m+n],k=yBilinear::Line(m,n,L,A,B);
    double x,y,z;
    bool b=0;
    for(int j=0,q;j<k;++j)
        if((q=yBilinear::CellIntersect(Z,A[j],B[j],L,x,y,z))>2){
            b=!q-4; break;
        }
    printf("Intersection at x=%.1f, y=%.1f, and z=%.1f.\n",x,y,z);
}
```

OUTPUT:

```
Intersection at x=1.5, y=0.5, and z=0.5.
```

6.5 Line() Image Example

The following example begins by defining the surface that is shown in Fig. 5. Next, the Line() and CellIntersect() functions are used to calculate the point of intersection between the surface and 10⁷ randomly chosen line segments. Functions from the yBmp namespace, along with the Rainbow() function (presented in Section 4.5), are used to create a pseudo-color image of the intersections. Finally, the image is written to a BMP file, which is displayed in Fig. 9. The color-to-value key is shown in Fig. 7. Since intersecting lines are randomly generated, not all points are represented. Non-plotted points are shown in white.

```c
#include <cstdlib>
#include "y_bmp.h"
#include "y_bilinear.h"

int main(){
    const int m=5,n=3,M=1000,N=500;
    double Z[m][n]={1,1,0 , 1,0,0 , 0,1,0 , 0,0,0 , 1,0,1};
    unsigned char*I=yBmp::NewImage(M,N,255);
    int K=0,J=0,*A=new int[m+n],*B=new int[m+n];
    for(int i=0;i<1000000;++i){
        double L[6]={rand()*(m-1)*1./RAND_MAX,
```

```
```
Fig. 9 Image generated by example code from Section 6.5.

Note that the bottom-left corner of the image is similar to the image that is displayed in Fig. 8. However, the image from Fig. 8 has fewer missing pixels than the image from Fig. 9. This is because different intersection criteria were used to generate the 2 images; only line-segment intersections were plotted in Fig. 9.
7. Calculating Surface Gradients: The Gradient() Function

The Gradient() function uses Eq. 39 to calculate the surface gradient at a user-specified location. To simplify the Gradient() function, Eq. 39 has been rewritten in terms of scaled coordinates using the substitutions from Eq. 44:

\[
(\nabla \phi)_s = (s_y - j - 1)(z_{i,j} - z_{i+1,j}) - (s_y - j)(z_{i,j+1} - z_{i+1,j+1}).
\] (58)

\[
(\nabla \phi)_t = (s_x - i - 1)(z_{i,j} - z_{i,j+1}) - (s_x - i)(z_{i+1,j} - z_{i+1,j+1}).
\] (59)

Eq. 60 can be used to find \((\nabla \phi)_x\) and \((\nabla \phi)_y\):

\[
(\nabla \phi)_x = \frac{(\nabla \phi)_s}{\Delta x} \quad \text{and} \quad (\nabla \phi)_y = \frac{(\nabla \phi)_t}{\Delta y}.
\] (60)

The components of the gradient can be used to determine the direction of steepest ascent, the slope in the direction of steepest ascent (Eq. 40), and a unit vector that is normal to the surface (Eq. 41).

7.1 Gradient() Code

```cpp
template<class T> void Gradient(const T&Z, int i, int j, double sx, double sy, double&delsx, double&delsy) {
    delsx = (sy-j-1)*Z[i][j]-Z[i+1][j])-(sy-j)*Z[i][j+1]-(Z[i+1][j+1])-(Z[i+1][j+1]);
    delsy = (sx-i-1)*Z[i][j]-Z[i][j+1])-(sx-i)*Z[i+1][j+1]-Z[i+1][j+1]);
}
```

7.2 Gradient() Parameters

Z

\(Z \) points to a 2-index array of values that represents \(z(x,y) \), where \(Z[i][j] = z(x_i,y_j) \).

i

\(i \) specifies \(i \), an index that is associated with the \(x \) axis. Values for \(i \) cannot be less than zero or greater than \(m - 2 \), where \(m \) is the first-index size of \(Z \).

j

\(j \) specifies \(j \), an index that is associated with the \(y \) axis. Values for \(j \) cannot be less than zero or greater than \(n - 2 \), where \(n \) is the second-index size of \(Z \).

sx

\(sx \) specifies \(s_x \), a scaled distance from Eq. 42.

sy

\(sy \) specifies \(s_y \), a scaled distance from Eq. 42.
delsx \textit{delsx} is the calculated value for \((\nabla \phi)_x\), the x-component of the surface gradient (in scaled coordinates) from Eq. 58.

delsy \textit{delsy} is the calculated value for \((\nabla \phi)_y\), the y-component of the surface gradient (in scaled coordinates) from Eq. 59.

7.3 Gradient() Simple Example

The following example begins by defining the surface that is shown in Fig. 5. The Gradient() function is then used to estimate the slope of the surface at \(x = 1.5\) and \(y = 0.5\).

```cpp
#include <cstdio>
#include "y_bilinear.h"
#include "cmath"

int main(){
    const int m=5,n=3;
    double Z[m][n]={1,1,0,1,0,0,0,0,0,1,0,1};
    double x=1.5,y=.5;
    int i=yBilinear::SafeIndex(m,x),j=yBilinear::SafeIndex(n,y);
    double delx,dely;
    yBilinear::Gradient(Z,i,j,x,y,delx,dely);
    printf("At x=%.1f and y=%.1f, slope=%.1f
",x,y,sqrt(delx*delx+dely*dely));
}
```

OUTPUT:

```
At x=1.5 and y=0.5, slope=0.0
```

7.4 Gradient() Image Example

The following example begins by defining the surface that is shown in Fig. 5. Next, functions from the yBmp namespace are used, along with the Gradient() function and the Rainbow() function (presented in Section 4.5), to create a pseudo-color image of the gradient of the surface. Finally, the image is written to a BMP file, which is displayed in Fig. 10. The color-to-value key is shown in Fig. 7.

Note that at the boundaries between cells, the gradient may contain discontinuities. The discontinuities are the result of the manner in which the surface has been constructed.
8. Performance

The following example estimates the calculation time per 10^7 iterations for the Interpolate(), CellIntersect(), and Gradient() functions by randomly sampling and intersecting a randomly generated surface. The yRandom namespace is used to generate pseudorandom numbers. Figure 11 summarizes the results. Time values will vary based on computer specifications, compiler, compiler settings, etc.

```c
#include <cstdio> // ..................................................... printf()
#include <ctime>  // ........................................ clock(),CLOCKS_PER_SEC
#include "y_bilinear.h" // ........................................ yBilinear
#include "y_random.h" // ........................................... yRandom

int main(){
    //<TEST THE SPEEDS OF Interpolate(), CellIntersect(), and Gradient()>
    const int n=14, N=1<<n, M=10000000;
    unsigned I[625]; /*<-*/ yRandom::Initialize(I,1);//....state of Mersenne twister
    double**Z=new double*[N]; /*<-*/
    for(int i=0;i<N;++i)Z[i]=new double[N];
    for(int i=0;i<N;++i)
        for(int j=0;j<N;++j)
            Z[i][j]=yRandom::RandU(I,0,1);
    printf(" size | Interpolation() | CellIntersect() | Gradient("
    " )n of |---------------------|---------------------|---------------------
          |          |    z     |          | intersect|          | 
          | time (s) |   avg.   | time (s) |   avg.   | time (s) | 
avg.    |----------|----------|----------|----------|----------|
 ---------|----------|----------|----------|----------|----------
    //............................................. table header
    for(int m=2;m<N;m*=2){
        double s=0,t=0; //......................... begin test for Interpolate()
        for(int k=0;k<M;++k){
            double x=yRandom::RandU(I,0,m-1), y=yRandom::RandU(I,0,m-1);
```
```
int i=yBilinear::SafeIndex(m,x),j=yBilinear::SafeIndex(m,y);
double z=yBilinear::Interpolate(Z,i,j,x,y);
s+=z;
printf("%7d |%8.3f |%8.3f |",m,(clock()-t)/CLOCKS_PER_SEC,s/M);
s=0,t=clock();//.....................begin test for CellIntersect()
for(int k=0;k<M;++k){
  double L[6]={yRandom::RandU(I,0,m-1),yRandom::RandU(I,0,m-1),
               yRandom::RandU(I,-1,1),yRandom::RandU(I,0,m-1),
               yRandom::RandU(I,0,m-1),yRandom::RandU(I,-1,1)};
  double x,y,z;
  int i=yRandom::RandI(I,0,m-2),j=yRandom::RandI(I,0,m-2);
  int test=yBilinear::CellIntersect(Z,i,j,L,x,y,z);
  if(test==4)s++;
}
printf("%9.3f |%8.3f ",(clock()-t)/CLOCKS_PER_SEC,s/M);
s=0,t=clock();//............................begin test for Gradient()
for(int k=0;k<M;++k){
  double x=yRandom::RandU(I,0,m-1),y=yRandom::RandU(I,0,m-1),delx,dely;
  int i=yBilinear::SafeIndex(m,x),j=yBilinear::SafeIndex(m,y);
  yBilinear::Gradient(Z,i,j,x,y,delx,dely);
  s+=delx;
}
printf("%9.3f |%8.3f
",(clock()-t)/CLOCKS_PER_SEC,s/M);
}
```

```
OUTPUT:

<table>
<thead>
<tr>
<th>size of array (m)</th>
<th>Interpolation()</th>
<th></th>
<th>CellIntersect()</th>
<th></th>
<th>Gradient()</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>time (s)</td>
<td>z avg.</td>
<td>time (s)</td>
<td>intersect avg.</td>
<td>time (s)</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>-----------</td>
</tr>
<tr>
<td>2</td>
<td>0.234</td>
<td>0.672</td>
<td>1.201</td>
<td>0.275</td>
<td>0.234</td>
</tr>
<tr>
<td>4</td>
<td>0.297</td>
<td>0.439</td>
<td>1.216</td>
<td>0.55</td>
<td>0.297</td>
</tr>
<tr>
<td>8</td>
<td>0.296</td>
<td>0.439</td>
<td>1.248</td>
<td>0.014</td>
<td>0.297</td>
</tr>
<tr>
<td>16</td>
<td>0.280</td>
<td>0.486</td>
<td>1.233</td>
<td>0.005</td>
<td>0.265</td>
</tr>
<tr>
<td>32</td>
<td>0.281</td>
<td>0.494</td>
<td>1.232</td>
<td>0.002</td>
<td>0.281</td>
</tr>
<tr>
<td>64</td>
<td>0.281</td>
<td>0.505</td>
<td>1.263</td>
<td>0.001</td>
<td>0.281</td>
</tr>
<tr>
<td>128</td>
<td>0.297</td>
<td>0.504</td>
<td>1.357</td>
<td>0.001</td>
<td>0.296</td>
</tr>
<tr>
<td>256</td>
<td>0.312</td>
<td>0.501</td>
<td>1.420</td>
<td>0.000</td>
<td>0.296</td>
</tr>
<tr>
<td>512</td>
<td>0.328</td>
<td>0.500</td>
<td>1.404</td>
<td>0.000</td>
<td>0.296</td>
</tr>
<tr>
<td>1024</td>
<td>0.484</td>
<td>0.500</td>
<td>1.591</td>
<td>0.000</td>
<td>0.452</td>
</tr>
<tr>
<td>2048</td>
<td>0.905</td>
<td>0.500</td>
<td>2.028</td>
<td>0.000</td>
<td>0.874</td>
</tr>
<tr>
<td>4096</td>
<td>1.014</td>
<td>0.500</td>
<td>2.106</td>
<td>0.000</td>
<td>1.045</td>
</tr>
<tr>
<td>8192</td>
<td>1.154</td>
<td>0.500</td>
<td>2.372</td>
<td>0.000</td>
<td>1.076</td>
</tr>
<tr>
<td>16384</td>
<td>1.451</td>
<td>0.500</td>
<td>2.558</td>
<td>0.000</td>
<td>1.311</td>
</tr>
</tbody>
</table>
```
9. Performance II

The following example begins by defining 2 functions that can be used to find intersections between lines and evenly spaced rectangular surface grids. The first function, SimpleIntersect(), uses the CellIntersect() function to check all of the grid’s cells. The second function, EfficientIntersect(), uses the CellIntersect() function to check a subset of the grid’s cells, as specified by the Line() function.

Next, the example code estimates the calculation time per 10^5 iterations for the SimpleIntersect() and EfficientIntersect() functions. The yRandom namespace is used to generate pseudorandom numbers.
The example demonstrates 2 things: First, that using the Line() function to reduce the number of cells to check for intersection can result in large increases in performance. Second, average intersect values match between the 2 methods, providing evidence that the algorithm for the Line() function is valid.

```cpp
#include <cstdio>
#include <ctime>
#include "y_bilinear.h"
#include "y_random.h"

int main(){
    const int n=11,N=1<<n,M=100000;
    unsigned I[625];
    yRandom::Initialize(I,1);
    double**Z=new double*[N];
    for(int i=0;i<N;++i)Z[i]=new double[N];
    for(int i=0;i<N;++i)for(int j=0;j<N;++j)Z[i][j]=yRandom::RandU(I,0,1);
    printf("size  | SimpleIntersect() | EfficientIntersect()\n"
           "of   | time (s) | avg. time (s) | time (s) | avg. time (s) \n"
           "array | intersect | intersect | \n"
           "(m)  | (s)      | (s)        | (s)      | \n";
    for(int m=2;m<=N;m*=2){
        double s,t;
        s=0,t=clock(),yRandom::Initialize(I,1);
        for(int k=0;k<M;++k){
```c
double L[6]={yRandom::RandU(I,0,m-1),yRandom::RandU(I,0,m-1),
yRandom::RandU(I,-1,1),yRandom::RandU(I,0,m-1),
yRandom::RandU(I,0,m-1),yRandom::RandU(I,-1,1)};
double x,y,z;
int i=yRandom::RandI(I,0,m-2),j=yRandom::RandI(I,0,m-2);
bool test=SimpleIntersect(Z,m,m,L,x,y,z);
if(test)s++;
printf("%7d |%9.3f |%10.7f |",m,(clock()-t)/CLOCKS_PER_SEC,s/M);
s=0,t=clock(),yRandom::Initialize(I,1);
int *A=new int[m+m-3],*B=new int[m+m-3];
for(int k=0;k<M;++k){
 double L[6]={yRandom::RandU(I,0,m-1),yRandom::RandU(I,0,m-1),
yRandom::RandU(I,-1,1),yRandom::RandU(I,0,m-1),
yRandom::RandU(I,0,m-1),yRandom::RandU(I,-1,1)};
 int K=yBilinear::Line(m,m,L,A,B);
 double x,y,z;
 int i=yRandom::RandI(I,0,m-2),j=yRandom::RandI(I,0,m-2);
 bool test=EfficientIntersect(Z,m,m,L,x,y,z,A,B,K);
 if(test)s++;
 delete[]A,delete[]B;
}
printf("%9.3f |%10.7f
",(clock()-t)/CLOCKS_PER_SEC,s/M);
}
```

### OUTPUT:

<table>
<thead>
<tr>
<th>size of array (m)</th>
<th>SimpleIntersect() intersect time (s) avg.</th>
<th>EfficientIntersect() intersect time (s) avg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.015 0.2961400 0.2961400</td>
<td>0.015 0.2961400</td>
</tr>
<tr>
<td>4</td>
<td>0.047 0.2324000 0.2324000</td>
<td>0.047 0.2324000</td>
</tr>
<tr>
<td>8</td>
<td>0.219 0.4265600 0.4265600</td>
<td>0.219 0.4265600</td>
</tr>
<tr>
<td>16</td>
<td>1.061 0.5226000 0.5226000</td>
<td>1.061 0.5226000</td>
</tr>
<tr>
<td>32</td>
<td>4.166 0.5722800 0.5722800</td>
<td>4.166 0.5722800</td>
</tr>
<tr>
<td>64</td>
<td>17.044 0.6091200 0.6091200</td>
<td>17.044 0.6091200</td>
</tr>
<tr>
<td>128</td>
<td>67.985 0.6480700 0.6480700</td>
<td>67.985 0.6480700</td>
</tr>
<tr>
<td>256</td>
<td>272.998 0.6754100 0.6754100</td>
<td>272.998 0.6754100</td>
</tr>
<tr>
<td>512</td>
<td>1089.319 0.6941000 0.6941000</td>
<td>1089.319 0.6941000</td>
</tr>
<tr>
<td>1024</td>
<td>4402.322 0.7071800 0.7071800</td>
<td>4402.322 0.7071800</td>
</tr>
<tr>
<td>2048</td>
<td>17427.493 0.7174700 0.7174700</td>
<td>17427.493 0.7174700</td>
</tr>
</tbody>
</table>

### 10. Surface-Elevation Example: The Far Side of the Moon

The image shown in Fig. 12 was obtained from NASA’s Website. It presents a topographic view of the far side of the moon. Prior to working with the image, the file was converted from JPG format to BMP format using Microsoft Paint.
The example code that follows begins by using the yBmp namespace to read the image file that is presented in Fig. 12 into memory. Next, the code uses a vertical line of pixels to interpret the scale that is shown to the right of the moon. The vertical line is placed horizontally in the center of the scale, with the starting location at the bottom-most position in the scale and the ending location at the top-most position.

Next, the code calculates elevation values for a portion, outlined in black, of the image of the moon in Fig. 12. This is accomplished by reading pixel values from the image and performing nearest-neighbor searches between the pixel color values and a path in 3-dimensional Cartesian color space that is defined by the values that have been read from the scale. Although the scale in figure 12 isn’t linear, for this simple example, it’s treated as if it is.

Finally, the code creates 3 images based on the elevation data obtained from Fig. 12.
```c
#include "y_bmp.h"
#include "y_bilinear.h"

int main(){
 //CREATE VARIOUS IMAGES BASED ON MOON TOPOGRAPHIC DATA
 //-------------READ ORIGINAL IMAGE AND CAPTURE SCALE-------------
 unsigned char* I = yBmp::ReadBmpFile("604359main_WAC_CSHADE_O000N1800_1000.bmp");
 double* X = new double[582];
 unsigned char** C = new unsigned char*[582];
 for(int k = 0; k < 582; ++k) X[k] = k / 581., C[k] = yBmp::GetPixel(I, 1060, k + 143);
 //-------------CAPTURE AND INTERPRET A PORTION OF THE ORIGINAL IMAGE-------------
 double Z[600][300];
 for(int p = 0; p < 600; ++p) for(int q = 0; q < 300; ++q){
 unsigned char*c = yBmp::GetPixel(I, p + 200, q + 400);
 double d = 1;
 for(int k = 0; k < 582; ++k){
 double D = -1;
 for(int k = 0; k < 582; ++k){
 double d = (C[k][0]-c[0])*(C[k][0]-c[0]) + (C[k][1]-c[1])*(C[k][1]-c[1]) + (C[k][2]-c[2])*(C[k][2]-c[2]);
 if(d < D || D < 0) D = d, Z[p][q] = X[k];
 }
 }
 //-------------CREATE A NEW (MONOCHROME) IMAGE BASED ON ELEVATION VALUES-------------
 unsigned char*I2 = yBmp::NewImage(600, 300, 255);
 for(int p = 0; p < 600; ++p) for(int q = 0; q < 300; ++q){
 unsigned char *c = yBmp::GetPixel(I2, p, q);
 c[0] = c[1] = c[2] = int(Z[p][q] * 255);
 }
 yBmp::WriteBmpFile("moon_topography.bmp", I2);
 //-------------CREATE A SURFACE-OCCLUSION IMAGE-------------
 double L[6] = {0, 0, 5};
 for(int p = 0; p < 600; ++p) for(int q = 0; q < 300; ++q){
 int K = yBilinear::Line(600, 300, L, A, B), Q = 0;
 double x, y, z;
 for(int k = 0; k < K && Q != 4; ++k) Q = yBilinear::CellIntersect(Z, A[k], B[k], L, x, y, z);
 if(Q == 4){
 unsigned char*c = yBmp::GetPixel(I2, p, q);
 c[0] = c[1] = c[2] = 0;
 }
 }
 yBmp::WriteBmpFile("moon_occultation.bmp", I2);
 //-------------CREATE SURFACE-GRADIENT IMAGE-------------
 for(int i = yBilinear::SafeIndex(600, p), j = yBilinear::SafeIndex(300, q);
 delx = dely; /*<-*yBilinear::Gradient(Z, i, j, p, q, delx, dely);
 Rainbow(yBmp::GetPixel(I2, p, q), sqrt(delx*delx+dely*dely), 0., 4.);
 }
 yBmp::WriteBmpFile("moon_gradient.bmp", I2);
 }
}
```
Figure 13 presents a topographic view of the moon with elevations denoted by shades of gray.

![Topographic view of a portion of the far side of the moon](image13)

Fig. 13  Topographic view of a portion of the far side of the moon

Figure 14 was created by placing a vantage point at the lower-left corner of the image and at an elevation of 90,400 m. The Line() and CellIntersect() functions were used to determine line of sight. Any point that was not visible from the vantage point was recolored to black.

![Topographic view of the moon but with surface occultations drawn in black](image14)

Fig. 14  Topographic view of the moon but with surface occultations drawn in black
Figure 15 shows the magnitude of the scaled surface gradient for the topographic information that is shown in Fig. 13.

Fig. 15  View of the magnitude of the scaled surface gradient for a portion of the far side of the moon

11. Code Summary

A summary sheet is provided at the end of this report. It presents the yBilinear namespace, which contains the SafeIndices(), Interpolate(), CellIntersect(), Line(), and Gradient() functions.
```c
#include "y_binary.h"

namespace y_binary { //@@
 for (char yBmp::WriteBmpFile(char* image); for (unsigned int i = 0; i < image.length(); i++) {
 for (unsigned int j = 0; j < image.length(); j++) {
 double delx = (sx - C0) * t + L[0], dely = (sy - C1) * t + L[1], Z[i][j] = C2 * t + L[2];
 return (fabs(delx) < epsilon) ? true : false;
 }
 } //@@
}
```

```
#include <cstdlib>
#include <cmath>
#include <ctime>
```

```
namespace y_binary { //@@
 for (unsigned int i = 0; i < image.length(); i++) {
 for (unsigned int j = 0; j < image.length(); j++) {
 double delx = (sx - C0) * t + L[0], dely = (sy - C1) * t + L[1], Z[i][j] = C2 * t + L[2];
 return (fabs(delx) < epsilon) ? true : false;
 }
 } //@@
}
```
12. References


