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Abstract 

 Nations transitioning into conflict is an issue of national interest. This study 

considers various data for inclusion in a statistical model that predicts the future state of 

the world where nations will either be in a state of “violent conflict” or “not in violent 

conflict” based on available historical data. Logistic regression is used to construct and 

test various models to produce a parsimonious world model with 15 variables. Open 

source data for the previous year is not immediately available for predicting the following 

year, so an approach is developed that ensures only historical data that would be available 

for such a prediction is used. Further analysis shows that nations differ significantly by 

geographical area.  Therefore six sub-models are constructed for differing geographical 

areas of the world.  The dominant variables for each sub-model vary, suggesting a 

complex world that cannot be modeled as a whole.  Insights and conclusions are gathered 

from the models, a best model is proposed, and predictions are made for the state of the 

world in 2015.  Accuracy of predictions via validation surpass 80%. Eighty-five nations 

are predicted to be in a state of violent conflict in 2015, seventeen of them are new to 

conflict since the last published list in 2013.  A prediction tool is created to allow war-

game subject matter experts and students to identify future predicted violent conflict and 

the responsible variables.   
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A PREDICTIVE LOGISTIC REGRESSION MODEL OF WORLD CONFLICT 
USING OPEN SOURCE DATA 

 
 
 

I.  Introduction 

 

General Issue 

 The value of knowing the future state of the world is priceless.  Numerous 

government agencies and civilian companies produce models to predict the future state of 

the world.  Gaining information about the future gives these organizations a decided 

advantage in preparation and planning for future events.  Models have the potential to 

offer valuable insights when applied correctly.  The renowned statistician and often 

quoted George Box said “Essentially, all models are wrong, but some are useful” (Box, 

1979).  No model will ever accurately predict the future, but some models can offer 

useful insights and give greater clarity to decision makers.  This study develops a model 

that predicts violent conflict in the world using logistic regression and open source data. 

Problem Statement 

This study develops a suite of models to predict nations that are in a state of 

violent conflict using a logistic regression model and open source data.  These models are 

used to predict nations in a violent conflict in 2015. 

Research Objectives/Questions/Hypotheses 

The objectives of this study are to predict future violent conflict in the world and 

to identify variables that contribute significantly to violent conflict.   
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Research Focus 

This study focuses on logistic regression as the modeling method to predict 

violent conflict.  The years analyzed include 2008 through 2013. 

Research Questions 

How accurately can a Logistic Regression Model predict the state of the world; 

can it identify nations that will be in a state of “violent conflict” and nations that will not? 

Are there key variables from open source data that contribute to a predictive 

model of nation conflict?   

Given a nation is falsely predicted to be in a violent conflict, how likely is it to 

enter into a violent conflict the following year or within 2-4 years? 

Methodology 

Logistic regression is used to construct the models.  Three different logistic 

regression model building techniques are introduced and used in this study.  The method 

to construct the dependent variable is discussed as well as methods to build, screen, and 

test independent variables.  

Assumptions/Limitations 

This study assumes that there are variables that contribute to a nation being in a 

violent conflict and can be used as predictors of violent conflict.  It also assumes these 

predictors remain relevant from year to year.  The study assumes that the variable data is 

accurate and collected in a consistent manner and demonstrates causation of the 

dependent variable and not just correlation. Three of the variables are classification 

variables; this study assumes they do not change from year to year. 
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The model is limited by data availability, which mandated a two and three year 

lag on all of the variables.  A model built off of previous year data would be superior to 

the models in this study but would not answer the study problem.  It would serve no 

purpose to develop a model that accurately predicts 2014 when it is already 2014.  At the 

time this study was conducted, in 2014, most of the data sets were complete up through 

2012 and sometimes 2013.  To predict into the future, in this case 2015, the model has to 

rely on two and three year old data.  “Black Swan” events, such as Al Qaeda detonating a 

VBIED on the Golden Mosque and spiraling Iraq into a civil war are nearly 

unpredictable.  This study cannot account for “Black Swan” events.  The study was 

limited by availability of the dependent variable.  The Heidelberg Institute for Conflict 

Research was updating their database and was unable to provide data for this study.  The 

data was collected through AFIT analysis of Heidelberg Institute for Conflict Research 

pdf documents.  The models produced in this study do not accurately predict previously 

stable nations that enter into a violent conflict by choice.  These nations’ actions do not 

typically depend on the factors that lead to violent conflict in less stable nations.   

Implications 

The recommended model from this study could lend insight into nations that are 

strong candidates for entering into a violent conflict and nations that are strong 

candidates for exiting a violent conflict.  The study will also identify variables that are 

key contributors to violent conflict.  Identifying these variables could give decision 

makers focus for their efforts to improve stability in a nation. 
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Overview 

The study begins with a review of previous.  Next, logistic regression is 

introduced, followed by a description of the dependent and independent variables.  

Methods to build models are described and then implemented.  Sensitivity of the cutoff 

value that classifies country conflict state is performed.  Finally, the study will conclude 

with analysis of the models, answers to the research questions and conclusions.  A list of 

2014 and 2015 predictions are presented.   
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II. Literature Review 

 

The purpose of this chapter is to provide background information for this study.  

This chapter will discuss relevant research that informs this study, including a CIA task 

force study, several Center for Army Analysis (CAA) instability studies and various other 

indices of instability. The single most influential document for this study is the FACT 

study conducted by Robert Shearer and analysts from the Center for Army Analysis. 

Relevant Research 

Numerous previous studies predict instability in nations.  Researchers in the 

Central Intelligence Agency’s State Failure Task Force investigated several methods to 

predict political instability using various methods (logistic regression, neural networks, 

and Markov models)(Shearer, 2010).  The CIA task force achieved over 80% accuracy in 

predicting instability with a logistic regression model using regime type, infant mortality 

rate, conflict in bordering states, and state discrimination as predictors(Goldstone, 2005).  

This CIA funded study used global data from 1955 to 2003.  The task force categorized 

and compiled over 200 major political instability events during this time.  The dependent 

variable was an onset of one of these events, which included Revolutionary Wars, Ethnic 

Wars, Adverse Regime Changes, and Genocides and Politicides.  The task force tested 

hundreds of independent variables, their interactions and rates of change.  This study 

compiles their own data for the dependent variable, making it very difficult to validate 
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the model’s accuracy.  The CIA study randomly selects nations to validate their model; 

the claimed 80% accuracy is not a “whole world” accuracy, but a smaller random sample. 

  The Center for Army Analysis has conducted multiple studies analyzing 

instability induced conflict.  Three CAA studies are significant.  These studies include the 

Political and Economic Risk in Countries and Lands Evaluations (Ahrens, 1997), the 

Analysis of Complex Threats studies (Bundy and Mathur, 1997 and O’Brien, 2001a), and 

the Analysis of Complex Threats for Operations and Readiness study (O’Brien, 2001b).  

The most accurate model from these studies was a possibility theory model that achieved 

90% accuracy in predicting conflict five years into the future.  Critics suggested this 

study was difficult to understand and the results were incomprehensible to staff and 

senior decision makers.   

To produce a more “user-friendly” study the CAA initiated the Forecast and 

Analysis of Complex Threats (FACT) study in 2007.  Shearer and Marvin were the 

FACT study directors and wrote an article in the Military Operations Research journal 

Recognizing Patterns of Nation-State Instability that Lead to Conflict (Marvin, 2010). 

They built upon the previous studies done at the Center for Army Analysis to accomplish 

three tasks.  First they identify features that capture the instability of a nation, second 

they forecast the future levels of these features for each nation and third they classified 

each future state’s conflict potential.   

Shearer and Marvin intended to predict the future conflict potential of select 

nation-states in a simple manner.  The study used thirteen unclassified data sets 

categorized into four of the six PMESII categories; Political, Military, Economic and 

Social.  Infrastructure and Information systems were not included in the FACT study.  
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The variables are shown below along with their unclassified data source.  The data set 

included the years 1993-2003. 

• Political 

• Civil liberties – Freedom House 

• Democracy – Polity IV Project 

• Political rights – Freedom House 

• Military  

• Conflict history – Heidelberg Institute of Conflict Research 

• Economic 

• Male unemployment – World Bank 

• GDP per capita – World Bank 

• Trade openness – World Bank 

• Social 

• Adult Male literacy – World Bank 

• Caloric intake – Food and Agriculture Organization of the United 

Nations 

• Ethnic diversity – CIA World Fact Book 

• Infant mortality – U.S. Bureau of the Census 

• Life expectancy – U.S. Bureau of the Census 

• Religious diversity – CIA World Fact Book 

 

The conflict history data came from the Heidelberg Institute of Conflict 

Research(Heidelberg Institute for International Conflict Research, 2014).    Conflicts 

were defined as the clashing of interests on national values and issues and were classified 

according to amount of violence observed.  The four categories were Latent Conflict, 

Crisis, Severe Crisis and War.  Shearer states that historically the United States has not 

intervened in foreign nations until casualties are experienced so the authors combined the 

four categories into two; Conflict (Severe Crisis and War) and Peace (Latent Conflict and 
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Crisis)(Shearer, 2010).  Different to Sherarer’s study, the 2014 HIIK study categorizes 

the conflicts into six categories instead of four, as outlined in the methodology section of 

this paper.  Shearer’s study consisted of two important assumptions: 

1) Nations that experienced conflict are similar in that they share common 

instability features. 

2) The distance between the scaled 13 dimension vectors can serve as a 

reasonable scale for the similarity between two nation-states.    

After the data was collected for each nation Shearer used a visual method to test 

their assumptions by generating 54 three-dimension plots from each of the possible 

combinations of 1 political, 1 social and 1 economic/military.  Points were colored on 

historical levels of conflict observed; gray for peace and black for conflict.  If the 

variables were significant the team expected the points to be grouped in a cloud by color.  

Most of the 54 plots did not show distinct color groups; a few did.  The initial verification 

method was unsatisfying so a second method was explored.  The Principal Component 

Analysis (PCA) method reduced the 13 variables into three dimensions that could be 

visually analyzed.  The three components were assigned the terms “social”, “political” 

and “military/economic”.  The PCA method searches for linear combinations of the 

original 13 vectors that best express the variance in the data.  Using this method the study 

graphs distinct conflict (black) and peace (gray) clouds and satisfies the two key 

assumptions.  Because the FACT study uses Principal Component analysis it does not 

show causation between independent variables and violent conflict.   

Shearer used a weighted moving average to predict future values and divided their 

data set into a training set (first 6 years) and a test set (last 5 years).  To classify the future 
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data points derived from the weighted moving averages the team used the K-nearest 

neighbor algorithm and nearest centroid algorithm.  The nearest neighbor proved to be 

more accurate than the centroid algorithm.   They used the same portioning of the data to 

predict (first 5 years) and test (last 6 years) and adjusted the number of neighbors 

between 3 and 11.  With the nearest neighbor algorithm the team used a simple majority 

of neighbors to classify their predicted nation status.  The K-nearest neighbor, with K=7, 

performed the best with an 87% accuracy.  All the other K-nearest neighbors also 

achieved over 85% accuracy.  The predicted nation scores were classified as peace, 

conflict or uncertain with about 25% classified as uncertain.  Without the uncertain 

classification, the study prediction accuracy for their validation set was 76%  This study 

relied on the data from the same year in which the conflict was determined. 

The Center for Army Analysis adopted Shearer’s FACT study method which used 

a weighted average and K-nearest neighbor algorithm.  It has comparable accuracies to 

earlier studies but with predictions further into the future and is easier to understand 

(Shearer, 2010).    

Valuable insight into grouping the nations of the world in explainable groups 

came from Hans Rosling.  Hans Rosling is a renowned statistician, medical doctor and 

public speaker.  He has accumulated numerous accolades with his innovative statistical 

methods, including being named by Time Magazine as one of the 100 most influential 

people in 2012(Christakis, 2012).  Mr Rosling is a co-founder of the Gapminder 

foundation which developed the trendalyzer software system (Gapminder, A fact-based 

worldview).  Mr Rosling has become a prominent public speaker using the trendalyzer 
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software. In a 2006 “Ted Talks” lecture Rosling divides the world into the following six 

categories: (The best stats you've ever seen, 2006) 

• Organization for Economic Co-operation and Development (OECD) nations 

• Latin America nations 

• East European nations 

• East Asian nations 

• South Asian nations 

• African nations 

Rosling further subdivides the African nations into Sub Saharan African nations 

and Arab states (includes much of Middle East).  These groupings of nations will inform 

nation groupings in this study.  A list of countries in each group is available in Appendix 

A. 

Directly related to countries in conflict is a country’s aptitude to become a failed 

state.  The Fund for Peace provides an index of fragile states in the world (The Fund for 

Peace , 2015).  The fragile states index measures fragile states and ranks them for 

likelihood of failing.  The 2013 fragile state index ranks all countries using 12 variables 

to determine a final failed state index.  These variables include: 

• Demographic Pressures 

• Refugees and Internally Displaced Persons 

• Group Grievance 

• Human Flight 

• Uneven Development 

• Poverty and Economic Decline 

• Legitimacy of the State 

• Public Service 

• Human Rights 

• Security Apparatus 
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• Factionalized Elites 

• External Intervention 

These 12 variables are significant factors for failed states and are also potential 

factors for predicting violent conflict.  The fragile state list provides a separate index to 

compare the results of this study with.   

Open source data for stability models is available from several reputable sources.  

The study’s independent variables come from four places; the World Bank, CIA World 

Factbook, Freedom House and the Center for Systemic Peace.   

The World Bank was established in 1944, is headquartered in Washington DC 

and has more than 10,000 employees in more than 120 offices worldwide (World Bank, 

2015).  This organization has thousands of data sets.   The CIA World Factbook provides 

information on the history, people, government, economy, geography, communications, 

transportation, military and transnational issues for 267 world entities (Center for 

Systemic Peace, 2014).  Freedom House, established in 1941, is an independent 

watchdog organization originally created to encourage popular support for American 

involvement in World War II.  In the 1970s Freedom House began to focus on a global 

view of civil liberties and political rights, publishing its first annual publication “Freedom 

in the World” in 1973 (Freedom House, 2012).  The Freedom House organization 

provides nation scores for civil liberties and political rights.  The Polity IV project is 

created by the Center for Systemic Peace (CSP) which is a not-for-profit organization 

that monitors political behavior in each of the world’s major states.  They record data for 

167 nations (Center for Systemic Peace, 2014).   
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The literature review for this study focused on work performed by Robert 

Shearer, the Center for Army Analysis, and available data sources.  A CIA study 

provided valuable information on previous logistic regression models and variables that 

were significant for them.  The best CIA model was able to predict with 80% accuracy.   

Shearer constructed a model that used a K-nearest neighbor algorithm and achieved 76% 

accuracy over six years. 
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III. Methodology 

 

Chapter Overview 

This chapter discusses the various methods used for this study.  The chapter 

begins with a review of logistic regression; the regression tool used to construct the 

models in this study.  The section on logistic regression includes a summary of logistic 

regression, a discussion of the logistic regression statistics, and a review of the logistic 

regression goodness of fit tests.  The next section includes the method to select the 

nations to model followed by a description of the dependent variable.  Other discussions 

include the method to select and screen the independent variables as well as impute 

missing data.  The database used for analysis is discussed as well as a description of the 

training and test data sets.  Three different methods to construct a model are introduced.  

The chapter finishes with a discussion on methods to analyze only nations that enter into 

a violent conflict and nations that exit a violent conflict. 

Logistic Regression 

Before understanding logistic regression it is important to understand why linear 

regression cannot be applied when dealing with a dichotomous dependent variable.  The 

response for this study is either “in a violent conflict” or “not in a violent conflict”, which 

is dichotomous.  Linear regression is the usual method for predicting a response, 

however, linear regression relies on some primary assumptions, listed below, that are 

unmet with a dichotomous dependent variable. 
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1. Measurement:  All independent variables are interval, ratio, or dichotomous, and 
the dependent variable is continuous, unbounded, and measured on an interval 
or ratio scale 

2. Specification.  All relevant predictors of the dependent variable are included in 
the analysis 

3. Expected value of error.  The expected value of the error is 0, or can be 
transformed to be so. 

4. Linearity:  Predictors are linearly related to the Dependent Variable 
5. Homoscedasticity: Residual variance is constant about the regression surface 
6. Normality: of the distribution residuals 
7. No autocorrelation among error terms 
8. No correlation between the error terms and the independent variables 
9. Absence of perfect multicollinearity 

(Menard, 2001) 

When assumptions are violated the model can have serious consequences and lead 

to wrong conclusions.  Transformations are one way to deal with violated assumptions.  

A number of these assumptions are violated when the dependent variable is dichotomous: 

Consider the linear equation  

i i iy x β ε′= +  

Equation 1: Linear Equation 

There are some basic problems with this regression model when using a dichotomous 

dependent variable.  If the response is binary, then the error terms iε  can only take on two 

values, 1 and 0.  This means the error terms in this model cannot be normal. 

(Montomgery, 2012)  Therefore, the Normality assumption is violated. The error 

variance is not constant, since i i iy pε = −  and ip is a constant and iy  takes on the values 

of either  1 or 0, therefore  iε  changes for each i and the homoscedasicity (constant 

variance) assumption is violated.  Not all independent variables for this study are interval, 
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ratio, or dichotomous and the dependent variable is not continuous and it is bounded.    

Therefore the Measurement assumption is violated.  The response is constrained 

between 0 and 1.  A linear function could include values that lie outside this interval, as 

shown in Figure 1. The logistic regression response in this figure is constrained between 

0 and 1 over the interval from 0 to 3 while the linear line is not. 

 

 
(Linear V. Logistic Regression) 

Figure 1:  Linear and Logistic Functions 

With all the previously stated issues, a linear equation cannot be applied when the 

dependent variable is dichotomous.  A monotonically increasing (or decreasing) S-

shaped function is usually employed (Montomgery, 2012).   An example of this S 

shaped function is portrayed in Figure 1, along with a linear function. This nonlinear 

function has the form  shown in Equation 2 and is called the logistic response 

function and has the form. 
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1( )
1 1

x

x x

eE y p
e e

β

β β

′

′ ′−= = =
+ +

 

Equation 2:  Logistic Response Function 

 If we use the natural logarithm of the dependent variable we no longer face the 

problem that the estimated probability may exceed the maximum or minimum possible 

values for the probability.  The values will be contained between 0 and 1.  If a value is 

less than .5 it will be rounded to 0 (not in a violent conflict), if a value is greater than or 

equal to .5 it will be rounded to 1 (in a violent conflict). Figure 1 depicts OLS and a 

logistic regression for the same data points.  The OLS line predicts values lying outside 

of the allowable range (less than 0, greater than 1) while the logistic regression line is 

bounded by 0 and 1.   

Logistic regression is applied when the response variable has only two possible 

outcomes, generically called success and failure and denoted by 0 and 1 (Montomgery, 

2012).  The mean response for a success is a probability so the model is written in terms 

of a probability formula (Myers, 2007).  Given regressors x  , the logistic response 

function is shown in Equation 2, where p is the probability of success (Menard, 2001). 

The probability of failure is 1-p, so that all probabilities sum to 1.  The portion x β′ is 

called the linear predictor and in the case of a single regressor x  may be written as 

0 1x xβ β β′ = +  (Montomgery, 2012).   

Now since the expected value of the error is 0 ( ( ) 0iE ε = ), the expected value of 

the response variable is ( ) 1( ) 0(1 )i i i iE y p p p= + − = .  This implies that ( )i i iE y x pβ′= = .  
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Therefore, the expected response given by the response function ( )i iE y x β′=  is simply 

the probability that the response variable takes on the value 1.   

 

Logit Transformation 

The logistic response function can be made linear.  This is called the logit 

transformation and is shown in Equation 3.  

ln
1

px
p

β η′ = =
−

                    

Equation 3: Logit Transformation 

The probability, p , and the ratio 
1

p
p−

in the transformation are called the odds.  

The method of maximum likelihood is used to estimate the parameters in the linear 

predictor x β′ .  Each sample observation follows the Bernoulli distribution, so the 

probability distribution of each same observation is 

1( ) (1 ) ,    1, 2,...,i iy y
i i i if y p p i n−= − =  

The observations are independent so the likelihood function is: 

1
1 2

1 1

( , ,..., , ) ( ) (1 )i i

n n
y y

n i i i i
i i

L y y y f y p pβ −

= =

= = −∏ ∏  

Equation 4: Likelihood Function 

 

It is convenient to use the log- likelihood because this value, when multiplied by -

2, is 2χ distributed. 
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Equation 5: Log Likelihood Function 

 

Various software packages use iterative methods to find the maximum likelihood 

estimator (MLE) by changing the values of β  to maximize ln ( , )L y β . 

 

Odds Ratio 

The odds ratio can be interpreted as the estimated increase in the probability of 

success associated with a one-unit change in the value of the predictor variable 

(Montomgery, 2012).  The odds ratio is designed to determine how the odds of success 

increases as certain changes in regressor values occur (Myers, 2007).    Equation 6 shows 

an example, if we wanted to determine the odds ratio for a variable decreasing by a value 

of one. 

0 1
1

0 1

(3)
(1)

(2)

odds of violent conflict for nation with Variable = 3
odds of violent conflict for nation with Variable = 2

1.5

OR

e e
e

β β
β

β β

+

+

=

= = =

 

Equation 6: Example Odds Ratio 
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The value of 1.5 is notional but can be interpreted as the odds of violent conflict is 

enhanced by a factor of 1.5 when the variable is decreased by 1. 

 

Logistic Regression Goodness of Fit Tests 

Goodness of fit tests that are used with linear regression do not apply with logistic 

regression.  Other goodness of fit tests are needed. 

 

Likelihood Ratio Test 

A likelihood ratio test can be used to compare a “full” model with a “reduced” 

model.  A “reduced” model is a model with just the intercept ( 0β ) and a “full model” is 

a model with the intercept and variable(s).  The likelihood ratio (LR) test procedure 

compares twice the logarithm of the value of the likelihood function for the full model 

(FM) to twice the logarithm of the value of the likelihood function of the reduced model 

(RM) to obtain a test statistic.  Equation 7 shows the LR test statistic. 

( )2 ln
( )

L FMLR
L RM

=  

Equation 7: Likelihood Ratio Test Statistic 

 

The LR test statistic follows a chi-square distribution with degrees of freedom 

equal to the difference in the number of parameters between the full and reduced models.  

Therefore, if the test statistic LR exceeds the upper α percentage point of this chi-square 

distribution, we would reject the claim that the reduced model is appropriate and 

conclude the additional variable(s) provide a better model (Montomgery, 2012).  This 
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hypothesis is the tool used to create logistic regression models for this study.   An 

example of this hypothesis and decision rule is shown below. 

Ho:  The model containing just the intercept is sufficient 
Ha:  The model with the additional variable has more explanatory power 
 
The decision rule for this hypothesis is to reject Ho if the -2 log likelihood (-2LL) 

is greater than the Chi squared statistic with a given alpha and degrees of freedom.   

R squared Analogues 

The traditional 2R statistic is not appropriate for logistic regression, however a 

number of 2R analogues have been created in order to test a model’s goodness of fit. 

Likelihood ratio R square ( 2
LR ) 

2
LR  is a proportional reduction in -2LL or a proportional reduction in the absolute 

value of the log-likelihood measure, where the -2LL or the absolute value for the log 

likelihood – the quantity being minimized to select the model parameters is taken as a 

measure of “variation”.  Equation 8 shows the equation for the Likelihood ratio R square 

and Figure 2 shows the conditions for the equation (Menard, 2001). 

 

2

0

M M
L

M M

G GR
D G D

= =
+

  

Equation 8: Likelihood Ratio R Square 
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Adjusted Geometric Mean R Square ( 2
NR ) 

 An adjusted geometric mean square improvement per observation 2
NR  can have a 

value of 1 by dividing by the maximum possible value of 2
NR for a particular dependent 

variable in a particular data set.  This is the R squared statistic offered in JMP titled 

“Generalized R Square”.  Equation 10 shows the equation for the Adjusted Geometric 

mean R square and Figure 4 shows the conditions for the equation (Menard, 2001). 

2

0

2
2

0

1

1

N

M
N

N

L
L

R
L

 
−  
 =
−

 

Equation 10: Adjusted Geometric Mean R Square 

 

Figure 4: Conditions for the Adjusted Geometric Mean R Square 

 

Hosmer-Lemenshow (HL) 

This test groups the observations to perform a goodness of fit test.  The 

observations are classified into groups based on the estimated probabilities of success.  

Normally, 10 groups are used.    An equation for HL is shown in Equation 11 and the 

conditions for the test are shown in Figure 4 (Montomgery, 2012).  The Chi squared 

distribution is then applied to the HL statistic.  An alpha of .05 is typical and the degrees 

Where:
• L0 is the likelihood function for the model that contains only the 
intercept
• LM is the likelihood function that contains all the predictors 
• N is the total number of cases
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example in Figure 8 the variable “Border Conflict” is significant at an alpha = .0036 

level.  This level is compared to a threshold, a typical threshold is alpha = .05; therefore 

this variable is considered significant. 

Method to Select the nations to Model 

This study includes for consideration 180 of the 193 United Nations member 

nations (United Nations, 2014).  It does not include small nations with insufficient data, 

such as Nauru, Saint Kitts and Nevis, Saint Lucia and Saint Vincent, the Grenadines, 

Andorra, Monaco, Marshall Islands, Tuvalu, Dominica, Palau, Liechtenstein and San 

Marino.  Disputed states of Abkhazia, Nagorno-Karabakh, Northern Cyprus, Sahrawi 

Arab Democratic Republic, Somaliland, South Ossetia, Taiwan, and Transnistria are also 

not included. Added to the United Nations list are Palestine (West Bank and Gaza) and 

Kosovo.  The total number of modeled nations is 182.  Not all of these nations have 

complete data; this problem is addressed later in this study, in the data imputation section.  

Incomplete data is a common problem, particularly when dealing with unstable nations. 

Method to Select the Dependent Variable 

This study will use variables derived from “Level’s of Violence” calculated by the 

Heidelberg Institute for International Conflict Research (HIIK) as the dependent 

variable.  The HIIK level of violence is binomial; a nation is either in a violent conflict 

or it is not for a given year.  These two “Levels of Violence” are mapped from six 

conflict intensity levels which are discussed later.  The HIIK publishes conflict data each 

year, starting in 1992. In 2013 HIIK looked at 414 observed conflicts and required 152 

researchers to compile the data (Heidelberg Institute for International Conflict Research, 
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2014).  HIIK data for years 2008-2013 is considered.  HIIK uses conflict measures and 

conflict items to determine political conflict; this study uses the HIIK definitions for 

these terms as well.  Definitions for political conflict, conflict measures and conflict 

items are provided below. 

Political Conflict 

A political conflict is a positional difference, regarding values 
relevant to a society – the conflict items – between at least two decisive 
and directly involved actors, which is being carried out using observable 
and interrelated conflict measures that lie outside established regulatory 
procedures and threaten core state functions, the international order or 
hold out the prospect to do so.  (Heidelberg Institute for International 
Conflict Research, 2014). 

 

Conflict Measures 

Conflict measures are actions and communications carried out by 
a conflict actor in the context of a political conflict.  They are constitutive 
for an identifiable conflict if they lie outside established procedures of 
conflict regulations and – possibly in conjunctions with other conflict 
measures – if they threaten the international order or core function of the 
state.  (Heidelberg Institute for International Conflict Research, 2014). 
 

Conflict Items 

Conflict items are material or immaterial goods pursued by 
conflict actors via conflict measures (Heidelberg Institute for International 
Conflict Research, 2014).   

 
The HIIK study includes ten different conflict items shown in Table 1. 
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Table 1:  HIIK Conflict Items 
(Heidelberg Institute for International Conflict Research, 2014) 

 

 

Conflict Intensity Level 

The six intensity levels presented by the institute have been aggregated into two 

levels; “Not violent conflicts” and “Violent conflicts” as shown in Table 2. HIIK includes 

in their analysis 260 countries, islands and territories; some countries have several 

conflicts.  A total of 414 conflicts are scored in 2013.  For this study a country will get 

the highest score for any conflict in which it is engaged.   

  

Item Description

System/Ideology
Conflict actor aspires a change of the ideological, religious, socioeconomic or 
judicial orientation of the political system or changing the regime type itself

National power The power to govern a state

Autonomy
Attaining or extending political self-rule of a population within a state or of a 
dependent territory without striving for independence

Secession
Aspired separation of a part of a territory or a state aiming to establish a new state 
or to merge with another state

Decolonization Desired independence of a dependent territory

Subnational Predominance
Attainment of the de-facto control by a government, a non-state organization or a 
population over a territory or a population.

Resources
Pursued possession of a natural resources or raw materials, or the profits gained 
thereof

Territory Desired change of the course of an international border

International Power
Desired change aspired in the power constellation in the international system or a 
regional system therein

Other Residual category

The Heidelberg Institute for International Conflict 
Research Conflict Items
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Table 2: HIIK Intensity Level and Level of Violence 

 

To assess the intensity levels of the violent conflicts HIIK measures five proxies; 

weapons, personnel, casualties, refugees and Internally Displaced Persons (IDPs) and 

destruction (Heidelberg Institute for International Conflict Research, 2014).  These 

proxies are measured and scored for every region and every month.  Table 3 shows the 

scoring method used by HIIK.   

Table 3: HIIK Intensity Level Scoring Method 

 

Method to select and screen independent variables and to impute missing data 

 Twenty-two country statistic variables and four trend variables are considered in 

the initial analysis.  Ten variables are considered from the CAA FACT study and three 

variables are considered from the CIA study.  The study sponsor believed population 

migrations influenced violent conflict so refugee population seeking asylum and refugee 

Intensity 
Level

Terminology
Level of 
Violence

0 No conflict
1 Dispute
2 Non-violent crisis
3 Violent crisis
4 Limited war
5 War

Not violenct 
conflicts

Violent 
conflicts

Low Medium High Low Medium High

≤ 50 > 50 ≤ 400 > 400
Within 0 

dimensions
Within 1-2 

dimensions
Within 3-4 

dimensions
Light Heavy

0 point 1 point 2 points 0 point 1 point 2 points Light
Heavy 1 point 2 points

Low Medium High Low Medium High
≤ 20 > 20 ≤ 60 > 60 ≤ 1000 ≥ 1000 ≤ 20000 > 2000

0 point 1 point 2 points 0 point 1 point 2 points

WeaponsPersonnel

Casualties

Destruction

Refugees and IPDs

Weapon 
Type

Weapons employment
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population of origin are both considered. Eight additional variables (Population density, 

population growth, rural population percent, arable land, birth rate, death rate and fertility 

rate) were deemed worthy of exploration by the study lead and are also considered in the 

study. Second order polynomials are introduced later.  The four trend variables were 

included because of their potential to identify trends in a nation that could lead to 

violence.  One additional variable, “Region”, is introduced later to explain the regional 

differences in the world; this variable proves key to the study. 

 Many of the 2013 data sets are not complete; this will require a two or three year 

lag in the model in order to predict 2015 nation states.   Since this is 2014, predicting 

2015 and beyond is the goal of this study. To predict 2015, the model will have to use 

2012 and 2013 data.  The 26 variables are listed in Table 4.  Also listed in Table 4 are the 

year the dataset was first collected, the data lag and the number of nation entries for 

2011-2013 for each variable. Fifteen of the country statistic data sets are from the World 

Bank; four are from the CIA world Fact book, one from Freedom House, one from the 

Center for Systemic Peace and one from and the Food and Agriculture organization of the 

United Nations.  Eleven of the independent variables require a 2 year lag and use 2012 

data to model 2015, 12 variables require a 3 year lag and 3 variables are locked and do 

not change.  Yearly data is not available for “Regime Type”, “Ethnic Diversity” and 

“Religious Diversity” so these variables do not change from year to year and are 

considered locked. 
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Table 4: Country Statistic Variables 

 

Most of the variables defined above have simple definitions but some of them require 

additional discussion.  Following are expanded descriptions for these variables. 

Trade (% of GDP) – This variable is the summation of two other World Bank statistics; 

Imports of goods and services (% of GDP) and Exports of goods and services (% of 

GDP) 

Conflict in Bordering States – The CIA study cited Border Conflict as one of their 

significant variables.  In this study, “border conflict” accounts for conflict in neighboring 

2011 2012 2013
World Bank variables

1970 2 Population density (people per sq. km of land area) 181 181 180
1970 2 Population growth (annual %) 181 181 182
1970 2 Rural population (% of total population) 181 181 181
1970 3 Arable land (hectares per person) 181 181
1970 3 Birth rate, crude (per 1,000 people) 182 182
1970 3 Death rate, crude (per 1,000 people) 182 182
1970 3 Fertility rate, total (births per woman) 182 182
1990 3 Refugee population by country or territory of asylum (percent of pop) 160 159
1990 3 Refugee population by country or territory of origin (percent of pop) 180 280
1970 2 GDP/capita (current US$) 178 177 165
1970 3 Mortality rate, infant (per 1,000 live births) 182 182
1990 3 Improved water source (% of population with access) 174 172
1991 3 Unemployment, male (% of male labor force) (modeled ILO estimate) 171 171
1970 3 Life expectancy at birth, total (years) 182 182
1970 3 Trade (% of GDP) 167 146 92

CIA World Fact Book variables
2010 2 Conflict in Bordering States 182 182 182

Locked Regime type 182 182 182
Locked Ethnic diversity (Percent of dominant ethnic group) 180 180 180
Locked Religious diversity (Percent of dominant ethnic group) 178 178 178

Other
1973 2 Freedom (Average of Civil Liberties and Political Rights (scores 1 to 7)) 180 179 180
1946 2 Polity IV (Political behavior monitor (scores 1 to 10) 158 158 157
2001 3 Caloric Intake (Average caloric intake per person) 165 165

Trend Variables
2011 2 2 yr HIIK intensity level trend 182 182 182
1976 2 2 yr Freedom trend 180 180 180
1977 2 3 yr Freedom trend 180 180 180
1979 2 5 yr Freedom trend 180 180 180

Variables
Number of entries per yearYear of first 

dataset
Lag (yrs)
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states and mimics a “bad neighbor” indicator.  The CIA world Factbook publishes the 

shared land boundaries for each country.  This variable will use the following formula to 

calculate a Border Conflict value for each nation.  The formula and an example conflict 

score are shown in Table 5. 

Table 5:  Conflict in Bordering States Calculation 

 

1

n

i iCb x p=∑       where          

 Conflict in border states statistic
number of bordering nations

x previous year intensity level for nation 
percent of border shared with nation 

i

i

Cb
n

i
p i

=
=
=
=

 

 
.57(5) .16(3) .12(1) .15(3) 3.9Cb = + + + =  

 

This variable will include a 2 year lag; a model for 2015 will include data from 

2013.  Twenty nine island nations that have no borders were imputed using JMP 

software.   

 

Regime type – Regime type is cited by the CIA study as significant.  The idea that 

different types of governments have different propensities for violent conflict necessitates 

km shared % of border
2013 Intensity 

Level
Mexico 958 57% 5
Belize 266 16% 3
El Salvador 199 12% 1
Honduras 244 15% 3
TOTAL 1667

Guatemala example

Guatemala conflict in border 
states statistic

3.9
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the need for this variable.  The CIA World Factbook gives 57 different government 

descriptions for the 182 modeled nations.  These 57 government types were initially 

mapped to 10 regime types.  The variable “Regime type” was quickly removed from trial 

models because 10 nominative levels proved too many for a dataset that initially only 

included 114 nations.  The old “Regime type”  variable was partly responsible for 

overfitting the initial trial model.  In order to include a “Regime type” variable in the 

model a “New Regime Type” variable was mapped from the original data, including only 

3 types of regimes; “Central ruler/ ruling party”, “Democratic” and “Emerging, 

transitional, recent change and disputed”.  The old Regime variable and new Regime 

variable are shown in Table 6.  For purposes of determing correlations and for factor 

analysis the regime types were mapped to numbers (Democratic = 1, Central ruler/ruling 

party = 2, Emerging, transitional, recent change, disputed = 3).  In order to allow ordinal 

mapping of regime categories to a number the study assumes that democratic regimes are 

preferred to Central/ruling party regimes and both are preferred to Emerging, transitional, 

recent change, disputed  regimes with regard to a nation being in a state of “Not in 

conflict”.  This assumption is supported by the corrleation between this mapped set and 

the dependent variable, shown later.  The Freedom equation is shown in Equation 13. 
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Table 6: Regime Type 

 

 

Civil liberties – Civil liberties is the allowance of freedom of expression and belief 

associational and organizational rights, rule of law, and personal autonomy without 

interference from the state.  Civil Liberties is rated on a scale from 1 to 7; a score of “1” 

is best. 

Political rights – Political rights is also rated on a scale from 1 to 7, it scores the ability 

of people to participate freely in the political process, including the right to vote, join 

political parties and elect representatives.  A score of “1” is best. 

Freedom – Civil Liberties and Political Rights are highly correlated.  The Freedom 

statistic averages the two scores for the country, aggregating the correlated variables into 

one variable.  This is the variable used in this study, not civil liberties or political rights.  

The FACT studies use both Political Rights and Civil Liberties as variables and the CIA 

study uses a variable name “State Discrimination”.  The Freedom variable is introduced 

in this study to account for a nation’s political climate and political oppression.  This 

New Class Total
Central ruler/ruling party 36
Democratic 137
Emerging, transitional, recent change, disputed 9
Grand Total 182

Reduced Regime Type

Class Total
Communist 4
Democracy 39
Dictatorship 2
Military Junta 1
Monarchy 24
Republic 107
Theocracy 2
Transitional Government 2
Disputed 1
Grand Total 182

Expanded Regime Type
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variable proves to be one of the study’s most important variables.  The equation for 

Freedom is shown in Equation 13. 

 

Civil Liberty score + Political Rights scoreFreedom score = 
2

 

Equation 13: Freedom Score 

Polity IV – Polity IV Project records individual regime trends from 1946 to 2013.  The 

Polity IV project is created by the Center for Systemic Peace (CSP) which is a not-for-

profit organization that monitors political behavior in each of the world’s major states 

(Center for Systemic Peace, 2014).  They record data for 167 Nation states.  Each nation 

is scored between 0 and 10; 10 is the best.  When a country is in a state of interruption, 

interregnum or transition the score was -66, -77 or -88.  These scores were placeholders 

to identify nations that cannot be scored and cannot be used in the database.  These data 

points were deleted, leaving only 157 nations for this variable.  The missing data was 

later imputed using JMP software, discussed later. 

Caloric intake – The Food and Agriculture Organization of the United Nations collects a 

myriad of food and agricultural data (United Nations, 2013).  One of their metrics 

measures the food supply of a country in Kilocalories per capita per day.  This data is 

collected for years 2001 to 2011.  2011 data is used as a proxy for 2012 data to avoid 

using a 4 year lag throughout the model.  All of the other variable datasets are complete 

through either 2012 or 2013 while Caloric intake only had data up to 2011. 
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Screening variables 

Variable screening is used to remove some of the variables before initial model 

building.  Multicollinearity, or near-linear dependence among the variables will cause 

problems in the model. High multicollinearity tends to produce unreasonably high 

logistic regression coefficients and can result in coefficients that are not statistically 

significant (Menard, 2001). Variance Inflation Factors (VIFs) are important 

multicollinearity diagnostics (Menard, 2001).    The equation for VIFs is shown in 

Equation 15. 

 

Equation 15:  VIF Calculation 

 

VIFs larger than 10 imply serious problems with multicollinearity (Montomgery, 2012).  

According to Montgomery, VIFs that exceed 5 or 10 indicate that the associated 

regression coefficients are poorly estimated. This study uses a VIF value of 10 as a 

threshold to remove variables. VIFs for all 26 initial variables are shown in the right 

column of Table 8.  The values are calculated with JMP software using a database from 

2011 to 2013.  Five (boxed in red) variables have VIFs greater than 10.   

Table 8: VIF Values for 26 Variables 

Where:
is the coefficient of multiple 

determination obtained from regressing    
on other regressor variables.

2
jR

jx

2

1  
1j

j

VIF
R

=
−
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Table 9: VIF Values for 23 Variables 

 

 Removing the three variables reduces the correlations between the variables.  

Table 10 and Table 11 shows a heat map of the variable correlations before and after 

removing Birth Rate, Life Expectancy and Fertility Rate.  There are substantially more 

high correlations in Table 10 than in Table 11.  Regime type is a nominal data set and is 

not included in the tables.  Although some high correlations still exist in the remaining 

variables, none of the VIF values are greater than 10.  Some of the most correlated 

variables included the Freedom trend variables with each other, “Infant Mortality” with 

“Improved water” and “Freedom” with “Polity IV”.  This is not surprising, as access to 

improved water decreases then infant mortality will naturally increase and the Freedom 

Score and Polity IV score are both scores of a nation’s political oppressiveness. 
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Model building set and Validation Set 

For the initial analysis, a model for 2011 and 2012 is developed and 2013 data is 

used to validate.  Before the model can be built, the missing data needs to be imputed 

(filled in).  For the 2011-2013 model and validation database only 345 out of 546 nations 

have data for all 23 variables.  Unfortunately, often the nations with the worst data are the 

ones in the most danger of being in conflict.  On average, a nation has 22.1 variables out 

of 23.  The nation with the worst data is understandably South Sudan which is the 

world’s newest nation, gaining independence in 2006.  This fledgling and tumultuous 

nation does not yet have the data infrastructure necessary for good data collection.  Table 

12 shows the nations with the worst data, ones that have complete data for 20 or fewer 

variables.   

 
Table 12: Number of Variables per Nation; Nations with Worst Data 

 

Country 2011 2012 2013
South Sudan 12 12 13
Micronesia (Federated States of) 17 17 16
Tonga 17 17 17
West Bank and Gaza 17 17 17
Kiribati 18 18 18
Seychelles 18 18 18
Vanuatu 18 18 19
Antigua and Barbuda 19 19 19
Comoros 19 19 19
Grenada 19 19 19
Samoa 19 18 19
Sao Tome and Principe 19 19 19
Timor-Leste 19 19 19
Bahamas 20 20 21
Barbados 20 20 20
Brunei Darussalam 20 20 20
Democratic People's Republic of Korea 20 20 20
Equatorial Guinea 20 20 20
Maldives 20 20 20
Myanmar 20 20 20
Singapore 20 20 20
Solomon Islands 20 20 20
Somalia 20 20 20

Number of Variables
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Data Imputation 
 

The JMP software offers a method to impute data.  Imputing analyzes similar 

values in other columns and rows to estimate the missing value (Hinrichs, 2010).  JMP 

produces a new data table that duplicates the data table and replaces all missing values 

with estimated values (SAS Institute, 2015).  Imputed values are expectations conditional 

on the non-missing values for each row.  The mean and covariance matrix is used for the 

imputation calculation.   

Methods to develop the Model 

 A method is needed to construct models now that the dependent and independent 

variables have been identified, screened and compiled into a model and validation 

dataset.   Three method are introduced; two correlation methods and a least significant 

method.  Models will be constructed using all methods and tested against each other 

using the Validation set prediction accuracy as the grading requirement.  

 

Method 1:  Correlation method 

The correlation method will start with zero variables and add variables based 

upon significance.  The variables with the highest correlation with the HIIK intensity 

levels will be tested first for inclusion in the model and no variables will be removed 

once they have been included.  Table 13shows the variable correlations with the HIIK 

intensity level used for the testing order with this method.  The correlation for regime 

type, which is nominal, is acquired by assigning values to the regime types (Democratic 

=1, Central ruler/ruling party = 2, Emerging, transitional, recent change, Disputed = 3). 





44 

This method will begin with all 23 variables and remove the least significant 

variable. The Effect Likelihood Ratio Test will be used to determine the least significant 

variable.  One insignificant variable will be removed at a time and the model will be 

tested again to determine the next insignificant variable to remove.  The prediction 

accuracy will be saved for each iteration in order to build the Signal to Noise Ratio chart 

described in chapter 4.  The prediction accuracy is calculated using the formula in Figure 

6. 

Alternate Model: Only nations that enter into a violent conflict 

 Three methods were investigated to analyze only nations that are new to violent 

conflict.  The first method uses a new database from 2009-2013, one that only includes 

nations that entered into violent conflict and their corresponding row of data from the 

previous year.  The goal for this method is to build a model that predicts the year the 

nation transitions into violent conflict.  The dependent variable remained the same as 

before except now the database was substantially smaller, only using nations new to 

conflict and their previous year.  Twenty independent variables were considered.  The 

three locked variables were omitted because they did not change between the years.   

 For the 2nd method a database was compiled of new nations to violent conflict in 

addition to previous years when the nation was in a state of “Not violent conflict”.  

Similar to method 1, this method differs in that only nations with a period of “not in 

violent conflict” for at least 2 consecutive years before the transition to violence were 

included.  The goal was to have a distinct period of “not violent conflict” years and then 

the “violent conflict” year.  The alternate correlation method was used to construct a 

model and test for variable significance.     
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The 3rd method involved analyzing the behavior of false positives and false 

negatives in the four years following their false prediction.  The premise is that the model 

believes they should be in conflict so they are likely candidates for conflict the next year 

or soon after.  Nations falsely predicted will be analyzed the following years to determine 

the likelihood they will eventually transition to a violent conflict.  This method will also 

look at different logistic probabilities.  Recall the output of logistic regression is a 

probability that is rounded to either 0 or 1 using a threshold value with a default of .5.  

The higher the probability is, the more certain the model is that the nation will be in a 

violent conflict. A nation with a probability of .8 can be translated as the model is 80% 

certain the nation will be in a state of violent conflict for its predicted year.  The study 

further analyzes nations at different probability levels.  This method assumes the state of 

the nation remains constant over the future analyzed years. 

Summary 

Methodologies have been described for logistic regression, model building, 

sensitivity analysis and methods to predict nations new to violent conflict.  The 

dependent variable has been defined.  The independent variables have been defined and 

screened.  Two separate databases (2011-2013 & 2009-2013) have been constructed and 

missing data imputed.  The next step uses these methods and data to construct models and 

conduct analysis. 
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IV. Analysis and Results 

 

Chapter Overview 

This chapter will use the methods described previously to construct trial models.  

These trial models will be assigned a name, such as Trial Model 1, and be compared to 

each other using the validation set prediction accuracy as the test for model goodness.  

The initial analysis is conducted using a database from 2011-2013.  Two years are set 

aside to build the model (2011-2012) and one year is used to validate the model (2013).  

A few of the independent variables restrict the size of the database.  After initial analysis 

these variables are removed from consideration and the database is allowed to expand.  

The second set of analysis uses a database from 2009-2013.  Three years are set aside to 

build the model (2009-2011) and two years are used to validate the model (2012-2013).  

Factor Analysis and robustness of the confusion matrix cut off value are explored to gain 

insight on the problem.   

Results of Constructing Logistic Regression Trial Models 

Method 1 - Correlation Method 

The process described in chapter 3 is used for all the variables in the order listed in  

Table 13.  Using this method, seven variables are accepted into the model at an 

alpha = .1 and six variables are accepted at an alpha = .05.  The variable accepted at alpha 

= .1 and not at alpha = .05 is “2 yr Freedom trend”.    A model of all the variables 

significant at alpha = .1 is shown below in Figure 9.  This model will be called Trial 
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Polynomials are tested in the same order as main effects; see Table 13, using the 

same hypothesis tests.  Polynomials can model a non-linear relationship between the 

dependent and independent variables.  The results of this process are shown in Figure 11.  

Only Freedom*Freedom was added to the model.  Water*Water was near the threshold, 

having a value of .1005 for Trial Model 3.  A detailed description of one of the trial 

models is provided in a later section. 

 

 

Figure 11: Trial Model 3 
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364 rows of data
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Method 2 – Alternate Correlation Method 

 Variables were tested in the same order as method 1 but variables were removed 

when their alpha value was greater than 0.1.  2nd order polynomials were also tested in the 

same order.  Trial Model 4 was constructed using this method and is shown in Figure 12. 

 

Figure 12: Trial Model 4 

 

Method 3 - Least Significant Variable Method 

Method 3, starting with all of the variables and removing the least significant one 

until they are all significant at a certain threshold, is used to construct the next 5 models.  

The Signal to Noise Ratio Chart, shown in Figure 13, is calculated using the prediction 

accuracy for each iteration of removing a variable.  These charts show the impact each 

0 1
0 139 59
1 37 129

364 rows of data

Trial Model 4 Model Set

73.63% Predicted

Actual

Trial Model 4
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Figure 14: Trial Models 5 & 6 

 

All variables in Trial Model 5 and Trial Model 6 are raised to a 2nd order Polynomial and 

tested in the same “least significant” method.  Hierarchy is enforced, a main effect will 

not be removed if  its 2nd order polynomial is insignificant and included in the model.  

Three models are saved from this process, the results are shown in Figure 15 and the 

Signal to Noise Ratio Charts are shown in Figure 16 and Figure 17.  Trial Model 7 

includes all main effects and 2nd order polynomials from Trial Model 5 that are 

significant at an alpha = .05, with the exception of one of the main effects.  In this case 

GDP per capita has an Effects Likelihood Ratio Test value of .32 but its 2nd order 

polynomial has a value of .018.  Trial Model 8 includes all main effects and 2nd order 

polynomials from Trial Model 5 that are significant at an alpha = .05, without exception.  
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Table 14:  Trial Model Prediction Accuracy 

 

 

Trial Model 7 has the best validation set prediction accuracy.  This is also the only 

model whose prediction accuracy is greater in the validation set than in the model set, 

indicating a good fit.  Trial Model 7 has 10 variables, including six main effects, one 

trend variable and three 2nd order polynomials.  Statistical results for Trial Model 7 were 

previously shown in Figure 15.   

The coefficients for Trial Model 7 are shown in Table 15. The main effects are 

listed in order of significance, as determined by their effect likelihood ratio test statistic.  

It is important to note that the variable data was not normalized, which explains the large 

variety in the values of the coefficients. 

  

Construction Method
Trial 

Model #
Num of 

Variables
 Model Set

Validation 
Set

Model and 
Validation 

Set
1 7 73.1% 72.0% 72.7%
2 6 74.2% 71.4% 73.3%
3 8 74.2% 74.2% 74.2%

Method 2 - Alternate 4 4 73.6% 73.1% 73.4%
5 8 74.7% 74.7% 74.7%
6 5 74.2% 72.0% 73.4%
7 10 75.3% 76.4% 75.6%
8 7 76.1% 72.5% 74.9%
9 7 73.4% 73.1% 74.9%

Prediction Accuracy

Method 1 - Correlation 
Method

Method 3 - Least 
Significant Method
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Table 15:  Coefficients for Trial Model 7 

 

 

Recall the logit transformation function in Equation 3.  The coefficients in Table 

15 are multiplied by the nations’ applicable data to attain the logit.  The probability of a 

nation entering into a violent conflict is attained from the logit function.  The values of 

the coefficients explain the effect the variable has on the probability of violent conflict.  

A positive coefficient for a main effect means that as the variable increases, the 

probability of a violent conflict decreases.  A negative coefficient for a main effect means 

that as a variable increases, the probability of a violent conflict increases.  Table 15 can 

be interpreted as reading; as a nation’s Trade, Death Rate, percent living near improved 

water and 2 year freedom trend decrease, its probability of violent conflict increase.  

Likewise, as a nations Freedom score (less is better), Polity IV score (less is better) and 

GDP per Capita increase, so does its probability of violent conflict.  This is intuitive for 

all variables except for Death Rate and GDP per Capita.  For these variables their 2nd 

order polynomials provide the explanation.  The polynomial variables can be interpreted 

as reading; as nation’s Death Rate increase, so does its probability of violent conflict and 

as a nation’s GDP per capita decrease, its probability of violent conflict increases.  All of 

the variables contribute to the model in an expected manner. 

β0 

Intercept
β1 

Trade
β2

 Freedom
β3

Death Rate
β4 

Polity IV

β5 

Improved 
Water

β6 

2 yr 
Freedom 

trend

β7 

GDP per 
Capita

β8 

Freedom^2

β9 

GDP per 
Capita^2

β10 

Death 
Rate^2

-1.337 0.020 -0 817 0.150 -0.190 0.027 7.033 -2.23E-05 0.133 1.52E-09 -0.023
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 The validation set prediction accuracy for Trial Model 7 is shown in Figure 18.  

This model will serve as the baseline for further analysis.  Note the balanced number of 

false predictions, 22 false negatives and 21 false positives.  The sensitivity of the false 

predictions is examined in a following section.  

 

Figure 18: Trial Model 7 Test Set Prediction Accuracy 

Factor Analysis and Noise Reduction Techniques 

Factor Analysis is a method to replace the observable variables with fewer 

unobservable factors.  Factor Analysis can reduce the 23 variables that pass initial 

screening to a few factors.  Variables with high correlation with each other can be 

represented as a single factor.  This is useful because it can help identify outliers and lend 

insight to the data set.  Data from 2011-2013 database with182 nations per year is used to 

conduct the factor analysis.  First it is necessary to determine the number of factors to 

analyze.  A Scree plot, shown in Figure 19, of Principal Component Eigenvalues is used 

to determine the appropriate number of factors that should be considered. The number of 

factors to analyze is equal to the number of Principal Components that have eigenvalues 

greater than the corresponding Horn’s Curve value (Horn, 1965).  The Horn’s curve 

values are estimated using 100 Monte Carlo iterations (Bigley, 2013).   
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1 22 69

182 rows of data
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Table 16: Factor Loadings and Variance Explained 

 

 

It would take 23 Factors to account for all of the variance of the 23 variables; 

however the first six factors explain over 61% of the variance by themselves.  Reducing 

the 23 variables to six factors is useful for many reasons; one reason is for graphing 

purposes.  Graphing reduced dimensions (2 or 3) provides observable insights than are 

not obvious with numerous dimensions.  Each of the six factors are graphed against each 

other and viewed in two dimensions.  Another useful purpose of Factor Analysis is the 

unobservable elements that the factors represent. By reviewing the factor loadings, the 

factor can be characterized and named.  These names will facilitate understanding as we 

discuss the factors and look at charts.   It would require 15 different charts to view all six 

factors versus each other.  Instead of looking at 15 charts, the factors will first be 

Variable Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6

HIIK Trend 0 0.20 -0.03 0.15 -0.04 -0.03
2 Yr Freedom Trend -0.01 0 0.82 0.02 -0.02 0.00
3 Yr Freedom Trend 0.02 0.02 1 0.00 0.01 -0.02
5 yr Freedom Trend 0.06 0.06 0.88 0 0.06 -0.05
Pop density -0.06 0.00 -0.07 0.12 0 0.82
Pop growth 0.11 0.52 0.16 0.09 -0.55 0
Rural Pop 0.82 0.04 -0.08 0.05 -0.04 0.05
Arable land -0.13 0.00 -0.05 -0.50 -0.04 -0.38
Death Rate 0.50 -0.20 0.01 -0.67 0.09 -0.09
Refugees Asylum -0.08 0.37 0.18 0.17 0.48 0.06
Refugees Origin 0.19 0.44 -0.08 -0.13 0.22 -0.04
GDP per Capita -0.79 -0.09 0.02 -0.27 -0.19 0.18
Infant Mortality 0.83 0.22 0.08 -0.18 -0.23 -0.10
Improved Water -0.76 -0.29 -0.17 0.15 0.23 0.09
Unemployment 0.13 0.01 0.10 -0.12 0.74 0.00
Trade -0.19 0.00 0.00 -0.09 0.08 0.81
Caloric intake 0.30 0.05 -0.07 0.54 -0.34 0.25
Freedom 0.40 0.77 0.11 0.12 -0.09 0.00
Polity IV -0.30 -0.80 -0.09 -0.10 0.14 -0.05
Regime Type -0.21 0.75 -0.02 -0.06 0.17 0.05
Ethnic Diversity -0.28 -0.02 -0.08 0.05 0.53 -0.01
Religious Diversity -0.19 -0.04 0.02 0.54 0.18 -0.28
Border Conflict 0 0.47 0.01 0.51 -0.07 -0.08

Factor Variance Percent
Cumulative 

Percent
Factor 1 3.5091 15.257 15.257
Factor 2 2.8494 12.389 27.646
Factor 3 2.4802 10.783 38.429
Factor 4 1.8245 7.933 46.362
Factor 5 1.7813 7.745 54.106
Factor 6 1.7028 7.403 61.51

Variance Explained
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to graph interpretation.  Factor 1 can loosely be named “Harshness of Life” because it has 

high positive loadings for “Infant Mortality” and “Rural Population ” as well as high 

negative loadings for “GDP per capita” and “Improved Water”.  These loadings show 

that factor one increases as “GDP per capita” decreases, “infant mortality” increases, 

“Rural Population” and “Improved Water” decreases, mimicking a “Harshness of Life” 

quality.  Factor 2 can aptly be named “Political Oppression”.  This factor has high 

loadings scores for the variables “Freedom”, “Polity IV” and “Regime Type”.  Political 

Oppression can be interpreted as increasing as the “Freedom” score increases, “Polity 

IV” decreases (recall that higher values are better for “Polity IV” and lower values are 

better for “Freedom”) and “Regime Type” increases in number (Democratic = 1, Central 

ruler/ruling party = 2, Emerging, transitional, recent change, Disputed = 3).  Factor four 

does not have a clear unobservable quality and will retain the name “Factor 4”.  Factor 6 

is a combination of a nation’s population density and Trade.  Factor 6 increases as a 

nations population density and trade increase.   

 Figure 21 shows the four significant factors graphed against each other.  Groups 

of clusters of primarily one type of response are numbered and circled for further 

analysis.  The minority, or outlier responses in these groups will offer interesting insight.  

The factor “Trade & Population Density” has three outliers greater than 9 (2011 

Singapore, 2012 Singapore, 2013 Singapore) that were not graphed.   This tiny nation has 

extremely high population density and trade; they were excluded in order to not skew the 

graph. 
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Models without nations that enter into conflict by choice 

Because of the insights gained from the factor analysis plots, four nation data 

points were removed from the model set (2011 France, 2012 France, 2012 United States, 

2012 United Kingdom) and 1 data point was removed from the validation set (2013 

United Kingdom).  Method 3, iteratively removing the least significant variable, was used 

to construct two new models.  Trial Model 10, shown in Figure 25, includes 9 main effect 

variables that are significant at an alpha = .1.  Trial Model 11, also shown in Figure 25 

was constructed with all main effects from Trial Model 10 and their 2nd order 

polynomials that are significant at an alpha = .1; hierarchy is enforced. 

 

Figure 25:  Trial Model 10 and Trial Model 11 

Trial Model 10 Trial Model 11

0 1
0 149 49
1 40 122

360 nations predicted

Confusion Matrix

75.28% Predicted

Actual

0 1
0 152 46
1 38 124

360 nations predicted

Confusion Matrix

76.67% Predicted

Actual
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The results of the prediction accuracy for the model set, validation set and combined sets 

is shown in Table 17.  Surprisingly, the validation set prediction accuracy is lower in 

Trial Model 11 than in Trial Model 7.  By removing the nations that enter into conflict by 

choice and creating a new model, six additional nations were counted as false negatives 

and two less nations were counted as false positives in the validation set.   Removing the 

nations that enter into conflict by choice appears statistically insignificant.  Using the 

validation prediction accuracy as a metric for success, Trial Model 7 continues to offer 

the most promising results. 

Table 17: New Prediction Accuracy 

 

 

Initial Sensitivity Analysis 

 Trial Model 7 is the best model from the initial portion of analysis.  Various 

methods are used to conduct sensitivity analysis.  The next section conducts sensitivity 

Construction Method
Trial 

Model #
Num of 

Variables
 Model Set

Validation 
Set

Model and 
Validation 

Set
1 7 73.1% 72.0% 72.7%
2 6 74.2% 71.4% 73.3%
3 8 74.2% 74.2% 74.2%

Method 2 - Alternate 4 4 73.6% 73.1% 73.4%
5 8 74.7% 74.7% 74.7%
6 5 74.2% 72.0% 73.4%
7 10 75.3% 76.4% 75.6%
8 7 76.1% 72.5% 74.9%
9 7 73.4% 73.1% 74.9%
10 9 75.3% 74.6% 75.0%
11 13 76.7% 74.0% 75.8%

Method 3 - Least 
Significant Method

Prediction Accuracy

Method 1 - Correlation 
Method
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analysis through adjusting the logistic regression cut off level.  Other methods are 

available for sensitivity analysis but the chosen method allows for analysis on adjusting 

the cut off level and observing the effects on the prediction accuracy, percent of false 

negatives and percent of false positives as well as provides a viable option for sensitivity 

analysis later in this study for six sub-models.   

Adjusting Logistic Regression Cut off Level for Trial Model 7 

Trial Model 7 predicts the validation test set with 76.4% accuracy.  If the goal is 

to predict which nations are in violent conflict then it is arguably better to decrease the 

number of times the model predicts “Not in Violent Conflict” but the nation is actually in 

“Violent Conflict”.  This error is called a false negative.  The inaccurate predictions are 

almost evenly split between false positives (11.5%) and false negatives (12.8%).    

Logistic regression uses a value of .5 as a cut off for its fitted response equation.  If the 

fitted response equation for each nation is greater than or equal to .5 then the nation is 

said to be in a violent conflict.  Adjusting the logistic regression cut off level allows for 

sensitivity analysis.  Figure 26 shows a graph of the prediction accuracy, false negative 

and false positive percents as the logistic regression cut off levels are adjusted between 0 

and 1.  Notice the prediction accuracy plateaus around 75% for a range of cut off levels 

between .35 and .5.  Little change in the prediction accuracy between .35 and .5 shows a 

robustness of parsimonious model.  Cut off levels below .35 and above .5 experiences a 

negative slope in prediction accuracy as they approach the extremes.  The cut off level 

can be adjusted to .35 and the model can still attain over 75% prediction accuracy for the 

combined training and test set.  With this cut off level the false negative prediction 

percent becomes 6.4% and the false positive prediction percent is 18%, satisfying the 
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a variable to explain a nation’s region.    The green arrows in Table 18 identify outlier 

nations that are potentially in conflict by choice.  These nations were discussed in the 

section “Factor Analysis and Noise Reduction techniques”.  Simply deleting these false 

negatives from the confusion matrix results yields 76.1% prediction accuracy for the 

model set and 76.8% accuracy for the validation set, as shown in Figure 27.  This is an 

increase from 75.3% and 76.4%.  Note the yellow and blue shaded confusion matrices in 

Figure 27; in this study yellow shaded confusion matrices indicate the model set while 

blue shaded confusion matrices indicate the validation set. 

 

Figure 27: Confusion Matrices Excluding Nations in Conflict by Choice 

Analysis using an expanded database 

 The database was initially constrained by available data for a few variables; “The 

HIIK Trend” variable and the “Border Conflict” variable.  Each of these variables is 

calculated using dependent variable scores with a two or three year lag.  Neither of these 

variables has proven significant and will now be removed from consideration.  Without 

these variables the database can expand to five years, instead of three, because the 

remaining variables have complete data back through 1973 (or 2001 for Caloric Intake) 

and the database is now only constrained by availability of the dependent variable.  Three 

years (2009, 2010, and 2011) are used to construct the model and 2 years (2012 and 
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2013) are used to validate.  This split allows 546 rows of nations for building the model 

and 346 rows of nations for validating the model, providing a sufficiently large dataset 

for model building and validation.  An expanded database becomes essential later when 

models for each region are constructed.  The previous data set did not have enough data 

points to properly construct 6 “sub models”.   

 Trial Model 7 is first applied to the expanded database.  A breakout of prediction 

accuracy by region will prove useful for the next portion of analysis. A breakout for Trial 

Model 7 is shown in Figure 28.  While results are shown by region, so far no explicit 

variable accounts for differing regions within the model.   
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Figure 28: Trial Model 7 Applied to Expanded Database 

When TM 7 is applied to the expanded database it has similar accuracy to the smaller 

database.  The break out of prediction accuracies by region shows inconsistencies that 

identify a need for another variable for geographic region.  Additionally, TM 7 was 
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constructed off of data from 2011-2012.  With the expanded database TM 7 is validated 

using 2012-2013 data.  Because of this overlapping model building and validation set it is 

necessary to construct a new model for the expanded database.   

 As done previously with the 2011-2013 smaller database used to develop Trial 

Model 7, the “Least Significant method” is used to construct a new model with the 2009-

2013 larger database, Trial Model 12. The results are shown in Figure 29 (confusion 

matrix shown in Figure 30, broken out by region).  As with Trial Model 7, an alpha = .1 

is used and 2nd order polynomials from the three most significant main effects are tested 

for inclusion.  Trial model 12 differs from Trial Model 7 in a number of ways.  Some 

variables are included in Trial Model 12 that were in not Trial Model 7.  Specifically “3 

Yr Freedom Trend”, “5 Yr Freedom Trend”, “Population densities”, “Rural Population”, 

“Infant Mortality” and “Regime Type” are included.  Some variables are not included in 

Trial Model 12 that were in Trial Model 7.  Specifically, the variables “2 yr Freedom 

Trend”, “Death Rate”,” Death Rate *Death Rate” and “GDP per Capita*GDP per Capita” 

were not included. The validation set prediction accuracy overall decreases with the 

expanded validation set.  This decreased accuracy of the expanded database may be 

attributed to the changing factors that cause instability over time.   
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Figure 29:  Expanded Database 

 Regional confusion matrices for Trial Model 12 are shown in Figure 30.  Note the 

inconsistent prediction accuracies among the regions.  These inconsistencies suggest the 

need for another variable.  For this reason, a “Region” variable is introduced into the 

model. 

Trial Model 12
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Figure 30: Trial Model 12 by Regions 
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Addition of variable “Region” 

 A new variable “Region” is introduced in an effort to improve the model.  Five 

different groupings of nations into regions are explored.  These five different groupings 

are shown in Figure 31.   

 

 

Figure 31:  Region Groups 

Each of these five region groupings were tested for inclusion as a nominal variable using 

the least significant method.  “Region 5” proved the best of the groupings and was 

renamed “Region” for the duration of the study.  This particular grouping was inspired by 

a 2006 Hans Rosling video (The best stats you've ever seen, 2006). The model with this 

new nominal variable is named Trial Model 13 and results are shown in Figure 32.  The 

validation set prediction accuracy increases from Trial Model 12, confirming the 

inclusion of a “Region” variable.   
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Figure 33: Trial Model 13 by Region 
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of the six regions; Sub Sahara Africa, Eastern Europe & Central Asia and OECD.  The 

death rate is the most important variable for Arab and Latin American nations and caloric 

intake is the most important variable for South and East Asian nations.  The most 

significant variable for each sub-model is outlined in a red box.  Trial Model 14 

coefficients are shown in Table 19 and Trial Model 14 prediction accuracies are shown in 

Figure 35.   

Table 19: Trial Model 14 Coefficients 

 

β0 

Intercept
β1 

Freedom

β2

 Improved 
Water

β3

Refugees 
Asylum

β4 

Trade

β5 

Unemploy
ment

β6 

3 yr 
Freedom 

trend

β7 

Regime 
Type 

(Central)

β8 

5 yr 
Freedom 

trend

β9 

Regime 
Type 

(Democratic
)

β10 

(Freedom-
4.260)^2

β11 

(Trade-
81.378)^2

-1.7953 -1.4348 0.0968 225.1838 0.0605 -0.1902 -21.9044 -3.8044 25.9772 -2.3227 -0 3812 0.0007
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β3

Refugees 
Origin

β0 

Intercept
β1 

Freedom
β2

Trade

β3

(Freedom-
3.732)^2
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Figure 35: Individual Models 

The separate models show improvement for every validation set category except 

the Arab countries (with a lower prediction accuracy) and East Europe & Central Asia 
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Figure 37: Trial Model 14, Cutoff of .28 

Trial Model 14a shows an overall validation set prediction accuracy improvement from 

Trial Model 14 of almost 2%.  Three of the sub-models (Sub Sahara Africa, South and 

East Asia, and Arab Countries) show improved accuracy; two of the sub-models (OECD 
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and Latin America) show no change; and the accuracy of predictions for Eastern Europe 

and Central Asia decreases.   

Methods to Predict Nations not currently in Violent Conflict transitioning to Violent 

Conflict 

 Next, the study explores only those nations that transition from a state of “not in 

violent conflict” to “violent conflict”.  Two methods are explored and presented.  The 

first method did not prove successful but is presented to further the discussion in this 

area.  The second method offered useful insights. 

 

Method 1 – Logistic Regression using several previous year’s data 

 Another database was compiled of new nations to a violent conflict and years 

previous that were in a state of “Not violent conflict”.  Only nations with a period of “not 

violence” for at least 2 consecutive years before the transition to violence were included.  

The goal was to have a distinct period of “not violent conflict” years and then the “violent 

conflict” year.  The alternate correlation method was used to construct a model and test 

for variable significance.    Only one variable was significant for this data.  The variable 

“3 year freedom trend” was significant at an alpha = 0.09 but the results were not useable.  

The model predicted 168 of the 169 nations to be in a state of “not violence” and 

predicted only one nation (2013 Ukraine) to be in a state of “violent conflict”.  Therefore, 

the model is not a useful predictor of nations in violent conflict.  Figure 38 shows the 

confusion matrix results. 
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Figure 38: Method 2 Confusion Matrix 

 

Method 2 – Markov chain muli-year model using Trial Model 14 

 A second method was investigated to identify new nations to conflict.  This 

method assumes independence between years and assumes the conditions do not change 

substantially between years.  Using Trial Model 14, there are 60 false negatives from 

2009 - 2013.    Analyzing these false negatives and how they behave the following year 

will lend insight into nations entering conflict.  First the mathematical likelihoods for 

these false negatives are explored.  A nation that is falsely predicted to be in conflict (at 

probability = 0.5) has the probabilities shown in Table 21 for the following four years.  

This table also shows the mathematical likelihood for nations with a probability equal to 

0.75 for the following four years, assuming independence.  Note that the mathematical 

likelihood are strictly for nations with a probability equal to 0.5 and equal to 0.75 while 

the historical probabilities are for 0.5 and higher and for 0.75 and higher. 
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Table 21: Mathematical Likelihood of False Negatives 

 

 

The historical probabilities from this study are analyzed next.  The 15 false 

negatives from 2009 are analyzed for violent conflict within 1 yr, within 2 years, within 3 

years and within 4 years.  The 9 false negatives from 2010 are analyzed for violent 

conflict with 1 year, within 2 years, and within 3 years.  The 14 false negatives from 2011 

are analyzed for violent conflict with 1 year and within 2 years.   The 11 false negatives 

from 2012 are analyzed for violent conflict with 1 year. As of this analysis there is no 

HIIK data for 2014 so the 12 false negatives for 2013 cannot be analyzed.  Table 22 

shows the analysis results.    According to the years analyzed, a nation incorrectly 

predicted to be in a violent conflict but is actually not in violent conflict enters into a 

violent conflict the following year 29 out of 49 times, or 59.2% of the time.  Thirty out of 

38 nations (78.9%) nations entered a violent conflict within the next two years, 22 out of 

25 (88%) enter a violent conflict within the next 3 years and a 14 out of 15 (93.3%) enter 

a violent conflict within the next 4 years.   The historical data closely follows the 

expected mathematical likelihood. 
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Table 22: Historical probability of False Negatives 

 

 

Likewise, the nations with a higher probability (.75 and higher) follow the expected 

mathematical likelihood closely; 12 out of 18 (66.7%) entered into a violent conflict the 

next year, 11 out of 12 (91.7%) entered into a violent conflict within 2 years, 8 out of 9 

(88.9%) within 3 years and four out of four (100%) entered into a violent conflict within 

four years.  The data is implying that nations the model incorrectly predicts to be in a 

violent conflict have all of the factors necessary for violent conflict and have a high 

probability of entering into a violent conflict in the near future.   

 These actual predictions and results follow closely to the mathematical likelihood.  

A nation with a probability of 0.5 of being in a violent conflict would have a 0.75 

probability of being in a violent conflict the following year (assumes the conditions do 

not change).   Comparing Table 22 and Table 21, it is evident that the actual data behaves 

reasonably as mathematically expected.  Note that these mathematical likelihoods are 

strictly for 0.5 and 0.75 while the actual results are of nations with a 0.5 and higher and 
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Nations with a prob of  .5 or higher

Historical Probability of 
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with a 0.75 and higher.  Nonetheless, the results can be used to assign risk value to a 

nation entering violent conflict in the near future.   

Forecasting the Future: 2014 

Trial Model 14 is applied to the 2014 data and the predictions are shown in Figure 

39.  The model predicts 71 nations in a violent conflict and an additional 12 nations in a 

violent conflict when the cut off value is adjusted to .28.  Sixty eight of the 83 violent 

conflict nations were previously in conflict in 2013 and 15 of the nations (outlined in a 

bold box) are new to violent conflict.  According to the historical percentages previously 

discussed, any false predictions in the red box in Figure 39 have greater than 66% 

likelihood of entering into a violent conflict the next year and almost a near certainty of 

entering into a violent conflict within 2-4 years.  
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Figure 39:  2014 Predictions 

  

Year Nation Group Probability Year Nation Group Probability
2014 Greece OECD 1.00 2014 Saudi Arabia Arab 0.74
2014 Mexico OECD 1.00 2014 United Republic of Tanzania Sub Sahara 0.70
2014 Turkey OECD 1.00 2014 Tajikistan E Europe C Asia 0.68
2014 Nicaragua Latin America 1.00 2014 Iran (Islamic Republic of) E Europe C Asia 0.65
2014 Yemen Arab 1.00 2014 Sri Lanka S and E Asia 0.62
2014 Bangladesh S and E Asia 1.00 2014 Ecuador Latin America 0.61
2014 Haiti Latin America 1.00 2014 Oman Arab 0.60
2014 Egypt Arab 1.00 2014 United Arab Emirates Arab 0.59
2014 Indonesia S and E Asia 0.99 2014 Jordan Arab 0.58
2014 Lao People’s Democratic Republic S and E Asia 0.99 2014 Zimbabwe Sub Sahara 0.57
2014 Cambodia S and E Asia 0.98 2014 South Sudan Sub Sahara 0.56
2014 Democratic Republic of the Congo Sub Sahara 0.98 2014 South Africa Sub Sahara 0.56
2014 Comoros Sub Sahara 0.97 2014 Chad Sub Sahara 0.56
2014 Iraq Arab 0.97 2014 Kuwait Arab 0.56
2014 Chile OECD 0.97 2014 Malawi Sub Sahara 0.56
2014 Honduras Latin America 0.96 2014 Bolivia Latin America 0.55
2014 Philippines S and E Asia 0.96 2014 Gabon Sub Sahara 0.52
2014 Pakistan E Europe C Asia 0.96 2014 Viet Nam S and E Asia 0.52
2014 Somalia Sub Sahara 0.95 2014 Zambia Sub Sahara 0.51
2014 Mali Sub Sahara 0.94 2014 Bosnia and Herzegovina E Europe C Asia 0.50
2014 Cameroon Sub Sahara 0.92
2014 Colombia Latin America 0.92
2014 Swaziland Sub Sahara 0.91
2014 Russian Federation E Europe C Asia 0.90
2014 Guatemala Latin America 0.90
2014 Paraguay Latin America 0.90
2014 Rwanda Sub Sahara 0.89
2014 Algeria Arab 0.88
2014 Ethiopia Sub Sahara 0.88
2014 Armenia E Europe C Asia 0.87 2014 Kyrgyzstan E Europe C Asia 0.50
2014 Central African Republic Sub Sahara 0.87 2014 Ukraine E Europe C Asia 0.47
2014 Lebanon Arab 0.86 2014 Albania E Europe C Asia 0.47
2014 Nigeria Sub Sahara 0.86 2014 Georgia E Europe C Asia 0.47
2014 Afghanistan E Europe C Asia 0.86 2014 Israel OECD 0.46
2014 Nepal S and E Asia 0.86 2014 Uzbekistan E Europe C Asia 0.42
2014 China S and E Asia 0.85 2014 Tunisia Arab 0.40
2014 Guinea Sub Sahara 0.85 2014 Syrian Arab Republic Arab 0.40
2014 Bahrain Arab 0.84 2014 Sierra Leone Sub Sahara 0.37
2014 Angola Sub Sahara 0.84 2014 Papua New Guinea S and E Asia 0.37
2014 India S and E Asia 0.83 2014 Uganda Sub Sahara 0.36
2014 Morocco Arab 0.82 2014 Burundi Sub Sahara 0.33
2014 Kazakhstan E Europe C Asia 0.82
2014 Sudan Sub Sahara 0.82
2014 France OECD 0.81
2014 Peru Latin America 0.80
2014 Azerbaijan E Europe C Asia 0.80
2014 Venezuela Latin America 0.79
2014 Myanmar S and E Asia 0.79
2014 Thailand S and E Asia 0.78
2014 Democratic People's Republic of Korea S and E Asia 0.76
2014 Guinea Bissau Sub Sahara 0.75

Nations that the Model predicts are in conflict 
with a probability of .75 or higher

2014 Predictions

Nations new to conflict have a black box around them

Nations that the Model predicts are in conflict 
with a probabiltiy between .5 and .75

Nations that the Model predicts are in conflict 
when the cutoff is adjusted to .28



92 

Forecasting the Future: 2015 

Trial Model 14 is then applied to the 2015 data and the predictions are shown in 

Figure 40.  The model predicts 72 nations in a violent conflict and an additional 13 

nations in a violent conflict when the cut off value is adjusted to .28.  Sixty eight of the 

85 violent conflict nations were previously in violent conflict in 2013.   Seventeen 

nations are new to conflict since the 2013 HIIK report, 11 of them were also predicted in 

2014 (light blue) and 6 of the nations (outlined in a bold box) are new to violent conflict 

since 2014.   
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Figure 40: 2015 Predictions 

 Note the Republic of Korea (South Korea) near the top of the 2015 prediction list.  

This is not an anomaly or errant prediction, this nation was in a state of violent conflict in 

2009 and in 2010 and the model correctly predicted both years with the same probability 

Year Nation Group Probability Year Nation Group Probability
2015 Greece OECD 1.00 2015 Rwanda Sub Sahara 0.74
2015 Mexico OECD 1.00 2015 South Sudan Sub Sahara 0.73
2015 Republic of Korea OECD 1.00 2015 Saudi Arabia Arab 0.72
2015 Turkey OECD 1.00 2015 Azerbaijan E Europe C Asia 0.72
2015 Nicaragua Latin America 1.00 2015 Chad Sub Sahara 0.71
2015 Yemen Arab 1.00 2015 Guinea Sub Sahara 0.71
2015 Bangladesh S and E Asia 1.00 2015 Iran (Islamic Republic of) E Europe C Asia 0.66
2015 Haiti Latin America 1.00 2015 United Arab Emirates Arab 0.66
2015 Central African Republic Sub Sahara 1.00 2015 Tajikistan E Europe C Asia 0.65
2015 Egypt Arab 1.00 2015 Sri Lanka S and E Asia 0.63
2015 Hungary OECD 1.00 2015 Jordan Arab 0.61
2015 Cambodia S and E Asia 0.99 2015 Somalia Sub Sahara 0.60
2015 Swaziland Sub Sahara 0.99 2015 Niger Sub Sahara 0.59
2015 Indonesia S and E Asia 0.99 2015 Oman Arab 0.58
2015 Lao People’s Democratic Republic S and E Asia 0.98 2015 Viet Nam S and E Asia 0.58
2015 Democratic Republic of the Congo Sub Sahara 0.98 2015 South Africa Sub Sahara 0.55
2015 Venezuela Latin America 0.98 2015 Kuwait Arab 0.52
2015 Honduras Latin America 0.97 2015 Albania E Europe C Asia 0.51
2015 Philippines S and E Asia 0.96 2015 Ukraine E Europe C Asia 0.51
2015 Lebanon Arab 0.96 2015 Bosnia and Herzegovina E Europe C Asia 0.50
2015 Chile OECD 0.96 2015 Bolivia Latin America 0.50
2015 Pakistan E Europe C Asia 0.96
2015 Iraq Arab 0.93
2015 Cameroon Sub Sahara 0.92
2015 Comoros Sub Sahara 0.91
2015 Russian Federation E Europe C Asia 0.90
2015 Guatemala Latin America 0.90
2015 Colombia Latin America 0.90
2015 Angola Sub Sahara 0.89
2015 Algeria Arab 0.89 2015 Mali Sub Sahara 0.49
2015 Afghanistan E Europe C Asia 0.88 2015 Syrian Arab Republic Arab 0.48
2015 Zimbabwe Sub Sahara 0.87 2015 Gabon Sub Sahara 0.47
2015 China S and E Asia 0.87 2015 Uzbekistan E Europe C Asia 0.46
2015 Nigeria Sub Sahara 0.87 2015 Zambia Sub Sahara 0.46
2015 Armenia E Europe C Asia 0.86 2015 Dominican Republic Latin America 0.44
2015 Paraguay Latin America 0.86 2015 Georgia E Europe C Asia 0.43
2015 Nepal S and E Asia 0.84 2015 Kyrgyzstan E Europe C Asia 0.42
2015 Ecuador Latin America 0.83 2015 Sierra Leone Sub Sahara 0.41
2015 Ethiopia Sub Sahara 0.83 2015 Uganda Sub Sahara 0.38
2015 Morocco Arab 0.83 2015 Tunisia Arab 0.37
2015 India S and E Asia 0.83 2015 Papua New Guinea S and E Asia 0.32
2015 Bahrain Arab 0.82 2015 Burundi Sub Sahara 0.31
2015 France OECD 0.82
2015 Myanmar S and E Asia 0.82
2015 Kazakhstan E Europe C Asia 0.81
2015 Thailand S and E Asia 0.79
2015 United Republic of Tanzania Sub Sahara 0.78
2015 Guinea Bissau Sub Sahara 0.78
2015 Peru Latin America 0.78
2015 Sudan Sub Sahara 0.78
2015 Democratic People's Republic of Korea S and E Asia 0.76

Nations that the Model predicts are in conflict 
with a probability of .75 or higher

Nations that the Model predicts are in conflict 
when the cutoff is adjusted to .28

Nations that the Model predicts are in conflict 
with a probabiltiy between .5 and .75

2015 Predictions

Nations new to conflict since 2013 (last HIIK report) but also 
predicted in 2014

Nations new to conflict have a black box around them
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that it predicts in 2015.  Looking at the model variables in 2009 and 2010, the model 

predicted South Korea to have a violent conflict because of its sharp decrease in trade, 

rise in infant mortality and lower than average caloric intake (relative to South Korea in 

previous years).  In 2015 the prediction of violence is attributed to the increase in the 

“Freedom” score (lower is better); meaning political oppression increased in South Korea 

and the model predicts violence in 2015. 

Investigative Questions Answered 

How accurately can a Logistic Regression Model predict the state of the 

world; nations that will be in a state of “violent conflict” and nations that will not? 

A one world model can predict the state of the world with almost 75% accuracy.  

Six sub-models can predict the state of the world with greater than 78% accuracy and 

greater than 80% accuracy when cut off parameters are adjusted to 0.28.   

What are the key variables that contribute to a nation being in a state of 

violent conflict? 

The one world model uses 15 variables, including 14 main effects and one 2nd 

order polynomial.  The five most significant of these factors are “Freedom”, “Region”, 

“Trade”, “Improved Water” and “Polity IV”.  The six sub-models differ in variable size 

from three to ten.  The significant variables vary but “Freedom” remains the most 

significant variable for Sub Sahara Africa, Eastern Europe & Central Asia and OECD.   

“Death rate” is the most important variable for Arab and Latin American nations and 

caloric intake is the most important variable for South and East Asian nations.  

“Freedom” and “Trade” are present in five out of six sub-models.   
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Given a nation is falsely predicted to be in a violent conflict, how likely is it to 

enter into a violent conflict the following year or within 2-4 years? 

Nations the model falsely predicts to be in a violent conflict have all the factors 

necessary for violent conflict.  According to the historical predictions and accuracies, a 

nation incorrectly predicted to be in a violent conflict (with a probability of .5 or higher) 

but is actually not in violent conflict has a 59 % chance of entering into a violent conflict 

the following year, a 79% chance of entering a violent conflict within the next two years, 

a 88% of entering a violent conflict within the next 3 years and a 93% chance of entering 

a violent conflict within the next 4 years. 

A nation incorrectly predicted to be in a violent conflict (with a probability of .75 

or higher) but is actually not in violent conflict has a 67% chance of entering into a 

violent conflict the following year, a 92% chance of entering a violent conflict within the 

next two years, a 89% of entering a violent conflict within the next 3 years and a 100% 

chance of entering a violent conflict within the next 4 years.  The historical data indicates 

that the expected mathematical likelihoods can be applied to future years. 

Summary 

This chapter constructed and provided analysis for 14 trial models, creating a 

“best whole world” model and a “best overall model” which consisted of six sub-models.  

Dominant variables were identified, sensitivity analysis showed the robustness of the 

model and predictions were made for 2014 and 2015.  Additional analysis concerning the 

false predictions provided answers to two of the study questions.   
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V.  Conclusions and Recommendations 

 

Conclusions of Research 

This study analyzed 27 variables to predict the future state of the world where 

nations will either be in a state of “violent conflict” or “not in violent conflict”.  A whole 

world logistic regression model can predict violent conflict with 75% accuracy while six 

sub-models can accurately predict violent conflict with over 80% accuracy.  The 

accuracy of the final model is among the best found in literature.  A nations “Freedom” 

score, which is an average of civil liberties and political rights, is the dominant global 

factor for violent conflict.  What region a nation is in and how much they trade are other 

significant factors of violent conflict.  The significant variables differ from region to 

region.   

Significance of Research 

This study can assist decisions makers in planning for predicted violent conflict in 

nations throughout the world.  The study can also help decision makers identify factors 

that lead to violent conflict in an effort to improve these factor areas before violence 

occurs. 

Recommendations for Action 

The six sub-models can be applied to future years to predict violent conflict in the 

world.  The significant variables identified in this study can be useful for future model 
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builders and for decision makers attempting to increase stability in nations.  The whole 

world model can also be used as a template for future world models. 

Recommendations for Future Research 

Three of the variables were locked and did not change from year to year.  Yearly 

data for “Regime type” Ethnic diversity” and “Religious diversity” would offer a more 

dynamic model.  Regime type” and “Religious diversity” especially have the potential to 

impact the model and be valuable predictors.  The six sub-models proved the best 

predictors of violence.  Future studies could focus on one region at a time and build a 

better model for that specific region.  Subject matter experts can advise new variables for 

each region as new data becomes available and different cut offs for each sub-model 

might also yield better results.  A variable that will account for nations in a violent 

conflict outside of its borders could prove significant and reduce noise introduced by 

stable nations entering into conflict by choice. 

The study was limited by availability of the dependent variable.  The Heidelberg 

Institute for Conflict Research was updating their database and was unable to provide 

data for this study.  The data was collected through AFIT analysts parsing through 

difficult pdf documents. Future research would benefit from a larger database than the 

2008-2013 database that was used for this study.   
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Appendix A: List of nations in each region 

 

Sub Saharan Africa - 49 Nations South & East Asia - 28 Nations East Europe& Central Asia - 28 Nations
Angola Bangladesh Afghanistan
Benin Bhutan Albania
Botswana Brunei Darussalam Armenia
Burkina Faso Cambodia Azerbaijan
Burundi China Belarus
Cabo Verde Democratic People's Republic of Korea Bosnia and Herzegovina
Cameroon Fiji Bulgaria
Central African Republic India Croatia
Chad Indonesia Cyprus
Comoros Kiribati Georgia
Congo Lao People s Democratic Republic Iran (Islamic Republic of)
Côte D'Ivoire Malaysia Kazakhstan
Democratic Republic of the Congo  Maldives Kyrgyzstan
Djibouti Micronesia (Federated States of) Latvia
Equatorial Guinea Mongolia Lithuania
Eritrea Myanmar Malta
Ethiopia Nepal Montenegro
Gabon Papua New Guinea Pakistan
Gambia Philippines Republic of Moldova
Ghana Samoa Romania
Guinea Singapore Russian Federation
Guinea Bissau Solomon Islands Serbia
Kenya Sri Lanka Slovakia
Lesotho Thailand Tajikistan
Liberia Timor-Leste The former Yugoslav Republic of Macedonia
Madagascar Tonga Turkmenistan
Malawi Vanuatu Ukraine
Mali Viet Nam Uzbekistan
Mauritania
Mauritius
Mozambique OECD - 33 Nations Latin America - 27 Nations
Namibia Australia Antigua and Barbuda
Niger Austria Argentina
Nigeria Belgium Bahamas
Rwanda Canada Barbados
Sao Tome and Principe Chile Belize
Senegal Czech Republic Bolivia
Seychelles Denmark Brazil
Sierra Leone Estonia Colombia
Somalia Finland Costa Rica
South Africa France Cuba
South Sudan Germany Dominican Republic
Sudan Greece Ecuador
Swaziland Hungary El Salvador
Togo Iceland Grenada
Uganda Ireland Guatemala
United Republic of Tanzania Israel Guyana
Zambia Italy Haiti
Zimbabwe Japan Honduras
Grand Total Luxembourg Jamaica

Mexico Nicaragua
Netherlands Panama

Arab - 17 Nations New Zealand Paraguay
Algeria Norway Peru
Bahrain Poland Suriname
Egypt Portugal Trinidad and Tobago
Iraq Republic of Korea Uruguay
Jordan Slovenia Venezuela
Kuwait Spain Grand Total
Lebanon Sweden
Libya Switzerland
Morocco Turkey
Oman United Kingdom of Great Britain and Northern Ireland
Qatar United States of America
Saudi Arabia
Syrian Arab Republic
Tunisia
United Arab Emirates
West Bank and Gaza
Yemen
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