1. REPORT DATE 01 DEC 2014
2. REPORT TYPE N/A
3. DATES COVERED -
4. TITLE AND SUBTITLE
836: Developing a Cooperative Communication System for Safe, Effective, and Efficient Patient Care.
5a. CONTRACT NUMBER -
5b. GRANT NUMBER -
5c. PROGRAM ELEMENT NUMBER -
5d. PROJECT NUMBER -
5e. TASK NUMBER -
5f. WORK UNIT NUMBER -
6. AUTHOR(S)
Nemeth C., Anders S., Brown J., Grome A., Crandall B., Mann-Salinas E., Pamplin J.,
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
United States Army Institute of Surgical Research, JBSA Fort Sam Houston, TX
8. PERFORMING ORGANIZATION REPORT NUMBER -
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) -
10. SPONSOR/MONITOR’S ACRONYM(S) -
11. SPONSOR/MONITOR’S REPORT NUMBER(S) -
12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited
13. SUPPLEMENTARY NOTES -
14. ABSTRACT -
15. SUBJECT TERMS -
16. SECURITY CLASSIFICATION OF:
<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>unclassified</td>
<td>unclassified</td>
<td>unclassified</td>
</tr>
</tbody>
</table>
17. LIMITATION OF ABSTRACT
UU
18. NUMBER OF PAGES 2
19a. NAME OF RESPONSIBLE PERSON -

Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18
wide discrepancy between the predicted and observed percentages. The differences were statistically significant. The equation for our geographical area had similar discrepancies: H=36.47 (p<0.001). Conclusions: The patients admitted to our ICU for intoxication presented a high gravity according to SAPS-3, but observed mortality was well below that predicted, these discrepancies being very high. SAPS-3 is not useful for evaluating handoff efficiency.

833 THE HANDOFF CONTINUITY SCORE (HCS) CORRELATES WITH Rounding efficiency

Hannah Smalley1, Pinar Keskinocak2, Atul Vats2; 1Georgia Institute of Technology, Atlanta, GA, 2Emory University School of Medicine, Atlanta, GA

Learning Objectives: The Handoff Continuity Score (HCS) is a mathematical model that objectively measures MD continuity with different physician scheduling models (Critical Care 2011, 15:R246). HCS is subjectively associated with increased efficiency based on physician surveys. Objective evidence of improved handoff efficiency and effectiveness is lacking. The hypothesis of this study is that increased HCS will be associated with improved rounding efficiency. Methods: The study was performed in a 30 bed medical-surgical pediatric intensive care unit, and was approved as non-human subject research by the institutional review board. Human factors techniques (e.g. shadowing) were used to track and observe physician-rounding events on select dates between 2008–2013. Total rounding time was divided by number of patients seen to determine rounding time per patient (to correct for census). HCS for each attending on the specific rounding events were calculated. Rounding time per patient was charted against HCS. Results: There were 41 individual rounding events shadowed during the study period. HCS ranged from 0–1. Total rounding time per patient ranged from 6.5 - 18.1 min. The mean rounding time at an HCS of 0 was 12.4 ± 2.2 and at 1 was 11.1 ± 0.7. Across the entire range there is a statistically significant decrease in rounding time with increasing HCS (p<0.05 calculated using Pearson’s correlation coefficient r). Conclusions: Higher continuity as assessed by HCS is associated with improved rounding efficiency. Utilizing the HCS in schedule generation for physician staffing may be an effective tool to enhance rounding efficiency.

834 PERIPHERALLY INSERTED CENTRAL CATHETER INSERTION USING VASCULAR POSITIONING SYSTEMS IN CRITICAL CARE

Julie Colquist1, Amy Muir1, Michelle Froude1, Amelia Lowell1, David Croy2, Hannelisa Callisen1, J. Farmer1, Bhavesh Patel1; 1Mayo Clinic Arizona, Phoenix, AZ, 2Mayo Clinic Arizona – Respiratory Therapy Dept., Phoenix, AZ

Learning Objectives: The American Board of Internal Medicine does not require competent performance of central line procedures for residents creating a skills gap in providers. Peripherally inserted central catheter (PICC) placements have increased to meet this need. PICCs placed at the bedside by vascular access teams are used for monitoring and resuscitation but insertion times are unknown using vascular positioning systems (VPS). We hypothesize that PICCs placed in critically ill patients (pts) for hemodynamic monitoring using novel VPSs can be performed efficiently and safely. Methods: In an adult academic medical center, an existing PICC database was retrospectively reviewed. A convenience sample of 25 consecutive critically ill pts requiring PICC placement for hemodynamic monitoring was selected. Open ended PICCs were inserted using a novel Doppler and intravascular EKG positioning system and CXR was used to confirm catheter position. All results expressed as median and ranges. Statistical comparison was made between sepsis and non-sepsis pts using Mann–Whitney U test for continuous variables and Fisher's exact test for categorical variables. Results: Patients median age was 65 (28–82) and APACHE IVa score 56 (33–111). Sepsis was diagnosed in 44% of pts with an APACHE IVa score of 85 (38–111) versus non-septic pts 44 (33–93) (p<0.03). Bedside PICCs were successfully inserted in 96% of pts with a procedure time (PT=putcretoofuse) of 143(45)mins and insertion time (IT=requesitoofuse) of 60(20–21)mins. VPS confirmed location in 68% of pts and failure did not delay PT or IT. There was no significant difference in IT or PT regardless of BMI, severity of illness or diagnosis. Complications included catheter repositioning (8%/n=2) and local hematoma (4%/n=1). No other insertion related mechanical complications were noted. Conclusions: In critically ill pts, it may be possible to rapidly, successfully and safely central venous access using PICCs inserted by specialized vascular access teams using VPS. Additional research is necessary to further improve efficiency vascular access teams and effectiveness VPSs.

835 DOES IT MATTER WHO INTUBATES PATIENTS? A COMPARISON OF ENDOTRACHEAL INTUBATION PRACTICE PATTERNS.

Yenal Harper1, Irfan Waheed2, Bushra Elsannah1, Sina Parmak3, Rashid Nadeem1, Ray Gazzurelli1, Amin Ur Rehman Nadeem1; 1Captain James A. Lovell FHCC, Rosalind Franklin University, North Chicago, IL, 2Captain James A. Lovell FHCC, Rosalind Franklin University, North Chicago, IL, 3Ehsanullah Laboratories, Karachi, Pakistan, 4Captain James A. Lovell FHCC. Mount Sinai Hospital Chicago, North Chicago, IL

Learning Objectives: Endotracheal intubation (ETI) practiced outside the operating room is mainly performed by Intensivists (IC), Anesthesiologists (AN) and Emergency Department (ED) physicians. We hypothesized that there will be a difference in practice patterns of ETI between providers based on the different clinical settings they encounter and the longer term management goals that Intensivists are faced with. We aim to highlight the differences in practice patterns that may effect patient safety and outcomes. Methods: A retrospective chart review was performed on all endotracheal intubations over a five year period (n=215). Parameters compared between IC, ED and AN intubations were the use of a) videolaryngoscopy, b) paralytic agents, c) waveform capnography and d) endotracheal tube (ET) size. Pairwise comparisons was used to assess differences in between groups. Results: Intensivists used videolaryngoscopy more than ED or AN physicians (67% (IC) vs. 47% (ED) vs. 43% (AN) p=0.018). Confirmation of correct ET placement by waveform capnography was also performed more by IC physicians (99% (IC) vs. 86% (ED) vs. 86%(AN) p=0.003). IC physicians also tended to use a larger size ET tube size ≥ 8mm (95% (IC) vs. 60% (ED) vs. 71% (AN) p<0.001). Intensivists also used paralytics less frequency (12% (IC) vs. 50% (ED) vs. 36% (AN) p<0.001). There was no significant statistical difference in esophageal intubations, post intubation hypotension or cardiac arrest. Conclusions: Intensivists used videolaryngoscopy, larger ET tubes, and waveform capnography more often than ED or AN, and used less paralytic agents. Videolaryngoscopy and waveform capnography are instrumental tools that increase the safety of the ETI process. The use of paralytics such as succinylcholine does come with the added risk of prolonged paralysis and cardiac arrhythmias. Larger ET tubes also facilitate the management of mechanically ventilated patients. In our study there was no significant difference in adverse outcomes, however based on the difference in these patterns noted we believe that larger scale studies are needed to unveil such outcomes.

Poster Session: Quality and Safety 8

836 DEVELOPING A COOPERATIVE COMMUNICATION SYSTEM FOR SAFE, EFFECTIVE, AND EFFICIENT PATIENT CARE

Christopher Nemeth1, Shilo Anders1, Jeffrey Brown1, Anna Grome1, Beth Cran dall1, Elizabeth Mann-Salinas1, Jeremy Pamplin1; Applied Research Associates, Inc., San Antonio, TX, 2United States Army Institute of Surgical Research, FSH, TX, 3NIA, San Antonio, TX

Learning Objectives: Developing ecologically valid information technologies (IT) for the intensive care unit (ICU) is challenging. Traditional, quantitative research designs do not sufficiently account for the complexities of individual and team decision making in this work domain. Using a mixed methods Cognitive Systems Engineering (CSE) approach offers a means to go beyond surface descriptions (phenotypes) of the ICU work domain and to reveal underlying patterns (genotypes) of systemic factors that impact decision making. The model of cognitive work it produces supports IT solutions that support clinical work, making decisions more accurate, reliable, and efficient. Methods: A mixed methods CSE approach was used to elicit and characterize the work domain. Artifact analysis was conducted over one year during five week-long visits to a 16 bed referral ICU in a 450 bed academic medical center. Results: We discovered 21 barriers to effective patient care including: synchronization of care; awareness of coupled activities; communicating change in patient status across disciplines; availability of current information; delayed, mixed methods, or replaced orders; reliance on verbal orders; coordination between shifts; documentation time; IT process requirements frequently require
Improving Pediatric Sepsis Care Through Collaboration

Christine Zawistowski, Chanda Bradshaw, Illysa Goodman, Susan Torrey; 1NYU Langone Medical Center, New York, NY, 2NYU Langone Medical Center, New York, United States

Learning Objectives: Sepsis is a major cause of hospitalization with an increasing incidence. Pediatric intensivists have spearheaded the establishment of guidelines for the identification and management of sepsis and severe sepsis. The use of sepsis screens on pediatric inpatient units has not been widely reported. As of April 2014, NYS has mandated that hospitals have in place systems to identify and manage patients with severe sepsis. We describe our experience with the development and early application of a pediatric sepsis identification tool. This tool represents intensivist, multi-specialty and multidisciplinary collaboration to recognize and manage children with sepsis and severe sepsis in a timely and evidence-based fashion regardless of their location in the hospital. We present interim reports of our sepsis identification tool and severe sepsis protocol development. Data were reviewed at regular intervals to allow for tool and protocol modification. Results: Health care provider response to sepsis alerts improved from 50% to 80% since tool institution. There was an average rate of 40 positive sepsis identification tool (SIT) triggers per 1000 patient days. In a 6 month period 28% of patients with a positive SIT had sepsis and 6% had severe sepsis. Interim review showed 67% received first fluid bolus within 20 minutes of identification of severe sepsis and 83% received a 20ml/kg bolus. All had blood cultures drawn prior to antibiotics. The majority were already on antibiotics at the time of sepsis trigger but 16% had a delay in receiving antibiotics. All patients went to the ICU. Conclusions: Sepsis and severe sepsis occur in children admitted to the pediatric inpatient unit. This can be identified early with the use of inpatient ward sepsis identification tools. Collaboration across specialties and disciplines, including involvement of the pediatric intensivist, is necessary for success.

Characteristics of Children with Hospital Acquired Pressure Ulcers in an Intensive Care Unit

Linda Aponte-Patel, Clara Collins, Anita Sen; 1N/A, New York, NY, 2New York-Presbyterian Morgan Stanley Children’s Hospital, New York, New York, 3New York Presbyterian Hospital-Columbia Campus, New York, NY

Learning Objectives: Although the quantitative rate of hospital-acquired pressure ulcers (HAPUs) in the pediatric intensive care unit (PICU) is reported regularly for quality purposes, the qualitative characteristics describing PICU patients with HAPUs have yet to be analyzed. PICU patients who develop HAPUs will frequently possess certain characteristics, including but not limited to prolonged PICU length of stay (LOS), need for mechanical ventilation, reliance on intravenous nutrition, and steroid usage. Methods: Potential HAPUs within a 34 bed PICU at a large urban academic children’s hospital were identified by bedside nurses daily and subsequently assessed by a wound nurse specialist. Using this demographic data, a database spanning a 24 month period, from January 2012 to December 2013, was created by retrospective chart review. Results: In 2012 and 2013, 54 total HAPUs (2.4 HAPUs/1000 patient days) were identified. 81.5% of HAPUs were classified as either Stage I or II, and 18.5% were classified as Stage III, IV, or unstageable. The most common locations for ulcers were sacral (37%), occipital (20.4%) and ear (11%). The mean modified Baden Q Score at diagnosis of HAPUs was 15. The median age of patients with HAPUs was 9.5 years, with a median PICU LOS (prior to developing HAPUs) of 10 days, and mortality during their hospitalization of 24%. Conclusions: Although various criteria identify potential HAPUs during their hospitalization. Factors present during the 7 days immediately prior to developing HAPUs included: mechanical ventilation (87%), vasoaduct medication (56%), sedation infusion (70%), paralytic infusion (30%), total parenteral nutrition (39%) and steroid usage (28%). Conclusions: This study identifies the frequency of high-risk characteristics of patients who developed HAPUs in our PICU over a two-year period. Awareness about potential HAPU risk factors helps identify targets for ulcer prevention, including changing the practice of positioning mechanically ventilated and sedated patients, rethinking the use of extended electroencephalography, and the introduction of sedation holidays.

EVALUATION OF VARIOUS VENTILATOR-ASSOCIATED INFECTION CRITERIA IN THE PEDIATRIC ICU

Andrew Beardsley, Mark Rigby, Elaine Cox, Mara Nitu, Brian Benneyworth; 1Riley Hospital for Children at Indiana University Health, Indianapolis, IN

Learning Objectives: Ventilator-associated pneumonia (VAP) is a common hospital-acquired infection in the PICU and accounts for increased use of health care resources. Other ventilator-associated infections (VAI) are described with various diagnostic criteria, including lower respiratory tract infection (LRTI), ventilator-associated tracheobronchitis (VAT), and infection-related ventilator-associated condition (IVAC). The objective of this project was to evaluate various VAI to determine their rates and outcomes. We hypothesized that different VAI rates would vary and that outcomes would differ between them. Methods: Over a six-month time period from January through June 2013 we evaluated all children mechanically ventilated for 48 hours in our PICU, a 28-bed medical-surgical unit in a large tertiary care children’s hospital. Data were retrieved from the Virtual PICU system, including age, sex, race, PICU length of stay, duration of mechanical ventilation and mortality. Respiratory culture results and signs and symptoms of the various VAI were manually abstracted from the electronic medical record. Diagnoses of various VAI were assigned by evaluating these data. Results: There were 1195 ventilator days in 142 patients. 24 respiratory cultures were sent to evaluate for potential VAI. Ten patients met criteria for at least one VAI; 3 LRTI, 1 VAT, 2 VAP, 2 IVAC, 1 VAT and LRTI, and 1 VAP and IVAC. The rate of diagnosis of any VAI was 8.36/1000 ventilator days; LRTI 3.55, VAT 1.67, VAP 2.51 and IVAC 1.67. None of the demographic characteristics were associated with VAI with the exception of IVAC and older age (p=0.013). No VAI was associated with increased PICU length of stay or mortality. All were statistically significantly associated with increased duration of mechanical ventilation. Conclusions: Rates of individually defined VAI are low and different patients meet various criteria. The rate of having any one VAI is significantly higher than the rate of any individual VAI. All are associated with increased length of mechanical ventilation. A more inclusive definition of VAI is warranted for diagnosis and surveillance.

Optimizing Clinical Decision Support Using Push Notification of Shock Index in a PICU

Eric Williams, De Ann Nikolai, Curtis Kennedy; 1Baylor College of Medicine/ Texas Children's Hospital, Houston, TX, 2N/A, Houston, TX, 3Baylor College Of Medicine, Houston, TX

Learning Objectives: Clinical decision support (CDS) helps caregivers identify problems earlier by detecting predetermined triggers. Effective CDS notification depends on the value of message information and the delivery medium. Our quality aim was to identify the value of CDS information in an automated push of Shock Index (SI-HR/SBP) > 2 to a dedicated pager. We hypothesized that timely delivery of SI could function as a new decision trigger. Methods: Our IRB waived the need for informed consent. Continuously updated, near-time values for heart rate (HR) and systolic blood pressure (SBP) were extracted from our commercial EMR by a locally-developed decision support program. For calculated SI > 2, messages with bedspace and SI were sent to the pager. During the study period, the page recipient was asked to document whether or not an intervention was performed after patient evaluation. Differences in SI for Intervention (I+) and Non-intervention (I-) groups were analyzed by Mann-Whitney U test, with statistical significance at a p value of 0.05%. Results: Over 30 days, 26,616 SI calculations resulted in 988 SI values > 2 (3.7% incidence). After filtering for repeat triggers under 4 hours, 219 notifications were sent and 137 responses were collected. Of those, 39 notifications (28%) were I+. Median SI was increased in the I+ group (2.28, 2.18-2.41, 95% CI) as compared to the I- group (2.13, 2.09-2.19, 95% CI). Conclusions: Push delivery of CDS by pager is technologically feasible. For SI triggers, 28% of notifications resulted in an intervention. Higher SI values were statistically associated with a higher likelihood of an intervention. Although the study is limited to a single academic PICU, our preliminary results demonstrate the potential for timely CDS notification to be a feasible risk stratification tool in general PICUs.