Report Documentation Page

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

1. REPORT DATE
 01 JUN 2014

2. REPORT TYPE
 N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
 Vasopressin, Sepsis, and Renal Perfusion—A VASST Deficit in Our Understanding

5a. CONTRACT NUMBER
 -

5b. GRANT NUMBER
 -

5c. PROGRAM ELEMENT NUMBER
 -

6. AUTHOR(S)
 Stewart I. J., Sosnov J. A., Chung K. K.

5d. PROJECT NUMBER
 -

5e. TASK NUMBER
 -

5f. WORK UNIT NUMBER
 -

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
 United States Army Institute of Surgical Research, JBSA Fort Sam Houston, TX

8. PERFORMING ORGANIZATION REPORT NUMBER
 -

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
 -

10. SPONSOR/MONITOR’S ACRONYM(S)
 -

11. SPONSOR/MONITOR’S REPORT NUMBER(S)
 -

12. DISTRIBUTION/AVAILABILITY STATEMENT
 Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
 -

14. ABSTRACT
 -

15. SUBJECT TERMS
 -

16. SECURITY CLASSIFICATION OF:
 | a. REPORT | b. ABSTRACT | c. THIS PAGE |
 | unclassified | unclassified | unclassified |

17. LIMITATION OF ABSTRACT
 UU

18. NUMBER OF PAGES
 2

19a. NAME OF RESPONSIBLE PERSON
 -

Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18
Vasopressin, Sepsis, and Renal Perfusion—A VASST Deficit in Our Understanding*

Ian J. Stewart, MD
Jonathan A. Sosnov, MD, MSc
Department of Medicine
San Antonio Military Medical Center
Fort Sam Houston, TX

Kevin K. Chung, MD, FCCM
United States Army Institute of Surgical Research
Fort Sam Houston, TX; and
Uniformed Services University of the Health Sciences
Bethesda, MD

In this issue of Critical Care Medicine, Guarido et al (1) present their fascinating work in a model of endotoxemia in rats. Consistent with prior studies, they found that vasopressin could increase blood pressure in animals refractory to phenylephrine. What is provocative about this work is the presumptive mechanism for these findings. In septic animals, this improvement in blood pressure could not be explained by improvements in cardiac function or vasoconstriction from large vessels. The effect appeared to be a result of vasoconstriction within the renal vascular bed as evidenced by decreased renal blood flow (RBF) in vivo and increased renal vascular perfusion pressure in vitro. These effects were attenuated by Y-27632, implying that signaling via the Rho-A/Rho-kinase pathway plays a role. Presumably, this decrease in renal perfusion could potentially result in acute kidney injury (AKI), a syndrome that has been associated with increased mortality in the ICU setting (2). The implication is that in the setting of refractory shock, similar physiology may apply to patients resulting in an increase in AKI with vasopressin.

The current Surviving Sepsis Campaign Guidelines (3), based largely on the results of the VASST trial (4), recommend vasopressin in the setting of refractory shock to either increase mean arterial pressure or decrease the dose of other vasopressors but does not recommend it as a first-line agent. In this study, renal dysfunction was not significantly different between the two groups. However, AKI was defined by the Brussels criteria and not the now commonly used definitions based on relative changes in creatinine and changes in urine output (5–7). A post hoc analysis of the VASST trial (8) using creatinine-based Risk, Injury, Failure, Loss, End-stage renal disease (RIFLE) criteria (5) demonstrated that in patients with RIFLE category 'Risk', vasopressin was associated with a decrease in mortality, decrease in progression to RIFLE 'Injury' and 'Failure', decrease in creatinine, and decrease in the need for renal replacement therapy. Furthermore, other work has found an improvement in urine output (9, 10) and creatinine clearance (10, 11) with vasopressin therapy.

How can these findings be reconciled with the present study? It may simply be the innate differences in humans versus other animals. Alternatively, the degree to which this applies to humans may be smaller, resulting in an insignificant clinical difference. A more intriguing hypothesis, however, is that the findings of Guarido et al (1) do apply to patients. Although RBF and glomerular filtration rate (GFR) are certainly correlated, they are not necessarily the same thing with the later involving a complicated interplay of intrarenal hemodynamics. This is a key insight for interpreting the work by Guarido et al (1). As implied by this study’s contrasting findings in control and lipopolysaccharide animals, different disease states may fundamentally change the renal hemodynamic response to vasopressin. Constriction of larger arteries and/or the afferent arteriole would be expected to decrease both RBF and GFR, whereas, conceivably, constriction of the efferent arteriole could decrease RBF and augment GFR. Furthermore, a decrease in medullary blood flow in the setting of preserved cortical blood flow would be expected to decrease RBF and leave GFR relatively unchanged but could result in tubular injury. The literature on the effect of vasopressin on intrarenal hemodynamics is conflicting (12–15). These studies examined different animal models and different diseased and normal states. One explanation for these disparate results is that vasopressin rather than having a static role has subtle, but significant, differences depending on the physiologic setting.

Notably, the VASST trial did not examine a cohort of patients that could be considered a corollary to the refractory shock model reported by Guarido et al (1). Given that the mean arterial blood pressures in both arms at baseline of the VASST trial were approximately 70 mm Hg, vasopressin was examined as a “catecholamine-sparing drug,” not necessarily as a therapy for refractory shock. It is possible that vasopressin deleteriously alters renal hemodynamics only in the setting of catecholamine unresponsiveness. This might also help explain the underlying paradox that patients with less severe shock

*See also p. e461.

Key Words: acute kidney injury; renal blood flow; sepsis; shock; vasopressin

Dr. Stewart has disclosed government work. He received support for article research from the United States Air Force. His institution received grant support (Air Force Medical Support Agency [AFMSA] for urinary biomarkers and AFMSA for myoglobin removal using CytoSorb). Dr. Chung has disclosed government work. He and his institution have a patient-owned with government (burn decision support software). His institution received grant support from the American Burn Association (grant funds to conduct multicenter support in burn patients with sepsis and acute kidney injury). The opinions or assertions contained herein are the private views of the authors and are not to be construed as official or as reflecting the views of the Department of the Air Force, the Department of the Army, or the Department of Defense. Dr. Sosnov has disclosed that he does not have any potential conflicts of interest.

Copyright © 2014 by the Society of Critical Care Medicine and Lippincott Williams & Wilkins

DOI: 10.1097/CCM.0000000000000354

Critical Care Medicine

www.ccmjournal.org 1583
(defined by a norepinephrine dose of 15 μg/min or less) had an improved survival with vasopressin in the VASST trial. This hypothesis implies that hemodynamic support for patients in shock may need to be individualized based on severity and etiology. Further human studies will be needed to understand whether the physiology and the Rho-A/Rho-kinase pathway are the same for human beings. Large, prospective human trials are then needed to determine the optimal therapies for patients in various states of shock before clinicians change their practice patterns. Further understanding of renal hemodynamics, and how they differ between disease states, will be vital for guiding future translational research to optimize vasopressin use. Works such as Guarido et al (1) will be vital in the design of these future trials.

REFERENCES

