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Abstract. Future technologies such as Brain-Computer Interaction 
Technologies (BCIT) or affective Brain Computer Interfaces (aBCI) will need 
to function in an environment with higher noise and complexity than seen in 
traditional laboratory settings, and while individuals perform concurrent tasks.  
In this paper, we describe preliminary results from an experiment in a complex 
virtual environment. For analysis, we classify between a subject hearing and 
reacting to an audio stimulus that is addressed to them, and the same subject 
hearing an irrelevant audio stimulus. We performed two offline classifications, 
one using BCILab [1], the other using LibSVM [2].  Distinct classifiers were 
trained for each individual in order to improve individual classifier performance 
[3]. The highest classification performance results were obtained using 
individual frequency bands as features and classifying with an SVM classifier 
with an RBF kernel, resulting in mean classification performance of 0.67, with 
individual classifier results ranging from 0.60 to 0.79.   

Keywords: EEG, affect, self-relevant, classification, noise. 

1   Introduction 

Brain-Computer Interaction Technologies (BCIT) aim to use electroencephalography 
(EEG) and other physiological measures to enhance a healthy user’s performance 
with a system [4]. These technologies, and similar technologies such as affective 
brain-computer interfaces (aBCI), have promising applications such as monitoring 
fatigue or recognizing extreme negative affect (i.e. stress or anger). These 
applications could provide important and relevant information about the performance 
of a Soldier in real time, ideally allowing the identification and mitigation of 
performance degradation before tragic mistakes occur. However, for these 
technologies to achieve their full potential, they will need to function in an 
environment with higher noise and complexity than currently seen in traditional 
laboratory settings.  Further, many traditional experiments use a reductionist approach 
of studying a single task performed in isolation.  For these systems to be viable, they 
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must detect relevant user states or emotions when an individual is performing 
multiple concurrent tasks.   

In this paper, we begin to address these noise and complexity challenges by 
describing preliminary results derived from an experiment in a complex virtual 
environment.  In this experiment, teams of two Soldiers performed Vehicle 
Commander (VC) and Driver roles in a simulated Stryker vehicle on a six degrees-of-
freedom (DOF) ride motion platform.  The focus of the EEG and behavioral data 
collection was on the VC, who interacted with the Driver and performed multiple 
overlapping tasks, such as route planning, maintaining local situational awareness, 
and monitoring and responding to radio communications.  Additionally, the EEG data 
collected from the VC in this experiment has large amounts of noise artifacts, 
including those caused by reaching and speaking, unconstrained eye and head 
movements, and the movements of the motion platform. EEG collected in this 
environment will provide a test bed for evaluating data processing methods for real-
world applications.  

For this preliminary analysis, we are attempting to classify between a Soldier 
hearing and reacting to a self-relevant audio stimulus, and the same Soldier hearing a 
irrelevant audio stimulus.  Reliably accomplishing this task would demonstrate a 
capability for extracting physiological information in a complex environment, and 
potentially provide the capability for performing minor optimizations of a vehicle 
crew station interface.  The complexity of the environment will likely result in high 
classification error percentages, leading us to perform an individual-based analysis.  
However, by performing this analysis we obtain a baseline performance metric that 
demonstrates the potential for analyzing this complex data set.  In addition, by 
performing classifier training on individuals we hope to improve classifier 
performance for particular individuals, instead of using classifiers trained across 
groups or on normative data [3]. 

This paper is organized as follows: section 2 will discuss work relevant to the goals 
of this paper.  Section 3 will describe the experimental methodology.  Sections 4 and 
5 will describe the analysis methods and discuss the results, and the paper concludes 
in section 6. 

2   Related Work 

In this preliminary analysis, we aim to classify the neural processing related to self-
relevant auditory communications compared to irrelevant auditory communications.  
The self-relevance of an event has considerable effects on its ability to catch our 
attention, and to the emotional value assigned to that event [5], [6].  Prior research 
indicates that self-relevant communication has particular underlying neural and 
physiological codings that classification can be based on. While much of the research 
demonstrating neural correlates of self-relevance has focused on fMRI studies [7], 
there is some research showing the relationship between self-referential stimuli and 
electrophysiological correlates.  For example, Gray et al. [8] have shown that self-
relevant visual stimuli have a significant effect on event-related P300 latency and 
amplitude, and Tanaka et al. [9] report a focal response (N250) in right posterior 
channels when viewing pictures of oneself. In addition to these studies of self-relevant  
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Fig. 1. Vehicle Commander (VC) Warfighter-Machine Interface (WMI), consisting of a 180º 
field-of-view banner across the top, a 60º field-of-view window on the left hand side, and an 
overhead map on the right hand side. 

visual stimuli, several researchers have shown neural correlates of auditory 
recognition using both fMRI and EEG, while Krause et al. [10] showed a statistically 
signification relationship between an auditory recognition task and event-related 
desynchronizations in the upper (10-12 Hz) and lower (8-10 Hz) alpha frequency 
bands of the EEG signal.  In short, these studies collectively suggest a differentiation 
in the neural processing of self-referential stimuli, whether visual or auditory, and it is 
this differentiation in the brain signal that our classification approach seeks to identify 
despite the noise in the recorded EEG signal and the complexity of the task 
environment. 

3   Experimental Methodology 

3.1   Subjects 

The subjects were 14 U.S. Army Sergeants, all male, ranging from age 27 to age 50, 
with mean age 34.5 from Military Occupational Specialty (MOS) 11B (Infantryman), 
MOS 19D (Cavalry Scout), and MOS 19K (Armor Crewman).  The Soldiers were all 
combat veterans of Iraq or Afghanistan, and all from the U.S. Army Maneuver Center 
of Excellence at Fort Knox, KY and Fort Benning, GA.  Two of the subjects were 
excluded from the analysis due to technical difficulties during the data collection, and 
two subjects were excluded due to failure to accomplish experimental tasks, resulting 
in 10 subjects being utilized for the analysis. 

3.2   Design and Procedure 

The goal of the experiment was to study commander task performance under varying 
task load conditions during team operations in a complex Army-relevant virtual 
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environment.  During the experiment, teams of two Soldiers performed six simulated 
missions consisting of traveling in a Stryker vehicle from a Forward Operating Base 
(FOB) to a nearby small desert metropolitan area, visiting three sequential 
checkpoints in the city area, and then returning to the FOB.  One Soldier was assigned 
the role of the Vehicle Commander (VC), while the other Soldier was assigned to be 
the Driver.  Each Soldier would spend one day as VC, and one day as the Driver.   
The simulated Stryker was equipped with a Closed-Hatch Local Situational 
Awareness (LSA) system, consisting of six external cameras covering a 360º area 
around the vehicle that were accessible from the VC crew station (Fig. 1). 

During each mission, the VC performed numerous tasks that can be categorized 
into three main task groupings: 

1. Overseeing mission progress and ensuring that the vehicle arrived at each 
checkpoint within a specific time range. This included supervising the Driver and 
providing turn-by-turn directions through the city, halt/resume commands, and 
immediate command driving around difficult obstacles in the environment. 

2. Maintaining visual LSA, which included detecting road obstacles and traffic 
conditions relevant to navigating the environment, and reporting the position of 
uniformed local forces and objects identified as threats over the radio network to a 
simulated Tactical Operating Commander (TOC). 

3. Maintaining auditory LSA, which included monitoring and responding to radio 
communications about mission status from the TOC and verbally interacting with 
the Driver. 
 

In order to explore differential effects of task loading, the portion of the mission 
consisting of the ride from the FOB into the metro area was designed to induce much 
lower cognitive load than the portion of the mission taking part inside the metro area.  
There were considerably more audio and visual stimuli, and more pedestrian and 
vehicle traffic within the metro area than there were outside of it. 

3.3   Auditory Stimuli 

While there are many potential aspects of this data set that could be mined for results, 
including neural or physiological correlates of visual targets or error-related signals 
induced by driver mistakes such as vehicle-vehicle or vehicle-pedestrian contact, the 
focus of this preliminary analysis is on the auditory stimuli.  The VC monitored four 
audio channels during the course of the experiment: primary audio stimuli, 
background audio stimuli, all-listener audio stimuli, and Driver communications.   

Primary audio stimuli consisted of pre-recorded messages from a single radio 
operator (a simulated TOC) that were directed to the VC’s call sign, “Blue 4.”  The 
primary audio stimuli were directly associated with the mission being performed, and 
were triggered either by trip lines in the virtual environment or when specific scenario 
conditions were met. For the purposes of this analysis we have divided the primary 
audio stimuli into three categories (Table 1):  (1) messages that tell the VC to change 
between radio communication nets, which the VC would perform by pressing a button 
on the crew station; (2) messages that ask a question of the VC, which the VC would 
respond to by pressing a push-to-talk button and speaking; and (3) messages that 
require minimal response from the VC (i.e. the VC would respond by pressing the 
push-to-talk button and saying “roger”).   
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Table 1. Audio Stimuli Categorizations 

Category Label Stimulus Type Total Quantity 
A1 Primary: Change between radio nets 625 
A2 Primary: Asking question of Soldier 321 
A3 Primary: Other primary communication 1563 
B1 Background: Messages to Blue 12 634 
B2 Background: Other background communications 501 
C1 All Listeners: Change radio net status  93 
C2 All Listeners: other communications 293 

 
Background audio stimuli consisted of pre-recorded messages from various other 

speakers which were not directed to the VC, were not mission-relevant, and were 
randomly triggered.  We have divided the background audio stimuli into two 
categories: (1) messages to the call sign ‘Blue 12’, which is similar to the VC’s call 
sign; and (2) other background communication.   

All-listener audio stimuli consisted of pre-recorded messages that were directed to 
all listeners on the channel, were not mission-relevant, and were randomly triggered.  
We have divided these stimuli into two categories: (1) messages that tell all of the 
listeners (including the VC) to change the radio net status, which the VC would 
perform by pressing a button on the crew station; and (2) messages that provide 
information to all listeners (including the VC). 

Relevant and irrelevant audio stimuli were clearly defined through the use of call 
signs.  All Army radio messages are prefaced with the call sign of the Soldier to 
whom they are directed.  Thus, within the first 0.5 to 1.0 seconds of the radio 
message, the VC was able to determine the relevancy of the audio stimulus.  The 
Soldiers successfully responded to almost all relevant primary audio stimuli (i.e., all 
communications that began with “Blue 4” followed by the question or directive from 
the Tactical Operating Commander), which indicates successful identification and 
comprehension of the VC-directed auditory communications. The driver 
communications were less controlled since the Driver was a live participant rather 
than a recorded voice like the Tactical Operating Commander. For this preliminary 
analysis, the VC communication with the Driver was ignored. 

3.4   Experimental Setup 

EEG was collected from the VC using a 64-channel BioSemi active-electrode EEG 
system placed according the 10-20 international system, referenced to averaged 
mastoids, and recorded at 256 Hz. In addition, horizontal EOG was collected from 
two electrodes placed on the outer canti of the eyes and vertical EOG was collected 
from two electrodes placed above and below the right eye.   

The Driver viewed the simulated environment through a 60º straight-ahead field of 
view, and interacted with it through a yoke, and two pedals (gas and brake).  The VC 
interacted with the simulated environment through a crew station with 2 touchscreens, 
through which he had access to the full 360º LSA system, a digital map of the area, 
and the ability to perform any mission-relevant tasks (Fig 1).  The VC also had a 
paper map for planning the mission route. 



472 B. Lance et al.  

The VC performed the experiment while riding on the 6-DOF servo-hydraulic Ride 
Motion Simulator (RMS) platform at the U.S. Army Tank and Automotive Research, 
Development, and Engineering Center (TARDEC).  The RMS platform was 
developed at TARDEC for simulating the ride of military vehicles, and it provides 
motion cues to the occupant derived from physics-based dynamics models of the 
vehicle and its interaction with the terrain. 

The simulated environment consisted of a FOB near a small desert metropolitan 
area.  Within the metro area, there were six checkpoints.  Three checkpoints were 
used in each of the six missions performed by the subjects.  Pedestrian and vehicle 
traffic also served as distracters and obstacles.  Behavioral data was collected from 
the simulated environment, including but not limited to: all of the VC’s crew station 
interactions, timing and audio of all communications, what camera the VC used at any 
given time, and the position and heading of the simulated Stryker in the environment. 

4   Feature Extraction and Classification 

For this preliminary analysis we performed two separate sets of offline classifications 
between a Soldier hearing and reacting to a self-relevant audio stimulus, and between 
the same Soldier hearing an irrelevant audio stimulus.  The first classification set was 
performed using BCILab [1], an open-source tool for BCI development in MATLAB 
(Mathworks; Natick, MA) developed at the Swartz Center for Computational 
Neuroscience at the University of California, San Diego.  The second set of 
classifications was performed using the support vector machine (SVM) library 
LibSVM [2], developed at National Taiwan University, Taipei, Taiwan.  Distinct 
classifiers were trained for each individual Soldier taking part in the experiment.  It 
has been our experience that, on data such as this, individually-trained classifiers tend 
to outperform classifiers trained on group or normative data [3]. 

4.1   BCILab Procedure 

The BCILab analysis was performed using BCILab’s built-in epoching, filtering, 
feature extraction, and classification capabilities to analyze the data.  The data was 
downsampled to 100 Hz, bandpass filtered to 1-50 Hz, and epoched from 0.5 seconds 
to 4.5 seconds after the audio stimulus, with baseline removal performed for each 
epoch.  This epoch size provided the best performance of those tried. Feature 
extraction was performed using BCILab’s log bandpower paradigm, which uses the 
log variance of the spectral power over the entire 1-50 Hz frequency for each channel 
for each epoch as the features passed to the classifier, which in this case was a linear 
discriminant analysis (LDA) classifier.  Classifiers were trained and tested for each 
individual using 10-fold classification validation. 

4.2   LibSVM Procedure 

For the LibSVM analysis, the data was bandpass filtered to 1-50 Hz, and epoched 
from 0.5 seconds to 4.5 seconds after the audio stimulus, after which the epochs were 
detrended.  Feature extraction consisted of the bandpower of multiple frequency 
bands for each channel at each epoch.  The frequency bands used were those defined 
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by Andreassi [11], consisting of the delta (1-3 Hz), theta (4-7 Hz), alpha (8-13 Hz), 
low beta (14-20 Hz), high beta (21-30 Hz), and the gamma (31-50) bands.  The 
features were scaled on a 0 to 1 range, and classified using an SVM with a radial basis 
function (RBF) kernel and 10-fold validation.  SVM parameters were defined by 
manual search through the space of possibilities. 

Table 2. Mean classifier performance across all subjects 

Condition BCILAB LibSVM Actual  
A (all) vs. B (all) + C(all) 0.54±0.038 0.60±0.038 0.60 / 0.40 
A (all) vs. B (all) 0.57±0.044 0.62±0.048 0.67 / 0.33 
A (all) & C (all) vs. B (all) 0.57±0.033 0.67±0.048 0.70 / 0.30 
A1 & A2 & C1  vs. B (all) 0.64±0.066 0.65±0.054 0.47 / 0.52 
A1 & A2 vs. B (all) 0.66±0.073 0.67±0.053 0.45 / 0.55 

4.3   Results 

Classifications were performed based on the previously-defined categories of audio 
stimuli, shown in Table 1.  The performance value provided is the mean of the true 
positive and true negative result percentages across the 10-fold results of the 
classifiers trained for all subjects.  We performed five primary classifications (Table 
2): stimuli directly addressed to the VC vs. stimuli that were not (shown in row 1), 
stimuli directly addressed to the VC vs. irrelevant audio stimuli addressed neither to 
the VC nor to all listeners of the channel (row 2), stimuli directly or indirectly 
addressed to the VC vs. irrelevant audio stimuli (row 3), stimuli that required a major 
response (i.e. crew station interaction or complex verbal response) vs. irrelevant audio 
stimuli (row 4), and stimuli directly addressed to the VC that required a major 
response vs. irrelevant audio stimuli (row 5).  To show individual classifier 
performance, the 10-fold performance values for each individual subject for the 
primary audio that required a major response vs. irrelevant audio stimuli condition are 
shown in Table 3.   

Table 3. 10-fold individual classifier performance for the A1 & A2 vs. B (all) condition 

Subject BCILab LibSVM Actual  
A1 & A2 

1 0.78 0.79 0.46 
2 0.66 0.64 0.47 
3 0.59 0.67 0.49 
4 0.61 0.60 0.51 
5 0.66 0.62 0.46 
6 0.60 0.65 0.47 
7 0.69 0.67 0.42 
8 0.78 0.72 0.4 
9 0.61 0.66 0.48 
10 0.61 0.67 0.45 
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5   Discussion 

The highest classification performance results were obtained by classifying the 
recognition of relevant audio with a major response to irrelevant audio, with both 
BCILab and LibSVM providing similar results in the 0.65-0.67 range.  However, one 
potential concern regarding the results arises from the fact that during each scenario 
there were high-activity time periods (those within the urban area, which had 
increased tasks and distracters) and low-activity time periods (those outside the urban 
area). In order to ensure that the results were not showing a distinction between high 
activity and low activity, we ran two additional sub-classifications, one comparing 
relevant audio with a response vs. irrelevant audio in low-activity time periods, and 
another comparing the audio stimuli that occurred in high-activity time periods.  The 
results were comparable to the overall classification (Table 5), indicating that we are 
classifying based on the audio stimuli conditions, not on the low vs. high-activity 
condition. 

Table 4. Mean classifier performance across all subjects for the A1 & A2 vs. B2 & B4 
condition with low-activity and high-activity conditions 

Condition BCILab LibSVM Actual 
Low-Activity 0.64±0.077 0.64±.097 0.47 / 0.53 
High-Activity 0.64±0.046 0.62±.081 0.45 / 0.55 

 
Another potential concern with the analysis is that the 4-second epoch starting ½ 
second after the auditory stimuli could be long enough that the classifier was based 
entirely on EMG noise related to the spoken response to the stimuli.  While there is 
certainly some noise used in the classification, the mean length of the primary audio 
stimuli is 4.85 seconds (stdev = 0.996, min = 3.62, max = 7.19), suggesting that we 
are not classifying solely based on EMG noise related to speaking. 

6   Conclusion 

To begin developing aBCIs and related systems such as BCITs that function in noisy 
environments in which individuals are responsible for multiple concurrent tasks, we 
have demonstrated a basic ability to classify when a Soldier is listening to a relevant 
audio com, i.e. one that is addressed to them, and to which they later respond.  It is 
clear that performance must be improved before using this classifier in an application.  
As such, we are exploring ways to improve and further our analysis through the use of 
multiple methods for extracting information from EEG data.  For example, 
Independent Components Analysis (ICA) can remove eye [12] and other artifacts [13] 
from the EEG data, while connectivity measures such as Phase-Lag Index (PLI, [14]) 
can be insensitive to many movement artifacts [15].  Finally, we will need to evaluate 
the resulting performance in real-time in order to explore providing minor 
optimizations to crew station interfaces.   
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However, one remaining question is whether the classifier is learning from true 
brain data, or if it is primarily keying off of other physiological artifacts, such as 
EMG or EOG activity in the EEG recording.  From the perspective of better 
understanding the cognitive processes associated with attending relevant audio stimuli 
such a question raises a clear, valid point.  From the point of view of developing 
functional systems that operate robustly in complex environments, we would argue 
that, given the state of current technology, limiting research exploration to only 
explicitly demonstrated brain signals is neither pragmatic nor beneficial.  It is not yet 
clear how much useful information is contained in the “noise” of the EEG data, and if 
the presence of this information improves, or at least does not hinder, the overall 
operation of an aBCI or similar system it may not be practical or even possible to 
completely remove such noise in real time.   

In this paper, we described an experiment in a complex, high-noise, simulated 
environment, and we demonstrate that we are able to classify relevant audio coms 
with an intended response from irrelevant audio coms using EEG data collected 
during this experiment.  In addition, we have described a planned analysis pipeline 
that should provide improved results over the performed preliminary analysis.  By 
successfully processing complex, noisy data such as that described in this paper, we 
move closer towards being able to develop capabilities for detecting cognitive and 
affective states from EEG and other physiological data in real-world environments.  
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